• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/mm/dma-mapping.c
3  *
4  *  Copyright (C) 2000-2004 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  *  DMA uncached mapping support.
11  */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31 
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41 
42 #include "mm.h"
43 
44 /*
45  * The DMA API is built upon the notion of "buffer ownership".  A buffer
46  * is either exclusively owned by the CPU (and therefore may be accessed
47  * by it) or exclusively owned by the DMA device.  These helper functions
48  * represent the transitions between these two ownership states.
49  *
50  * Note, however, that on later ARMs, this notion does not work due to
51  * speculative prefetches.  We model our approach on the assumption that
52  * the CPU does do speculative prefetches, which means we clean caches
53  * before transfers and delay cache invalidation until transfer completion.
54  *
55  */
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 		size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 		size_t, enum dma_data_direction);
60 
61 /**
62  * arm_dma_map_page - map a portion of a page for streaming DMA
63  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64  * @page: page that buffer resides in
65  * @offset: offset into page for start of buffer
66  * @size: size of buffer to map
67  * @dir: DMA transfer direction
68  *
69  * Ensure that any data held in the cache is appropriately discarded
70  * or written back.
71  *
72  * The device owns this memory once this call has completed.  The CPU
73  * can regain ownership by calling dma_unmap_page().
74  */
arm_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 	     unsigned long offset, size_t size, enum dma_data_direction dir,
77 	     struct dma_attrs *attrs)
78 {
79 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 		__dma_page_cpu_to_dev(page, offset, size, dir);
81 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 }
83 
arm_coherent_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 	     unsigned long offset, size_t size, enum dma_data_direction dir,
86 	     struct dma_attrs *attrs)
87 {
88 	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 }
90 
91 /**
92  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94  * @handle: DMA address of buffer
95  * @size: size of buffer (same as passed to dma_map_page)
96  * @dir: DMA transfer direction (same as passed to dma_map_page)
97  *
98  * Unmap a page streaming mode DMA translation.  The handle and size
99  * must match what was provided in the previous dma_map_page() call.
100  * All other usages are undefined.
101  *
102  * After this call, reads by the CPU to the buffer are guaranteed to see
103  * whatever the device wrote there.
104  */
arm_dma_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 		size_t size, enum dma_data_direction dir,
107 		struct dma_attrs *attrs)
108 {
109 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 				      handle & ~PAGE_MASK, size, dir);
112 }
113 
arm_dma_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 {
117 	unsigned int offset = handle & (PAGE_SIZE - 1);
118 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 	__dma_page_dev_to_cpu(page, offset, size, dir);
120 }
121 
arm_dma_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)122 static void arm_dma_sync_single_for_device(struct device *dev,
123 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
124 {
125 	unsigned int offset = handle & (PAGE_SIZE - 1);
126 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 	__dma_page_cpu_to_dev(page, offset, size, dir);
128 }
129 
130 struct dma_map_ops arm_dma_ops = {
131 	.alloc			= arm_dma_alloc,
132 	.free			= arm_dma_free,
133 	.mmap			= arm_dma_mmap,
134 	.get_sgtable		= arm_dma_get_sgtable,
135 	.map_page		= arm_dma_map_page,
136 	.unmap_page		= arm_dma_unmap_page,
137 	.map_sg			= arm_dma_map_sg,
138 	.unmap_sg		= arm_dma_unmap_sg,
139 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
140 	.sync_single_for_device	= arm_dma_sync_single_for_device,
141 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
142 	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
143 	.set_dma_mask		= arm_dma_set_mask,
144 };
145 EXPORT_SYMBOL(arm_dma_ops);
146 
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 				  dma_addr_t handle, struct dma_attrs *attrs);
151 
152 struct dma_map_ops arm_coherent_dma_ops = {
153 	.alloc			= arm_coherent_dma_alloc,
154 	.free			= arm_coherent_dma_free,
155 	.mmap			= arm_dma_mmap,
156 	.get_sgtable		= arm_dma_get_sgtable,
157 	.map_page		= arm_coherent_dma_map_page,
158 	.map_sg			= arm_dma_map_sg,
159 	.set_dma_mask		= arm_dma_set_mask,
160 };
161 EXPORT_SYMBOL(arm_coherent_dma_ops);
162 
__dma_supported(struct device * dev,u64 mask,bool warn)163 static int __dma_supported(struct device *dev, u64 mask, bool warn)
164 {
165 	unsigned long max_dma_pfn;
166 
167 	/*
168 	 * If the mask allows for more memory than we can address,
169 	 * and we actually have that much memory, then we must
170 	 * indicate that DMA to this device is not supported.
171 	 */
172 	if (sizeof(mask) != sizeof(dma_addr_t) &&
173 	    mask > (dma_addr_t)~0 &&
174 	    dma_to_pfn(dev, ~0) < max_pfn) {
175 		if (warn) {
176 			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 				 mask);
178 			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 		}
180 		return 0;
181 	}
182 
183 	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184 
185 	/*
186 	 * Translate the device's DMA mask to a PFN limit.  This
187 	 * PFN number includes the page which we can DMA to.
188 	 */
189 	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 		if (warn)
191 			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 				 mask,
193 				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 				 max_dma_pfn + 1);
195 		return 0;
196 	}
197 
198 	return 1;
199 }
200 
get_coherent_dma_mask(struct device * dev)201 static u64 get_coherent_dma_mask(struct device *dev)
202 {
203 	u64 mask = (u64)DMA_BIT_MASK(32);
204 
205 	if (dev) {
206 		mask = dev->coherent_dma_mask;
207 
208 		/*
209 		 * Sanity check the DMA mask - it must be non-zero, and
210 		 * must be able to be satisfied by a DMA allocation.
211 		 */
212 		if (mask == 0) {
213 			dev_warn(dev, "coherent DMA mask is unset\n");
214 			return 0;
215 		}
216 
217 		if (!__dma_supported(dev, mask, true))
218 			return 0;
219 	}
220 
221 	return mask;
222 }
223 
__dma_clear_buffer(struct page * page,size_t size)224 static void __dma_clear_buffer(struct page *page, size_t size)
225 {
226 	/*
227 	 * Ensure that the allocated pages are zeroed, and that any data
228 	 * lurking in the kernel direct-mapped region is invalidated.
229 	 */
230 	if (PageHighMem(page)) {
231 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 		phys_addr_t end = base + size;
233 		while (size > 0) {
234 			void *ptr = kmap_atomic(page);
235 			memset(ptr, 0, PAGE_SIZE);
236 			dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 			kunmap_atomic(ptr);
238 			page++;
239 			size -= PAGE_SIZE;
240 		}
241 		outer_flush_range(base, end);
242 	} else {
243 		void *ptr = page_address(page);
244 		memset(ptr, 0, size);
245 		dmac_flush_range(ptr, ptr + size);
246 		outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 	}
248 }
249 
250 /*
251  * Allocate a DMA buffer for 'dev' of size 'size' using the
252  * specified gfp mask.  Note that 'size' must be page aligned.
253  */
__dma_alloc_buffer(struct device * dev,size_t size,gfp_t gfp)254 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255 {
256 	unsigned long order = get_order(size);
257 	struct page *page, *p, *e;
258 
259 	page = alloc_pages(gfp, order);
260 	if (!page)
261 		return NULL;
262 
263 	/*
264 	 * Now split the huge page and free the excess pages
265 	 */
266 	split_page(page, order);
267 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 		__free_page(p);
269 
270 	__dma_clear_buffer(page, size);
271 
272 	return page;
273 }
274 
275 /*
276  * Free a DMA buffer.  'size' must be page aligned.
