1 /*
2 * Copyright (c) 2007-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17 #include "hif.h"
18
19 #include <linux/export.h>
20
21 #include "core.h"
22 #include "target.h"
23 #include "hif-ops.h"
24 #include "debug.h"
25 #include "trace.h"
26
27 #define MAILBOX_FOR_BLOCK_SIZE 1
28
29 #define ATH6KL_TIME_QUANTUM 10 /* in ms */
30
ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req * req,bool from_dma)31 static int ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req *req,
32 bool from_dma)
33 {
34 u8 *buf;
35 int i;
36
37 buf = req->virt_dma_buf;
38
39 for (i = 0; i < req->scat_entries; i++) {
40 if (from_dma)
41 memcpy(req->scat_list[i].buf, buf,
42 req->scat_list[i].len);
43 else
44 memcpy(buf, req->scat_list[i].buf,
45 req->scat_list[i].len);
46
47 buf += req->scat_list[i].len;
48 }
49
50 return 0;
51 }
52
ath6kl_hif_rw_comp_handler(void * context,int status)53 int ath6kl_hif_rw_comp_handler(void *context, int status)
54 {
55 struct htc_packet *packet = context;
56
57 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rw completion pkt 0x%p status %d\n",
58 packet, status);
59
60 packet->status = status;
61 packet->completion(packet->context, packet);
62
63 return 0;
64 }
65 EXPORT_SYMBOL(ath6kl_hif_rw_comp_handler);
66
67 #define REG_DUMP_COUNT_AR6003 60
68 #define REGISTER_DUMP_LEN_MAX 60
69
ath6kl_hif_dump_fw_crash(struct ath6kl * ar)70 static void ath6kl_hif_dump_fw_crash(struct ath6kl *ar)
71 {
72 __le32 regdump_val[REGISTER_DUMP_LEN_MAX];
73 u32 i, address, regdump_addr = 0;
74 int ret;
75
76 if (ar->target_type != TARGET_TYPE_AR6003)
77 return;
78
79 /* the reg dump pointer is copied to the host interest area */
80 address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state));
81 address = TARG_VTOP(ar->target_type, address);
82
83 /* read RAM location through diagnostic window */
84 ret = ath6kl_diag_read32(ar, address, ®dump_addr);
85
86 if (ret || !regdump_addr) {
87 ath6kl_warn("failed to get ptr to register dump area: %d\n",
88 ret);
89 return;
90 }
91
92 ath6kl_dbg(ATH6KL_DBG_IRQ, "register dump data address 0x%x\n",
93 regdump_addr);
94 regdump_addr = TARG_VTOP(ar->target_type, regdump_addr);
95
96 /* fetch register dump data */
97 ret = ath6kl_diag_read(ar, regdump_addr, (u8 *)®dump_val[0],
98 REG_DUMP_COUNT_AR6003 * (sizeof(u32)));
99 if (ret) {
100 ath6kl_warn("failed to get register dump: %d\n", ret);
101 return;
102 }
103
104 ath6kl_info("crash dump:\n");
105 ath6kl_info("hw 0x%x fw %s\n", ar->wiphy->hw_version,
106 ar->wiphy->fw_version);
107
108 BUILD_BUG_ON(REG_DUMP_COUNT_AR6003 % 4);
109
110 for (i = 0; i < REG_DUMP_COUNT_AR6003; i += 4) {
111 ath6kl_info("%d: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n",
112 i,
113 le32_to_cpu(regdump_val[i]),
114 le32_to_cpu(regdump_val[i + 1]),
115 le32_to_cpu(regdump_val[i + 2]),
116 le32_to_cpu(regdump_val[i + 3]));
117 }
118 }
119
ath6kl_hif_proc_dbg_intr(struct ath6kl_device * dev)120 static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev)
121 {
122 u32 dummy;
123 int ret;
124
125 ath6kl_warn("firmware crashed\n");
126
127 /*
128 * read counter to clear the interrupt, the debug error interrupt is
129 * counter 0.
