• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* linux/net/ipv4/arp.c
2  *
3  * Copyright (C) 1994 by Florian  La Roche
4  *
5  * This module implements the Address Resolution Protocol ARP (RFC 826),
6  * which is used to convert IP addresses (or in the future maybe other
7  * high-level addresses) into a low-level hardware address (like an Ethernet
8  * address).
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Fixes:
16  *		Alan Cox	:	Removed the Ethernet assumptions in
17  *					Florian's code
18  *		Alan Cox	:	Fixed some small errors in the ARP
19  *					logic
20  *		Alan Cox	:	Allow >4K in /proc
21  *		Alan Cox	:	Make ARP add its own protocol entry
22  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23  *		Stephen Henson	:	Add AX25 support to arp_get_info()
24  *		Alan Cox	:	Drop data when a device is downed.
25  *		Alan Cox	:	Use init_timer().
26  *		Alan Cox	:	Double lock fixes.
27  *		Martin Seine	:	Move the arphdr structure
28  *					to if_arp.h for compatibility.
29  *					with BSD based programs.
30  *		Andrew Tridgell :       Added ARP netmask code and
31  *					re-arranged proxy handling.
32  *		Alan Cox	:	Changed to use notifiers.
33  *		Niibe Yutaka	:	Reply for this device or proxies only.
34  *		Alan Cox	:	Don't proxy across hardware types!
35  *		Jonathan Naylor :	Added support for NET/ROM.
36  *		Mike Shaver     :       RFC1122 checks.
37  *		Jonathan Naylor :	Only lookup the hardware address for
38  *					the correct hardware type.
39  *		Germano Caronni	:	Assorted subtle races.
40  *		Craig Schlenter :	Don't modify permanent entry
41  *					during arp_rcv.
42  *		Russ Nelson	:	Tidied up a few bits.
43  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44  *					eg intelligent arp probing and
45  *					generation
46  *					of host down events.
47  *		Alan Cox	:	Missing unlock in device events.
48  *		Eckes		:	ARP ioctl control errors.
49  *		Alexey Kuznetsov:	Arp free fix.
50  *		Manuel Rodriguez:	Gratuitous ARP.
51  *              Jonathan Layes  :       Added arpd support through kerneld
52  *                                      message queue (960314)
53  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54  *		Mike McLagan    :	Routing by source
55  *		Stuart Cheshire	:	Metricom and grat arp fixes
56  *					*** FOR 2.1 clean this up ***
57  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59  *					folded into the mainstream FDDI code.
60  *					Ack spit, Linus how did you allow that
61  *					one in...
62  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63  *					clean up the APFDDI & gen. FDDI bits.
64  *		Alexey Kuznetsov:	new arp state machine;
65  *					now it is in net/core/neighbour.c.
66  *		Krzysztof Halasa:	Added Frame Relay ARP support.
67  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68  *		Shmulik Hen:		Split arp_send to arp_create and
69  *					arp_xmit so intermediate drivers like
70  *					bonding can change the skb before
71  *					sending (e.g. insert 8021q tag).
72  *		Harald Welte	:	convert to make use of jenkins hash
73  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74  */
75 
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77 
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 
117 #include <linux/uaccess.h>
118 
119 #include <linux/netfilter_arp.h>
120 
121 /*
122  *	Interface to generic neighbour cache.
123  */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129 
130 static const struct neigh_ops arp_generic_ops = {
131 	.family =		AF_INET,
132 	.solicit =		arp_solicit,
133 	.error_report =		arp_error_report,
134 	.output =		neigh_resolve_output,
135 	.connected_output =	neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139 	.family =		AF_INET,
140 	.solicit =		arp_solicit,
141 	.error_report =		arp_error_report,
142 	.output =		neigh_resolve_output,
143 	.connected_output =	neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147 	.family =		AF_INET,
148 	.output =		neigh_direct_output,
149 	.connected_output =	neigh_direct_output,
150 };
151 
152 static const struct neigh_ops arp_broken_ops = {
153 	.family =		AF_INET,
154 	.solicit =		arp_solicit,
155 	.error_report =		arp_error_report,
156 	.output =		neigh_compat_output,
157 	.connected_output =	neigh_compat_output,
158 };
159 
160 struct neigh_table arp_tbl = {
161 	.family		= AF_INET,
162 	.key_len	= 4,
163 	.hash		= arp_hash,
164 	.constructor	= arp_constructor,
165 	.proxy_redo	= parp_redo,
166 	.id		= "arp_cache",
167 	.parms		= {
168 		.tbl			= &arp_tbl,
169 		.reachable_time		= 30 * HZ,
170 		.data	= {
171 			[NEIGH_VAR_MCAST_PROBES] = 3,
172 			[NEIGH_VAR_UCAST_PROBES] = 3,
173 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
174 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
175 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
176 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
177 			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
178 			[NEIGH_VAR_PROXY_QLEN] = 64,
179 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
180 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
181 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
182 		},
183 	},
184 	.gc_interval	= 30 * HZ,
185 	.gc_thresh1	= 128,
186 	.gc_thresh2	= 512,
187 	.gc_thresh3	= 1024,
188 };
189 EXPORT_SYMBOL(arp_tbl);
190 
arp_mc_map(__be32 addr,u8 * haddr,struct net_device * dev,int dir)191 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
192 {
193 	switch (dev->type) {
194 	case ARPHRD_ETHER:
195 	case ARPHRD_FDDI:
196 	case ARPHRD_IEEE802:
197 		ip_eth_mc_map(addr, haddr);
198 		return 0;
199 	case ARPHRD_INFINIBAND:
200 		ip_ib_mc_map(addr, dev->broadcast, haddr);
