• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011-12 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  */
9 
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/irqdomain.h>
14 #include <linux/irqchip.h>
15 #include "../../drivers/irqchip/irqchip.h"
16 #include <asm/sections.h>
17 #include <asm/irq.h>
18 #include <asm/mach_desc.h>
19 
20 /*
21  * Early Hardware specific Interrupt setup
22  * -Platform independent, needed for each CPU (not foldable into init_IRQ)
23  * -Called very early (start_kernel -> setup_arch -> setup_processor)
24  *
25  * what it does ?
26  * -Optionally, setup the High priority Interrupts as Level 2 IRQs
27  */
arc_init_IRQ(void)28 void arc_init_IRQ(void)
29 {
30 	int level_mask = 0;
31 
32        /* setup any high priority Interrupts (Level2 in ARCompact jargon) */
33 	level_mask |= IS_ENABLED(CONFIG_ARC_IRQ3_LV2) << 3;
34 	level_mask |= IS_ENABLED(CONFIG_ARC_IRQ5_LV2) << 5;
35 	level_mask |= IS_ENABLED(CONFIG_ARC_IRQ6_LV2) << 6;
36 
37 	/*
38 	 * Write to register, even if no LV2 IRQs configured to reset it
39 	 * in case bootloader had mucked with it
40 	 */
41 	write_aux_reg(AUX_IRQ_LEV, level_mask);
42 
43 	if (level_mask)
44 		pr_info("Level-2 interrupts bitset %x\n", level_mask);
45 }
46 
47 /*
48  * ARC700 core includes a simple on-chip intc supporting
49  * -per IRQ enable/disable
50  * -2 levels of interrupts (high/low)
51  * -all interrupts being level triggered
52  *
53  * To reduce platform code, we assume all IRQs directly hooked-up into intc.
54  * Platforms with external intc, hence cascaded IRQs, are free to over-ride
55  * below, per IRQ.
56  */
57 
arc_irq_mask(struct irq_data * data)58 static void arc_irq_mask(struct irq_data *data)
59 {
60 	unsigned int ienb;
61 
62 	ienb = read_aux_reg(AUX_IENABLE);
63 	ienb &= ~(1 << data->irq);
64 	write_aux_reg(AUX_IENABLE, ienb);
65 }
66 
arc_irq_unmask(struct irq_data * data)67 static void arc_irq_unmask(struct irq_data *data)
68 {
69 	unsigned int ienb;
70 
71 	ienb = read_aux_reg(AUX_IENABLE);
72 	ienb |= (1 << data->irq);
73 	write_aux_reg(AUX_IENABLE, ienb);
74 }
75 
76 static struct irq_chip onchip_intc = {
77 	.name           = "ARC In-core Intc",
78 	.irq_mask	= arc_irq_mask,
79 	.irq_unmask	= arc_irq_unmask,
80 };
81 
arc_intc_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)82 static int arc_intc_domain_map(struct irq_domain *d, unsigned int irq,
83 				irq_hw_number_t hw)
84 {
85 	if (irq == TIMER0_IRQ)
86 		irq_set_chip_and_handler(irq, &onchip_intc, handle_percpu_irq);
87 	else
88 		irq_set_chip_and_handler(irq, &onchip_intc, handle_level_irq);
89 
90 	return 0;
91 }
92 
93 static const struct irq_domain_ops arc_intc_domain_ops = {
94 	.xlate = irq_domain_xlate_onecell,
95 	.map = arc_intc_domain_map,
96 };
97 
98 static struct irq_domain *root_domain;
99 
100 static int __init
init_onchip_IRQ(struct device_node * intc,struct device_node * parent)101 init_onchip_IRQ(struct device_node *intc, struct device_node *parent)
102 {
103 	if (parent)
104 		panic("DeviceTree incore intc not a root irq controller\n");
105 
106 	root_domain = irq_domain_add_legacy(intc, NR_CPU_IRQS, 0, 0,
107 					    &arc_intc_domain_ops, NULL);
108 
109 	if (!root_domain)
110 		panic("root irq domain not avail\n");
111 
112 	/* with this we don't need to export root_domain */
113 	irq_set_default_host(root_domain);
114 
115 	return 0;
116 }
117 
118 IRQCHIP_DECLARE(arc_intc, "snps,arc700-intc", init_onchip_IRQ);
119 
120 /*
121  * Late Interrupt system init called from start_kernel for Boot CPU only
122  *
123  * Since slab must already be initialized, platforms can start doing any
124  * needed request_irq( )s
125  */
init_IRQ(void)126 void __init init_IRQ(void)
127 {
128 	/* Any external intc can be setup here */
129 	if (machine_desc->init_irq)
130 		machine_desc->init_irq();
131 
132 	/* process the entire interrupt tree in one go */
133 	irqchip_init();
134 
135 #ifdef CONFIG_SMP
136 	/* Master CPU can initialize it's side of IPI */
137 	if (machine_desc->init_smp)
138 		machine_desc->init_smp(smp_processor_id());
139 #endif
140 }
141 
142 /*
143  * "C" Entry point for any ARC ISR, called from low level vector handler
144  * @irq is the vector number read from ICAUSE reg of on-chip intc
145  */
arch_do_IRQ(unsigned int irq,struct pt_regs * regs)146 void arch_do_IRQ(unsigned int irq, struct pt_regs *regs)
147 {
148 	struct pt_regs *old_regs = set_irq_regs(regs);
149 
150 	irq_enter();
151 	generic_handle_irq(irq);
152 	irq_exit();
153 	set_irq_regs(old_regs);
154 }
155 
arc_request_percpu_irq(int irq,int cpu,irqreturn_t (* isr)(int irq,void * dev),const char * irq_nm,void * percpu_dev)156 void arc_request_percpu_irq(int irq, int cpu,
157                             irqreturn_t (*isr)(int irq, void *dev),
158                             const char *irq_nm,
159                             void *percpu_dev)
160 {
161 	/* Boot cpu calls request, all call enable */
162 	if (!cpu) {
163 		int rc;
164 
165 		/*
166 		 * These 2 calls are essential to making percpu IRQ APIs work
167 		 * Ideally these details could be hidden in irq chip map function
168 		 * but the issue is IPIs IRQs being static (non-DT) and platform
169 		 * specific, so we can't identify them there.
