1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
41
42 #include "libata.h"
43
44 static struct workqueue_struct *ata_sff_wq;
45
46 const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
49 .qc_prep = ata_noop_qc_prep,
50 .qc_issue = ata_sff_qc_issue,
51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
55 .prereset = ata_sff_prereset,
56 .softreset = ata_sff_softreset,
57 .hardreset = sata_sff_hardreset,
58 .postreset = ata_sff_postreset,
59 .error_handler = ata_sff_error_handler,
60
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
67 .sff_drain_fifo = ata_sff_drain_fifo,
68
69 .lost_interrupt = ata_sff_lost_interrupt,
70 };
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73 /**
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
ata_sff_check_status(struct ata_port * ap)84 u8 ata_sff_check_status(struct ata_port *ap)
85 {
86 return ioread8(ap->ioaddr.status_addr);
87 }
88 EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90 /**
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
ata_sff_altstatus(struct ata_port * ap)103 static u8 ata_sff_altstatus(struct ata_port *ap)
104 {
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109 }
110
111 /**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
ata_sff_irq_status(struct ata_port * ap)123 static u8 ata_sff_irq_status(struct ata_port *ap)
124 {
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
131 return status;
132 }
133 /* Clear INTRQ latch */
134 status = ap->ops->sff_check_status(ap);
135 return status;
136 }
137
138 /**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
ata_sff_sync(struct ata_port * ap)150 static void ata_sff_sync(struct ata_port *ap)
151 {
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156 }
157
158 /**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
ata_sff_pause(struct ata_port * ap)170 void ata_sff_pause(struct ata_port *ap)
171 {
172 ata_sff_sync(ap);
173 ndelay(400);
174 }
175 EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177 /**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
184
ata_sff_dma_pause(struct ata_port * ap)185 void ata_sff_dma_pause(struct ata_port *ap)
186 {
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197 }
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200 /**
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
ata_sff_busy_sleep(struct ata_port * ap,unsigned long tmout_pat,unsigned long tmout)215 int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
217 {
218 unsigned long timer_start, timeout;
219 u8 status;
220
221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222 timer_start = jiffies;
223 timeout = ata_deadline(timer_start, tmout_pat);
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
226 ata_msleep(ap, 50);
227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
234
235 timeout = ata_deadline(timer_start, tmout);
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
238 ata_msleep(ap, 50);
239 status = ap->ops->sff_check_status(ap);
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
249 return -EBUSY;
250 }
251
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
ata_sff_check_ready(struct ata_link * link)256 static int ata_sff_check_ready(struct ata_link *link)
257 {
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
260 return ata_check_ready(status);
261 }
262
263 /**
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
ata_sff_wait_ready(struct ata_link * link,unsigned long deadline)277 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278 {
279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
280 }
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283 /**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
ata_sff_set_devctl(struct ata_port * ap,u8 ctl)296 static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297 {
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302 }
303
304 /**
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
ata_sff_dev_select(struct ata_port * ap,unsigned int device)318 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319 {
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
329 }
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332 /**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
346 *
347 * LOCKING:
348 * caller.
349 */
ata_dev_select(struct ata_port * ap,unsigned int device,unsigned int wait,unsigned int can_sleep)350 static void ata_dev_select(struct ata_port *ap, unsigned int device,
351 unsigned int wait, unsigned int can_sleep)
352 {
353 if (ata_msg_probe(ap))
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
356
357 if (wait)
358 ata_wait_idle(ap);
359
360 ap->ops->sff_dev_select(ap, device);
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364 ata_msleep(ap, 150);
365 ata_wait_idle(ap);
366 }
367 }
368
369 /**
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
379 * LOCKING:
380 * Inherited from caller.
381 */
ata_sff_irq_on(struct ata_port * ap)382 void ata_sff_irq_on(struct ata_port *ap)
383 {
384 struct ata_ioports *ioaddr = &ap->ioaddr;
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
397
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
400 }
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403 /**
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
ata_sff_tf_load(struct ata_port * ap,const struct ata_taskfile * tf)413 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414 {
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
422 ata_wait_idle(ap);
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426 WARN_ON_ONCE(!ioaddr->ctl_addr);
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
458
459 ata_wait_idle(ap);
460 }
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463 /**
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
ata_sff_tf_read(struct ata_port * ap,struct ata_taskfile * tf)476 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477 {
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
480 tf->command = ata_sff_check_status(ap);
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
499 WARN_ON_ONCE(1);
500 }
501 }
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504 /**
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
ata_sff_exec_command(struct ata_port * ap,const struct ata_taskfile * tf)515 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516 {
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
520 ata_sff_pause(ap);
521 }
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524 /**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
ata_tf_to_host(struct ata_port * ap,const struct ata_taskfile * tf)536 static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538 {
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
541 }
542
543 /**
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @dev: device to target
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
ata_sff_data_xfer(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)558 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559 unsigned int buflen, int rw)
560 {
561 struct ata_port *ap = dev->link->ap;
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen & 0x01)) {
573 unsigned char pad[2] = { };
574
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
581 */
582 if (rw == READ) {
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
585 } else {
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
588 }
589 words++;
590 }
591
592 return words << 1;
593 }
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596 /**
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @dev: device to target
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
ata_sff_data_xfer32(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)613 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614 unsigned int buflen, int rw)
615 {
616 struct ata_port *ap = dev->link->ap;
617 void __iomem *data_addr = ap->ioaddr.data_addr;
618 unsigned int words = buflen >> 2;
619 int slop = buflen & 3;
620
621 if (!(ap->pflags & ATA_PFLAG_PIO32))
622 return ata_sff_data_xfer(dev, buf, buflen, rw);
623
624 /* Transfer multiple of 4 bytes */
625 if (rw == READ)
626 ioread32_rep(data_addr, buf, words);
627 else
628 iowrite32_rep(data_addr, buf, words);
629
630 /* Transfer trailing bytes, if any */
631 if (unlikely(slop)) {
632 unsigned char pad[4] = { };
633
634 /* Point buf to the tail of buffer */
635 buf += buflen - slop;
636
637 /*
638 * Use io*_rep() accessors here as well to avoid pointlessly
639 * swapping bytes to and from on the big endian machines...
640 */
641 if (rw == READ) {
642 if (slop < 3)
643 ioread16_rep(data_addr, pad, 1);
644 else
645 ioread32_rep(data_addr, pad, 1);
646 memcpy(buf, pad, slop);
647 } else {
648 memcpy(pad, buf, slop);
649 if (slop < 3)
650 iowrite16_rep(data_addr, pad, 1);
651 else
652 iowrite32_rep(data_addr, pad, 1);
653 }
654 }
655 return (buflen + 1) & ~1;
656 }
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658
659 /**
660 * ata_sff_data_xfer_noirq - Transfer data by PIO
661 * @dev: device to target
662 * @buf: data buffer
663 * @buflen: buffer length
664 * @rw: read/write
665 *
666 * Transfer data from/to the device data register by PIO. Do the
667 * transfer with interrupts disabled.
668 *
669 * LOCKING:
670 * Inherited from caller.
671 *
672 * RETURNS:
673 * Bytes consumed.
674 */
ata_sff_data_xfer_noirq(struct ata_device * dev,unsigned char * buf,unsigned int buflen,int rw)675 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676 unsigned int buflen, int rw)
677 {
678 unsigned long flags;
679 unsigned int consumed;
680
681 local_irq_save(flags);
682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683 local_irq_restore(flags);
684
685 return consumed;
686 }
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688
689 /**
690 * ata_pio_sector - Transfer a sector of data.
691 * @qc: Command on going
692 *
693 * Transfer qc->sect_size bytes of data from/to the ATA device.
694 *
695 * LOCKING:
696 * Inherited from caller.
697 */
ata_pio_sector(struct ata_queued_cmd * qc)698 static void ata_pio_sector(struct ata_queued_cmd *qc)
699 {
700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701 struct ata_port *ap = qc->ap;
702 struct page *page;
703 unsigned int offset;
704 unsigned char *buf;
705
706 if (qc->curbytes == qc->nbytes - qc->sect_size)
707 ap->hsm_task_state = HSM_ST_LAST;
708
709 page = sg_page(qc->cursg);
710 offset = qc->cursg->offset + qc->cursg_ofs;
711
712 /* get the current page and offset */
713 page = nth_page(page, (offset >> PAGE_SHIFT));
714 offset %= PAGE_SIZE;
715
716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717
718 if (PageHighMem(page)) {
719 unsigned long flags;
720
721 /* FIXME: use a bounce buffer */
722 local_irq_save(flags);
723 buf = kmap_atomic(page);
724
725 /* do the actual data transfer */
726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727 do_write);
728
729 kunmap_atomic(buf);
730 local_irq_restore(flags);
731 } else {
732 buf = page_address(page);
733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734 do_write);
735 }
736
737 if (!do_write && !PageSlab(page))
738 flush_dcache_page(page);
739
740 qc->curbytes += qc->sect_size;
741 qc->cursg_ofs += qc->sect_size;
742
743 if (qc->cursg_ofs == qc->cursg->length) {
744 qc->cursg = sg_next(qc->cursg);
745 qc->cursg_ofs = 0;
746 }
747 }
748
749 /**
750 * ata_pio_sectors - Transfer one or many sectors.
751 * @qc: Command on going
752 *
753 * Transfer one or many sectors of data from/to the
754 * ATA device for the DRQ request.
755 *
756 * LOCKING:
757 * Inherited from caller.
758 */
ata_pio_sectors(struct ata_queued_cmd * qc)759 static void ata_pio_sectors(struct ata_queued_cmd *qc)
760 {
761 if (is_multi_taskfile(&qc->tf)) {
762 /* READ/WRITE MULTIPLE */
763 unsigned int nsect;
764
765 WARN_ON_ONCE(qc->dev->multi_count == 0);
766
767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768 qc->dev->multi_count);
769 while (nsect--)
770 ata_pio_sector(qc);
771 } else
772 ata_pio_sector(qc);
773
774 ata_sff_sync(qc->ap); /* flush */
775 }
776
777 /**
778 * atapi_send_cdb - Write CDB bytes to hardware
779 * @ap: Port to which ATAPI device is attached.
780 * @qc: Taskfile currently active
781 *
782 * When device has indicated its readiness to accept
783 * a CDB, this function is called. Send the CDB.
784 *
785 * LOCKING:
786 * caller.
787 */
atapi_send_cdb(struct ata_port * ap,struct ata_queued_cmd * qc)788 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789 {
790 /* send SCSI cdb */
791 DPRINTK("send cdb\n");
792 WARN_ON_ONCE(qc->dev->cdb_len < 12);
793
794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795 ata_sff_sync(ap);
796 /* FIXME: If the CDB is for DMA do we need to do the transition delay
797 or is bmdma_start guaranteed to do it ? */
798 switch (qc->tf.protocol) {
799 case ATAPI_PROT_PIO:
800 ap->hsm_task_state = HSM_ST;
801 break;
802 case ATAPI_PROT_NODATA:
803 ap->hsm_task_state = HSM_ST_LAST;
804 break;
805 #ifdef CONFIG_ATA_BMDMA
806 case ATAPI_PROT_DMA:
807 ap->hsm_task_state = HSM_ST_LAST;
808 /* initiate bmdma */
809 ap->ops->bmdma_start(qc);
810 break;
811 #endif /* CONFIG_ATA_BMDMA */
812 default:
813 BUG();
814 }
815 }
816
817 /**
818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
819 * @qc: Command on going
820 * @bytes: number of bytes
821 *
822 * Transfer Transfer data from/to the ATAPI device.