201 		return 0;
202 	case ARPHRD_IPGRE:
203 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
204 		return 0;
205 	default:
206 		if (dir) {
207 			memcpy(haddr, dev->broadcast, dev->addr_len);
208 			return 0;
209 		}
210 	}
211 	return -EINVAL;
212 }
213 
214 
arp_hash(const void * pkey,const struct net_device * dev,__u32 * hash_rnd)215 static u32 arp_hash(const void *pkey,
216 		    const struct net_device *dev,
217 		    __u32 *hash_rnd)
218 {
219 	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
220 }
221 
arp_constructor(struct neighbour * neigh)222 static int arp_constructor(struct neighbour *neigh)
223 {
224 	__be32 addr;
225 	struct net_device *dev = neigh->dev;
226 	struct in_device *in_dev;
227 	struct neigh_parms *parms;
228 	u32 inaddr_any = INADDR_ANY;
229 
230 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
231 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
232 
233 	addr = *(__be32 *)neigh->primary_key;
234 	rcu_read_lock();
235 	in_dev = __in_dev_get_rcu(dev);
236 	if (in_dev == NULL) {
237 		rcu_read_unlock();
238 		return -EINVAL;
239 	}
240 
241 	neigh->type = inet_addr_type(dev_net(dev), addr);
242 
243 	parms = in_dev->arp_parms;
244 	__neigh_parms_put(neigh->parms);
245 	neigh->parms = neigh_parms_clone(parms);
246 	rcu_read_unlock();
247 
248 	if (!dev->header_ops) {
249 		neigh->nud_state = NUD_NOARP;
250 		neigh->ops = &arp_direct_ops;
251 		neigh->output = neigh_direct_output;
252 	} else {
253 		/* Good devices (checked by reading texts, but only Ethernet is
254 		   tested)
255 
256 		   ARPHRD_ETHER: (ethernet, apfddi)
257 		   ARPHRD_FDDI: (fddi)
258 		   ARPHRD_IEEE802: (tr)
259 		   ARPHRD_METRICOM: (strip)
260 		   ARPHRD_ARCNET:
261 		   etc. etc. etc.
262 
263 		   ARPHRD_IPDDP will also work, if author repairs it.
264 		   I did not it, because this driver does not work even
265 		   in old paradigm.
266 		 */
267 
268 #if 1
269 		/* So... these "amateur" devices are hopeless.
270 		   The only thing, that I can say now:
271 		   It is very sad that we need to keep ugly obsolete
272 		   code to make them happy.
273 
274 		   They should be moved to more reasonable state, now
275 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
276 		   Besides that, they are sort of out of date
277 		   (a lot of redundant clones/copies, useless in 2.1),
278 		   I wonder why people believe that they work.
279 		 */
280 		switch (dev->type) {
281 		default:
282 			break;
283 		case ARPHRD_ROSE:
284 #if IS_ENABLED(CONFIG_AX25)
285 		case ARPHRD_AX25:
286 #if IS_ENABLED(CONFIG_NETROM)
287 		case ARPHRD_NETROM:
288 #endif
289 			neigh->ops = &arp_broken_ops;
290 			neigh->output = neigh->ops->output;
291 			return 0;
292 #else
293 			break;
294 #endif
295 		}
296 #endif
297 		if (neigh->type == RTN_MULTICAST) {
298 			neigh->nud_state = NUD_NOARP;
299 			arp_mc_map(addr, neigh->ha, dev, 1);
300 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
301 			neigh->nud_state = NUD_NOARP;
302 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
303 		} else if (neigh->type == RTN_BROADCAST ||
304 			   (dev->flags & IFF_POINTOPOINT)) {
305 			neigh->nud_state = NUD_NOARP;
306 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
307 		}
308 
309 		if (dev->header_ops->cache)
310 			neigh->ops = &arp_hh_ops;
311 		else
312 			neigh->ops = &arp_generic_ops;
313 
314 		if (neigh->nud_state & NUD_VALID)
315 			neigh->output = neigh->ops->connected_output;
316 		else
317 			neigh->output = neigh->ops->output;
318 	}
319 	return 0;
320 }
321 
arp_error_report(struct neighbour * neigh,struct sk_buff * skb)322 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
323 {
324 	dst_link_failure(skb);
325 	kfree_skb(skb);
326 }
327 
arp_solicit(struct neighbour * neigh,struct sk_buff * skb)328 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
329 {
330 	__be32 saddr = 0;
331 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
332 	struct net_device *dev = neigh->dev;
333 	__be32 target = *(__be32 *)neigh->primary_key;
334 	int probes = atomic_read(&neigh->probes);
335 	struct in_device *in_dev;
336 
337 	rcu_read_lock();
338 	in_dev = __in_dev_get_rcu(dev);
339 	if (!in_dev) {
340 		rcu_read_unlock();
341 		return;
342 	}
343 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
344 	default:
345 	case 0:		/* By default announce any local IP */
346 		if (skb && inet_addr_type(dev_net(dev),
347 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
348 			saddr = ip_hdr(skb)->saddr;
349 		break;
350 	case 1:		/* Restrict announcements of saddr in same subnet */
351 		if (!skb)
352 			break;
353 		saddr = ip_hdr(skb)->saddr;
354 		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
355 			/* saddr should be known to target */
356 			if (inet_addr_onlink(in_dev, target, saddr))
357 				break;
358 		}
359 		saddr = 0;
360 		break;
361 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
362 		break;
363 	}
364 	rcu_read_unlock();
365 
366 	if (!saddr)
367 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
368 
369 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
370 	if (probes < 0) {
371 		if (!(neigh->nud_state & NUD_VALID))
372 			pr_debug("trying to ucast probe in NUD_INVALID\n");
373 		neigh_ha_snapshot(dst_ha, neigh, dev);
374 		dst_hw = dst_ha;
375 	} else {
376 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
377 		if (probes < 0) {
378 			neigh_app_ns(neigh);
379 			return;
380 		}
381 	}
382 
383 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
384 		 dst_hw, dev->dev_addr, NULL);
385 }
386 