130 */
131 ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS,
132 (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC);
133 if (ret)
134 ath6kl_warn("Failed to clear debug interrupt: %d\n", ret);
135
136 ath6kl_hif_dump_fw_crash(dev->ar);
137 ath6kl_read_fwlogs(dev->ar);
138 ath6kl_recovery_err_notify(dev->ar, ATH6KL_FW_ASSERT);
139
140 return ret;
141 }
142
143 /* mailbox recv message polling */
ath6kl_hif_poll_mboxmsg_rx(struct ath6kl_device * dev,u32 * lk_ahd,int timeout)144 int ath6kl_hif_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd,
145 int timeout)
146 {
147 struct ath6kl_irq_proc_registers *rg;
148 int status = 0, i;
149 u8 htc_mbox = 1 << HTC_MAILBOX;
150
151 for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) {
152 /* this is the standard HIF way, load the reg table */
153 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
154 (u8 *) &dev->irq_proc_reg,
155 sizeof(dev->irq_proc_reg),
156 HIF_RD_SYNC_BYTE_INC);
157
158 if (status) {
159 ath6kl_err("failed to read reg table\n");
160 return status;
161 }
162
163 /* check for MBOX data and valid lookahead */
164 if (dev->irq_proc_reg.host_int_status & htc_mbox) {
165 if (dev->irq_proc_reg.rx_lkahd_valid &
166 htc_mbox) {
167 /*
168 * Mailbox has a message and the look ahead
169 * is valid.
170 */
171 rg = &dev->irq_proc_reg;
172 *lk_ahd =
173 le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
174 break;
175 }
176 }
177
178 /* delay a little */
179 mdelay(ATH6KL_TIME_QUANTUM);
180 ath6kl_dbg(ATH6KL_DBG_HIF, "hif retry mbox poll try %d\n", i);
181 }
182
183 if (i == 0) {
184 ath6kl_err("timeout waiting for recv message\n");
185 status = -ETIME;
186 /* check if the target asserted */
187 if (dev->irq_proc_reg.counter_int_status &
188 ATH6KL_TARGET_DEBUG_INTR_MASK)
189 /*
190 * Target failure handler will be called in case of
191 * an assert.
192 */
193 ath6kl_hif_proc_dbg_intr(dev);
194 }
195
196 return status;
197 }
198
199 /*
200 * Disable packet reception (used in case the host runs out of buffers)
201 * using the interrupt enable registers through the host I/F
202 */
ath6kl_hif_rx_control(struct ath6kl_device * dev,bool enable_rx)203 int ath6kl_hif_rx_control(struct ath6kl_device *dev, bool enable_rx)
204 {
205 struct ath6kl_irq_enable_reg regs;
206 int status = 0;
207
208 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rx %s\n",
209 enable_rx ? "enable" : "disable");
210
211 /* take the lock to protect interrupt enable shadows */
212 spin_lock_bh(&dev->lock);
213
214 if (enable_rx)
215 dev->irq_en_reg.int_status_en |=
216 SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
217 else
218 dev->irq_en_reg.int_status_en &=
219 ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
220
221 memcpy(®s, &dev->irq_en_reg, sizeof(regs));
222
223 spin_unlock_bh(&dev->lock);
224
225 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
226 ®s.int_status_en,
227 sizeof(struct ath6kl_irq_enable_reg),
228 HIF_WR_SYNC_BYTE_INC);
229
230 return status;
231 }
232
ath6kl_hif_submit_scat_req(struct ath6kl_device * dev,struct hif_scatter_req * scat_req,bool read)233 int ath6kl_hif_submit_scat_req(struct ath6kl_device *dev,
234 struct hif_scatter_req *scat_req, bool read)
235 {
236 int status = 0;
237
238 if (read) {
239 scat_req->req = HIF_RD_SYNC_BLOCK_FIX;
240 scat_req->addr = dev->ar->mbox_info.htc_addr;
241 } else {
242 scat_req->req = HIF_WR_ASYNC_BLOCK_INC;
243
244 scat_req->addr =
245 (scat_req->len > HIF_MBOX_WIDTH) ?