823 *
824 * LOCKING:
825 * Inherited from caller.
826 *
827 */
__atapi_pio_bytes(struct ata_queued_cmd * qc,unsigned int bytes)828 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829 {
830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831 struct ata_port *ap = qc->ap;
832 struct ata_device *dev = qc->dev;
833 struct ata_eh_info *ehi = &dev->link->eh_info;
834 struct scatterlist *sg;
835 struct page *page;
836 unsigned char *buf;
837 unsigned int offset, count, consumed;
838
839 next_sg:
840 sg = qc->cursg;
841 if (unlikely(!sg)) {
842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843 "buf=%u cur=%u bytes=%u",
844 qc->nbytes, qc->curbytes, bytes);
845 return -1;
846 }
847
848 page = sg_page(sg);
849 offset = sg->offset + qc->cursg_ofs;
850
851 /* get the current page and offset */
852 page = nth_page(page, (offset >> PAGE_SHIFT));
853 offset %= PAGE_SIZE;
854
855 /* don't overrun current sg */
856 count = min(sg->length - qc->cursg_ofs, bytes);
857
858 /* don't cross page boundaries */
859 count = min(count, (unsigned int)PAGE_SIZE - offset);
860
861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862
863 if (PageHighMem(page)) {
864 unsigned long flags;
865
866 /* FIXME: use bounce buffer */
867 local_irq_save(flags);
868 buf = kmap_atomic(page);
869
870 /* do the actual data transfer */
871 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
872 count, rw);
873
874 kunmap_atomic(buf);
875 local_irq_restore(flags);
876 } else {
877 buf = page_address(page);
878 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
879 count, rw);
880 }
881
882 bytes -= min(bytes, consumed);
883 qc->curbytes += count;
884 qc->cursg_ofs += count;
885
886 if (qc->cursg_ofs == sg->length) {
887 qc->cursg = sg_next(qc->cursg);
888 qc->cursg_ofs = 0;
889 }
890
891 /*
892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894 * check correctly as it doesn't know if it is the last request being
895 * made. Somebody should implement a proper sanity check.
896 */
897 if (bytes)
898 goto next_sg;
899 return 0;
900 }
901
902 /**
903 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
904 * @qc: Command on going
905 *
906 * Transfer Transfer data from/to the ATAPI device.
907 *
908 * LOCKING:
909 * Inherited from caller.
910 */
atapi_pio_bytes(struct ata_queued_cmd * qc)911 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912 {
913 struct ata_port *ap = qc->ap;
914 struct ata_device *dev = qc->dev;
915 struct ata_eh_info *ehi = &dev->link->eh_info;
916 unsigned int ireason, bc_lo, bc_hi, bytes;
917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918
919 /* Abuse qc->result_tf for temp storage of intermediate TF
920 * here to save some kernel stack usage.
921 * For normal completion, qc->result_tf is not relevant. For
922 * error, qc->result_tf is later overwritten by ata_qc_complete().
923 * So, the correctness of qc->result_tf is not affected.
924 */
925 ap->ops->sff_tf_read(ap, &qc->result_tf);
926 ireason = qc->result_tf.nsect;
927 bc_lo = qc->result_tf.lbam;
928 bc_hi = qc->result_tf.lbah;
929 bytes = (bc_hi << 8) | bc_lo;
930
931 /* shall be cleared to zero, indicating xfer of data */
932 if (unlikely(ireason & ATAPI_COD))
933 goto atapi_check;
934
935 /* make sure transfer direction matches expected */
936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937 if (unlikely(do_write != i_write))
938 goto atapi_check;
939
940 if (unlikely(!bytes))
941 goto atapi_check;
942
943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944
945 if (unlikely(__atapi_pio_bytes(qc, bytes)))
946 goto err_out;
947 ata_sff_sync(ap); /* flush */
948
949 return;
950
951 atapi_check:
952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953 ireason, bytes);
954 err_out:
955 qc->err_mask |= AC_ERR_HSM;
956 ap->hsm_task_state = HSM_ST_ERR;
957 }
958
959 /**
960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961 * @ap: the target ata_port
962 * @qc: qc on going
963 *
964 * RETURNS:
965 * 1 if ok in workqueue, 0 otherwise.
966 */
ata_hsm_ok_in_wq(struct ata_port * ap,struct ata_queued_cmd * qc)967 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968 struct ata_queued_cmd *qc)
969 {
970 if (qc->tf.flags & ATA_TFLAG_POLLING)
971 return 1;
972
973 if (ap->hsm_task_state == HSM_ST_FIRST) {
974 if (qc->tf.protocol == ATA_PROT_PIO &&
975 (qc->tf.flags & ATA_TFLAG_WRITE))
976 return 1;
977
978 if (ata_is_atapi(qc->tf.protocol) &&
979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980 return 1;
981 }
982
983 return 0;
984 }
985
986 /**
987 * ata_hsm_qc_complete - finish a qc running on standard HSM
988 * @qc: Command to complete
989 * @in_wq: 1 if called from workqueue, 0 otherwise
990 *
991 * Finish @qc which is running on standard HSM.
992 *
993 * LOCKING:
994 * If @in_wq is zero, spin_lock_irqsave(host lock).
995 * Otherwise, none on entry and grabs host lock.
996 */
ata_hsm_qc_complete(struct ata_queued_cmd * qc,int in_wq)997 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998 {
999 struct ata_port *ap = qc->ap;
1000
1001 if (ap->ops->error_handler) {
1002 if (in_wq) {
1003 /* EH might have kicked in while host lock is
1004 * released.
1005 */
1006 qc = ata_qc_from_tag(ap, qc->tag);
1007 if (qc) {
1008 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009 ata_sff_irq_on(ap);
1010 ata_qc_complete(qc);
1011 } else
1012 ata_port_freeze(ap);
1013 }
1014 } else {
1015 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016 ata_qc_complete(qc);
1017 else
1018 ata_port_freeze(ap);
1019 }
1020 } else {
1021 if (in_wq) {
1022 ata_sff_irq_on(ap);
1023 ata_qc_complete(qc);
1024 } else
1025 ata_qc_complete(qc);
1026 }
1027 }
1028
1029 /**
1030 * ata_sff_hsm_move - move the HSM to the next state.
1031 * @ap: the target ata_port
1032 * @qc: qc on going
1033 * @status: current device status
1034 * @in_wq: 1 if called from workqueue, 0 otherwise
1035 *
1036 * RETURNS:
1037 * 1 when poll next status needed, 0 otherwise.
1038 */
ata_sff_hsm_move(struct ata_port * ap,struct ata_queued_cmd * qc,u8 status,int in_wq)1039 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040 u8 status, int in_wq)
1041 {
1042 struct ata_link *link = qc->dev->link;
1043 struct ata_eh_info *ehi = &link->eh_info;
1044 int poll_next;
1045
1046 lockdep_assert_held(ap->lock);
1047
1048 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049
1050 /* Make sure ata_sff_qc_issue() does not throw things
1051 * like DMA polling into the workqueue. Notice that
1052 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053 */
1054 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055
1056 fsm_start:
1057 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059
1060 switch (ap->hsm_task_state) {
1061 case HSM_ST_FIRST:
1062 /* Send first data block or PACKET CDB */
1063
1064 /* If polling, we will stay in the work queue after
1065 * sending the data. Otherwise, interrupt handler
1066 * takes over after sending the data.
1067 */
1068 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069
1070 /* check device status */
1071 if (unlikely((status & ATA_DRQ) == 0)) {
1072 /* handle BSY=0, DRQ=0 as error */
1073 if (likely(status & (ATA_ERR | ATA_DF)))
1074 /* device stops HSM for abort/error */
1075 qc->err_mask |= AC_ERR_DEV;
1076 else {
1077 /* HSM violation. Let EH handle this */
1078 ata_ehi_push_desc(ehi,
1079 "ST_FIRST: !(DRQ|ERR|DF)");
1080 qc->err_mask |= AC_ERR_HSM;
1081 }
1082
1083 ap->hsm_task_state = HSM_ST_ERR;
1084 goto fsm_start;
1085 }
1086
1087 /* Device should not ask for data transfer (DRQ=1)
1088 * when it finds something wrong.
1089 * We ignore DRQ here and stop the HSM by
1090 * changing hsm_task_state to HSM_ST_ERR and
1091 * let the EH abort the command or reset the device.
1092 */
1093 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094 /* Some ATAPI tape drives forget to clear the ERR bit
1095 * when doing the next command (mostly request sense).
1096 * We ignore ERR here to workaround and proceed sending
1097 * the CDB.
1098 */
1099 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100 ata_ehi_push_desc(ehi, "ST_FIRST: "
1101 "DRQ=1 with device error, "
1102 "dev_stat 0x%X", status);
1103 qc->err_mask |= AC_ERR_HSM;
1104 ap->hsm_task_state = HSM_ST_ERR;
1105 goto fsm_start;
1106 }
1107 }
1108
1109 if (qc->tf.protocol == ATA_PROT_PIO) {
1110 /* PIO data out protocol.
1111 * send first data block.
1112 */
1113
1114 /* ata_pio_sectors() might change the state
1115 * to HSM_ST_LAST. so, the state is changed here
1116 * before ata_pio_sectors().
1117 */
1118 ap->hsm_task_state = HSM_ST;
1119 ata_pio_sectors(qc);
1120 } else
1121 /* send CDB */
1122 atapi_send_cdb(ap, qc);
1123
1124 /* if polling, ata_sff_pio_task() handles the rest.
1125 * otherwise, interrupt handler takes over from here.
1126 */
1127 break;
1128
1129 case HSM_ST:
1130 /* complete command or read/write the data register */
1131 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132 /* ATAPI PIO protocol */
1133 if ((status & ATA_DRQ) == 0) {
1134 /* No more data to transfer or device error.
1135 * Device error will be tagged in HSM_ST_LAST.
1136 */
1137 ap->hsm_task_state = HSM_ST_LAST;
1138 goto fsm_start;
1139 }
1140
1141 /* Device should not ask for data transfer (DRQ=1)
1142 * when it finds something wrong.
1143 * We ignore DRQ here and stop the HSM by
1144 * changing hsm_task_state to HSM_ST_ERR and
1145 * let the EH abort the command or reset the device.
1146 */
1147 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149 "DRQ=1 with device error, "
1150 "dev_stat 0x%X", status);
1151 qc->err_mask |= AC_ERR_HSM;
1152 ap->hsm_task_state = HSM_ST_ERR;
1153 goto fsm_start;
1154 }
1155
1156 atapi_pio_bytes(qc);
1157
1158 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159 /* bad ireason reported by device */
1160 goto fsm_start;
1161
1162 } else {
1163 /* ATA PIO protocol */
1164 if (unlikely((status & ATA_DRQ) == 0)) {
1165 /* handle BSY=0, DRQ=0 as error */
1166 if (likely(status & (ATA_ERR | ATA_DF))) {
1167 /* device stops HSM for abort/error */
1168 qc->err_mask |= AC_ERR_DEV;
1169
1170 /* If diagnostic failed and this is
1171 * IDENTIFY, it's likely a phantom
1172 * device. Mark hint.
1173 */
1174 if (qc->dev->horkage &
1175 ATA_HORKAGE_DIAGNOSTIC)
1176 qc->err_mask |=
1177 AC_ERR_NODEV_HINT;
1178 } else {
1179 /* HSM violation. Let EH handle this.