arp_ignore(struct in_device * in_dev,__be32 sip,__be32 tip)387 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
388 {
389 	struct net *net = dev_net(in_dev->dev);
390 	int scope;
391 
392 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
393 	case 0:	/* Reply, the tip is already validated */
394 		return 0;
395 	case 1:	/* Reply only if tip is configured on the incoming interface */
396 		sip = 0;
397 		scope = RT_SCOPE_HOST;
398 		break;
399 	case 2:	/*
400 		 * Reply only if tip is configured on the incoming interface
401 		 * and is in same subnet as sip
402 		 */
403 		scope = RT_SCOPE_HOST;
404 		break;
405 	case 3:	/* Do not reply for scope host addresses */
406 		sip = 0;
407 		scope = RT_SCOPE_LINK;
408 		in_dev = NULL;
409 		break;
410 	case 4:	/* Reserved */
411 	case 5:
412 	case 6:
413 	case 7:
414 		return 0;
415 	case 8:	/* Do not reply */
416 		return 1;
417 	default:
418 		return 0;
419 	}
420 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
421 }
422 
arp_filter(__be32 sip,__be32 tip,struct net_device * dev)423 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
424 {
425 	struct rtable *rt;
426 	int flag = 0;
427 	/*unsigned long now; */
428 	struct net *net = dev_net(dev);
429 
430 	rt = ip_route_output(net, sip, tip, 0, 0);
431 	if (IS_ERR(rt))
432 		return 1;
433 	if (rt->dst.dev != dev) {
434 		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
435 		flag = 1;
436 	}
437 	ip_rt_put(rt);
438 	return flag;
439 }
440 
441 /* OBSOLETE FUNCTIONS */
442 
443 /*
444  *	Find an arp mapping in the cache. If not found, post a request.
445  *
446  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
447  *	even if it exists. It is supposed that skb->dev was mangled
448  *	by a virtual device (eql, shaper). Nobody but broken devices
449  *	is allowed to use this function, it is scheduled to be removed. --ANK
450  */
451 
arp_set_predefined(int addr_hint,unsigned char * haddr,__be32 paddr,struct net_device * dev)452 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
453 			      __be32 paddr, struct net_device *dev)
454 {
455 	switch (addr_hint) {
456 	case RTN_LOCAL:
457 		pr_debug("arp called for own IP address\n");
458 		memcpy(haddr, dev->dev_addr, dev->addr_len);
459 		return 1;
460 	case RTN_MULTICAST:
461 		arp_mc_map(paddr, haddr, dev, 1);
462 		return 1;
463 	case RTN_BROADCAST:
464 		memcpy(haddr, dev->broadcast, dev->addr_len);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 
arp_find(unsigned char * haddr,struct sk_buff * skb)471 int arp_find(unsigned char *haddr, struct sk_buff *skb)
472 {
473 	struct net_device *dev = skb->dev;
474 	__be32 paddr;
475 	struct neighbour *n;
476 
477 	if (!skb_dst(skb)) {
478 		pr_debug("arp_find is called with dst==NULL\n");
479 		kfree_skb(skb);
480 		return 1;
481 	}
482 
483 	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
484 	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
485 			       paddr, dev))
486 		return 0;
487 
488 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
489 
490 	if (n) {
491 		n->used = jiffies;
492 		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
493 			neigh_ha_snapshot(haddr, n, dev);
494 			neigh_release(n);
495 			return 0;
496 		}
497 		neigh_release(n);
498 	} else
499 		kfree_skb(skb);
500 	return 1;
501 }
502 EXPORT_SYMBOL(arp_find);
503 
504 /* END OF OBSOLETE FUNCTIONS */
505 
506 /*
507  * Check if we can use proxy ARP for this path
508  */
arp_fwd_proxy(struct in_device * in_dev,struct net_device * dev,struct rtable * rt)509 static inline int arp_fwd_proxy(struct in_device *in_dev,
510 				struct net_device *dev,	struct rtable *rt)
511 {
512 	struct in_device *out_dev;
513 	int imi, omi = -1;
514 
515 	if (rt->dst.dev == dev)
516 		return 0;
517 
518 	if (!IN_DEV_PROXY_ARP(in_dev))
519 		return 0;
520 	imi = IN_DEV_MEDIUM_ID(in_dev);
521 	if (imi == 0)
522 		return 1;
523 	if (imi == -1)
524 		return 0;
525 
526 	/* place to check for proxy_arp for routes */
527 
528 	out_dev = __in_dev_get_rcu(rt->dst.dev);
529 	if (out_dev)
530 		omi = IN_DEV_MEDIUM_ID(out_dev);
531 
532 	return omi != imi && omi != -1;
533 }
534 
535 /*
536  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
537  *
538  * RFC3069 supports proxy arp replies back to the same interface.  This
539  * is done to support (ethernet) switch features, like RFC 3069, where
540  * the individual ports are not allowed to communicate with each
541  * other, BUT they are allowed to talk to the upstream router.  As
542  * described in RFC 3069, it is possible to allow these hosts to
543  * communicate through the upstream router, by proxy_arp'ing.
544  *
545  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
546  *
547  *  This technology is known by different names:
548  *    In RFC 3069 it is called VLAN Aggregation.
549  *    Cisco and Allied Telesyn call it Private VLAN.
550  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
551  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
552  *
553  */
arp_fwd_pvlan(struct in_device * in_dev,struct net_device * dev,struct rtable * rt,__be32 sip,__be32 tip)554 static inline int arp_fwd_pvlan(struct in_device *in_dev,
555 				struct net_device *dev,	struct rtable *rt,
556 				__be32 sip, __be32 tip)
557 {
558 	/* Private VLAN is only concerned about the same ethernet segment */
559 	if (rt->dst.dev != dev)
560 		return 0;
561 
562 	/* Don't reply on self probes (often done by windowz boxes)*/
563 	if (sip == tip)
564 		return 0;
565 
566 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
567 		return 1;
568 	else
569 		return 0;
570 }
571 
572 /*
573  *	Interface to link layer: send routine and receive handler.