277  */
__dma_free_buffer(struct page * page,size_t size)278 static void __dma_free_buffer(struct page *page, size_t size)
279 {
280 	struct page *e = page + (size >> PAGE_SHIFT);
281 
282 	while (page < e) {
283 		__free_page(page);
284 		page++;
285 	}
286 }
287 
288 #ifdef CONFIG_MMU
289 
290 static void *__alloc_from_contiguous(struct device *dev, size_t size,
291 				     pgprot_t prot, struct page **ret_page,
292 				     const void *caller);
293 
294 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 				 pgprot_t prot, struct page **ret_page,
296 				 const void *caller);
297 
298 static void *
__dma_alloc_remap(struct page * page,size_t size,gfp_t gfp,pgprot_t prot,const void * caller)299 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 	const void *caller)
301 {
302 	/*
303 	 * DMA allocation can be mapped to user space, so lets
304 	 * set VM_USERMAP flags too.
305 	 */
306 	return dma_common_contiguous_remap(page, size,
307 			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 			prot, caller);
309 }
310 
__dma_free_remap(void * cpu_addr,size_t size)311 static void __dma_free_remap(void *cpu_addr, size_t size)
312 {
313 	dma_common_free_remap(cpu_addr, size,
314 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 }
316 
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
318 static struct gen_pool *atomic_pool;
319 
320 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321 
early_coherent_pool(char * p)322 static int __init early_coherent_pool(char *p)
323 {
324 	atomic_pool_size = memparse(p, &p);
325 	return 0;
326 }
327 early_param("coherent_pool", early_coherent_pool);
328 
init_dma_coherent_pool_size(unsigned long size)329 void __init init_dma_coherent_pool_size(unsigned long size)
330 {
331 	/*
332 	 * Catch any attempt to set the pool size too late.
333 	 */
334 	BUG_ON(atomic_pool);
335 
336 	/*
337 	 * Set architecture specific coherent pool size only if
338 	 * it has not been changed by kernel command line parameter.
339 	 */
340 	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 		atomic_pool_size = size;
342 }
343 
344 /*
345  * Initialise the coherent pool for atomic allocations.
346  */
atomic_pool_init(void)347 static int __init atomic_pool_init(void)
348 {
349 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 	struct page *page;
352 	void *ptr;
353 
354 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 	if (!atomic_pool)
356 		goto out;
357 
358 	if (dev_get_cma_area(NULL))
359 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360 					      &page, atomic_pool_init);
361 	else
362 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363 					   &page, atomic_pool_init);
364 	if (ptr) {
365 		int ret;
366 
367 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 					page_to_phys(page),
369 					atomic_pool_size, -1);
370 		if (ret)
371 			goto destroy_genpool;
372 
373 		gen_pool_set_algo(atomic_pool,
374 				gen_pool_first_fit_order_align,
375 				(void *)PAGE_SHIFT);
376 		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 		       atomic_pool_size / 1024);
378 		return 0;
379 	}
380 
381 destroy_genpool:
382 	gen_pool_destroy(atomic_pool);
383 	atomic_pool = NULL;
384 out:
385 	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 	       atomic_pool_size / 1024);
387 	return -ENOMEM;
388 }
389 /*
390  * CMA is activated by core_initcall, so we must be called after it.
391  */
392 postcore_initcall(atomic_pool_init);
393 
394 struct dma_contig_early_reserve {
395 	phys_addr_t base;
396 	unsigned long size;
397 };
398 
399 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400 
401 static int dma_mmu_remap_num __initdata;
402 
dma_contiguous_early_fixup(phys_addr_t base,unsigned long size)403 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404 {
405 	dma_mmu_remap[dma_mmu_remap_num].base = base;
406 	dma_mmu_remap[dma_mmu_remap_num].size = size;
407 	dma_mmu_remap_num++;
408 }
409 
dma_contiguous_remap(void)410 void __init dma_contiguous_remap(void)
411 {
412 	int i;
413 	for (i = 0; i < dma_mmu_remap_num; i++) {
414 		phys_addr_t start = dma_mmu_remap[i].base;
415 		phys_addr_t end = start + dma_mmu_remap[i].size;
416 		struct map_desc map;
417 		unsigned long addr;
418 
419 		if (end > arm_lowmem_limit)
420 			end = arm_lowmem_limit;
421 		if (start >= end)
422 			continue;
423 
424 		map.pfn = __phys_to_pfn(start);
425 		map.virtual = __phys_to_virt(start);
426 		map.length = end - start;
427 		map.type = MT_MEMORY_DMA_READY;
428 
429 		/*
430 		 * Clear previous low-memory mapping to ensure that the
431 		 * TLB does not see any conflicting entries, then flush
432 		 * the TLB of the old entries before creating new mappings.
433 		 *
434 		 * This ensures that any speculatively loaded TLB entries
435 		 * (even though they may be rare) can not cause any problems,
436 		 * and ensures that this code is architecturally compliant.
437 		 */
438 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439 		     addr += PMD_SIZE)
440 			pmd_clear(pmd_off_k(addr));
441 
442 		flush_tlb_kernel_range(__phys_to_virt(start),
443 				       __phys_to_virt(end));
444 
445 		iotable_init(&map, 1);
446 	}
447 }
448 
__dma_update_pte(pte_t * pte,pgtable_t token,unsigned long addr,void * data)449 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 			    void *data)
451 {
452 	struct page *page = virt_to_page(addr);
453 	pgprot_t prot = *(pgprot_t *)data;
454 
455 	set_pte_ext(pte, mk_pte(page, prot), 0);
456 	return 0;
457 }
458 
__dma_remap(struct page * page,size_t size,pgprot_t prot)459 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460 {
461 	unsigned long start = (unsigned long) page_address(page);
462 	unsigned end = start + size;
463 
464 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
465 	flush_tlb_kernel_range(start, end);
466 }
467 
__alloc_remap_buffer(struct device * dev,size_t size,gfp_t gfp,pgprot_t prot,struct page ** ret_page,const void * caller)468 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 				 pgprot_t prot, struct page **ret_page,
470 				 const void *caller)
471 {
472 	struct page *page;
473 	void *ptr;
474 	page = __dma_alloc_buffer(dev, size, gfp);
475 	if (!page)
476 		return NULL;
477 
478 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
479 	if (!ptr) {
480 		__dma_free_buffer(page, size);
481 		return NULL;
482 	}
483 
484 	*ret_page = page;
485 	return ptr;
486 }
487 
__alloc_from_pool(size_t size,struct page ** ret_page)488 static void *__alloc_from_pool(size_t size, struct page **ret_page)
489 {
490 	unsigned long val;
491 	void *ptr = NULL;
492 
493 	if (!atomic_pool) {
494 		WARN(1, "coherent pool not initialised!\n");
495 		return NULL;
496 	}
497 
498 	val = gen_pool_alloc(atomic_pool, size);
499 	if (val) {
500 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
501 
502 		*ret_page = phys_to_page(phys);
503 		ptr = (void *)val;
504 	}
505 
506 	return ptr;
507 }
508 
__in_atomic_pool(void * start,size_t size)509 static bool __in_atomic_pool(void *start, size_t size)
510 {
511 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
512 }
513 
__free_from_pool(void * start,size_t size)514 static int __free_from_pool(void *start, size_t size)
515 {
516 	if (!__in_atomic_pool(start, size))
517 		return 0;
518 
519 	gen_pool_free(atomic_pool, (unsigned long)start, size);
520 
521 	return 1;
522 }
523 
__alloc_from_contiguous(struct device * dev,size_t size,pgprot_t prot,struct page ** ret_page,const void * caller)524 static void *__alloc_from_contiguous(struct device *dev, size_t size,
525 				     pgprot_t prot, struct page **ret_page,
526 				     const void *caller)
527 {
528 	unsigned long order = get_order(size);
529 	size_t count = size >> PAGE_SHIFT;
530 	struct page *page;
531 	void *ptr;
532 
533 	page = dma_alloc_from_contiguous(dev, count, order);
534 	if (!page)
535 		return NULL;
536 
537 	__dma_clear_buffer(page, size);
538 
539 	if (PageHighMem(page)) {
540 		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
541 		if (!ptr) {
542 			dma_release_from_contiguous(dev, page, count);
543 			return NULL;
544 		}
545 	} else {
546 		__dma_remap(page, size, prot);
547 		ptr = page_address(page);
548 	}
549 	*ret_page = page;
550 	return ptr;
551 }
552 
__free_from_contiguous(struct device * dev,struct page * page,void * cpu_addr,size_t size)553 static void __free_from_contiguous(struct device *dev, struct page *page,
554 				   void *cpu_addr, size_t size)