1180 * Phantom devices also trigger this
1181 * condition. Mark hint.
1182 */
1183 ata_ehi_push_desc(ehi, "ST-ATA: "
1184 "DRQ=0 without device error, "
1185 "dev_stat 0x%X", status);
1186 qc->err_mask |= AC_ERR_HSM |
1187 AC_ERR_NODEV_HINT;
1188 }
1189
1190 ap->hsm_task_state = HSM_ST_ERR;
1191 goto fsm_start;
1192 }
1193
1194 /* For PIO reads, some devices may ask for
1195 * data transfer (DRQ=1) alone with ERR=1.
1196 * We respect DRQ here and transfer one
1197 * block of junk data before changing the
1198 * hsm_task_state to HSM_ST_ERR.
1199 *
1200 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201 * sense since the data block has been
1202 * transferred to the device.
1203 */
1204 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205 /* data might be corrputed */
1206 qc->err_mask |= AC_ERR_DEV;
1207
1208 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209 ata_pio_sectors(qc);
1210 status = ata_wait_idle(ap);
1211 }
1212
1213 if (status & (ATA_BUSY | ATA_DRQ)) {
1214 ata_ehi_push_desc(ehi, "ST-ATA: "
1215 "BUSY|DRQ persists on ERR|DF, "
1216 "dev_stat 0x%X", status);
1217 qc->err_mask |= AC_ERR_HSM;
1218 }
1219
1220 /* There are oddball controllers with
1221 * status register stuck at 0x7f and
1222 * lbal/m/h at zero which makes it
1223 * pass all other presence detection
1224 * mechanisms we have. Set NODEV_HINT
1225 * for it. Kernel bz#7241.
1226 */
1227 if (status == 0x7f)
1228 qc->err_mask |= AC_ERR_NODEV_HINT;
1229
1230 /* ata_pio_sectors() might change the
1231 * state to HSM_ST_LAST. so, the state
1232 * is changed after ata_pio_sectors().
1233 */
1234 ap->hsm_task_state = HSM_ST_ERR;
1235 goto fsm_start;
1236 }
1237
1238 ata_pio_sectors(qc);
1239
1240 if (ap->hsm_task_state == HSM_ST_LAST &&
1241 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242 /* all data read */
1243 status = ata_wait_idle(ap);
1244 goto fsm_start;
1245 }
1246 }
1247
1248 poll_next = 1;
1249 break;
1250
1251 case HSM_ST_LAST:
1252 if (unlikely(!ata_ok(status))) {
1253 qc->err_mask |= __ac_err_mask(status);
1254 ap->hsm_task_state = HSM_ST_ERR;
1255 goto fsm_start;
1256 }
1257
1258 /* no more data to transfer */
1259 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260 ap->print_id, qc->dev->devno, status);
1261
1262 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263
1264 ap->hsm_task_state = HSM_ST_IDLE;
1265
1266 /* complete taskfile transaction */
1267 ata_hsm_qc_complete(qc, in_wq);
1268
1269 poll_next = 0;
1270 break;
1271
1272 case HSM_ST_ERR:
1273 ap->hsm_task_state = HSM_ST_IDLE;
1274
1275 /* complete taskfile transaction */
1276 ata_hsm_qc_complete(qc, in_wq);
1277
1278 poll_next = 0;
1279 break;
1280 default:
1281 poll_next = 0;
1282 BUG();
1283 }
1284
1285 return poll_next;
1286 }
1287 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1288
ata_sff_queue_work(struct work_struct * work)1289 void ata_sff_queue_work(struct work_struct *work)
1290 {
1291 queue_work(ata_sff_wq, work);
1292 }
1293 EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1294
ata_sff_queue_delayed_work(struct delayed_work * dwork,unsigned long delay)1295 void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1296 {
1297 queue_delayed_work(ata_sff_wq, dwork, delay);
1298 }
1299 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1300
ata_sff_queue_pio_task(struct ata_link * link,unsigned long delay)1301 void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1302 {
1303 struct ata_port *ap = link->ap;
1304
1305 WARN_ON((ap->sff_pio_task_link != NULL) &&
1306 (ap->sff_pio_task_link != link));
1307 ap->sff_pio_task_link = link;
1308
1309 /* may fail if ata_sff_flush_pio_task() in progress */
1310 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1311 }
1312 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1313
ata_sff_flush_pio_task(struct ata_port * ap)1314 void ata_sff_flush_pio_task(struct ata_port *ap)
1315 {
1316 DPRINTK("ENTER\n");
1317
1318 cancel_delayed_work_sync(&ap->sff_pio_task);
1319
1320 /*
1321 * We wanna reset the HSM state to IDLE. If we do so without
1322 * grabbing the port lock, critical sections protected by it which
1323 * expect the HSM state to stay stable may get surprised. For
1324 * example, we may set IDLE in between the time
1325 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1326 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1327 */
1328 spin_lock_irq(ap->lock);
1329 ap->hsm_task_state = HSM_ST_IDLE;
1330 spin_unlock_irq(ap->lock);
1331
1332 ap->sff_pio_task_link = NULL;
1333
1334 if (ata_msg_ctl(ap))
1335 ata_port_dbg(ap, "%s: EXIT\n", __func__);
1336 }
1337
ata_sff_pio_task(struct work_struct * work)1338 static void ata_sff_pio_task(struct work_struct *work)
1339 {
1340 struct ata_port *ap =
1341 container_of(work, struct ata_port, sff_pio_task.work);
1342 struct ata_link *link = ap->sff_pio_task_link;
1343 struct ata_queued_cmd *qc;
1344 u8 status;
1345 int poll_next;
1346
1347 spin_lock_irq(ap->lock);
1348
1349 BUG_ON(ap->sff_pio_task_link == NULL);
1350 /* qc can be NULL if timeout occurred */
1351 qc = ata_qc_from_tag(ap, link->active_tag);
1352 if (!qc) {
1353 ap->sff_pio_task_link = NULL;
1354 goto out_unlock;
1355 }
1356
1357 fsm_start:
1358 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1359
1360 /*
1361 * This is purely heuristic. This is a fast path.
1362 * Sometimes when we enter, BSY will be cleared in
1363 * a chk-status or two. If not, the drive is probably seeking
1364 * or something. Snooze for a couple msecs, then
1365 * chk-status again. If still busy, queue delayed work.
1366 */
1367 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1368 if (status & ATA_BUSY) {
1369 spin_unlock_irq(ap->lock);
1370 ata_msleep(ap, 2);
1371 spin_lock_irq(ap->lock);
1372
1373 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1374 if (status & ATA_BUSY) {
1375 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1376 goto out_unlock;
1377 }
1378 }
1379
1380 /*
1381 * hsm_move() may trigger another command to be processed.
1382 * clean the link beforehand.
1383 */
1384 ap->sff_pio_task_link = NULL;
1385 /* move the HSM */
1386 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1387
1388 /* another command or interrupt handler
1389 * may be running at this point.
1390 */
1391 if (poll_next)
1392 goto fsm_start;
1393 out_unlock:
1394 spin_unlock_irq(ap->lock);
1395 }
1396
1397 /**
1398 * ata_sff_qc_issue - issue taskfile to a SFF controller
1399 * @qc: command to issue to device
1400 *
1401 * This function issues a PIO or NODATA command to a SFF
1402 * controller.
1403 *
1404 * LOCKING:
1405 * spin_lock_irqsave(host lock)
1406 *
1407 * RETURNS:
1408 * Zero on success, AC_ERR_* mask on failure
1409 */
ata_sff_qc_issue(struct ata_queued_cmd * qc)1410 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1411 {
1412 struct ata_port *ap = qc->ap;
1413 struct ata_link *link = qc->dev->link;
1414
1415 /* Use polling pio if the LLD doesn't handle
1416 * interrupt driven pio and atapi CDB interrupt.
1417 */
1418 if (ap->flags & ATA_FLAG_PIO_POLLING)
1419 qc->tf.flags |= ATA_TFLAG_POLLING;
1420
1421 /* select the device */
1422 ata_dev_select(ap, qc->dev->devno, 1, 0);
1423
1424 /* start the command */
1425 switch (qc->tf.protocol) {
1426 case ATA_PROT_NODATA:
1427 if (qc->tf.flags & ATA_TFLAG_POLLING)
1428 ata_qc_set_polling(qc);
1429
1430 ata_tf_to_host(ap, &qc->tf);
1431 ap->hsm_task_state = HSM_ST_LAST;
1432
1433 if (qc->tf.flags & ATA_TFLAG_POLLING)
1434 ata_sff_queue_pio_task(link, 0);
1435
1436 break;
1437
1438 case ATA_PROT_PIO:
1439 if (qc->tf.flags & ATA_TFLAG_POLLING)
1440 ata_qc_set_polling(qc);
1441
1442 ata_tf_to_host(ap, &qc->tf);
1443
1444 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1445 /* PIO data out protocol */
1446 ap->hsm_task_state = HSM_ST_FIRST;
1447 ata_sff_queue_pio_task(link, 0);
1448
1449 /* always send first data block using the
1450 * ata_sff_pio_task() codepath.
1451 */
1452 } else {
1453 /* PIO data in protocol */
1454 ap->hsm_task_state = HSM_ST;
1455
1456 if (qc->tf.flags & ATA_TFLAG_POLLING)
1457 ata_sff_queue_pio_task(link, 0);
1458
1459 /* if polling, ata_sff_pio_task() handles the
1460 * rest. otherwise, interrupt handler takes
1461 * over from here.
1462 */
1463 }
1464
1465 break;
1466
1467 case ATAPI_PROT_PIO:
1468 case ATAPI_PROT_NODATA:
1469 if (qc->tf.flags & ATA_TFLAG_POLLING)
1470 ata_qc_set_polling(qc);
1471
1472 ata_tf_to_host(ap, &qc->tf);
1473
1474 ap->hsm_task_state = HSM_ST_FIRST;
1475
1476 /* send cdb by polling if no cdb interrupt */
1477 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1478 (qc->tf.flags & ATA_TFLAG_POLLING))
1479 ata_sff_queue_pio_task(link, 0);
1480 break;
1481
1482 default:
1483 return AC_ERR_SYSTEM;
1484 }
1485
1486 return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1489
1490 /**
1491 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1492 * @qc: qc to fill result TF for
1493 *
1494 * @qc is finished and result TF needs to be filled. Fill it
1495 * using ->sff_tf_read.
1496 *
1497 * LOCKING:
1498 * spin_lock_irqsave(host lock)
1499 *
1500 * RETURNS:
1501 * true indicating that result TF is successfully filled.
1502 */
ata_sff_qc_fill_rtf(struct ata_queued_cmd * qc)1503 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1504 {
1505 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1506 return true;
1507 }
1508 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1509
ata_sff_idle_irq(struct ata_port * ap)1510 static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1511 {
1512 ap->stats.idle_irq++;
1513
1514 #ifdef ATA_IRQ_TRAP
1515 if ((ap->stats.idle_irq % 1000) == 0) {
1516 ap->ops->sff_check_status(ap);
1517 if (ap->ops->sff_irq_clear)
1518 ap->ops->sff_irq_clear(ap);
1519 ata_port_warn(ap, "irq trap\n");
1520 return 1;
1521 }
1522 #endif
1523 return 0; /* irq not handled */
1524 }
1525
__ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc,bool hsmv_on_idle)1526 static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1527 struct ata_queued_cmd *qc,
1528 bool hsmv_on_idle)
1529 {
1530 u8 status;
1531
1532 VPRINTK("ata%u: protocol %d task_state %d\n",
1533 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1534
1535 /* Check whether we are expecting interrupt in this state */
1536 switch (ap->hsm_task_state) {
1537 case HSM_ST_FIRST:
1538 /* Some pre-ATAPI-4 devices assert INTRQ
1539 * at this state when ready to receive CDB.