574  */
575 
576 /*
577  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
578  *	message.
579  */
arp_create(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)580 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
581 			   struct net_device *dev, __be32 src_ip,
582 			   const unsigned char *dest_hw,
583 			   const unsigned char *src_hw,
584 			   const unsigned char *target_hw)
585 {
586 	struct sk_buff *skb;
587 	struct arphdr *arp;
588 	unsigned char *arp_ptr;
589 	int hlen = LL_RESERVED_SPACE(dev);
590 	int tlen = dev->needed_tailroom;
591 
592 	/*
593 	 *	Allocate a buffer
594 	 */
595 
596 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
597 	if (skb == NULL)
598 		return NULL;
599 
600 	skb_reserve(skb, hlen);
601 	skb_reset_network_header(skb);
602 	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
603 	skb->dev = dev;
604 	skb->protocol = htons(ETH_P_ARP);
605 	if (src_hw == NULL)
606 		src_hw = dev->dev_addr;
607 	if (dest_hw == NULL)
608 		dest_hw = dev->broadcast;
609 
610 	/*
611 	 *	Fill the device header for the ARP frame
612 	 */
613 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
614 		goto out;
615 
616 	/*
617 	 * Fill out the arp protocol part.
618 	 *
619 	 * The arp hardware type should match the device type, except for FDDI,
620 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
621 	 */
622 	/*
623 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
624 	 *	DIX code for the protocol. Make these device structure fields.
625 	 */
626 	switch (dev->type) {
627 	default:
628 		arp->ar_hrd = htons(dev->type);
629 		arp->ar_pro = htons(ETH_P_IP);
630 		break;
631 
632 #if IS_ENABLED(CONFIG_AX25)
633 	case ARPHRD_AX25:
634 		arp->ar_hrd = htons(ARPHRD_AX25);
635 		arp->ar_pro = htons(AX25_P_IP);
636 		break;
637 
638 #if IS_ENABLED(CONFIG_NETROM)
639 	case ARPHRD_NETROM:
640 		arp->ar_hrd = htons(ARPHRD_NETROM);
641 		arp->ar_pro = htons(AX25_P_IP);
642 		break;
643 #endif
644 #endif
645 
646 #if IS_ENABLED(CONFIG_FDDI)
647 	case ARPHRD_FDDI:
648 		arp->ar_hrd = htons(ARPHRD_ETHER);
649 		arp->ar_pro = htons(ETH_P_IP);
650 		break;
651 #endif
652 	}
653 
654 	arp->ar_hln = dev->addr_len;
655 	arp->ar_pln = 4;
656 	arp->ar_op = htons(type);
657 
658 	arp_ptr = (unsigned char *)(arp + 1);
659 
660 	memcpy(arp_ptr, src_hw, dev->addr_len);
661 	arp_ptr += dev->addr_len;
662 	memcpy(arp_ptr, &src_ip, 4);
663 	arp_ptr += 4;
664 
665 	switch (dev->type) {
666 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
667 	case ARPHRD_IEEE1394:
668 		break;
669 #endif
670 	default:
671 		if (target_hw != NULL)
672 			memcpy(arp_ptr, target_hw, dev->addr_len);
673 		else
674 			memset(arp_ptr, 0, dev->addr_len);
675 		arp_ptr += dev->addr_len;
676 	}
677 	memcpy(arp_ptr, &dest_ip, 4);
678 
679 	return skb;
680 
681 out:
682 	kfree_skb(skb);
683 	return NULL;
684 }
685 EXPORT_SYMBOL(arp_create);
686 
687 /*
688  *	Send an arp packet.
689  */
arp_xmit(struct sk_buff * skb)690 void arp_xmit(struct sk_buff *skb)
691 {
692 	/* Send it off, maybe filter it using firewalling first.  */
693 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
694 }
695 EXPORT_SYMBOL(arp_xmit);
696 
697 /*
698  *	Create and send an arp packet.
699  */
arp_send(int type,int ptype,__be32 dest_ip,struct net_device * dev,__be32 src_ip,const unsigned char * dest_hw,const unsigned char * src_hw,const unsigned char * target_hw)700 void arp_send(int type, int ptype, __be32 dest_ip,
701 	      struct net_device *dev, __be32 src_ip,
702 	      const unsigned char *dest_hw, const unsigned char *src_hw,
703 	      const unsigned char *target_hw)
704 {
705 	struct sk_buff *skb;
706 
707 	/*
708 	 *	No arp on this interface.
709 	 */
710 
711 	if (dev->flags&IFF_NOARP)
712 		return;
713 
714 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
715 			 dest_hw, src_hw, target_hw);
716 	if (skb == NULL)
717 		return;
718 
719 	arp_xmit(skb);
720 }
721 EXPORT_SYMBOL(arp_send);
722 
723 /*
724  *	Process an arp request.
725  */
726 
arp_process(struct sk_buff * skb)727 static int arp_process(struct sk_buff *skb)
728 {
729 	struct net_device *dev = skb->dev;
730 	struct in_device *in_dev = __in_dev_get_rcu(dev);
731 	struct arphdr *arp;
732 	unsigned char *arp_ptr;
733 	struct rtable *rt;
734 	unsigned char *sha;
735 	__be32 sip, tip;
736 	u16 dev_type = dev->type;
737 	int addr_type;
738 	struct neighbour *n;
739 	struct net *net = dev_net(dev);
740 	bool is_garp = false;
741 
742 	/* arp_rcv below verifies the ARP header and verifies the device
743 	 * is ARP'able.