555 {
556 	if (PageHighMem(page))
557 		__dma_free_remap(cpu_addr, size);
558 	else
559 		__dma_remap(page, size, PAGE_KERNEL);
560 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
561 }
562 
__get_dma_pgprot(struct dma_attrs * attrs,pgprot_t prot)563 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
564 {
565 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
566 			    pgprot_writecombine(prot) :
567 			    pgprot_dmacoherent(prot);
568 	return prot;
569 }
570 
571 #define nommu() 0
572 
573 #else	/* !CONFIG_MMU */
574 
575 #define nommu() 1
576 
577 #define __get_dma_pgprot(attrs, prot)	__pgprot(0)
578 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
579 #define __alloc_from_pool(size, ret_page)			NULL
580 #define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
581 #define __free_from_pool(cpu_addr, size)			0
582 #define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
583 #define __dma_free_remap(cpu_addr, size)			do { } while (0)
584 
585 #endif	/* CONFIG_MMU */
586 
__alloc_simple_buffer(struct device * dev,size_t size,gfp_t gfp,struct page ** ret_page)587 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
588 				   struct page **ret_page)
589 {
590 	struct page *page;
591 	page = __dma_alloc_buffer(dev, size, gfp);
592 	if (!page)
593 		return NULL;
594 
595 	*ret_page = page;
596 	return page_address(page);
597 }
598 
599 
600 
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot,bool is_coherent,const void * caller)601 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
602 			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
603 {
604 	u64 mask = get_coherent_dma_mask(dev);
605 	struct page *page = NULL;
606 	void *addr;
607 
608 #ifdef CONFIG_DMA_API_DEBUG
609 	u64 limit = (mask + 1) & ~mask;
610 	if (limit && size >= limit) {
611 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
612 			size, mask);
613 		return NULL;
614 	}
615 #endif
616 
617 	if (!mask)
618 		return NULL;
619 
620 	if (mask < 0xffffffffULL)
621 		gfp |= GFP_DMA;
622 
623 	/*
624 	 * Following is a work-around (a.k.a. hack) to prevent pages
625 	 * with __GFP_COMP being passed to split_page() which cannot
626 	 * handle them.  The real problem is that this flag probably
627 	 * should be 0 on ARM as it is not supported on this
628 	 * platform; see CONFIG_HUGETLBFS.
629 	 */
630 	gfp &= ~(__GFP_COMP);
631 
632 	*handle = DMA_ERROR_CODE;
633 	size = PAGE_ALIGN(size);
634 
635 	if (is_coherent || nommu())
636 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
637 	else if (!(gfp & __GFP_WAIT))
638 		addr = __alloc_from_pool(size, &page);
639 	else if (!dev_get_cma_area(dev))
640 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
641 	else
642 		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
643 
644 	if (addr)
645 		*handle = pfn_to_dma(dev, page_to_pfn(page));
646 
647 	return addr;
648 }
649 
650 /*
651  * Allocate DMA-coherent memory space and return both the kernel remapped
652  * virtual and bus address for that space.
653  */
arm_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,struct dma_attrs * attrs)654 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
655 		    gfp_t gfp, struct dma_attrs *attrs)
656 {
657 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
658 	void *memory;
659 
660 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
661 		return memory;
662 
663 	return __dma_alloc(dev, size, handle, gfp, prot, false,
664 			   __builtin_return_address(0));
665 }
666 
arm_coherent_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,struct dma_attrs * attrs)667 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
668 	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
669 {
670 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671 	void *memory;
672 
673 	if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 		return memory;
675 
676 	return __dma_alloc(dev, size, handle, gfp, prot, true,
677 			   __builtin_return_address(0));
678 }
679 
680 /*
681  * Create userspace mapping for the DMA-coherent memory.
682  */
arm_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,struct dma_attrs * attrs)683 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
684 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
685 		 struct dma_attrs *attrs)
686 {
687 	int ret = -ENXIO;
688 #ifdef CONFIG_MMU
689 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
690 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
691 	unsigned long pfn = dma_to_pfn(dev, dma_addr);
692 	unsigned long off = vma->vm_pgoff;
693 
694 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
695 
696 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
697 		return ret;
698 
699 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
700 		ret = remap_pfn_range(vma, vma->vm_start,
701 				      pfn + off,
702 				      vma->vm_end - vma->vm_start,
703 				      vma->vm_page_prot);
704 	}
705 #endif	/* CONFIG_MMU */
706 
707 	return ret;
708 }
709 
710 /*
711  * Free a buffer as defined by the above mapping.
712  */
__arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,struct dma_attrs * attrs,bool is_coherent)713 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
714 			   dma_addr_t handle, struct dma_attrs *attrs,
715 			   bool is_coherent)
716 {
717 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
718 
719 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
720 		return;
721 
722 	size = PAGE_ALIGN(size);
723 
724 	if (is_coherent || nommu()) {
725 		__dma_free_buffer(page, size);
726 	} else if (__free_from_pool(cpu_addr, size)) {
727 		return;
728 	} else if (!dev_get_cma_area(dev)) {
729 		__dma_free_remap(cpu_addr, size);
730 		__dma_free_buffer(page, size);
731 	} else {
732 		/*
733 		 * Non-atomic allocations cannot be freed with IRQs disabled
734 		 */
735 		WARN_ON(irqs_disabled());
736 		__free_from_contiguous(dev, page, cpu_addr, size);
737 	}
738 }
739 
arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,struct dma_attrs * attrs)740 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
741 		  dma_addr_t handle, struct dma_attrs *attrs)
742 {
743 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
744 }
745 
arm_coherent_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,struct dma_attrs * attrs)746 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 				  dma_addr_t handle, struct dma_attrs *attrs)
748 {
749 	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
750 }
751 
752 /*
753  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
754  * that the intention is to allow exporting memory allocated via the
755  * coherent DMA APIs through the dma_buf API, which only accepts a
756  * scattertable.  This presents a couple of problems:
757  * 1. Not all memory allocated via the coherent DMA APIs is backed by
758  *    a struct page
759  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
760  *    as we will try to flush the memory through a different alias to that
761  *    actually being used (and the flushes are redundant.)
762  */
arm_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size,struct dma_attrs * attrs)763 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
764 		 void *cpu_addr, dma_addr_t handle, size_t size,
765 		 struct dma_attrs *attrs)
766 {
767 	unsigned long pfn = dma_to_pfn(dev, handle);
768 	struct page *page;
769 	int ret;
770 
771 	/* If the PFN is not valid, we do not have a struct page */
772 	if (!pfn_valid(pfn))
773 		return -ENXIO;
774 
775 	page = pfn_to_page(pfn);
776 
777 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
778 	if (unlikely(ret))
779 		return ret;
780 
781 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
782 	return 0;
783 }
784 
dma_cache_maint_page(struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,void (* op)(const void *,size_t,int))785 static void dma_cache_maint_page(struct page *page, unsigned long offset,
786 	size_t size, enum dma_data_direction dir,
787 	void (*op)(const void *, size_t, int))
788 {
789 	unsigned long pfn;
790 	size_t left = size;
791 
792 	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
793 	offset %= PAGE_SIZE;
794 
795 	/*
796 	 * A single sg entry may refer to multiple physically contiguous
797 	 * pages.  But we still need to process highmem pages individually.