1540 */
1541
1542 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1543 * The flag was turned on only for atapi devices. No
1544 * need to check ata_is_atapi(qc->tf.protocol) again.
1545 */
1546 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1547 return ata_sff_idle_irq(ap);
1548 break;
1549 case HSM_ST_IDLE:
1550 return ata_sff_idle_irq(ap);
1551 default:
1552 break;
1553 }
1554
1555 /* check main status, clearing INTRQ if needed */
1556 status = ata_sff_irq_status(ap);
1557 if (status & ATA_BUSY) {
1558 if (hsmv_on_idle) {
1559 /* BMDMA engine is already stopped, we're screwed */
1560 qc->err_mask |= AC_ERR_HSM;
1561 ap->hsm_task_state = HSM_ST_ERR;
1562 } else
1563 return ata_sff_idle_irq(ap);
1564 }
1565
1566 /* clear irq events */
1567 if (ap->ops->sff_irq_clear)
1568 ap->ops->sff_irq_clear(ap);
1569
1570 ata_sff_hsm_move(ap, qc, status, 0);
1571
1572 return 1; /* irq handled */
1573 }
1574
1575 /**
1576 * ata_sff_port_intr - Handle SFF port interrupt
1577 * @ap: Port on which interrupt arrived (possibly...)
1578 * @qc: Taskfile currently active in engine
1579 *
1580 * Handle port interrupt for given queued command.
1581 *
1582 * LOCKING:
1583 * spin_lock_irqsave(host lock)
1584 *
1585 * RETURNS:
1586 * One if interrupt was handled, zero if not (shared irq).
1587 */
ata_sff_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)1588 unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1589 {
1590 return __ata_sff_port_intr(ap, qc, false);
1591 }
1592 EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1593
__ata_sff_interrupt(int irq,void * dev_instance,unsigned int (* port_intr)(struct ata_port *,struct ata_queued_cmd *))1594 static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1595 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1596 {
1597 struct ata_host *host = dev_instance;
1598 bool retried = false;
1599 unsigned int i;
1600 unsigned int handled, idle, polling;
1601 unsigned long flags;
1602
1603 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1604 spin_lock_irqsave(&host->lock, flags);
1605
1606 retry:
1607 handled = idle = polling = 0;
1608 for (i = 0; i < host->n_ports; i++) {
1609 struct ata_port *ap = host->ports[i];
1610 struct ata_queued_cmd *qc;
1611
1612 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1613 if (qc) {
1614 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1615 handled |= port_intr(ap, qc);
1616 else
1617 polling |= 1 << i;
1618 } else
1619 idle |= 1 << i;
1620 }
1621
1622 /*
1623 * If no port was expecting IRQ but the controller is actually
1624 * asserting IRQ line, nobody cared will ensue. Check IRQ
1625 * pending status if available and clear spurious IRQ.
1626 */
1627 if (!handled && !retried) {
1628 bool retry = false;
1629
1630 for (i = 0; i < host->n_ports; i++) {
1631 struct ata_port *ap = host->ports[i];
1632
1633 if (polling & (1 << i))
1634 continue;
1635
1636 if (!ap->ops->sff_irq_check ||
1637 !ap->ops->sff_irq_check(ap))
1638 continue;
1639
1640 if (idle & (1 << i)) {
1641 ap->ops->sff_check_status(ap);
1642 if (ap->ops->sff_irq_clear)
1643 ap->ops->sff_irq_clear(ap);
1644 } else {
1645 /* clear INTRQ and check if BUSY cleared */
1646 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1647 retry |= true;
1648 /*
1649 * With command in flight, we can't do
1650 * sff_irq_clear() w/o racing with completion.
1651 */
1652 }
1653 }
1654
1655 if (retry) {
1656 retried = true;
1657 goto retry;
1658 }
1659 }
1660
1661 spin_unlock_irqrestore(&host->lock, flags);
1662
1663 return IRQ_RETVAL(handled);
1664 }
1665
1666 /**
1667 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1668 * @irq: irq line (unused)
1669 * @dev_instance: pointer to our ata_host information structure
1670 *
1671 * Default interrupt handler for PCI IDE devices. Calls
1672 * ata_sff_port_intr() for each port that is not disabled.
1673 *
1674 * LOCKING:
1675 * Obtains host lock during operation.
1676 *
1677 * RETURNS:
1678 * IRQ_NONE or IRQ_HANDLED.
1679 */
ata_sff_interrupt(int irq,void * dev_instance)1680 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1681 {
1682 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1683 }
1684 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1685
1686 /**
1687 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1688 * @ap: port that appears to have timed out
1689 *
1690 * Called from the libata error handlers when the core code suspects
1691 * an interrupt has been lost. If it has complete anything we can and
1692 * then return. Interface must support altstatus for this faster
1693 * recovery to occur.
1694 *
1695 * Locking:
1696 * Caller holds host lock
1697 */
1698
ata_sff_lost_interrupt(struct ata_port * ap)1699 void ata_sff_lost_interrupt(struct ata_port *ap)
1700 {
1701 u8 status;
1702 struct ata_queued_cmd *qc;
1703
1704 /* Only one outstanding command per SFF channel */
1705 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1706 /* We cannot lose an interrupt on a non-existent or polled command */
1707 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1708 return;
1709 /* See if the controller thinks it is still busy - if so the command
1710 isn't a lost IRQ but is still in progress */
1711 status = ata_sff_altstatus(ap);
1712 if (status & ATA_BUSY)
1713 return;
1714
1715 /* There was a command running, we are no longer busy and we have
1716 no interrupt. */
1717 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1718 status);
1719 /* Run the host interrupt logic as if the interrupt had not been
1720 lost */
1721 ata_sff_port_intr(ap, qc);
1722 }
1723 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1724
1725 /**
1726 * ata_sff_freeze - Freeze SFF controller port
1727 * @ap: port to freeze
1728 *
1729 * Freeze SFF controller port.
1730 *
1731 * LOCKING:
1732 * Inherited from caller.
1733 */
ata_sff_freeze(struct ata_port * ap)1734 void ata_sff_freeze(struct ata_port *ap)
1735 {
1736 ap->ctl |= ATA_NIEN;
1737 ap->last_ctl = ap->ctl;
1738
1739 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1740 ata_sff_set_devctl(ap, ap->ctl);
1741
1742 /* Under certain circumstances, some controllers raise IRQ on
1743 * ATA_NIEN manipulation. Also, many controllers fail to mask
1744 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1745 */
1746 ap->ops->sff_check_status(ap);
1747
1748 if (ap->ops->sff_irq_clear)
1749 ap->ops->sff_irq_clear(ap);
1750 }
1751 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1752
1753 /**
1754 * ata_sff_thaw - Thaw SFF controller port
1755 * @ap: port to thaw
1756 *
1757 * Thaw SFF controller port.
1758 *
1759 * LOCKING:
1760 * Inherited from caller.
1761 */
ata_sff_thaw(struct ata_port * ap)1762 void ata_sff_thaw(struct ata_port *ap)
1763 {
1764 /* clear & re-enable interrupts */
1765 ap->ops->sff_check_status(ap);
1766 if (ap->ops->sff_irq_clear)
1767 ap->ops->sff_irq_clear(ap);
1768 ata_sff_irq_on(ap);
1769 }
1770 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1771
1772 /**
1773 * ata_sff_prereset - prepare SFF link for reset
1774 * @link: SFF link to be reset
1775 * @deadline: deadline jiffies for the operation
1776 *
1777 * SFF link @link is about to be reset. Initialize it. It first
1778 * calls ata_std_prereset() and wait for !BSY if the port is
1779 * being softreset.
1780 *
1781 * LOCKING:
1782 * Kernel thread context (may sleep)
1783 *
1784 * RETURNS:
1785 * 0 on success, -errno otherwise.
1786 */
ata_sff_prereset(struct ata_link * link,unsigned long deadline)1787 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1788 {
1789 struct ata_eh_context *ehc = &link->eh_context;
1790 int rc;
1791
1792 rc = ata_std_prereset(link, deadline);
1793 if (rc)
1794 return rc;
1795
1796 /* if we're about to do hardreset, nothing more to do */
1797 if (ehc->i.action & ATA_EH_HARDRESET)
1798 return 0;
1799
1800 /* wait for !BSY if we don't know that no device is attached */
1801 if (!ata_link_offline(link)) {
1802 rc = ata_sff_wait_ready(link, deadline);
1803 if (rc && rc != -ENODEV) {
1804 ata_link_warn(link,
1805 "device not ready (errno=%d), forcing hardreset\n",
1806 rc);
1807 ehc->i.action |= ATA_EH_HARDRESET;
1808 }
1809 }
1810
1811 return 0;
1812 }
1813 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1814
1815 /**
1816 * ata_devchk - PATA device presence detection
1817 * @ap: ATA channel to examine
1818 * @device: Device to examine (starting at zero)
1819 *
1820 * This technique was originally described in
1821 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1822 * later found its way into the ATA/ATAPI spec.
1823 *
1824 * Write a pattern to the ATA shadow registers,
1825 * and if a device is present, it will respond by
1826 * correctly storing and echoing back the
1827 * ATA shadow register contents.
1828 *
1829 * LOCKING:
1830 * caller.
1831 */
ata_devchk(struct ata_port * ap,unsigned int device)1832 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1833 {
1834 struct ata_ioports *ioaddr = &ap->ioaddr;
1835 u8 nsect, lbal;
1836
1837 ap->ops->sff_dev_select(ap, device);
1838
1839 iowrite8(0x55, ioaddr->nsect_addr);
1840 iowrite8(0xaa, ioaddr->lbal_addr);
1841
1842 iowrite8(0xaa, ioaddr->nsect_addr);
1843 iowrite8(0x55, ioaddr->lbal_addr);
1844
1845 iowrite8(0x55, ioaddr->nsect_addr);
1846 iowrite8(0xaa, ioaddr->lbal_addr);
1847
1848 nsect = ioread8(ioaddr->nsect_addr);
1849 lbal = ioread8(ioaddr->lbal_addr);
1850
1851 if ((nsect == 0x55) && (lbal == 0xaa))
1852 return 1; /* we found a device */
1853
1854 return 0; /* nothing found */
1855 }
1856
1857 /**
1858 * ata_sff_dev_classify - Parse returned ATA device signature
1859 * @dev: ATA device to classify (starting at zero)
1860 * @present: device seems present
1861 * @r_err: Value of error register on completion
1862 *
1863 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1864 * an ATA/ATAPI-defined set of values is placed in the ATA
1865 * shadow registers, indicating the results of device detection
1866 * and diagnostics.
1867 *
1868 * Select the ATA device, and read the values from the ATA shadow
1869 * registers. Then parse according to the Error register value,
1870 * and the spec-defined values examined by ata_dev_classify().
1871 *
1872 * LOCKING:
1873 * caller.