744 	 */
745 
746 	if (in_dev == NULL)
747 		goto out;
748 
749 	arp = arp_hdr(skb);
750 
751 	switch (dev_type) {
752 	default:
753 		if (arp->ar_pro != htons(ETH_P_IP) ||
754 		    htons(dev_type) != arp->ar_hrd)
755 			goto out;
756 		break;
757 	case ARPHRD_ETHER:
758 	case ARPHRD_FDDI:
759 	case ARPHRD_IEEE802:
760 		/*
761 		 * ETHERNET, and Fibre Channel (which are IEEE 802
762 		 * devices, according to RFC 2625) devices will accept ARP
763 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
764 		 * This is the case also of FDDI, where the RFC 1390 says that
765 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
766 		 * however, to be more robust, we'll accept both 1 (Ethernet)
767 		 * or 6 (IEEE 802.2)
768 		 */
769 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
770 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
771 		    arp->ar_pro != htons(ETH_P_IP))
772 			goto out;
773 		break;
774 	case ARPHRD_AX25:
775 		if (arp->ar_pro != htons(AX25_P_IP) ||
776 		    arp->ar_hrd != htons(ARPHRD_AX25))
777 			goto out;
778 		break;
779 	case ARPHRD_NETROM:
780 		if (arp->ar_pro != htons(AX25_P_IP) ||
781 		    arp->ar_hrd != htons(ARPHRD_NETROM))
782 			goto out;
783 		break;
784 	}
785 
786 	/* Understand only these message types */
787 
788 	if (arp->ar_op != htons(ARPOP_REPLY) &&
789 	    arp->ar_op != htons(ARPOP_REQUEST))
790 		goto out;
791 
792 /*
793  *	Extract fields
794  */
795 	arp_ptr = (unsigned char *)(arp + 1);
796 	sha	= arp_ptr;
797 	arp_ptr += dev->addr_len;
798 	memcpy(&sip, arp_ptr, 4);
799 	arp_ptr += 4;
800 	switch (dev_type) {
801 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
802 	case ARPHRD_IEEE1394:
803 		break;
804 #endif
805 	default:
806 		arp_ptr += dev->addr_len;
807 	}
808 	memcpy(&tip, arp_ptr, 4);
809 /*
810  *	Check for bad requests for 127.x.x.x and requests for multicast
811  *	addresses.  If this is one such, delete it.
812  */
813 	if (ipv4_is_multicast(tip) ||
814 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
815 		goto out;
816 
817 /*
818  *     Special case: We must set Frame Relay source Q.922 address
819  */
820 	if (dev_type == ARPHRD_DLCI)
821 		sha = dev->broadcast;
822 
823 /*
824  *  Process entry.  The idea here is we want to send a reply if it is a
825  *  request for us or if it is a request for someone else that we hold
826  *  a proxy for.  We want to add an entry to our cache if it is a reply
827  *  to us or if it is a request for our address.
828  *  (The assumption for this last is that if someone is requesting our
829  *  address, they are probably intending to talk to us, so it saves time
830  *  if we cache their address.  Their address is also probably not in
831  *  our cache, since ours is not in their cache.)
832  *
833  *  Putting this another way, we only care about replies if they are to
834  *  us, in which case we add them to the cache.  For requests, we care
835  *  about those for us and those for our proxies.  We reply to both,
836  *  and in the case of requests for us we add the requester to the arp
837  *  cache.
838  */
839 
840 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
841 	if (sip == 0) {
842 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
843 		    inet_addr_type(net, tip) == RTN_LOCAL &&
844 		    !arp_ignore(in_dev, sip, tip))
845 			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
846 				 dev->dev_addr, sha);
847 		goto out;
848 	}
849 
850 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
851 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
852 
853 		rt = skb_rtable(skb);
854 		addr_type = rt->rt_type;
855 
856 		if (addr_type == RTN_LOCAL) {
857 			int dont_send;
858 
859 			dont_send = arp_ignore(in_dev, sip, tip);
860 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
861 				dont_send = arp_filter(sip, tip, dev);
862 			if (!dont_send) {
863 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
864 				if (n) {
865 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
866 						 dev, tip, sha, dev->dev_addr,
867 						 sha);
868 					neigh_release(n);
869 				}
870 			}
871 			goto out;
872 		} else if (IN_DEV_FORWARD(in_dev)) {
873 			if (addr_type == RTN_UNICAST  &&
874 			    (arp_fwd_proxy(in_dev, dev, rt) ||
875 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
876 			     (rt->dst.dev != dev &&
877 			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
878 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
879 				if (n)
880 					neigh_release(n);
881 
882 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
883 				    skb->pkt_type == PACKET_HOST ||
884 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
885 					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
886 						 dev, tip, sha, dev->dev_addr,
887 						 sha);
888 				} else {
889 					pneigh_enqueue(&arp_tbl,
890 						       in_dev->arp_parms, skb);
891 					return 0;
892 				}
893 				goto out;
894 			}
895 		}
896 	}
897 
898 	/* Update our ARP tables */
899 
900 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
901 
902 	if (IN_DEV_ARP_ACCEPT(in_dev)) {
903 		/* Unsolicited ARP is not accepted by default.
904 		   It is possible, that this option should be enabled for some
905 		   devices (strip is candidate)
906 		 */
907 		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
908 			  inet_addr_type(net, sip) == RTN_UNICAST;
909 
910 		if (n == NULL &&
911 		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
912 		      inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
913 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
914 	}
915 
916 	if (n) {
917 		int state = NUD_REACHABLE;
918 		int override;
919 
920 		/* If several different ARP replies follows back-to-back,
921 		   use the FIRST one. It is possible, if several proxy
922 		   agents are active. Taking the first reply prevents
923 		   arp trashing and chooses the fastest router.