246 dev->ar->mbox_info.htc_ext_addr :
247 dev->ar->mbox_info.htc_addr;
248 }
249
250 ath6kl_dbg(ATH6KL_DBG_HIF,
251 "hif submit scatter request entries %d len %d mbox 0x%x %s %s\n",
252 scat_req->scat_entries, scat_req->len,
253 scat_req->addr, !read ? "async" : "sync",
254 (read) ? "rd" : "wr");
255
256 if (!read && scat_req->virt_scat) {
257 status = ath6kl_hif_cp_scat_dma_buf(scat_req, false);
258 if (status) {
259 scat_req->status = status;
260 scat_req->complete(dev->ar->htc_target, scat_req);
261 return 0;
262 }
263 }
264
265 status = ath6kl_hif_scat_req_rw(dev->ar, scat_req);
266
267 if (read) {
268 /* in sync mode, we can touch the scatter request */
269 scat_req->status = status;
270 if (!status && scat_req->virt_scat)
271 scat_req->status =
272 ath6kl_hif_cp_scat_dma_buf(scat_req, true);
273 }
274
275 return status;
276 }
277
ath6kl_hif_proc_counter_intr(struct ath6kl_device * dev)278 static int ath6kl_hif_proc_counter_intr(struct ath6kl_device *dev)
279 {
280 u8 counter_int_status;
281
282 ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n");
283
284 counter_int_status = dev->irq_proc_reg.counter_int_status &
285 dev->irq_en_reg.cntr_int_status_en;
286
287 ath6kl_dbg(ATH6KL_DBG_IRQ,
288 "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n",
289 counter_int_status);
290
291 /*
292 * NOTE: other modules like GMBOX may use the counter interrupt for
293 * credit flow control on other counters, we only need to check for
294 * the debug assertion counter interrupt.
295 */
296 if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK)
297 return ath6kl_hif_proc_dbg_intr(dev);
298
299 return 0;
300 }
301
ath6kl_hif_proc_err_intr(struct ath6kl_device * dev)302 static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev)
303 {
304 int status;
305 u8 error_int_status;
306 u8 reg_buf[4];
307
308 ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n");
309
310 error_int_status = dev->irq_proc_reg.error_int_status & 0x0F;
311 if (!error_int_status) {
312 WARN_ON(1);
313 return -EIO;
314 }
315
316 ath6kl_dbg(ATH6KL_DBG_IRQ,
317 "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n",
318 error_int_status);
319
320 if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status))
321 ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n");
322
323 if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status))
324 ath6kl_err("rx underflow\n");
325
326 if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status))
327 ath6kl_err("tx overflow\n");
328
329 /* Clear the interrupt */
330 dev->irq_proc_reg.error_int_status &= ~error_int_status;
331
332 /* set W1C value to clear the interrupt, this hits the register first */
333 reg_buf[0] = error_int_status;
334 reg_buf[1] = 0;
335 reg_buf[2] = 0;
336 reg_buf[3] = 0;
337
338 status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS,
339 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
340
341 WARN_ON(status);
342
343 return status;
344 }
345
ath6kl_hif_proc_cpu_intr(struct ath6kl_device * dev)346 static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev)
347 {
348 int status;
349 u8 cpu_int_status;
350 u8 reg_buf[4];
351
352 ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n");
353
354 cpu_int_status = dev->irq_proc_reg.cpu_int_status &
355 dev->irq_en_reg.cpu_int_status_en;
356 if (!cpu_int_status) {
357 WARN_ON(1);
358 return -EIO;
359 }
360
361 ath6kl_dbg(ATH6KL_DBG_IRQ,
362 "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n",
363 cpu_int_status);
364
365 /* Clear the interrupt */
366 dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status;
367
368 /*
369 * Set up the register transfer buffer to hit the register 4 times ,
370 * this is done to make the access 4-byte aligned to mitigate issues
371 * with host bus interconnects that restrict bus transfer lengths to
372 * be a multiple of 4-bytes.