798 	 * If highmem is not configured then the bulk of this loop gets
799 	 * optimized out.
800 	 */
801 	do {
802 		size_t len = left;
803 		void *vaddr;
804 
805 		page = pfn_to_page(pfn);
806 
807 		if (PageHighMem(page)) {
808 			if (len + offset > PAGE_SIZE)
809 				len = PAGE_SIZE - offset;
810 
811 			if (cache_is_vipt_nonaliasing()) {
812 				vaddr = kmap_atomic(page);
813 				op(vaddr + offset, len, dir);
814 				kunmap_atomic(vaddr);
815 			} else {
816 				vaddr = kmap_high_get(page);
817 				if (vaddr) {
818 					op(vaddr + offset, len, dir);
819 					kunmap_high(page);
820 				}
821 			}
822 		} else {
823 			vaddr = page_address(page) + offset;
824 			op(vaddr, len, dir);
825 		}
826 		offset = 0;
827 		pfn++;
828 		left -= len;
829 	} while (left);
830 }
831 
832 /*
833  * Make an area consistent for devices.
834  * Note: Drivers should NOT use this function directly, as it will break
835  * platforms with CONFIG_DMABOUNCE.
836  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
837  */
__dma_page_cpu_to_dev(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)838 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
839 	size_t size, enum dma_data_direction dir)
840 {
841 	phys_addr_t paddr;
842 
843 	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
844 
845 	paddr = page_to_phys(page) + off;
846 	if (dir == DMA_FROM_DEVICE) {
847 		outer_inv_range(paddr, paddr + size);
848 	} else {
849 		outer_clean_range(paddr, paddr + size);
850 	}
851 	/* FIXME: non-speculating: flush on bidirectional mappings? */
852 }
853 
__dma_page_dev_to_cpu(struct page * page,unsigned long off,size_t size,enum dma_data_direction dir)854 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
855 	size_t size, enum dma_data_direction dir)
856 {
857 	phys_addr_t paddr = page_to_phys(page) + off;
858 
859 	/* FIXME: non-speculating: not required */
860 	/* in any case, don't bother invalidating if DMA to device */
861 	if (dir != DMA_TO_DEVICE) {
862 		outer_inv_range(paddr, paddr + size);
863 
864 		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
865 	}
866 
867 	/*
868 	 * Mark the D-cache clean for these pages to avoid extra flushing.
869 	 */
870 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
871 		unsigned long pfn;
872 		size_t left = size;
873 
874 		pfn = page_to_pfn(page) + off / PAGE_SIZE;
875 		off %= PAGE_SIZE;
876 		if (off) {
877 			pfn++;
878 			left -= PAGE_SIZE - off;
879 		}
880 		while (left >= PAGE_SIZE) {
881 			page = pfn_to_page(pfn++);
882 			set_bit(PG_dcache_clean, &page->flags);
883 			left -= PAGE_SIZE;
884 		}
885 	}
886 }
887 
888 /**
889  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
890  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
891  * @sg: list of buffers
892  * @nents: number of buffers to map
893  * @dir: DMA transfer direction
894  *
895  * Map a set of buffers described by scatterlist in streaming mode for DMA.
896  * This is the scatter-gather version of the dma_map_single interface.
897  * Here the scatter gather list elements are each tagged with the
898  * appropriate dma address and length.  They are obtained via
899  * sg_dma_{address,length}.
900  *
901  * Device ownership issues as mentioned for dma_map_single are the same
902  * here.
903  */
arm_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)904 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
905 		enum dma_data_direction dir, struct dma_attrs *attrs)
906 {
907 	struct dma_map_ops *ops = get_dma_ops(dev);
908 	struct scatterlist *s;
909 	int i, j;
910 
911 	for_each_sg(sg, s, nents, i) {
912 #ifdef CONFIG_NEED_SG_DMA_LENGTH
913 		s->dma_length = s->length;
914 #endif
915 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
916 						s->length, dir, attrs);
917 		if (dma_mapping_error(dev, s->dma_address))
918 			goto bad_mapping;
919 	}
920 	return nents;
921 
922  bad_mapping:
923 	for_each_sg(sg, s, i, j)
924 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
925 	return 0;
926 }
927 
928 /**
929  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
930  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
931  * @sg: list of buffers
932  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
933  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
934  *
935  * Unmap a set of streaming mode DMA translations.  Again, CPU access
936  * rules concerning calls here are the same as for dma_unmap_single().
937  */
arm_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)938 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
939 		enum dma_data_direction dir, struct dma_attrs *attrs)
940 {
941 	struct dma_map_ops *ops = get_dma_ops(dev);
942 	struct scatterlist *s;
943 
944 	int i;
945 
946 	for_each_sg(sg, s, nents, i)
947 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
948 }
949 
950 /**
951  * arm_dma_sync_sg_for_cpu
952  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
953  * @sg: list of buffers
954  * @nents: number of buffers to map (returned from dma_map_sg)
955  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
956  */
arm_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)957 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
958 			int nents, enum dma_data_direction dir)
959 {
960 	struct dma_map_ops *ops = get_dma_ops(dev);
961 	struct scatterlist *s;
962 	int i;
963 
964 	for_each_sg(sg, s, nents, i)
965 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
966 					 dir);
967 }
968 
969 /**
970  * arm_dma_sync_sg_for_device
971  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
972  * @sg: list of buffers
973  * @nents: number of buffers to map (returned from dma_map_sg)
974  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
975  */
arm_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)976 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
977 			int nents, enum dma_data_direction dir)
978 {
979 	struct dma_map_ops *ops = get_dma_ops(dev);
980 	struct scatterlist *s;
981 	int i;
982 
983 	for_each_sg(sg, s, nents, i)
984 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
985 					    dir);
986 }
987 
988 /*
989  * Return whether the given device DMA address mask can be supported
990  * properly.  For example, if your device can only drive the low 24-bits
991  * during bus mastering, then you would pass 0x00ffffff as the mask
992  * to this function.
993  */
dma_supported(struct device * dev,u64 mask)994 int dma_supported(struct device *dev, u64 mask)
995 {
996 	return __dma_supported(dev, mask, false);
997 }
998 EXPORT_SYMBOL(dma_supported);
999 
arm_dma_set_mask(struct device * dev,u64 dma_mask)1000 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1001 {
1002 	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1003 		return -EIO;
1004 
1005 	*dev->dma_mask = dma_mask;
1006 
1007 	return 0;
1008 }
1009 
1010 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
1011 
dma_debug_do_init(void)1012 static int __init dma_debug_do_init(void)
1013 {
1014 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1015 	return 0;
1016 }
1017 fs_initcall(dma_debug_do_init);
1018 
1019 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1020 
1021 /* IOMMU */
1022 
1023 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1024 
__alloc_iova(struct dma_iommu_mapping * mapping,size_t size)1025 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1026 				      size_t size)
1027 {
1028 	unsigned int order = get_order(size);
1029 	unsigned int align = 0;
1030 	unsigned int count, start;
1031 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1032 	unsigned long flags;
1033 	dma_addr_t iova;
1034 	int i;
1035 
1036 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1037 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1038 
1039 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1040 	align = (1 << order) - 1;
1041 
1042 	spin_lock_irqsave(&mapping->lock, flags);
1043 	for (i = 0; i < mapping->nr_bitmaps; i++) {
1044 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1045 				mapping->bits, 0, count, align);
1046 
1047 		if (start > mapping->bits)
1048 			continue;
1049 
1050 		bitmap_set(mapping->bitmaps[i], start, count);
1051 		break;
1052 	}
1053 
1054 	/*
1055 	 * No unused range found. Try to extend the existing mapping
1056 	 * and perform a second attempt to reserve an IO virtual
1057 	 * address range of size bytes.