1874 *
1875 * RETURNS:
1876 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1877 */
ata_sff_dev_classify(struct ata_device * dev,int present,u8 * r_err)1878 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1879 u8 *r_err)
1880 {
1881 struct ata_port *ap = dev->link->ap;
1882 struct ata_taskfile tf;
1883 unsigned int class;
1884 u8 err;
1885
1886 ap->ops->sff_dev_select(ap, dev->devno);
1887
1888 memset(&tf, 0, sizeof(tf));
1889
1890 ap->ops->sff_tf_read(ap, &tf);
1891 err = tf.feature;
1892 if (r_err)
1893 *r_err = err;
1894
1895 /* see if device passed diags: continue and warn later */
1896 if (err == 0)
1897 /* diagnostic fail : do nothing _YET_ */
1898 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1899 else if (err == 1)
1900 /* do nothing */ ;
1901 else if ((dev->devno == 0) && (err == 0x81))
1902 /* do nothing */ ;
1903 else
1904 return ATA_DEV_NONE;
1905
1906 /* determine if device is ATA or ATAPI */
1907 class = ata_dev_classify(&tf);
1908
1909 if (class == ATA_DEV_UNKNOWN) {
1910 /* If the device failed diagnostic, it's likely to
1911 * have reported incorrect device signature too.
1912 * Assume ATA device if the device seems present but
1913 * device signature is invalid with diagnostic
1914 * failure.
1915 */
1916 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1917 class = ATA_DEV_ATA;
1918 else
1919 class = ATA_DEV_NONE;
1920 } else if ((class == ATA_DEV_ATA) &&
1921 (ap->ops->sff_check_status(ap) == 0))
1922 class = ATA_DEV_NONE;
1923
1924 return class;
1925 }
1926 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1927
1928 /**
1929 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1930 * @link: SFF link which is just reset
1931 * @devmask: mask of present devices
1932 * @deadline: deadline jiffies for the operation
1933 *
1934 * Wait devices attached to SFF @link to become ready after
1935 * reset. It contains preceding 150ms wait to avoid accessing TF
1936 * status register too early.
1937 *
1938 * LOCKING:
1939 * Kernel thread context (may sleep).
1940 *
1941 * RETURNS:
1942 * 0 on success, -ENODEV if some or all of devices in @devmask
1943 * don't seem to exist. -errno on other errors.
1944 */
ata_sff_wait_after_reset(struct ata_link * link,unsigned int devmask,unsigned long deadline)1945 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1946 unsigned long deadline)
1947 {
1948 struct ata_port *ap = link->ap;
1949 struct ata_ioports *ioaddr = &ap->ioaddr;
1950 unsigned int dev0 = devmask & (1 << 0);
1951 unsigned int dev1 = devmask & (1 << 1);
1952 int rc, ret = 0;
1953
1954 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1955
1956 /* always check readiness of the master device */
1957 rc = ata_sff_wait_ready(link, deadline);
1958 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1959 * and TF status is 0xff, bail out on it too.
1960 */
1961 if (rc)
1962 return rc;
1963
1964 /* if device 1 was found in ata_devchk, wait for register
1965 * access briefly, then wait for BSY to clear.
1966 */
1967 if (dev1) {
1968 int i;
1969
1970 ap->ops->sff_dev_select(ap, 1);
1971
1972 /* Wait for register access. Some ATAPI devices fail
1973 * to set nsect/lbal after reset, so don't waste too
1974 * much time on it. We're gonna wait for !BSY anyway.
1975 */
1976 for (i = 0; i < 2; i++) {
1977 u8 nsect, lbal;
1978
1979 nsect = ioread8(ioaddr->nsect_addr);
1980 lbal = ioread8(ioaddr->lbal_addr);
1981 if ((nsect == 1) && (lbal == 1))
1982 break;
1983 ata_msleep(ap, 50); /* give drive a breather */
1984 }
1985
1986 rc = ata_sff_wait_ready(link, deadline);
1987 if (rc) {
1988 if (rc != -ENODEV)
1989 return rc;
1990 ret = rc;
1991 }
1992 }
1993
1994 /* is all this really necessary? */
1995 ap->ops->sff_dev_select(ap, 0);
1996 if (dev1)
1997 ap->ops->sff_dev_select(ap, 1);
1998 if (dev0)
1999 ap->ops->sff_dev_select(ap, 0);
2000
2001 return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2004
ata_bus_softreset(struct ata_port * ap,unsigned int devmask,unsigned long deadline)2005 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2006 unsigned long deadline)
2007 {
2008 struct ata_ioports *ioaddr = &ap->ioaddr;
2009
2010 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2011
2012 if (ap->ioaddr.ctl_addr) {
2013 /* software reset. causes dev0 to be selected */
2014 iowrite8(ap->ctl, ioaddr->ctl_addr);
2015 udelay(20); /* FIXME: flush */
2016 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2017 udelay(20); /* FIXME: flush */
2018 iowrite8(ap->ctl, ioaddr->ctl_addr);
2019 ap->last_ctl = ap->ctl;
2020 }
2021
2022 /* wait the port to become ready */
2023 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2024 }
2025
2026 /**
2027 * ata_sff_softreset - reset host port via ATA SRST
2028 * @link: ATA link to reset
2029 * @classes: resulting classes of attached devices
2030 * @deadline: deadline jiffies for the operation
2031 *
2032 * Reset host port using ATA SRST.
2033 *
2034 * LOCKING:
2035 * Kernel thread context (may sleep)
2036 *
2037 * RETURNS:
2038 * 0 on success, -errno otherwise.
2039 */
ata_sff_softreset(struct ata_link * link,unsigned int * classes,unsigned long deadline)2040 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2041 unsigned long deadline)
2042 {
2043 struct ata_port *ap = link->ap;
2044 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2045 unsigned int devmask = 0;
2046 int rc;
2047 u8 err;
2048
2049 DPRINTK("ENTER\n");
2050
2051 /* determine if device 0/1 are present */
2052 if (ata_devchk(ap, 0))
2053 devmask |= (1 << 0);
2054 if (slave_possible && ata_devchk(ap, 1))
2055 devmask |= (1 << 1);
2056
2057 /* select device 0 again */
2058 ap->ops->sff_dev_select(ap, 0);
2059
2060 /* issue bus reset */
2061 DPRINTK("about to softreset, devmask=%x\n", devmask);
2062 rc = ata_bus_softreset(ap, devmask, deadline);
2063 /* if link is occupied, -ENODEV too is an error */
2064 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2065 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2066 return rc;
2067 }
2068
2069 /* determine by signature whether we have ATA or ATAPI devices */
2070 classes[0] = ata_sff_dev_classify(&link->device[0],
2071 devmask & (1 << 0), &err);
2072 if (slave_possible && err != 0x81)
2073 classes[1] = ata_sff_dev_classify(&link->device[1],
2074 devmask & (1 << 1), &err);
2075
2076 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2077 return 0;
2078 }
2079 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2080
2081 /**
2082 * sata_sff_hardreset - reset host port via SATA phy reset
2083 * @link: link to reset
2084 * @class: resulting class of attached device
2085 * @deadline: deadline jiffies for the operation
2086 *
2087 * SATA phy-reset host port using DET bits of SControl register,
2088 * wait for !BSY and classify the attached device.
2089 *
2090 * LOCKING:
2091 * Kernel thread context (may sleep)
2092 *
2093 * RETURNS:
2094 * 0 on success, -errno otherwise.
2095 */
sata_sff_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)2096 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2097 unsigned long deadline)
2098 {
2099 struct ata_eh_context *ehc = &link->eh_context;
2100 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2101 bool online;
2102 int rc;
2103
2104 rc = sata_link_hardreset(link, timing, deadline, &online,
2105 ata_sff_check_ready);
2106 if (online)
2107 *class = ata_sff_dev_classify(link->device, 1, NULL);
2108
2109 DPRINTK("EXIT, class=%u\n", *class);
2110 return rc;
2111 }
2112 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2113
2114 /**
2115 * ata_sff_postreset - SFF postreset callback
2116 * @link: the target SFF ata_link
2117 * @classes: classes of attached devices
2118 *
2119 * This function is invoked after a successful reset. It first
2120 * calls ata_std_postreset() and performs SFF specific postreset
2121 * processing.
2122 *
2123 * LOCKING:
2124 * Kernel thread context (may sleep)
2125 */
ata_sff_postreset(struct ata_link * link,unsigned int * classes)2126 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2127 {
2128 struct ata_port *ap = link->ap;
2129
2130 ata_std_postreset(link, classes);
2131
2132 /* is double-select really necessary? */
2133 if (classes[0] != ATA_DEV_NONE)
2134 ap->ops->sff_dev_select(ap, 1);
2135 if (classes[1] != ATA_DEV_NONE)
2136 ap->ops->sff_dev_select(ap, 0);
2137
2138 /* bail out if no device is present */
2139 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2140 DPRINTK("EXIT, no device\n");
2141 return;
2142 }
2143
2144 /* set up device control */
2145 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2146 ata_sff_set_devctl(ap, ap->ctl);
2147 ap->last_ctl = ap->ctl;
2148 }
2149 }
2150 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2151
2152 /**
2153 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2154 * @qc: command
2155 *
2156 * Drain the FIFO and device of any stuck data following a command
2157 * failing to complete. In some cases this is necessary before a
2158 * reset will recover the device.
2159 *
2160 */
2161
ata_sff_drain_fifo(struct ata_queued_cmd * qc)2162 void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2163 {
2164 int count;
2165 struct ata_port *ap;
2166
2167 /* We only need to flush incoming data when a command was running */
2168 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2169 return;
2170
2171 ap = qc->ap;
2172 /* Drain up to 64K of data before we give up this recovery method */
2173 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2174 && count < 65536; count += 2)
2175 ioread16(ap->ioaddr.data_addr);
2176
2177 /* Can become DEBUG later */
2178 if (count)
2179 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2180
2181 }
2182 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2183
2184 /**
2185 * ata_sff_error_handler - Stock error handler for SFF controller
2186 * @ap: port to handle error for
2187 *
2188 * Stock error handler for SFF controller. It can handle both
2189 * PATA and SATA controllers. Many controllers should be able to
2190 * use this EH as-is or with some added handling before and
2191 * after.
2192 *
2193 * LOCKING:
2194 * Kernel thread context (may sleep)
2195 */
ata_sff_error_handler(struct ata_port * ap)2196 void ata_sff_error_handler(struct ata_port *ap)
2197 {
2198 ata_reset_fn_t softreset = ap->ops->softreset;
2199 ata_reset_fn_t hardreset = ap->ops->hardreset;
2200 struct ata_queued_cmd *qc;
2201 unsigned long flags;
2202
2203 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2204 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2205 qc = NULL;
2206
2207 spin_lock_irqsave(ap->lock, flags);
2208
2209 /*
2210 * We *MUST* do FIFO draining before we issue a reset as
2211 * several devices helpfully clear their internal state and
2212 * will lock solid if we touch the data port post reset. Pass
2213 * qc in case anyone wants to do different PIO/DMA recovery or
2214 * has per command fixups
2215 */
2216 if (ap->ops->sff_drain_fifo)
2217 ap->ops->sff_drain_fifo(qc);
2218
2219 spin_unlock_irqrestore(ap->lock, flags);
2220
2221 /* ignore built-in hardresets if SCR access is not available */
2222 if ((hardreset == sata_std_hardreset ||
2223 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2224 hardreset = NULL;
2225
2226 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2227 ap->ops->postreset);
2228 }
2229 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2230
2231 /**
2232 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2233 * @ioaddr: IO address structure to be initialized
2234 *
2235 * Utility function which initializes data_addr, error_addr,
2236 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2237 * device_addr, status_addr, and command_addr to standard offsets
2238 * relative to cmd_addr.