373 */
374
375 /* set W1C value to clear the interrupt, this hits the register first */
376 reg_buf[0] = cpu_int_status;
377 /* the remaining are set to zero which have no-effect */
378 reg_buf[1] = 0;
379 reg_buf[2] = 0;
380 reg_buf[3] = 0;
381
382 status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS,
383 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX);
384
385 WARN_ON(status);
386
387 return status;
388 }
389
390 /* process pending interrupts synchronously */
proc_pending_irqs(struct ath6kl_device * dev,bool * done)391 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done)
392 {
393 struct ath6kl_irq_proc_registers *rg;
394 int status = 0;
395 u8 host_int_status = 0;
396 u32 lk_ahd = 0;
397 u8 htc_mbox = 1 << HTC_MAILBOX;
398
399 ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev);
400
401 /*
402 * NOTE: HIF implementation guarantees that the context of this
403 * call allows us to perform SYNCHRONOUS I/O, that is we can block,
404 * sleep or call any API that can block or switch thread/task
405 * contexts. This is a fully schedulable context.
406 */
407
408 /*
409 * Process pending intr only when int_status_en is clear, it may
410 * result in unnecessary bus transaction otherwise. Target may be
411 * unresponsive at the time.
412 */
413 if (dev->irq_en_reg.int_status_en) {
414 /*
415 * Read the first 28 bytes of the HTC register table. This
416 * will yield us the value of different int status
417 * registers and the lookahead registers.
418 *
419 * length = sizeof(int_status) + sizeof(cpu_int_status)
420 * + sizeof(error_int_status) +
421 * sizeof(counter_int_status) +
422 * sizeof(mbox_frame) + sizeof(rx_lkahd_valid)
423 * + sizeof(hole) + sizeof(rx_lkahd) +
424 * sizeof(int_status_en) +
425 * sizeof(cpu_int_status_en) +
426 * sizeof(err_int_status_en) +
427 * sizeof(cntr_int_status_en);
428 */
429 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS,
430 (u8 *) &dev->irq_proc_reg,
431 sizeof(dev->irq_proc_reg),
432 HIF_RD_SYNC_BYTE_INC);
433 if (status)
434 goto out;
435
436 ath6kl_dump_registers(dev, &dev->irq_proc_reg,
437 &dev->irq_en_reg);
438 trace_ath6kl_sdio_irq(&dev->irq_en_reg,
439 sizeof(dev->irq_en_reg));
440
441 /* Update only those registers that are enabled */
442 host_int_status = dev->irq_proc_reg.host_int_status &
443 dev->irq_en_reg.int_status_en;
444
445 /* Look at mbox status */
446 if (host_int_status & htc_mbox) {
447 /*
448 * Mask out pending mbox value, we use "lookAhead as
449 * the real flag for mbox processing.
450 */
451 host_int_status &= ~htc_mbox;
452 if (dev->irq_proc_reg.rx_lkahd_valid &
453 htc_mbox) {
454 rg = &dev->irq_proc_reg;
455 lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]);
456 if (!lk_ahd)
457 ath6kl_err("lookAhead is zero!\n");
458 }
459 }
460 }
461
462 if (!host_int_status && !lk_ahd) {
463 *done = true;
464 goto out;
465 }
466
467 if (lk_ahd) {
468 int fetched = 0;
469
470 ath6kl_dbg(ATH6KL_DBG_IRQ,
471 "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd);
472 /*
473 * Mailbox Interrupt, the HTC layer may issue async
474 * requests to empty the mailbox. When emptying the recv
475 * mailbox we use the async handler above called from the
476 * completion routine of the callers read request. This can
477 * improve performance by reducing context switching when
478 * we rapidly pull packets.