170 		 */
171 		irq_set_percpu_devid(irq);
172 		irq_modify_status(irq, IRQ_NOAUTOEN, 0);  /* @irq, @clr, @set */
173 
174 		rc = request_percpu_irq(irq, isr, irq_nm, percpu_dev);
175 		if (rc)
176 			panic("Percpu IRQ request failed for %d\n", irq);
177 	}
178 
179 	enable_percpu_irq(irq, 0);
180 }
181 
182 /*
183  * arch_local_irq_enable - Enable interrupts.
184  *
185  * 1. Explicitly called to re-enable interrupts
186  * 2. Implicitly called from spin_unlock_irq, write_unlock_irq etc
187  *    which maybe in hard ISR itself
188  *
189  * Semantics of this function change depending on where it is called from:
190  *
191  * -If called from hard-ISR, it must not invert interrupt priorities
192  *  e.g. suppose TIMER is high priority (Level 2) IRQ
193  *    Time hard-ISR, timer_interrupt( ) calls spin_unlock_irq several times.
194  *    Here local_irq_enable( ) shd not re-enable lower priority interrupts
195  * -If called from soft-ISR, it must re-enable all interrupts
196  *    soft ISR are low prioity jobs which can be very slow, thus all IRQs
197  *    must be enabled while they run.
198  *    Now hardware context wise we may still be in L2 ISR (not done rtie)
199  *    still we must re-enable both L1 and L2 IRQs
200  *  Another twist is prev scenario with flow being
201  *     L1 ISR ==> interrupted by L2 ISR  ==> L2 soft ISR
202  *     here we must not re-enable Ll as prev Ll Interrupt's h/w context will get
203  *     over-written (this is deficiency in ARC700 Interrupt mechanism)
204  */
205 
206 #ifdef CONFIG_ARC_COMPACT_IRQ_LEVELS	/* Complex version for 2 IRQ levels */
207 
arch_local_irq_enable(void)208 void arch_local_irq_enable(void)
209 {
210 
211 	unsigned long flags;
212 	flags = arch_local_save_flags();
213 
214 	/* Allow both L1 and L2 at the onset */
215 	flags |= (STATUS_E1_MASK | STATUS_E2_MASK);
216 
217 	/* Called from hard ISR (between irq_enter and irq_exit) */
218 	if (in_irq()) {
219 
220 		/* If in L2 ISR, don't re-enable any further IRQs as this can
221 		 * cause IRQ priorities to get upside down. e.g. it could allow
222 		 * L1 be taken while in L2 hard ISR which is wrong not only in
223 		 * theory, it can also cause the dreaded L1-L2-L1 scenario
224 		 */
225 		if (flags & STATUS_A2_MASK)
226 			flags &= ~(STATUS_E1_MASK | STATUS_E2_MASK);
227 
228 		/* Even if in L1 ISR, allowe Higher prio L2 IRQs */
229 		else if (flags & STATUS_A1_MASK)
230 			flags &= ~(STATUS_E1_MASK);
231 	}
232 
233 	/* called from soft IRQ, ideally we want to re-enable all levels */
234 
235 	else if (in_softirq()) {
236 
237 		/* However if this is case of L1 interrupted by L2,
238 		 * re-enabling both may cause whaco L1-L2-L1 scenario
239 		 * because ARC700 allows level 1 to interrupt an active L2 ISR
240 		 * Thus we disable both
241 		 * However some code, executing in soft ISR wants some IRQs
242 		 * to be enabled so we re-enable L2 only
243 		 *
244 		 * How do we determine L1 intr by L2
245 		 *  -A2 is set (means in L2 ISR)
246 		 *  -E1 is set in this ISR's pt_regs->status32 which is
247 		 *      saved copy of status32_l2 when l2 ISR happened
248 		 */
249 		struct pt_regs *pt = get_irq_regs();
250 		if ((flags & STATUS_A2_MASK) && pt &&
251 		    (pt->status32 & STATUS_A1_MASK)) {
252 			/*flags &= ~(STATUS_E1_MASK | STATUS_E2_MASK); */
253 			flags &= ~(STATUS_E1_MASK);
254 		}
255 	}
256 
257 	arch_local_irq_restore(flags);
258 }
259 
260 #else /* ! CONFIG_ARC_COMPACT_IRQ_LEVELS */
261 
262 /*
263  * Simpler version for only 1 level of interrupt
264  * Here we only Worry about Level 1 Bits
265  */
arch_local_irq_enable(void)266 void arch_local_irq_enable(void)
267 {
268 	unsigned long flags;
269 
270 	/*
271 	 * ARC IDE Drivers tries to re-enable interrupts from hard-isr
272 	 * context which is simply wrong
273 	 */
274 	if (in_irq()) {
275 		WARN_ONCE(1, "IRQ enabled from hard-isr");
276 		return;
277 	}
278 
279 	flags = arch_local_save_flags();
280 	flags |= (STATUS_E1_MASK | STATUS_E2_MASK);
281 	arch_local_irq_restore(flags);
282 }
283 #endif
284 EXPORT_SYMBOL(arch_local_irq_enable);
285