924 		 */
925 		override = time_after(jiffies,
926 				      n->updated +
927 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
928 			   is_garp;
929 
930 		/* Broadcast replies and request packets
931 		   do not assert neighbour reachability.
932 		 */
933 		if (arp->ar_op != htons(ARPOP_REPLY) ||
934 		    skb->pkt_type != PACKET_HOST)
935 			state = NUD_STALE;
936 		neigh_update(n, sha, state,
937 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
938 		neigh_release(n);
939 	}
940 
941 out:
942 	consume_skb(skb);
943 	return 0;
944 }
945 
parp_redo(struct sk_buff * skb)946 static void parp_redo(struct sk_buff *skb)
947 {
948 	arp_process(skb);
949 }
950 
951 
952 /*
953  *	Receive an arp request from the device layer.
954  */
955 
arp_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)956 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
957 		   struct packet_type *pt, struct net_device *orig_dev)
958 {
959 	const struct arphdr *arp;
960 
961 	/* do not tweak dropwatch on an ARP we will ignore */
962 	if (dev->flags & IFF_NOARP ||
963 	    skb->pkt_type == PACKET_OTHERHOST ||
964 	    skb->pkt_type == PACKET_LOOPBACK)
965 		goto consumeskb;
966 
967 	skb = skb_share_check(skb, GFP_ATOMIC);
968 	if (!skb)
969 		goto out_of_mem;
970 
971 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
972 	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
973 		goto freeskb;
974 
975 	arp = arp_hdr(skb);
976 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
977 		goto freeskb;
978 
979 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
980 
981 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
982 
983 consumeskb:
984 	consume_skb(skb);
985 	return 0;
986 freeskb:
987 	kfree_skb(skb);
988 out_of_mem:
989 	return 0;
990 }
991 
992 /*
993  *	User level interface (ioctl)
994  */
995 
996 /*
997  *	Set (create) an ARP cache entry.
998  */
999 
arp_req_set_proxy(struct net * net,struct net_device * dev,int on)1000 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1001 {
1002 	if (dev == NULL) {
1003 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1004 		return 0;
1005 	}
1006 	if (__in_dev_get_rtnl(dev)) {
1007 		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1008 		return 0;
1009 	}
1010 	return -ENXIO;
1011 }
1012 
arp_req_set_public(struct net * net,struct arpreq * r,struct net_device * dev)1013 static int arp_req_set_public(struct net *net, struct arpreq *r,
1014 		struct net_device *dev)
1015 {
1016 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1017 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1018 
1019 	if (mask && mask != htonl(0xFFFFFFFF))
1020 		return -EINVAL;
1021 	if (!dev && (r->arp_flags & ATF_COM)) {
1022 		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1023 				      r->arp_ha.sa_data);
1024 		if (!dev)
1025 			return -ENODEV;
1026 	}
1027 	if (mask) {
1028 		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1029 			return -ENOBUFS;
1030 		return 0;
1031 	}
1032 
1033 	return arp_req_set_proxy(net, dev, 1);
1034 }
1035 
arp_req_set(struct net * net,struct arpreq * r,struct net_device * dev)1036 static int arp_req_set(struct net *net, struct arpreq *r,
1037 		       struct net_device *dev)
1038 {
1039 	__be32 ip;
1040 	struct neighbour *neigh;
1041 	int err;
1042 
1043 	if (r->arp_flags & ATF_PUBL)
1044 		return arp_req_set_public(net, r, dev);
1045 
1046 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1047 	if (r->arp_flags & ATF_PERM)
1048 		r->arp_flags |= ATF_COM;
1049 	if (dev == NULL) {
1050 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1051 
1052 		if (IS_ERR(rt))
1053 			return PTR_ERR(rt);
1054 		dev = rt->dst.dev;
1055 		ip_rt_put(rt);
1056 		if (!dev)
1057 			return -EINVAL;
1058 	}
1059 	switch (dev->type) {
1060 #if IS_ENABLED(CONFIG_FDDI)
1061 	case ARPHRD_FDDI:
1062 		/*
1063 		 * According to RFC 1390, FDDI devices should accept ARP
1064 		 * hardware types of 1 (Ethernet).  However, to be more
1065 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1066 		 * or 6 (IEEE 802.2).
1067 		 */
1068 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1069 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1070 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1071 			return -EINVAL;
1072 		break;
1073 #endif
1074 	default:
1075 		if (r->arp_ha.sa_family != dev->type)
1076 			return -EINVAL;
1077 		break;
1078 	}
1079 
1080 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1081 	err = PTR_ERR(neigh);
1082 	if (!IS_ERR(neigh)) {
1083 		unsigned int state = NUD_STALE;
1084 		if (r->arp_flags & ATF_PERM)
1085 			state = NUD_PERMANENT;
1086 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1087 				   r->arp_ha.sa_data : NULL, state,
1088 				   NEIGH_UPDATE_F_OVERRIDE |
1089 				   NEIGH_UPDATE_F_ADMIN);
1090 		neigh_release(neigh);
1091 	}
1092 	return err;
1093 }
1094 
arp_state_to_flags(struct neighbour * neigh)1095 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1096 {
1097 	if (neigh->nud_state&NUD_PERMANENT)
1098 		return ATF_PERM | ATF_COM;
1099 	else if (neigh->nud_state&NUD_VALID)
1100 		return ATF_COM;
1101 	else
1102 		return 0;
1103 }
1104 
1105 /*
1106  *	Get an ARP cache entry.