1058 	 */
1059 	if (i == mapping->nr_bitmaps) {
1060 		if (extend_iommu_mapping(mapping)) {
1061 			spin_unlock_irqrestore(&mapping->lock, flags);
1062 			return DMA_ERROR_CODE;
1063 		}
1064 
1065 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1066 				mapping->bits, 0, count, align);
1067 
1068 		if (start > mapping->bits) {
1069 			spin_unlock_irqrestore(&mapping->lock, flags);
1070 			return DMA_ERROR_CODE;
1071 		}
1072 
1073 		bitmap_set(mapping->bitmaps[i], start, count);
1074 	}
1075 	spin_unlock_irqrestore(&mapping->lock, flags);
1076 
1077 	iova = mapping->base + (mapping_size * i);
1078 	iova += start << PAGE_SHIFT;
1079 
1080 	return iova;
1081 }
1082 
__free_iova(struct dma_iommu_mapping * mapping,dma_addr_t addr,size_t size)1083 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1084 			       dma_addr_t addr, size_t size)
1085 {
1086 	unsigned int start, count;
1087 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1088 	unsigned long flags;
1089 	dma_addr_t bitmap_base;
1090 	u32 bitmap_index;
1091 
1092 	if (!size)
1093 		return;
1094 
1095 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1096 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1097 
1098 	bitmap_base = mapping->base + mapping_size * bitmap_index;
1099 
1100 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1101 
1102 	if (addr + size > bitmap_base + mapping_size) {
1103 		/*
1104 		 * The address range to be freed reaches into the iova
1105 		 * range of the next bitmap. This should not happen as
1106 		 * we don't allow this in __alloc_iova (at the
1107 		 * moment).
1108 		 */
1109 		BUG();
1110 	} else
1111 		count = size >> PAGE_SHIFT;
1112 
1113 	spin_lock_irqsave(&mapping->lock, flags);
1114 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1115 	spin_unlock_irqrestore(&mapping->lock, flags);
1116 }
1117 
__iommu_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,struct dma_attrs * attrs)1118 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1119 					  gfp_t gfp, struct dma_attrs *attrs)
1120 {
1121 	struct page **pages;
1122 	int count = size >> PAGE_SHIFT;
1123 	int array_size = count * sizeof(struct page *);
1124 	int i = 0;
1125 
1126 	if (array_size <= PAGE_SIZE)
1127 		pages = kzalloc(array_size, gfp);
1128 	else
1129 		pages = vzalloc(array_size);
1130 	if (!pages)
1131 		return NULL;
1132 
1133 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1134 	{
1135 		unsigned long order = get_order(size);
1136 		struct page *page;
1137 
1138 		page = dma_alloc_from_contiguous(dev, count, order);
1139 		if (!page)
1140 			goto error;
1141 
1142 		__dma_clear_buffer(page, size);
1143 
1144 		for (i = 0; i < count; i++)
1145 			pages[i] = page + i;
1146 
1147 		return pages;
1148 	}
1149 
1150 	/*
1151 	 * IOMMU can map any pages, so himem can also be used here
1152 	 */
1153 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1154 
1155 	while (count) {
1156 		int j, order = __fls(count);
1157 
1158 		pages[i] = alloc_pages(gfp, order);
1159 		while (!pages[i] && order)
1160 			pages[i] = alloc_pages(gfp, --order);
1161 		if (!pages[i])
1162 			goto error;
1163 
1164 		if (order) {
1165 			split_page(pages[i], order);
1166 			j = 1 << order;
1167 			while (--j)
1168 				pages[i + j] = pages[i] + j;
1169 		}
1170 
1171 		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1172 		i += 1 << order;
1173 		count -= 1 << order;
1174 	}
1175 
1176 	return pages;
1177 error:
1178 	while (i--)
1179 		if (pages[i])
1180 			__free_pages(pages[i], 0);
1181 	if (array_size <= PAGE_SIZE)
1182 		kfree(pages);
1183 	else
1184 		vfree(pages);
1185 	return NULL;
1186 }
1187 
__iommu_free_buffer(struct device * dev,struct page ** pages,size_t size,struct dma_attrs * attrs)1188 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1189 			       size_t size, struct dma_attrs *attrs)
1190 {
1191 	int count = size >> PAGE_SHIFT;
1192 	int array_size = count * sizeof(struct page *);
1193 	int i;
1194 
1195 	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1196 		dma_release_from_contiguous(dev, pages[0], count);
1197 	} else {
1198 		for (i = 0; i < count; i++)
1199 			if (pages[i])
1200 				__free_pages(pages[i], 0);
1201 	}
1202 
1203 	if (array_size <= PAGE_SIZE)
1204 		kfree(pages);
1205 	else
1206 		vfree(pages);
1207 	return 0;
1208 }
1209 
1210 /*
1211  * Create a CPU mapping for a specified pages
1212  */
1213 static void *
__iommu_alloc_remap(struct page ** pages,size_t size,gfp_t gfp,pgprot_t prot,const void * caller)1214 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1215 		    const void *caller)
1216 {
1217 	return dma_common_pages_remap(pages, size,
1218 			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1219 }
1220 
1221 /*
1222  * Create a mapping in device IO address space for specified pages
1223  */
1224 static dma_addr_t
__iommu_create_mapping(struct device * dev,struct page ** pages,size_t size)1225 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1226 {
1227 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1228 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1229 	dma_addr_t dma_addr, iova;
1230 	int i, ret = DMA_ERROR_CODE;
1231 
1232 	dma_addr = __alloc_iova(mapping, size);
1233 	if (dma_addr == DMA_ERROR_CODE)
1234 		return dma_addr;
1235 
1236 	iova = dma_addr;
1237 	for (i = 0; i < count; ) {
1238 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1239 		phys_addr_t phys = page_to_phys(pages[i]);
1240 		unsigned int len, j;
1241 
1242 		for (j = i + 1; j < count; j++, next_pfn++)
1243 			if (page_to_pfn(pages[j]) != next_pfn)
1244 				break;
1245 
1246 		len = (j - i) << PAGE_SHIFT;
1247 		ret = iommu_map(mapping->domain, iova, phys, len,
1248 				IOMMU_READ|IOMMU_WRITE);
1249 		if (ret < 0)
1250 			goto fail;
1251 		iova += len;
1252 		i = j;
1253 	}
1254 	return dma_addr;
1255 fail:
1256 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1257 	__free_iova(mapping, dma_addr, size);
1258 	return DMA_ERROR_CODE;
1259 }
1260 
__iommu_remove_mapping(struct device * dev,dma_addr_t iova,size_t size)1261 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1262 {
1263 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1264 
1265 	/*
1266 	 * add optional in-page offset from iova to size and align
1267 	 * result to page size
1268 	 */
1269 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1270 	iova &= PAGE_MASK;
1271 
1272 	iommu_unmap(mapping->domain, iova, size);
1273 	__free_iova(mapping, iova, size);
1274 	return 0;
1275 }
1276 
__atomic_get_pages(void * addr)1277 static struct page **__atomic_get_pages(void *addr)
1278 {
1279 	struct page *page;
1280 	phys_addr_t phys;
1281 
1282 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1283 	page = phys_to_page(phys);
1284 
1285 	return (struct page **)page;
1286 }
1287 
__iommu_get_pages(void * cpu_addr,struct dma_attrs * attrs)1288 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1289 {
1290 	struct vm_struct *area;
1291 
1292 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1293 		return __atomic_get_pages(cpu_addr);
1294 
1295 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1296 		return cpu_addr;
1297 
1298 	area = find_vm_area(cpu_addr);
1299 	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1300 		return area->pages;
1301 	return NULL;
1302 }
1303 
__iommu_alloc_atomic(struct device * dev,size_t size,dma_addr_t * handle)1304 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1305 				  dma_addr_t *handle)
1306 {
1307 	struct page *page;
1308 	void *addr;
1309 
1310 	addr = __alloc_from_pool(size, &page);
1311 	if (!addr)
1312 		return NULL;
1313 
1314 	*handle = __iommu_create_mapping(dev, &page, size);
1315 	if (*handle == DMA_ERROR_CODE)
1316 		goto err_mapping;
1317 
1318 	return addr;
1319 
1320 err_mapping:
1321 	__free_from_pool(addr, size);
1322 	return NULL;
1323 }
1324 
__iommu_free_atomic(struct device * dev,void * cpu_addr,dma_addr_t handle,size_t size)1325 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1326 				dma_addr_t handle, size_t size)
1327 {
1328 	__iommu_remove_mapping(dev, handle, size);
1329 	__free_from_pool(cpu_addr, size);
1330 }
1331 
arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,struct dma_attrs * attrs)1332 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1333 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1334 {
1335 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1336 	struct page **pages;
1337 	void *addr = NULL;
1338 
1339 	*handle = DMA_ERROR_CODE;
1340 	size = PAGE_ALIGN(size);
1341 
1342 	if (!(gfp & __GFP_WAIT))
1343 		return __iommu_alloc_atomic(dev, size, handle);
1344 
1345 	/*
1346 	 * Following is a work-around (a.k.a. hack) to prevent pages
1347 	 * with __GFP_COMP being passed to split_page() which cannot
1348 	 * handle them.  The real problem is that this flag probably
1349 	 * should be 0 on ARM as it is not supported on this
1350 	 * platform; see CONFIG_HUGETLBFS.