2239 *
2240 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2241 */
ata_sff_std_ports(struct ata_ioports * ioaddr)2242 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2243 {
2244 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2245 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2246 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2247 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2248 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2249 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2250 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2251 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2252 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2253 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2254 }
2255 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2256
2257 #ifdef CONFIG_PCI
2258
ata_resources_present(struct pci_dev * pdev,int port)2259 static int ata_resources_present(struct pci_dev *pdev, int port)
2260 {
2261 int i;
2262
2263 /* Check the PCI resources for this channel are enabled */
2264 port = port * 2;
2265 for (i = 0; i < 2; i++) {
2266 if (pci_resource_start(pdev, port + i) == 0 ||
2267 pci_resource_len(pdev, port + i) == 0)
2268 return 0;
2269 }
2270 return 1;
2271 }
2272
2273 /**
2274 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2275 * @host: target ATA host
2276 *
2277 * Acquire native PCI ATA resources for @host and initialize the
2278 * first two ports of @host accordingly. Ports marked dummy are
2279 * skipped and allocation failure makes the port dummy.
2280 *
2281 * Note that native PCI resources are valid even for legacy hosts
2282 * as we fix up pdev resources array early in boot, so this
2283 * function can be used for both native and legacy SFF hosts.
2284 *
2285 * LOCKING:
2286 * Inherited from calling layer (may sleep).
2287 *
2288 * RETURNS:
2289 * 0 if at least one port is initialized, -ENODEV if no port is
2290 * available.
2291 */
ata_pci_sff_init_host(struct ata_host * host)2292 int ata_pci_sff_init_host(struct ata_host *host)
2293 {
2294 struct device *gdev = host->dev;
2295 struct pci_dev *pdev = to_pci_dev(gdev);
2296 unsigned int mask = 0;
2297 int i, rc;
2298
2299 /* request, iomap BARs and init port addresses accordingly */
2300 for (i = 0; i < 2; i++) {
2301 struct ata_port *ap = host->ports[i];
2302 int base = i * 2;
2303 void __iomem * const *iomap;
2304
2305 if (ata_port_is_dummy(ap))
2306 continue;
2307
2308 /* Discard disabled ports. Some controllers show
2309 * their unused channels this way. Disabled ports are
2310 * made dummy.
2311 */
2312 if (!ata_resources_present(pdev, i)) {
2313 ap->ops = &ata_dummy_port_ops;
2314 continue;
2315 }
2316
2317 rc = pcim_iomap_regions(pdev, 0x3 << base,
2318 dev_driver_string(gdev));
2319 if (rc) {
2320 dev_warn(gdev,
2321 "failed to request/iomap BARs for port %d (errno=%d)\n",
2322 i, rc);
2323 if (rc == -EBUSY)
2324 pcim_pin_device(pdev);
2325 ap->ops = &ata_dummy_port_ops;
2326 continue;
2327 }
2328 host->iomap = iomap = pcim_iomap_table(pdev);
2329
2330 ap->ioaddr.cmd_addr = iomap[base];
2331 ap->ioaddr.altstatus_addr =
2332 ap->ioaddr.ctl_addr = (void __iomem *)
2333 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2334 ata_sff_std_ports(&ap->ioaddr);
2335
2336 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2337 (unsigned long long)pci_resource_start(pdev, base),
2338 (unsigned long long)pci_resource_start(pdev, base + 1));
2339
2340 mask |= 1 << i;
2341 }
2342
2343 if (!mask) {
2344 dev_err(gdev, "no available native port\n");
2345 return -ENODEV;
2346 }
2347
2348 return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2351
2352 /**
2353 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2354 * @pdev: target PCI device
2355 * @ppi: array of port_info, must be enough for two ports
2356 * @r_host: out argument for the initialized ATA host
2357 *
2358 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2359 * all PCI resources and initialize it accordingly in one go.
2360 *
2361 * LOCKING:
2362 * Inherited from calling layer (may sleep).
2363 *
2364 * RETURNS:
2365 * 0 on success, -errno otherwise.
2366 */
ata_pci_sff_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)2367 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2368 const struct ata_port_info * const *ppi,
2369 struct ata_host **r_host)
2370 {
2371 struct ata_host *host;
2372 int rc;
2373
2374 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2375 return -ENOMEM;
2376
2377 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2378 if (!host) {
2379 dev_err(&pdev->dev, "failed to allocate ATA host\n");
2380 rc = -ENOMEM;
2381 goto err_out;
2382 }
2383
2384 rc = ata_pci_sff_init_host(host);
2385 if (rc)
2386 goto err_out;
2387
2388 devres_remove_group(&pdev->dev, NULL);
2389 *r_host = host;
2390 return 0;
2391
2392 err_out:
2393 devres_release_group(&pdev->dev, NULL);
2394 return rc;
2395 }
2396 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2397
2398 /**
2399 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2400 * @host: target SFF ATA host
2401 * @irq_handler: irq_handler used when requesting IRQ(s)
2402 * @sht: scsi_host_template to use when registering the host
2403 *
2404 * This is the counterpart of ata_host_activate() for SFF ATA
2405 * hosts. This separate helper is necessary because SFF hosts
2406 * use two separate interrupts in legacy mode.
2407 *
2408 * LOCKING:
2409 * Inherited from calling layer (may sleep).
2410 *
2411 * RETURNS:
2412 * 0 on success, -errno otherwise.
2413 */
ata_pci_sff_activate_host(struct ata_host * host,irq_handler_t irq_handler,struct scsi_host_template * sht)2414 int ata_pci_sff_activate_host(struct ata_host *host,
2415 irq_handler_t irq_handler,
2416 struct scsi_host_template *sht)
2417 {
2418 struct device *dev = host->dev;
2419 struct pci_dev *pdev = to_pci_dev(dev);
2420 const char *drv_name = dev_driver_string(host->dev);
2421 int legacy_mode = 0, rc;
2422
2423 rc = ata_host_start(host);
2424 if (rc)
2425 return rc;
2426
2427 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2428 u8 tmp8, mask;
2429
2430 /* TODO: What if one channel is in native mode ... */
2431 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2432 mask = (1 << 2) | (1 << 0);
2433 if ((tmp8 & mask) != mask)
2434 legacy_mode = 1;
2435 }
2436
2437 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2438 return -ENOMEM;
2439
2440 if (!legacy_mode && pdev->irq) {
2441 int i;
2442
2443 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2444 IRQF_SHARED, drv_name, host);
2445 if (rc)
2446 goto out;
2447
2448 for (i = 0; i < 2; i++) {
2449 if (ata_port_is_dummy(host->ports[i]))
2450 continue;
2451 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2452 }
2453 } else if (legacy_mode) {
2454 if (!ata_port_is_dummy(host->ports[0])) {
2455 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2456 irq_handler, IRQF_SHARED,
2457 drv_name, host);
2458 if (rc)
2459 goto out;
2460
2461 ata_port_desc(host->ports[0], "irq %d",
2462 ATA_PRIMARY_IRQ(pdev));
2463 }
2464
2465 if (!ata_port_is_dummy(host->ports[1])) {
2466 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2467 irq_handler, IRQF_SHARED,
2468 drv_name, host);
2469 if (rc)
2470 goto out;
2471
2472 ata_port_desc(host->ports[1], "irq %d",
2473 ATA_SECONDARY_IRQ(pdev));
2474 }
2475 }
2476
2477 rc = ata_host_register(host, sht);
2478 out:
2479 if (rc == 0)
2480 devres_remove_group(dev, NULL);
2481 else
2482 devres_release_group(dev, NULL);
2483
2484 return rc;
2485 }
2486 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2487
ata_sff_find_valid_pi(const struct ata_port_info * const * ppi)2488 static const struct ata_port_info *ata_sff_find_valid_pi(
2489 const struct ata_port_info * const *ppi)
2490 {
2491 int i;
2492
2493 /* look up the first valid port_info */
2494 for (i = 0; i < 2 && ppi[i]; i++)
2495 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2496 return ppi[i];
2497
2498 return NULL;
2499 }
2500
ata_pci_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags,bool bmdma)2501 static int ata_pci_init_one(struct pci_dev *pdev,
2502 const struct ata_port_info * const *ppi,
2503 struct scsi_host_template *sht, void *host_priv,
2504 int hflags, bool bmdma)
2505 {
2506 struct device *dev = &pdev->dev;
2507 const struct ata_port_info *pi;
2508 struct ata_host *host = NULL;
2509 int rc;
2510
2511 DPRINTK("ENTER\n");
2512
2513 pi = ata_sff_find_valid_pi(ppi);
2514 if (!pi) {
2515 dev_err(&pdev->dev, "no valid port_info specified\n");
2516 return -EINVAL;
2517 }
2518
2519 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2520 return -ENOMEM;
2521
2522 rc = pcim_enable_device(pdev);
2523 if (rc)
2524 goto out;
2525
2526 #ifdef CONFIG_ATA_BMDMA
2527 if (bmdma)
2528 /* prepare and activate BMDMA host */
2529 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2530 else
2531 #endif
2532 /* prepare and activate SFF host */
2533 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2534 if (rc)
2535 goto out;
2536 host->private_data = host_priv;
2537 host->flags |= hflags;
2538
2539 #ifdef CONFIG_ATA_BMDMA
2540 if (bmdma) {
2541 pci_set_master(pdev);
2542 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2543 } else
2544 #endif
2545 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2546 out:
2547 if (rc == 0)
2548 devres_remove_group(&pdev->dev, NULL);
2549 else
2550 devres_release_group(&pdev->dev, NULL);
2551
2552 return rc;
2553 }
2554
2555 /**
2556 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2557 * @pdev: Controller to be initialized
2558 * @ppi: array of port_info, must be enough for two ports
2559 * @sht: scsi_host_template to use when registering the host
2560 * @host_priv: host private_data
2561 * @hflag: host flags
2562 *
2563 * This is a helper function which can be called from a driver's
2564 * xxx_init_one() probe function if the hardware uses traditional
2565 * IDE taskfile registers and is PIO only.
2566 *
2567 * ASSUMPTION:
2568 * Nobody makes a single channel controller that appears solely as
2569 * the secondary legacy port on PCI.
2570 *
2571 * LOCKING:
2572 * Inherited from PCI layer (may sleep).
2573 *
2574 * RETURNS:
2575 * Zero on success, negative on errno-based value on error.