1107  */
1108 
arp_req_get(struct arpreq * r,struct net_device * dev)1109 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1110 {
1111 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1112 	struct neighbour *neigh;
1113 	int err = -ENXIO;
1114 
1115 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1116 	if (neigh) {
1117 		read_lock_bh(&neigh->lock);
1118 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1119 		r->arp_flags = arp_state_to_flags(neigh);
1120 		read_unlock_bh(&neigh->lock);
1121 		r->arp_ha.sa_family = dev->type;
1122 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1123 		neigh_release(neigh);
1124 		err = 0;
1125 	}
1126 	return err;
1127 }
1128 
arp_invalidate(struct net_device * dev,__be32 ip)1129 static int arp_invalidate(struct net_device *dev, __be32 ip)
1130 {
1131 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1132 	int err = -ENXIO;
1133 
1134 	if (neigh) {
1135 		if (neigh->nud_state & ~NUD_NOARP)
1136 			err = neigh_update(neigh, NULL, NUD_FAILED,
1137 					   NEIGH_UPDATE_F_OVERRIDE|
1138 					   NEIGH_UPDATE_F_ADMIN);
1139 		neigh_release(neigh);
1140 	}
1141 
1142 	return err;
1143 }
1144 
arp_req_delete_public(struct net * net,struct arpreq * r,struct net_device * dev)1145 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1146 		struct net_device *dev)
1147 {
1148 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1149 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1150 
1151 	if (mask == htonl(0xFFFFFFFF))
1152 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1153 
1154 	if (mask)
1155 		return -EINVAL;
1156 
1157 	return arp_req_set_proxy(net, dev, 0);
1158 }
1159 
arp_req_delete(struct net * net,struct arpreq * r,struct net_device * dev)1160 static int arp_req_delete(struct net *net, struct arpreq *r,
1161 			  struct net_device *dev)
1162 {
1163 	__be32 ip;
1164 
1165 	if (r->arp_flags & ATF_PUBL)
1166 		return arp_req_delete_public(net, r, dev);
1167 
1168 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1169 	if (dev == NULL) {
1170 		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1171 		if (IS_ERR(rt))
1172 			return PTR_ERR(rt);
1173 		dev = rt->dst.dev;
1174 		ip_rt_put(rt);
1175 		if (!dev)
1176 			return -EINVAL;
1177 	}
1178 	return arp_invalidate(dev, ip);
1179 }
1180 
1181 /*
1182  *	Handle an ARP layer I/O control request.
1183  */
1184 
arp_ioctl(struct net * net,unsigned int cmd,void __user * arg)1185 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1186 {
1187 	int err;
1188 	struct arpreq r;
1189 	struct net_device *dev = NULL;
1190 
1191 	switch (cmd) {
1192 	case SIOCDARP:
1193 	case SIOCSARP:
1194 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1195 			return -EPERM;
1196 	case SIOCGARP:
1197 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1198 		if (err)
1199 			return -EFAULT;
1200 		break;
1201 	default:
1202 		return -EINVAL;
1203 	}
1204 
1205 	if (r.arp_pa.sa_family != AF_INET)
1206 		return -EPFNOSUPPORT;
1207 
1208 	if (!(r.arp_flags & ATF_PUBL) &&
1209 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1210 		return -EINVAL;
1211 	if (!(r.arp_flags & ATF_NETMASK))
1212 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1213 							   htonl(0xFFFFFFFFUL);
1214 	rtnl_lock();
1215 	if (r.arp_dev[0]) {
1216 		err = -ENODEV;
1217 		dev = __dev_get_by_name(net, r.arp_dev);
1218 		if (dev == NULL)
1219 			goto out;
1220 
1221 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1222 		if (!r.arp_ha.sa_family)
1223 			r.arp_ha.sa_family = dev->type;
1224 		err = -EINVAL;
1225 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1226 			goto out;
1227 	} else if (cmd == SIOCGARP) {
1228 		err = -ENODEV;
1229 		goto out;
1230 	}
1231 
1232 	switch (cmd) {
1233 	case SIOCDARP:
1234 		err = arp_req_delete(net, &r, dev);
1235 		break;
1236 	case SIOCSARP:
1237 		err = arp_req_set(net, &r, dev);
1238 		break;
1239 	case SIOCGARP:
1240 		err = arp_req_get(&r, dev);
1241 		break;
1242 	}
1243 out:
1244 	rtnl_unlock();
1245 	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1246 		err = -EFAULT;
1247 	return err;
1248 }
1249 
arp_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)1250 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1251 			    void *ptr)
1252 {
1253 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1254 	struct netdev_notifier_change_info *change_info;
1255 
1256 	switch (event) {
1257 	case NETDEV_CHANGEADDR:
1258 		neigh_changeaddr(&arp_tbl, dev);
1259 		rt_cache_flush(dev_net(dev));
1260 		break;
1261 	case NETDEV_CHANGE:
1262 		change_info = ptr;
1263 		if (change_info->flags_changed & IFF_NOARP)
1264 			neigh_changeaddr(&arp_tbl, dev);
1265 		break;
1266 	default:
1267 		break;
1268 	}
1269 
1270 	return NOTIFY_DONE;
1271 }
1272 
1273 static struct notifier_block arp_netdev_notifier = {
1274 	.notifier_call = arp_netdev_event,
1275 };
1276 
1277 /* Note, that it is not on notifier chain.
1278    It is necessary, that this routine was called after route cache will be
1279    flushed.
1280  */
arp_ifdown(struct net_device * dev)1281 void arp_ifdown(struct net_device *dev)
1282 {
1283 	neigh_ifdown(&arp_tbl, dev);
1284 }
1285 
1286 
1287 /*
1288  *	Called once on startup.