1351 	 */
1352 	gfp &= ~(__GFP_COMP);
1353 
1354 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1355 	if (!pages)
1356 		return NULL;
1357 
1358 	*handle = __iommu_create_mapping(dev, pages, size);
1359 	if (*handle == DMA_ERROR_CODE)
1360 		goto err_buffer;
1361 
1362 	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1363 		return pages;
1364 
1365 	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1366 				   __builtin_return_address(0));
1367 	if (!addr)
1368 		goto err_mapping;
1369 
1370 	return addr;
1371 
1372 err_mapping:
1373 	__iommu_remove_mapping(dev, *handle, size);
1374 err_buffer:
1375 	__iommu_free_buffer(dev, pages, size, attrs);
1376 	return NULL;
1377 }
1378 
arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,struct dma_attrs * attrs)1379 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1380 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1381 		    struct dma_attrs *attrs)
1382 {
1383 	unsigned long uaddr = vma->vm_start;
1384 	unsigned long usize = vma->vm_end - vma->vm_start;
1385 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1386 
1387 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1388 
1389 	if (!pages)
1390 		return -ENXIO;
1391 
1392 	do {
1393 		int ret = vm_insert_page(vma, uaddr, *pages++);
1394 		if (ret) {
1395 			pr_err("Remapping memory failed: %d\n", ret);
1396 			return ret;
1397 		}
1398 		uaddr += PAGE_SIZE;
1399 		usize -= PAGE_SIZE;
1400 	} while (usize > 0);
1401 
1402 	return 0;
1403 }
1404 
1405 /*
1406  * free a page as defined by the above mapping.
1407  * Must not be called with IRQs disabled.
1408  */
arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,struct dma_attrs * attrs)1409 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1410 			  dma_addr_t handle, struct dma_attrs *attrs)
1411 {
1412 	struct page **pages;
1413 	size = PAGE_ALIGN(size);
1414 
1415 	if (__in_atomic_pool(cpu_addr, size)) {
1416 		__iommu_free_atomic(dev, cpu_addr, handle, size);
1417 		return;
1418 	}
1419 
1420 	pages = __iommu_get_pages(cpu_addr, attrs);
1421 	if (!pages) {
1422 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1423 		return;
1424 	}
1425 
1426 	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1427 		dma_common_free_remap(cpu_addr, size,
1428 			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1429 	}
1430 
1431 	__iommu_remove_mapping(dev, handle, size);
1432 	__iommu_free_buffer(dev, pages, size, attrs);
1433 }
1434 
arm_iommu_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,struct dma_attrs * attrs)1435 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1436 				 void *cpu_addr, dma_addr_t dma_addr,
1437 				 size_t size, struct dma_attrs *attrs)
1438 {
1439 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1440 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1441 
1442 	if (!pages)
1443 		return -ENXIO;
1444 
1445 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1446 					 GFP_KERNEL);
1447 }
1448 
__dma_direction_to_prot(enum dma_data_direction dir)1449 static int __dma_direction_to_prot(enum dma_data_direction dir)
1450 {
1451 	int prot;
1452 
1453 	switch (dir) {
1454 	case DMA_BIDIRECTIONAL:
1455 		prot = IOMMU_READ | IOMMU_WRITE;
1456 		break;
1457 	case DMA_TO_DEVICE:
1458 		prot = IOMMU_READ;
1459 		break;
1460 	case DMA_FROM_DEVICE:
1461 		prot = IOMMU_WRITE;
1462 		break;
1463 	default:
1464 		prot = 0;
1465 	}
1466 
1467 	return prot;
1468 }
1469 
1470 /*
1471  * Map a part of the scatter-gather list into contiguous io address space
1472  */
__map_sg_chunk(struct device * dev,struct scatterlist * sg,size_t size,dma_addr_t * handle,enum dma_data_direction dir,struct dma_attrs * attrs,bool is_coherent)1473 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1474 			  size_t size, dma_addr_t *handle,
1475 			  enum dma_data_direction dir, struct dma_attrs *attrs,
1476 			  bool is_coherent)
1477 {
1478 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1479 	dma_addr_t iova, iova_base;
1480 	int ret = 0;
1481 	unsigned int count;
1482 	struct scatterlist *s;
1483 	int prot;
1484 
1485 	size = PAGE_ALIGN(size);
1486 	*handle = DMA_ERROR_CODE;
1487 
1488 	iova_base = iova = __alloc_iova(mapping, size);
1489 	if (iova == DMA_ERROR_CODE)
1490 		return -ENOMEM;
1491 
1492 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1493 		phys_addr_t phys = page_to_phys(sg_page(s));
1494 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1495 
1496 		if (!is_coherent &&
1497 			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1498 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1499 
1500 		prot = __dma_direction_to_prot(dir);
1501 
1502 		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1503 		if (ret < 0)
1504 			goto fail;
1505 		count += len >> PAGE_SHIFT;
1506 		iova += len;
1507 	}
1508 	*handle = iova_base;
1509 
1510 	return 0;
1511 fail:
1512 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1513 	__free_iova(mapping, iova_base, size);
1514 	return ret;
1515 }
1516 
__iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs,bool is_coherent)1517 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1518 		     enum dma_data_direction dir, struct dma_attrs *attrs,
1519 		     bool is_coherent)
1520 {
1521 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1522 	int i, count = 0;
1523 	unsigned int offset = s->offset;
1524 	unsigned int size = s->offset + s->length;
1525 	unsigned int max = dma_get_max_seg_size(dev);
1526 
1527 	for (i = 1; i < nents; i++) {
1528 		s = sg_next(s);
1529 
1530 		s->dma_address = DMA_ERROR_CODE;
1531 		s->dma_length = 0;
1532 
1533 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1534 			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1535 			    dir, attrs, is_coherent) < 0)
1536 				goto bad_mapping;
1537 
1538 			dma->dma_address += offset;
1539 			dma->dma_length = size - offset;
1540 
1541 			size = offset = s->offset;
1542 			start = s;
1543 			dma = sg_next(dma);
1544 			count += 1;
1545 		}
1546 		size += s->length;
1547 	}
1548 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1549 		is_coherent) < 0)
1550 		goto bad_mapping;
1551 
1552 	dma->dma_address += offset;
1553 	dma->dma_length = size - offset;
1554 
1555 	return count+1;
1556 
1557 bad_mapping:
1558 	for_each_sg(sg, s, count, i)
1559 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1560 	return 0;
1561 }
1562 
1563 /**
1564  * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1565  * @dev: valid struct device pointer
1566  * @sg: list of buffers
1567  * @nents: number of buffers to map
1568  * @dir: DMA transfer direction
1569  *
1570  * Map a set of i/o coherent buffers described by scatterlist in streaming
1571  * mode for DMA. The scatter gather list elements are merged together (if
1572  * possible) and tagged with the appropriate dma address and length. They are
1573  * obtained via sg_dma_{address,length}.