2576 */
ata_pci_sff_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflag)2577 int ata_pci_sff_init_one(struct pci_dev *pdev,
2578 const struct ata_port_info * const *ppi,
2579 struct scsi_host_template *sht, void *host_priv, int hflag)
2580 {
2581 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2582 }
2583 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2584
2585 #endif /* CONFIG_PCI */
2586
2587 /*
2588 * BMDMA support
2589 */
2590
2591 #ifdef CONFIG_ATA_BMDMA
2592
2593 const struct ata_port_operations ata_bmdma_port_ops = {
2594 .inherits = &ata_sff_port_ops,
2595
2596 .error_handler = ata_bmdma_error_handler,
2597 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2598
2599 .qc_prep = ata_bmdma_qc_prep,
2600 .qc_issue = ata_bmdma_qc_issue,
2601
2602 .sff_irq_clear = ata_bmdma_irq_clear,
2603 .bmdma_setup = ata_bmdma_setup,
2604 .bmdma_start = ata_bmdma_start,
2605 .bmdma_stop = ata_bmdma_stop,
2606 .bmdma_status = ata_bmdma_status,
2607
2608 .port_start = ata_bmdma_port_start,
2609 };
2610 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2611
2612 const struct ata_port_operations ata_bmdma32_port_ops = {
2613 .inherits = &ata_bmdma_port_ops,
2614
2615 .sff_data_xfer = ata_sff_data_xfer32,
2616 .port_start = ata_bmdma_port_start32,
2617 };
2618 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2619
2620 /**
2621 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2622 * @qc: Metadata associated with taskfile to be transferred
2623 *
2624 * Fill PCI IDE PRD (scatter-gather) table with segments
2625 * associated with the current disk command.
2626 *
2627 * LOCKING:
2628 * spin_lock_irqsave(host lock)
2629 *
2630 */
ata_bmdma_fill_sg(struct ata_queued_cmd * qc)2631 static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2632 {
2633 struct ata_port *ap = qc->ap;
2634 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2635 struct scatterlist *sg;
2636 unsigned int si, pi;
2637
2638 pi = 0;
2639 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2640 u32 addr, offset;
2641 u32 sg_len, len;
2642
2643 /* determine if physical DMA addr spans 64K boundary.
2644 * Note h/w doesn't support 64-bit, so we unconditionally
2645 * truncate dma_addr_t to u32.
2646 */
2647 addr = (u32) sg_dma_address(sg);
2648 sg_len = sg_dma_len(sg);
2649
2650 while (sg_len) {
2651 offset = addr & 0xffff;
2652 len = sg_len;
2653 if ((offset + sg_len) > 0x10000)
2654 len = 0x10000 - offset;
2655
2656 prd[pi].addr = cpu_to_le32(addr);
2657 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2658 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2659
2660 pi++;
2661 sg_len -= len;
2662 addr += len;
2663 }
2664 }
2665
2666 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2667 }
2668
2669 /**
2670 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2671 * @qc: Metadata associated with taskfile to be transferred
2672 *
2673 * Fill PCI IDE PRD (scatter-gather) table with segments
2674 * associated with the current disk command. Perform the fill
2675 * so that we avoid writing any length 64K records for
2676 * controllers that don't follow the spec.
2677 *
2678 * LOCKING:
2679 * spin_lock_irqsave(host lock)
2680 *
2681 */
ata_bmdma_fill_sg_dumb(struct ata_queued_cmd * qc)2682 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2683 {
2684 struct ata_port *ap = qc->ap;
2685 struct ata_bmdma_prd *prd = ap->bmdma_prd;
2686 struct scatterlist *sg;
2687 unsigned int si, pi;
2688
2689 pi = 0;
2690 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2691 u32 addr, offset;
2692 u32 sg_len, len, blen;
2693
2694 /* determine if physical DMA addr spans 64K boundary.
2695 * Note h/w doesn't support 64-bit, so we unconditionally
2696 * truncate dma_addr_t to u32.
2697 */
2698 addr = (u32) sg_dma_address(sg);
2699 sg_len = sg_dma_len(sg);
2700
2701 while (sg_len) {
2702 offset = addr & 0xffff;
2703 len = sg_len;
2704 if ((offset + sg_len) > 0x10000)
2705 len = 0x10000 - offset;
2706
2707 blen = len & 0xffff;
2708 prd[pi].addr = cpu_to_le32(addr);
2709 if (blen == 0) {
2710 /* Some PATA chipsets like the CS5530 can't
2711 cope with 0x0000 meaning 64K as the spec
2712 says */
2713 prd[pi].flags_len = cpu_to_le32(0x8000);
2714 blen = 0x8000;
2715 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2716 }
2717 prd[pi].flags_len = cpu_to_le32(blen);
2718 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2719
2720 pi++;
2721 sg_len -= len;
2722 addr += len;
2723 }
2724 }
2725
2726 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2727 }
2728
2729 /**
2730 * ata_bmdma_qc_prep - Prepare taskfile for submission
2731 * @qc: Metadata associated with taskfile to be prepared
2732 *
2733 * Prepare ATA taskfile for submission.
2734 *
2735 * LOCKING:
2736 * spin_lock_irqsave(host lock)
2737 */
ata_bmdma_qc_prep(struct ata_queued_cmd * qc)2738 void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2739 {
2740 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2741 return;
2742
2743 ata_bmdma_fill_sg(qc);
2744 }
2745 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2746
2747 /**
2748 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2749 * @qc: Metadata associated with taskfile to be prepared
2750 *
2751 * Prepare ATA taskfile for submission.
2752 *
2753 * LOCKING:
2754 * spin_lock_irqsave(host lock)
2755 */
ata_bmdma_dumb_qc_prep(struct ata_queued_cmd * qc)2756 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2757 {
2758 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2759 return;
2760
2761 ata_bmdma_fill_sg_dumb(qc);
2762 }
2763 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2764
2765 /**
2766 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2767 * @qc: command to issue to device
2768 *
2769 * This function issues a PIO, NODATA or DMA command to a
2770 * SFF/BMDMA controller. PIO and NODATA are handled by
2771 * ata_sff_qc_issue().
2772 *
2773 * LOCKING:
2774 * spin_lock_irqsave(host lock)
2775 *
2776 * RETURNS:
2777 * Zero on success, AC_ERR_* mask on failure
2778 */
ata_bmdma_qc_issue(struct ata_queued_cmd * qc)2779 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2780 {
2781 struct ata_port *ap = qc->ap;
2782 struct ata_link *link = qc->dev->link;
2783
2784 /* defer PIO handling to sff_qc_issue */
2785 if (!ata_is_dma(qc->tf.protocol))
2786 return ata_sff_qc_issue(qc);
2787
2788 /* select the device */
2789 ata_dev_select(ap, qc->dev->devno, 1, 0);
2790
2791 /* start the command */
2792 switch (qc->tf.protocol) {
2793 case ATA_PROT_DMA:
2794 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2795
2796 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2797 ap->ops->bmdma_setup(qc); /* set up bmdma */
2798 ap->ops->bmdma_start(qc); /* initiate bmdma */
2799 ap->hsm_task_state = HSM_ST_LAST;
2800 break;
2801
2802 case ATAPI_PROT_DMA:
2803 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2804
2805 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2806 ap->ops->bmdma_setup(qc); /* set up bmdma */
2807 ap->hsm_task_state = HSM_ST_FIRST;
2808
2809 /* send cdb by polling if no cdb interrupt */
2810 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2811 ata_sff_queue_pio_task(link, 0);
2812 break;
2813
2814 default:
2815 WARN_ON(1);
2816 return AC_ERR_SYSTEM;
2817 }
2818
2819 return 0;
2820 }
2821 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2822
2823 /**
2824 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2825 * @ap: Port on which interrupt arrived (possibly...)
2826 * @qc: Taskfile currently active in engine
2827 *
2828 * Handle port interrupt for given queued command.
2829 *
2830 * LOCKING:
2831 * spin_lock_irqsave(host lock)
2832 *
2833 * RETURNS:
2834 * One if interrupt was handled, zero if not (shared irq).
2835 */
ata_bmdma_port_intr(struct ata_port * ap,struct ata_queued_cmd * qc)2836 unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2837 {
2838 struct ata_eh_info *ehi = &ap->link.eh_info;
2839 u8 host_stat = 0;
2840 bool bmdma_stopped = false;
2841 unsigned int handled;
2842
2843 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2844 /* check status of DMA engine */
2845 host_stat = ap->ops->bmdma_status(ap);
2846 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2847
2848 /* if it's not our irq... */
2849 if (!(host_stat & ATA_DMA_INTR))
2850 return ata_sff_idle_irq(ap);
2851
2852 /* before we do anything else, clear DMA-Start bit */
2853 ap->ops->bmdma_stop(qc);
2854 bmdma_stopped = true;
2855
2856 if (unlikely(host_stat & ATA_DMA_ERR)) {
2857 /* error when transferring data to/from memory */
2858 qc->err_mask |= AC_ERR_HOST_BUS;
2859 ap->hsm_task_state = HSM_ST_ERR;
2860 }
2861 }
2862
2863 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2864
2865 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2866 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2867
2868 return handled;
2869 }
2870 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2871
2872 /**
2873 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2874 * @irq: irq line (unused)
2875 * @dev_instance: pointer to our ata_host information structure
2876 *
2877 * Default interrupt handler for PCI IDE devices. Calls
2878 * ata_bmdma_port_intr() for each port that is not disabled.
2879 *
2880 * LOCKING:
2881 * Obtains host lock during operation.
2882 *
2883 * RETURNS:
2884 * IRQ_NONE or IRQ_HANDLED.
2885 */
ata_bmdma_interrupt(int irq,void * dev_instance)2886 irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2887 {
2888 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2889 }
2890 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2891
2892 /**
2893 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2894 * @ap: port to handle error for
2895 *
2896 * Stock error handler for BMDMA controller. It can handle both
2897 * PATA and SATA controllers. Most BMDMA controllers should be
2898 * able to use this EH as-is or with some added handling before
2899 * and after.
2900 *
2901 * LOCKING:
2902 * Kernel thread context (may sleep)
2903 */
ata_bmdma_error_handler(struct ata_port * ap)2904 void ata_bmdma_error_handler(struct ata_port *ap)
2905 {
2906 struct ata_queued_cmd *qc;
2907 unsigned long flags;
2908 bool thaw = false;
2909
2910 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2911 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2912 qc = NULL;
2913
2914 /* reset PIO HSM and stop DMA engine */
2915 spin_lock_irqsave(ap->lock, flags);
2916
2917 if (qc && ata_is_dma(qc->tf.protocol)) {
2918 u8 host_stat;
2919
2920 host_stat = ap->ops->bmdma_status(ap);
2921
2922 /* BMDMA controllers indicate host bus error by
2923 * setting DMA_ERR bit and timing out. As it wasn't
2924 * really a timeout event, adjust error mask and
2925 * cancel frozen state.
2926 */
2927 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2928 qc->err_mask = AC_ERR_HOST_BUS;
2929 thaw = true;
2930 }
2931
2932 ap->ops->bmdma_stop(qc);
2933
2934 /* if we're gonna thaw, make sure IRQ is clear */
2935 if (thaw) {
2936 ap->ops->sff_check_status(ap);
2937 if (ap->ops->sff_irq_clear)
2938 ap->ops->sff_irq_clear(ap);
2939 }
2940 }
2941
2942 spin_unlock_irqrestore(ap->lock, flags);
2943
2944 if (thaw)
2945 ata_eh_thaw_port(ap);
2946
2947 ata_sff_error_handler(ap);
2948 }
2949 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2950
2951 /**
2952 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2953 * @qc: internal command to clean up
2954 *
2955 * LOCKING:
2956 * Kernel thread context (may sleep)
2957 */
ata_bmdma_post_internal_cmd(struct ata_queued_cmd * qc)2958 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2959 {
2960 struct ata_port *ap = qc->ap;
2961 unsigned long flags;
2962
2963 if (ata_is_dma(qc->tf.protocol)) {
2964 spin_lock_irqsave(ap->lock, flags);
2965 ap->ops->bmdma_stop(qc);
2966 spin_unlock_irqrestore(ap->lock, flags);
2967 }
2968 }
2969 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2970
2971 /**
2972 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2973 * @ap: Port associated with this ATA transaction.