1289  */
1290 
1291 static struct packet_type arp_packet_type __read_mostly = {
1292 	.type =	cpu_to_be16(ETH_P_ARP),
1293 	.func =	arp_rcv,
1294 };
1295 
1296 static int arp_proc_init(void);
1297 
arp_init(void)1298 void __init arp_init(void)
1299 {
1300 	neigh_table_init(&arp_tbl);
1301 
1302 	dev_add_pack(&arp_packet_type);
1303 	arp_proc_init();
1304 #ifdef CONFIG_SYSCTL
1305 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1306 #endif
1307 	register_netdevice_notifier(&arp_netdev_notifier);
1308 }
1309 
1310 #ifdef CONFIG_PROC_FS
1311 #if IS_ENABLED(CONFIG_AX25)
1312 
1313 /* ------------------------------------------------------------------------ */
1314 /*
1315  *	ax25 -> ASCII conversion
1316  */
ax2asc2(ax25_address * a,char * buf)1317 static char *ax2asc2(ax25_address *a, char *buf)
1318 {
1319 	char c, *s;
1320 	int n;
1321 
1322 	for (n = 0, s = buf; n < 6; n++) {
1323 		c = (a->ax25_call[n] >> 1) & 0x7F;
1324 
1325 		if (c != ' ')
1326 			*s++ = c;
1327 	}
1328 
1329 	*s++ = '-';
1330 	n = (a->ax25_call[6] >> 1) & 0x0F;
1331 	if (n > 9) {
1332 		*s++ = '1';
1333 		n -= 10;
1334 	}
1335 
1336 	*s++ = n + '0';
1337 	*s++ = '\0';
1338 
1339 	if (*buf == '\0' || *buf == '-')
1340 		return "*";
1341 
1342 	return buf;
1343 }
1344 #endif /* CONFIG_AX25 */
1345 
1346 #define HBUFFERLEN 30
1347 
arp_format_neigh_entry(struct seq_file * seq,struct neighbour * n)1348 static void arp_format_neigh_entry(struct seq_file *seq,
1349 				   struct neighbour *n)
1350 {
1351 	char hbuffer[HBUFFERLEN];
1352 	int k, j;
1353 	char tbuf[16];
1354 	struct net_device *dev = n->dev;
1355 	int hatype = dev->type;
1356 
1357 	read_lock(&n->lock);
1358 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1359 #if IS_ENABLED(CONFIG_AX25)
1360 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1361 		ax2asc2((ax25_address *)n->ha, hbuffer);
1362 	else {
1363 #endif
1364 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1365 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1366 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1367 		hbuffer[k++] = ':';
1368 	}
1369 	if (k != 0)
1370 		--k;
1371 	hbuffer[k] = 0;
1372 #if IS_ENABLED(CONFIG_AX25)
1373 	}
1374 #endif
1375 	sprintf(tbuf, "%pI4", n->primary_key);
1376 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1377 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1378 	read_unlock(&n->lock);
1379 }
1380 
arp_format_pneigh_entry(struct seq_file * seq,struct pneigh_entry * n)1381 static void arp_format_pneigh_entry(struct seq_file *seq,
1382 				    struct pneigh_entry *n)
1383 {
1384 	struct net_device *dev = n->dev;
1385 	int hatype = dev ? dev->type : 0;
1386 	char tbuf[16];
1387 
1388 	sprintf(tbuf, "%pI4", n->key);
1389 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1390 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1391 		   dev ? dev->name : "*");
1392 }
1393 
arp_seq_show(struct seq_file * seq,void * v)1394 static int arp_seq_show(struct seq_file *seq, void *v)
1395 {
1396 	if (v == SEQ_START_TOKEN) {
1397 		seq_puts(seq, "IP address       HW type     Flags       "
1398 			      "HW address            Mask     Device\n");
1399 	} else {
1400 		struct neigh_seq_state *state = seq->private;
1401 
1402 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1403 			arp_format_pneigh_entry(seq, v);
1404 		else
1405 			arp_format_neigh_entry(seq, v);
1406 	}
1407 
1408 	return 0;
1409 }
1410 
arp_seq_start(struct seq_file * seq,loff_t * pos)1411 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1412 {
1413 	/* Don't want to confuse "arp -a" w/ magic entries,
1414 	 * so we tell the generic iterator to skip NUD_NOARP.
1415 	 */
1416 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1417 }
1418 
1419 /* ------------------------------------------------------------------------ */
1420 
1421 static const struct seq_operations arp_seq_ops = {
1422 	.start	= arp_seq_start,
1423 	.next	= neigh_seq_next,
1424 	.stop	= neigh_seq_stop,
1425 	.show	= arp_seq_show,
1426 };
1427 
arp_seq_open(struct inode * inode,struct file * file)1428 static int arp_seq_open(struct inode *inode, struct file *file)
1429 {
1430 	return seq_open_net(inode, file, &arp_seq_ops,
1431 			    sizeof(struct neigh_seq_state));
1432 }
1433 
1434 static const struct file_operations arp_seq_fops = {
1435 	.owner		= THIS_MODULE,
1436 	.open           = arp_seq_open,
1437 	.read           = seq_read,
1438 	.llseek         = seq_lseek,
1439 	.release	= seq_release_net,
1440 };
1441 
1442 
arp_net_init(struct net * net)1443 static int __net_init arp_net_init(struct net *net)
1444 {
1445 	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1446 		return -ENOMEM;
1447 	return 0;
1448 }
1449 
arp_net_exit(struct net * net)1450 static void __net_exit arp_net_exit(struct net *net)
1451 {
1452 	remove_proc_entry("arp", net->proc_net);
1453 }
1454 
1455 static struct pernet_operations arp_net_ops = {
1456 	.init = arp_net_init,
1457 	.exit = arp_net_exit,
1458 };
1459 
arp_proc_init(void)1460 static int __init arp_proc_init(void)
1461 {
1462 	return register_pernet_subsys(&arp_net_ops);
1463 }
1464 
1465 #else /* CONFIG_PROC_FS */
1466 
arp_proc_init(void)1467 static int __init arp_proc_init(void)
1468 {
1469 	return 0;
1470 }
1471 
1472 #endif /* CONFIG_PROC_FS */
1473