1574  */
arm_coherent_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)1575 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1576 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1577 {
1578 	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1579 }
1580 
1581 /**
1582  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1583  * @dev: valid struct device pointer
1584  * @sg: list of buffers
1585  * @nents: number of buffers to map
1586  * @dir: DMA transfer direction
1587  *
1588  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1589  * The scatter gather list elements are merged together (if possible) and
1590  * tagged with the appropriate dma address and length. They are obtained via
1591  * sg_dma_{address,length}.
1592  */
arm_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)1593 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1594 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1595 {
1596 	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1597 }
1598 
__iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs,bool is_coherent)1599 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1600 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1601 		bool is_coherent)
1602 {
1603 	struct scatterlist *s;
1604 	int i;
1605 
1606 	for_each_sg(sg, s, nents, i) {
1607 		if (sg_dma_len(s))
1608 			__iommu_remove_mapping(dev, sg_dma_address(s),
1609 					       sg_dma_len(s));
1610 		if (!is_coherent &&
1611 		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1612 			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1613 					      s->length, dir);
1614 	}
1615 }
1616 
1617 /**
1618  * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1619  * @dev: valid struct device pointer
1620  * @sg: list of buffers
1621  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1622  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1623  *
1624  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1625  * rules concerning calls here are the same as for dma_unmap_single().
1626  */
arm_coherent_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)1627 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1628 		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1629 {
1630 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1631 }
1632 
1633 /**
1634  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1635  * @dev: valid struct device pointer
1636  * @sg: list of buffers
1637  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1638  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1639  *
1640  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1641  * rules concerning calls here are the same as for dma_unmap_single().
1642  */
arm_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,struct dma_attrs * attrs)1643 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1644 			enum dma_data_direction dir, struct dma_attrs *attrs)
1645 {
1646 	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1647 }
1648 
1649 /**
1650  * arm_iommu_sync_sg_for_cpu
1651  * @dev: valid struct device pointer
1652  * @sg: list of buffers
1653  * @nents: number of buffers to map (returned from dma_map_sg)
1654  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1655  */
arm_iommu_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1656 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1657 			int nents, enum dma_data_direction dir)
1658 {
1659 	struct scatterlist *s;
1660 	int i;
1661 
1662 	for_each_sg(sg, s, nents, i)
1663 		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1664 
1665 }
1666 
1667 /**
1668  * arm_iommu_sync_sg_for_device
1669  * @dev: valid struct device pointer
1670  * @sg: list of buffers
1671  * @nents: number of buffers to map (returned from dma_map_sg)
1672  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1673  */
arm_iommu_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1674 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1675 			int nents, enum dma_data_direction dir)
1676 {
1677 	struct scatterlist *s;
1678 	int i;
1679 
1680 	for_each_sg(sg, s, nents, i)
1681 		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1682 }
1683 
1684 
1685 /**
1686  * arm_coherent_iommu_map_page
1687  * @dev: valid struct device pointer
1688  * @page: page that buffer resides in
1689  * @offset: offset into page for start of buffer
1690  * @size: size of buffer to map
1691  * @dir: DMA transfer direction
1692  *
1693  * Coherent IOMMU aware version of arm_dma_map_page()
1694  */
arm_coherent_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)1695 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1696 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1697 	     struct dma_attrs *attrs)
1698 {
1699 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1700 	dma_addr_t dma_addr;
1701 	int ret, prot, len = PAGE_ALIGN(size + offset);
1702 
1703 	dma_addr = __alloc_iova(mapping, len);
1704 	if (dma_addr == DMA_ERROR_CODE)
1705 		return dma_addr;
1706 
1707 	prot = __dma_direction_to_prot(dir);
1708 
1709 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1710 	if (ret < 0)
1711 		goto fail;
1712 
1713 	return dma_addr + offset;
1714 fail:
1715 	__free_iova(mapping, dma_addr, len);
1716 	return DMA_ERROR_CODE;
1717 }
1718 
1719 /**
1720  * arm_iommu_map_page
1721  * @dev: valid struct device pointer
1722  * @page: page that buffer resides in
1723  * @offset: offset into page for start of buffer
1724  * @size: size of buffer to map
1725  * @dir: DMA transfer direction
1726  *
1727  * IOMMU aware version of arm_dma_map_page()
1728  */
arm_iommu_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)1729 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1730 	     unsigned long offset, size_t size, enum dma_data_direction dir,
1731 	     struct dma_attrs *attrs)
1732 {
1733 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1734 		__dma_page_cpu_to_dev(page, offset, size, dir);
1735 
1736 	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1737 }
1738 
1739 /**
1740  * arm_coherent_iommu_unmap_page
1741  * @dev: valid struct device pointer
1742  * @handle: DMA address of buffer
1743  * @size: size of buffer (same as passed to dma_map_page)
1744  * @dir: DMA transfer direction (same as passed to dma_map_page)
1745  *
1746  * Coherent IOMMU aware version of arm_dma_unmap_page()
1747  */
arm_coherent_iommu_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)1748 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1749 		size_t size, enum dma_data_direction dir,
1750 		struct dma_attrs *attrs)
1751 {
1752 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1753 	dma_addr_t iova = handle & PAGE_MASK;
1754 	int offset = handle & ~PAGE_MASK;
1755 	int len = PAGE_ALIGN(size + offset);
1756 
1757 	if (!iova)
1758 		return;
1759 
1760 	iommu_unmap(mapping->domain, iova, len);
1761 	__free_iova(mapping, iova, len);
1762 }
1763 
1764 /**
1765  * arm_iommu_unmap_page
1766  * @dev: valid struct device pointer
1767  * @handle: DMA address of buffer
1768  * @size: size of buffer (same as passed to dma_map_page)
1769  * @dir: DMA transfer direction (same as passed to dma_map_page)
1770  *
1771  * IOMMU aware version of arm_dma_unmap_page()
1772  */
arm_iommu_unmap_page(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,struct dma_attrs * attrs)1773 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1774 		size_t size, enum dma_data_direction dir,
1775 		struct dma_attrs *attrs)
1776 {
1777 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1778 	dma_addr_t iova = handle & PAGE_MASK;