479 */
480 status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt,
481 lk_ahd, &fetched);
482 if (status)
483 goto out;
484
485 if (!fetched)
486 /*
487 * HTC could not pull any messages out due to lack
488 * of resources.
489 */
490 dev->htc_cnxt->chk_irq_status_cnt = 0;
491 }
492
493 /* now handle the rest of them */
494 ath6kl_dbg(ATH6KL_DBG_IRQ,
495 "valid interrupt source(s) for other interrupts: 0x%x\n",
496 host_int_status);
497
498 if (MS(HOST_INT_STATUS_CPU, host_int_status)) {
499 /* CPU Interrupt */
500 status = ath6kl_hif_proc_cpu_intr(dev);
501 if (status)
502 goto out;
503 }
504
505 if (MS(HOST_INT_STATUS_ERROR, host_int_status)) {
506 /* Error Interrupt */
507 status = ath6kl_hif_proc_err_intr(dev);
508 if (status)
509 goto out;
510 }
511
512 if (MS(HOST_INT_STATUS_COUNTER, host_int_status))
513 /* Counter Interrupt */
514 status = ath6kl_hif_proc_counter_intr(dev);
515
516 out:
517 /*
518 * An optimization to bypass reading the IRQ status registers
519 * unecessarily which can re-wake the target, if upper layers
520 * determine that we are in a low-throughput mode, we can rely on
521 * taking another interrupt rather than re-checking the status
522 * registers which can re-wake the target.
523 *
524 * NOTE : for host interfaces that makes use of detecting pending
525 * mbox messages at hif can not use this optimization due to
526 * possible side effects, SPI requires the host to drain all
527 * messages from the mailbox before exiting the ISR routine.
528 */
529
530 ath6kl_dbg(ATH6KL_DBG_IRQ,
531 "bypassing irq status re-check, forcing done\n");
532
533 if (!dev->htc_cnxt->chk_irq_status_cnt)
534 *done = true;
535
536 ath6kl_dbg(ATH6KL_DBG_IRQ,
537 "proc_pending_irqs: (done:%d, status=%d\n", *done, status);
538
539 return status;
540 }
541
542 /* interrupt handler, kicks off all interrupt processing */
ath6kl_hif_intr_bh_handler(struct ath6kl * ar)543 int ath6kl_hif_intr_bh_handler(struct ath6kl *ar)
544 {
545 struct ath6kl_device *dev = ar->htc_target->dev;
546 unsigned long timeout;
547 int status = 0;
548 bool done = false;
549
550 /*
551 * Reset counter used to flag a re-scan of IRQ status registers on
552 * the target.
553 */
554 dev->htc_cnxt->chk_irq_status_cnt = 0;
555
556 /*
557 * IRQ processing is synchronous, interrupt status registers can be
558 * re-read.
559 */
560 timeout = jiffies + msecs_to_jiffies(ATH6KL_HIF_COMMUNICATION_TIMEOUT);
561 while (time_before(jiffies, timeout) && !done) {
562 status = proc_pending_irqs(dev, &done);
563 if (status)
564 break;
565 }
566
567 return status;
568 }
569 EXPORT_SYMBOL(ath6kl_hif_intr_bh_handler);
570
ath6kl_hif_enable_intrs(struct ath6kl_device * dev)571 static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev)
572 {
573 struct ath6kl_irq_enable_reg regs;
574 int status;
575
576 spin_lock_bh(&dev->lock);
577
578 /* Enable all but ATH6KL CPU interrupts */
579 dev->irq_en_reg.int_status_en =
580 SM(INT_STATUS_ENABLE_ERROR, 0x01) |
581 SM(INT_STATUS_ENABLE_CPU, 0x01) |
582 SM(INT_STATUS_ENABLE_COUNTER, 0x01);
583
584 /*
585 * NOTE: There are some cases where HIF can do detection of
586 * pending mbox messages which is disabled now.