2974 *
2975 * Clear interrupt and error flags in DMA status register.
2976 *
2977 * May be used as the irq_clear() entry in ata_port_operations.
2978 *
2979 * LOCKING:
2980 * spin_lock_irqsave(host lock)
2981 */
ata_bmdma_irq_clear(struct ata_port * ap)2982 void ata_bmdma_irq_clear(struct ata_port *ap)
2983 {
2984 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2985
2986 if (!mmio)
2987 return;
2988
2989 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2990 }
2991 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2992
2993 /**
2994 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2995 * @qc: Info associated with this ATA transaction.
2996 *
2997 * LOCKING:
2998 * spin_lock_irqsave(host lock)
2999 */
ata_bmdma_setup(struct ata_queued_cmd * qc)3000 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3001 {
3002 struct ata_port *ap = qc->ap;
3003 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3004 u8 dmactl;
3005
3006 /* load PRD table addr. */
3007 mb(); /* make sure PRD table writes are visible to controller */
3008 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3009
3010 /* specify data direction, triple-check start bit is clear */
3011 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3012 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3013 if (!rw)
3014 dmactl |= ATA_DMA_WR;
3015 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3016
3017 /* issue r/w command */
3018 ap->ops->sff_exec_command(ap, &qc->tf);
3019 }
3020 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3021
3022 /**
3023 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3024 * @qc: Info associated with this ATA transaction.
3025 *
3026 * LOCKING:
3027 * spin_lock_irqsave(host lock)
3028 */
ata_bmdma_start(struct ata_queued_cmd * qc)3029 void ata_bmdma_start(struct ata_queued_cmd *qc)
3030 {
3031 struct ata_port *ap = qc->ap;
3032 u8 dmactl;
3033
3034 /* start host DMA transaction */
3035 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3036 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3037
3038 /* Strictly, one may wish to issue an ioread8() here, to
3039 * flush the mmio write. However, control also passes
3040 * to the hardware at this point, and it will interrupt
3041 * us when we are to resume control. So, in effect,
3042 * we don't care when the mmio write flushes.
3043 * Further, a read of the DMA status register _immediately_
3044 * following the write may not be what certain flaky hardware
3045 * is expected, so I think it is best to not add a readb()
3046 * without first all the MMIO ATA cards/mobos.
3047 * Or maybe I'm just being paranoid.
3048 *
3049 * FIXME: The posting of this write means I/O starts are
3050 * unnecessarily delayed for MMIO
3051 */
3052 }
3053 EXPORT_SYMBOL_GPL(ata_bmdma_start);
3054
3055 /**
3056 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3057 * @qc: Command we are ending DMA for
3058 *
3059 * Clears the ATA_DMA_START flag in the dma control register
3060 *
3061 * May be used as the bmdma_stop() entry in ata_port_operations.
3062 *
3063 * LOCKING:
3064 * spin_lock_irqsave(host lock)
3065 */
ata_bmdma_stop(struct ata_queued_cmd * qc)3066 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3067 {
3068 struct ata_port *ap = qc->ap;
3069 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3070
3071 /* clear start/stop bit */
3072 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3073 mmio + ATA_DMA_CMD);
3074
3075 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3076 ata_sff_dma_pause(ap);
3077 }
3078 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3079
3080 /**
3081 * ata_bmdma_status - Read PCI IDE BMDMA status
3082 * @ap: Port associated with this ATA transaction.
3083 *
3084 * Read and return BMDMA status register.
3085 *
3086 * May be used as the bmdma_status() entry in ata_port_operations.
3087 *
3088 * LOCKING:
3089 * spin_lock_irqsave(host lock)
3090 */
ata_bmdma_status(struct ata_port * ap)3091 u8 ata_bmdma_status(struct ata_port *ap)
3092 {
3093 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3094 }
3095 EXPORT_SYMBOL_GPL(ata_bmdma_status);
3096
3097
3098 /**
3099 * ata_bmdma_port_start - Set port up for bmdma.
3100 * @ap: Port to initialize
3101 *
3102 * Called just after data structures for each port are
3103 * initialized. Allocates space for PRD table.
3104 *
3105 * May be used as the port_start() entry in ata_port_operations.
3106 *
3107 * LOCKING:
3108 * Inherited from caller.
3109 */
ata_bmdma_port_start(struct ata_port * ap)3110 int ata_bmdma_port_start(struct ata_port *ap)
3111 {
3112 if (ap->mwdma_mask || ap->udma_mask) {
3113 ap->bmdma_prd =
3114 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3115 &ap->bmdma_prd_dma, GFP_KERNEL);
3116 if (!ap->bmdma_prd)
3117 return -ENOMEM;
3118 }
3119
3120 return 0;
3121 }
3122 EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3123
3124 /**
3125 * ata_bmdma_port_start32 - Set port up for dma.
3126 * @ap: Port to initialize
3127 *
3128 * Called just after data structures for each port are
3129 * initialized. Enables 32bit PIO and allocates space for PRD
3130 * table.
3131 *
3132 * May be used as the port_start() entry in ata_port_operations for
3133 * devices that are capable of 32bit PIO.
3134 *
3135 * LOCKING:
3136 * Inherited from caller.
3137 */
ata_bmdma_port_start32(struct ata_port * ap)3138 int ata_bmdma_port_start32(struct ata_port *ap)
3139 {
3140 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3141 return ata_bmdma_port_start(ap);
3142 }
3143 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3144
3145 #ifdef CONFIG_PCI
3146
3147 /**
3148 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3149 * @pdev: PCI device
3150 *
3151 * Some PCI ATA devices report simplex mode but in fact can be told to
3152 * enter non simplex mode. This implements the necessary logic to
3153 * perform the task on such devices. Calling it on other devices will
3154 * have -undefined- behaviour.
3155 */
ata_pci_bmdma_clear_simplex(struct pci_dev * pdev)3156 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3157 {
3158 unsigned long bmdma = pci_resource_start(pdev, 4);
3159 u8 simplex;
3160
3161 if (bmdma == 0)
3162 return -ENOENT;
3163
3164 simplex = inb(bmdma + 0x02);
3165 outb(simplex & 0x60, bmdma + 0x02);
3166 simplex = inb(bmdma + 0x02);
3167 if (simplex & 0x80)
3168 return -EOPNOTSUPP;
3169 return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3172
ata_bmdma_nodma(struct ata_host * host,const char * reason)3173 static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3174 {
3175 int i;
3176
3177 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3178
3179 for (i = 0; i < 2; i++) {
3180 host->ports[i]->mwdma_mask = 0;
3181 host->ports[i]->udma_mask = 0;
3182 }
3183 }
3184
3185 /**
3186 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3187 * @host: target ATA host
3188 *
3189 * Acquire PCI BMDMA resources and initialize @host accordingly.
3190 *
3191 * LOCKING:
3192 * Inherited from calling layer (may sleep).
3193 */
ata_pci_bmdma_init(struct ata_host * host)3194 void ata_pci_bmdma_init(struct ata_host *host)
3195 {
3196 struct device *gdev = host->dev;
3197 struct pci_dev *pdev = to_pci_dev(gdev);
3198 int i, rc;
3199
3200 /* No BAR4 allocation: No DMA */
3201 if (pci_resource_start(pdev, 4) == 0) {
3202 ata_bmdma_nodma(host, "BAR4 is zero");
3203 return;
3204 }
3205
3206 /*
3207 * Some controllers require BMDMA region to be initialized
3208 * even if DMA is not in use to clear IRQ status via
3209 * ->sff_irq_clear method. Try to initialize bmdma_addr
3210 * regardless of dma masks.
3211 */
3212 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3213 if (rc)
3214 ata_bmdma_nodma(host, "failed to set dma mask");
3215 if (!rc) {
3216 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3217 if (rc)
3218 ata_bmdma_nodma(host,
3219 "failed to set consistent dma mask");
3220 }
3221
3222 /* request and iomap DMA region */
3223 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3224 if (rc) {
3225 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3226 return;
3227 }
3228 host->iomap = pcim_iomap_table(pdev);
3229
3230 for (i = 0; i < 2; i++) {
3231 struct ata_port *ap = host->ports[i];
3232 void __iomem *bmdma = host->iomap[4] + 8 * i;
3233
3234 if (ata_port_is_dummy(ap))
3235 continue;
3236
3237 ap->ioaddr.bmdma_addr = bmdma;
3238 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3239 (ioread8(bmdma + 2) & 0x80))
3240 host->flags |= ATA_HOST_SIMPLEX;
3241
3242 ata_port_desc(ap, "bmdma 0x%llx",
3243 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3244 }
3245 }
3246 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3247
3248 /**
3249 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3250 * @pdev: target PCI device
3251 * @ppi: array of port_info, must be enough for two ports
3252 * @r_host: out argument for the initialized ATA host
3253 *
3254 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3255 * resources and initialize it accordingly in one go.
3256 *
3257 * LOCKING:
3258 * Inherited from calling layer (may sleep).
3259 *
3260 * RETURNS:
3261 * 0 on success, -errno otherwise.
3262 */
ata_pci_bmdma_prepare_host(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct ata_host ** r_host)3263 int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3264 const struct ata_port_info * const * ppi,
3265 struct ata_host **r_host)
3266 {
3267 int rc;
3268
3269 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3270 if (rc)
3271 return rc;
3272
3273 ata_pci_bmdma_init(*r_host);
3274 return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3277
3278 /**
3279 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3280 * @pdev: Controller to be initialized
3281 * @ppi: array of port_info, must be enough for two ports
3282 * @sht: scsi_host_template to use when registering the host
3283 * @host_priv: host private_data
3284 * @hflags: host flags
3285 *
3286 * This function is similar to ata_pci_sff_init_one() but also
3287 * takes care of BMDMA initialization.
3288 *
3289 * LOCKING:
3290 * Inherited from PCI layer (may sleep).
3291 *
3292 * RETURNS:
3293 * Zero on success, negative on errno-based value on error.
3294 */
ata_pci_bmdma_init_one(struct pci_dev * pdev,const struct ata_port_info * const * ppi,struct scsi_host_template * sht,void * host_priv,int hflags)3295 int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3296 const struct ata_port_info * const * ppi,
3297 struct scsi_host_template *sht, void *host_priv,
3298 int hflags)
3299 {
3300 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3301 }
3302 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3303
3304 #endif /* CONFIG_PCI */
3305 #endif /* CONFIG_ATA_BMDMA */
3306
3307 /**
3308 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3309 * @ap: Port to initialize
3310 *
3311 * Called on port allocation to initialize SFF/BMDMA specific
3312 * fields.
3313 *
3314 * LOCKING:
3315 * None.
3316 */
ata_sff_port_init(struct ata_port * ap)3317 void ata_sff_port_init(struct ata_port *ap)
3318 {
3319 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3320 ap->ctl = ATA_DEVCTL_OBS;
3321 ap->last_ctl = 0xFF;
3322 }
3323
ata_sff_init(void)3324 int __init ata_sff_init(void)
3325 {
3326 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3327 if (!ata_sff_wq)
3328 return -ENOMEM;
3329
3330 return 0;
3331 }
3332
ata_sff_exit(void)3333 void ata_sff_exit(void)
3334 {
3335 destroy_workqueue(ata_sff_wq);
3336 }
3337