• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
20 
ath9k_hw_set_txq_interrupts(struct ath_hw * ah,struct ath9k_tx_queue_info * qi)21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 					struct ath9k_tx_queue_info *qi)
23 {
24 	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 		ah->txurn_interrupt_mask);
29 
30 	ENABLE_REGWRITE_BUFFER(ah);
31 
32 	REG_WRITE(ah, AR_IMR_S0,
33 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 	REG_WRITE(ah, AR_IMR_S1,
36 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38 
39 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42 
43 	REGWRITE_BUFFER_FLUSH(ah);
44 }
45 
ath9k_hw_gettxbuf(struct ath_hw * ah,u32 q)46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47 {
48 	return REG_READ(ah, AR_QTXDP(q));
49 }
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51 
ath9k_hw_puttxbuf(struct ath_hw * ah,u32 q,u32 txdp)52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53 {
54 	REG_WRITE(ah, AR_QTXDP(q), txdp);
55 }
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57 
ath9k_hw_txstart(struct ath_hw * ah,u32 q)58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59 {
60 	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64 
ath9k_hw_numtxpending(struct ath_hw * ah,u32 q)65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66 {
67 	u32 npend;
68 
69 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 	if (npend == 0) {
71 
72 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 			npend = 1;
74 	}
75 
76 	return npend;
77 }
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
79 
80 /**
81  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82  *
83  * @ah: atheros hardware struct
84  * @bIncTrigLevel: whether or not the frame trigger level should be updated
85  *
86  * The frame trigger level specifies the minimum number of bytes,
87  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88  * before the PCU will initiate sending the frame on the air. This can
89  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91  * first)
92  *
93  * Caution must be taken to ensure to set the frame trigger level based
94  * on the DMA request size. For example if the DMA request size is set to
95  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96  * there need to be enough space in the tx FIFO for the requested transfer
97  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98  * the threshold to a value beyond 6, then the transmit will hang.
99  *
100  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102  * there is a hardware issue which forces us to use 2 KB instead so the
103  * frame trigger level must not exceed 2 KB for these chipsets.
104  */
ath9k_hw_updatetxtriglevel(struct ath_hw * ah,bool bIncTrigLevel)105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106 {
107 	u32 txcfg, curLevel, newLevel;
108 
109 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 		return false;
111 
112 	ath9k_hw_disable_interrupts(ah);
113 
114 	txcfg = REG_READ(ah, AR_TXCFG);
115 	curLevel = MS(txcfg, AR_FTRIG);
116 	newLevel = curLevel;
117 	if (bIncTrigLevel) {
118 		if (curLevel < ah->config.max_txtrig_level)
119 			newLevel++;
120 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 		newLevel--;
122 	if (newLevel != curLevel)
123 		REG_WRITE(ah, AR_TXCFG,
124 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125 
126 	ath9k_hw_enable_interrupts(ah);
127 
128 	ah->tx_trig_level = newLevel;
129 
130 	return newLevel != curLevel;
131 }
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133 
ath9k_hw_abort_tx_dma(struct ath_hw * ah)134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135 {
136 	int maxdelay = 1000;
137 	int i, q;
138 
139 	if (ah->curchan) {
140 		if (IS_CHAN_HALF_RATE(ah->curchan))
141 			maxdelay *= 2;
142 		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143 			maxdelay *= 4;
144 	}
145 
146 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147 
148 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151 
152 	for (q = 0; q < AR_NUM_QCU; q++) {
153 		for (i = 0; i < maxdelay; i++) {
154 			if (i)
155 				udelay(5);
156 
157 			if (!ath9k_hw_numtxpending(ah, q))
158 				break;
159 		}
160 	}
161 
162 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165 
166 	REG_WRITE(ah, AR_Q_TXD, 0);
167 }
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169 
ath9k_hw_stop_dma_queue(struct ath_hw * ah,u32 q)170 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171 {
172 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
173 #define ATH9K_TIME_QUANTUM		100     /* usec */
174 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175 	int wait;
176 
177 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
178 
179 	for (wait = wait_time; wait != 0; wait--) {
180 		if (wait != wait_time)
181 			udelay(ATH9K_TIME_QUANTUM);
182 
183 		if (ath9k_hw_numtxpending(ah, q) == 0)
184 			break;
185 	}
186 
187 	REG_WRITE(ah, AR_Q_TXD, 0);
188 
189 	return wait != 0;
190 
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
193 }
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195 
ath9k_hw_set_txq_props(struct ath_hw * ah,int q,const struct ath9k_tx_queue_info * qinfo)196 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197 			    const struct ath9k_tx_queue_info *qinfo)
198 {
199 	u32 cw;
200 	struct ath_common *common = ath9k_hw_common(ah);
201 	struct ath9k_tx_queue_info *qi;
202 
203 	qi = &ah->txq[q];
204 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205 		ath_dbg(common, QUEUE,
206 			"Set TXQ properties, inactive queue: %u\n", q);
207 		return false;
208 	}
209 
210 	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211 
212 	qi->tqi_ver = qinfo->tqi_ver;
213 	qi->tqi_subtype = qinfo->tqi_subtype;