1779 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1780 	int offset = handle & ~PAGE_MASK;
1781 	int len = PAGE_ALIGN(size + offset);
1782 
1783 	if (!iova)
1784 		return;
1785 
1786 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1787 		__dma_page_dev_to_cpu(page, offset, size, dir);
1788 
1789 	iommu_unmap(mapping->domain, iova, len);
1790 	__free_iova(mapping, iova, len);
1791 }
1792 
arm_iommu_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1793 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1794 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1795 {
1796 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1797 	dma_addr_t iova = handle & PAGE_MASK;
1798 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1799 	unsigned int offset = handle & ~PAGE_MASK;
1800 
1801 	if (!iova)
1802 		return;
1803 
1804 	__dma_page_dev_to_cpu(page, offset, size, dir);
1805 }
1806 
arm_iommu_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1807 static void arm_iommu_sync_single_for_device(struct device *dev,
1808 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1809 {
1810 	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1811 	dma_addr_t iova = handle & PAGE_MASK;
1812 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1813 	unsigned int offset = handle & ~PAGE_MASK;
1814 
1815 	if (!iova)
1816 		return;
1817 
1818 	__dma_page_cpu_to_dev(page, offset, size, dir);
1819 }
1820 
1821 struct dma_map_ops iommu_ops = {
1822 	.alloc		= arm_iommu_alloc_attrs,
1823 	.free		= arm_iommu_free_attrs,
1824 	.mmap		= arm_iommu_mmap_attrs,
1825 	.get_sgtable	= arm_iommu_get_sgtable,
1826 
1827 	.map_page		= arm_iommu_map_page,
1828 	.unmap_page		= arm_iommu_unmap_page,
1829 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1830 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1831 
1832 	.map_sg			= arm_iommu_map_sg,
1833 	.unmap_sg		= arm_iommu_unmap_sg,
1834 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1835 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1836 
1837 	.set_dma_mask		= arm_dma_set_mask,
1838 };
1839 
1840 struct dma_map_ops iommu_coherent_ops = {
1841 	.alloc		= arm_iommu_alloc_attrs,
1842 	.free		= arm_iommu_free_attrs,
1843 	.mmap		= arm_iommu_mmap_attrs,
1844 	.get_sgtable	= arm_iommu_get_sgtable,
1845 
1846 	.map_page	= arm_coherent_iommu_map_page,
1847 	.unmap_page	= arm_coherent_iommu_unmap_page,
1848 
1849 	.map_sg		= arm_coherent_iommu_map_sg,
1850 	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1851 
1852 	.set_dma_mask	= arm_dma_set_mask,
1853 };
1854 
1855 /**
1856  * arm_iommu_create_mapping
1857  * @bus: pointer to the bus holding the client device (for IOMMU calls)
1858  * @base: start address of the valid IO address space
1859  * @size: maximum size of the valid IO address space
1860  *
1861  * Creates a mapping structure which holds information about used/unused
1862  * IO address ranges, which is required to perform memory allocation and
1863  * mapping with IOMMU aware functions.
1864  *
1865  * The client device need to be attached to the mapping with
1866  * arm_iommu_attach_device function.
1867  */
1868 struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type * bus,dma_addr_t base,size_t size)1869 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1870 {
1871 	unsigned int bits = size >> PAGE_SHIFT;
1872 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1873 	struct dma_iommu_mapping *mapping;
1874 	int extensions = 1;
1875 	int err = -ENOMEM;
1876 
1877 	if (!bitmap_size)
1878 		return ERR_PTR(-EINVAL);
1879 
1880 	if (bitmap_size > PAGE_SIZE) {
1881 		extensions = bitmap_size / PAGE_SIZE;
1882 		bitmap_size = PAGE_SIZE;
1883 	}
1884 
1885 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1886 	if (!mapping)
1887 		goto err;
1888 
1889 	mapping->bitmap_size = bitmap_size;
1890 	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1891 				GFP_KERNEL);
1892 	if (!mapping->bitmaps)
1893 		goto err2;
1894 
1895 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1896 	if (!mapping->bitmaps[0])
1897 		goto err3;
1898 
1899 	mapping->nr_bitmaps = 1;
1900 	mapping->extensions = extensions;
1901 	mapping->base = base;
1902 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1903 
1904 	spin_lock_init(&mapping->lock);
1905 
1906 	mapping->domain = iommu_domain_alloc(bus);
1907 	if (!mapping->domain)
1908 		goto err4;
1909 
1910 	kref_init(&mapping->kref);
1911 	return mapping;
1912 err4:
1913 	kfree(mapping->bitmaps[0]);
1914 err3:
1915 	kfree(mapping->bitmaps);
1916 err2:
1917 	kfree(mapping);
1918 err:
1919 	return ERR_PTR(err);
1920 }
1921 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1922 
release_iommu_mapping(struct kref * kref)1923 static void release_iommu_mapping(struct kref *kref)
1924 {
1925 	int i;
1926 	struct dma_iommu_mapping *mapping =
1927 		container_of(kref, struct dma_iommu_mapping, kref);
1928 
1929 	iommu_domain_free(mapping->domain);
1930 	for (i = 0; i < mapping->nr_bitmaps; i++)
1931 		kfree(mapping->bitmaps[i]);
1932 	kfree(mapping->bitmaps);
1933 	kfree(mapping);
1934 }
1935 
extend_iommu_mapping(struct dma_iommu_mapping * mapping)1936 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1937 {
1938 	int next_bitmap;
1939 
1940 	if (mapping->nr_bitmaps > mapping->extensions)
1941 		return -EINVAL;
1942 
1943 	next_bitmap = mapping->nr_bitmaps;
1944 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1945 						GFP_ATOMIC);
1946 	if (!mapping->bitmaps[next_bitmap])
1947 		return -ENOMEM;
1948 
1949 	mapping->nr_bitmaps++;
1950 
1951 	return 0;
1952 }
1953 
arm_iommu_release_mapping(struct dma_iommu_mapping * mapping)1954 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1955 {
1956 	if (mapping)
1957 		kref_put(&mapping->kref, release_iommu_mapping);
1958 }
1959 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1960 
1961 /**
1962  * arm_iommu_attach_device
1963  * @dev: valid struct device pointer
1964  * @mapping: io address space mapping structure (returned from
1965  *	arm_iommu_create_mapping)
1966  *
1967  * Attaches specified io address space mapping to the provided device,
1968  * this replaces the dma operations (dma_map_ops pointer) with the
1969  * IOMMU aware version. More than one client might be attached to
1970  * the same io address space mapping.
1971  */
arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)1972 int arm_iommu_attach_device(struct device *dev,
1973 			    struct dma_iommu_mapping *mapping)
1974 {
1975 	int err;
1976 
1977 	err = iommu_attach_device(mapping->domain, dev);
1978 	if (err)
1979 		return err;
1980 
1981 	kref_get(&mapping->kref);
1982 	dev->archdata.mapping = mapping;
1983 	set_dma_ops(dev, &iommu_ops);
1984 
1985 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1989 
1990 /**
1991  * arm_iommu_detach_device
1992  * @dev: valid struct device pointer
1993  *
1994  * Detaches the provided device from a previously attached map.
1995  * This voids the dma operations (dma_map_ops pointer)
1996  */
arm_iommu_detach_device(struct device * dev)1997 void arm_iommu_detach_device(struct device *dev)
1998 {
1999 	struct dma_iommu_mapping *mapping;
2000 
2001 	mapping = to_dma_iommu_mapping(dev);
2002 	if (!mapping) {
2003 		dev_warn(dev, "Not attached\n");
2004 		return;
2005 	}
2006 
2007 	iommu_detach_device(mapping->domain, dev);
2008 	kref_put(&mapping->kref, release_iommu_mapping);
2009 	dev->archdata.mapping = NULL;
2010 	set_dma_ops(dev, NULL);
2011 
2012 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2013 }
2014 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2015 
2016 #endif
2017