587 */
588 dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01);
589
590 /* Set up the CPU Interrupt status Register */
591 dev->irq_en_reg.cpu_int_status_en = 0;
592
593 /* Set up the Error Interrupt status Register */
594 dev->irq_en_reg.err_int_status_en =
595 SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) |
596 SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1);
597
598 /*
599 * Enable Counter interrupt status register to get fatal errors for
600 * debugging.
601 */
602 dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT,
603 ATH6KL_TARGET_DEBUG_INTR_MASK);
604 memcpy(®s, &dev->irq_en_reg, sizeof(regs));
605
606 spin_unlock_bh(&dev->lock);
607
608 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
609 ®s.int_status_en, sizeof(regs),
610 HIF_WR_SYNC_BYTE_INC);
611
612 if (status)
613 ath6kl_err("failed to update interrupt ctl reg err: %d\n",
614 status);
615
616 return status;
617 }
618
ath6kl_hif_disable_intrs(struct ath6kl_device * dev)619 int ath6kl_hif_disable_intrs(struct ath6kl_device *dev)
620 {
621 struct ath6kl_irq_enable_reg regs;
622
623 spin_lock_bh(&dev->lock);
624 /* Disable all interrupts */
625 dev->irq_en_reg.int_status_en = 0;
626 dev->irq_en_reg.cpu_int_status_en = 0;
627 dev->irq_en_reg.err_int_status_en = 0;
628 dev->irq_en_reg.cntr_int_status_en = 0;
629 memcpy(®s, &dev->irq_en_reg, sizeof(regs));
630 spin_unlock_bh(&dev->lock);
631
632 return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS,
633 ®s.int_status_en, sizeof(regs),
634 HIF_WR_SYNC_BYTE_INC);
635 }
636
637 /* enable device interrupts */
ath6kl_hif_unmask_intrs(struct ath6kl_device * dev)638 int ath6kl_hif_unmask_intrs(struct ath6kl_device *dev)
639 {
640 int status = 0;
641
642 /*
643 * Make sure interrupt are disabled before unmasking at the HIF
644 * layer. The rationale here is that between device insertion
645 * (where we clear the interrupts the first time) and when HTC
646 * is finally ready to handle interrupts, other software can perform
647 * target "soft" resets. The ATH6KL interrupt enables reset back to an
648 * "enabled" state when this happens.
649 */
650 ath6kl_hif_disable_intrs(dev);
651
652 /* unmask the host controller interrupts */
653 ath6kl_hif_irq_enable(dev->ar);
654 status = ath6kl_hif_enable_intrs(dev);
655
656 return status;
657 }
658
659 /* disable all device interrupts */
ath6kl_hif_mask_intrs(struct ath6kl_device * dev)660 int ath6kl_hif_mask_intrs(struct ath6kl_device *dev)
661 {
662 /*
663 * Mask the interrupt at the HIF layer to avoid any stray interrupt
664 * taken while we zero out our shadow registers in
665 * ath6kl_hif_disable_intrs().
666 */
667 ath6kl_hif_irq_disable(dev->ar);
668
669 return ath6kl_hif_disable_intrs(dev);
670 }
671
ath6kl_hif_setup(struct ath6kl_device * dev)672 int ath6kl_hif_setup(struct ath6kl_device *dev)
673 {
674 int status = 0;
675
676 spin_lock_init(&dev->lock);
677
678 /*
679 * NOTE: we actually get the block size of a mailbox other than 0,
680 * for SDIO the block size on mailbox 0 is artificially set to 1.
681 * So we use the block size that is set for the other 3 mailboxes.
682 */
683 dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size;
684
685 /* must be a power of 2 */
686 if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) {
687 WARN_ON(1);
688 status = -EINVAL;
689 goto fail_setup;
690 }
691
692 /* assemble mask, used for padding to a block */
693 dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1;
694
695 ath6kl_dbg(ATH6KL_DBG_HIF, "hif block size %d mbox addr 0x%x\n",
696 dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr);
697
698 status = ath6kl_hif_disable_intrs(dev);
699
700 fail_setup:
701 return status;
702 }
703