214 	qi->tqi_qflags = qinfo->tqi_qflags;
215 	qi->tqi_priority = qinfo->tqi_priority;
216 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218 	else
219 		qi->tqi_aifs = INIT_AIFS;
220 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221 		cw = min(qinfo->tqi_cwmin, 1024U);
222 		qi->tqi_cwmin = 1;
223 		while (qi->tqi_cwmin < cw)
224 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225 	} else
226 		qi->tqi_cwmin = qinfo->tqi_cwmin;
227 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228 		cw = min(qinfo->tqi_cwmax, 1024U);
229 		qi->tqi_cwmax = 1;
230 		while (qi->tqi_cwmax < cw)
231 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232 	} else
233 		qi->tqi_cwmax = INIT_CWMAX;
234 
235 	if (qinfo->tqi_shretry != 0)
236 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237 	else
238 		qi->tqi_shretry = INIT_SH_RETRY;
239 	if (qinfo->tqi_lgretry != 0)
240 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241 	else
242 		qi->tqi_lgretry = INIT_LG_RETRY;
243 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245 	qi->tqi_burstTime = qinfo->tqi_burstTime;
246 	qi->tqi_readyTime = qinfo->tqi_readyTime;
247 
248 	switch (qinfo->tqi_subtype) {
249 	case ATH9K_WME_UPSD:
250 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252 		break;
253 	default:
254 		break;
255 	}
256 
257 	return true;
258 }
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260 
ath9k_hw_get_txq_props(struct ath_hw * ah,int q,struct ath9k_tx_queue_info * qinfo)261 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262 			    struct ath9k_tx_queue_info *qinfo)
263 {
264 	struct ath_common *common = ath9k_hw_common(ah);
265 	struct ath9k_tx_queue_info *qi;
266 
267 	qi = &ah->txq[q];
268 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269 		ath_dbg(common, QUEUE,
270 			"Get TXQ properties, inactive queue: %u\n", q);
271 		return false;
272 	}
273 
274 	qinfo->tqi_qflags = qi->tqi_qflags;
275 	qinfo->tqi_ver = qi->tqi_ver;
276 	qinfo->tqi_subtype = qi->tqi_subtype;
277 	qinfo->tqi_qflags = qi->tqi_qflags;
278 	qinfo->tqi_priority = qi->tqi_priority;
279 	qinfo->tqi_aifs = qi->tqi_aifs;
280 	qinfo->tqi_cwmin = qi->tqi_cwmin;
281 	qinfo->tqi_cwmax = qi->tqi_cwmax;
282 	qinfo->tqi_shretry = qi->tqi_shretry;
283 	qinfo->tqi_lgretry = qi->tqi_lgretry;
284 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286 	qinfo->tqi_burstTime = qi->tqi_burstTime;
287 	qinfo->tqi_readyTime = qi->tqi_readyTime;
288 
289 	return true;
290 }
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292 
ath9k_hw_setuptxqueue(struct ath_hw * ah,enum ath9k_tx_queue type,const struct ath9k_tx_queue_info * qinfo)293 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294 			  const struct ath9k_tx_queue_info *qinfo)
295 {
296 	struct ath_common *common = ath9k_hw_common(ah);
297 	struct ath9k_tx_queue_info *qi;
298 	int q;
299 
300 	switch (type) {
301 	case ATH9K_TX_QUEUE_BEACON:
302 		q = ATH9K_NUM_TX_QUEUES - 1;
303 		break;
304 	case ATH9K_TX_QUEUE_CAB:
305 		q = ATH9K_NUM_TX_QUEUES - 2;
306 		break;
307 	case ATH9K_TX_QUEUE_PSPOLL:
308 		q = 1;
309 		break;
310 	case ATH9K_TX_QUEUE_UAPSD:
311 		q = ATH9K_NUM_TX_QUEUES - 3;
312 		break;
313 	case ATH9K_TX_QUEUE_DATA:
314 		q = qinfo->tqi_subtype;
315 		break;
316 	default:
317 		ath_err(common, "Invalid TX queue type: %u\n", type);
318 		return -1;
319 	}
320 
321 	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
322 
323 	qi = &ah->txq[q];
324 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
325 		ath_err(common, "TX queue: %u already active\n", q);
326 		return -1;
327 	}
328 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
329 	qi->tqi_type = type;
330 	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
331 	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
332 
333 	return q;
334 }
335 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
336 
ath9k_hw_clear_queue_interrupts(struct ath_hw * ah,u32 q)337 static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
338 {
339 	ah->txok_interrupt_mask &= ~(1 << q);
340 	ah->txerr_interrupt_mask &= ~(1 << q);
341 	ah->txdesc_interrupt_mask &= ~(1 << q);
342 	ah->txeol_interrupt_mask &= ~(1 << q);
343 	ah->txurn_interrupt_mask &= ~(1 << q);
344 }
345 
ath9k_hw_releasetxqueue(struct ath_hw * ah,u32 q)346 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
347 {
348 	struct ath_common *common = ath9k_hw_common(ah);
349 	struct ath9k_tx_queue_info *qi;
350 
351 	qi = &ah->txq[q];
352 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
353 		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
354 		return false;
355 	}
356 
357 	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
358 
359 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
360 	ath9k_hw_clear_queue_interrupts(ah, q);
361 	ath9k_hw_set_txq_interrupts(ah, qi);
362 
363 	return true;
364 }
365 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
366 
ath9k_hw_resettxqueue(struct ath_hw * ah,u32 q)367 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
368 {
369 	struct ath_common *common = ath9k_hw_common(ah);
370 	struct ath9k_tx_queue_info *qi;
371 	u32 cwMin, chanCwMin, value;
372 
373 	qi = &ah->txq[q];
374 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375 		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
376 		return true;
377 	}
378 
379 	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
380 
381 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
382 		chanCwMin = INIT_CWMIN;
383 
384 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
385 	} else
386 		cwMin = qi->tqi_cwmin;
387 
388 	ENABLE_REGWRITE_BUFFER(ah);
389 
390 	REG_WRITE(ah, AR_DLCL_IFS(q),
391 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
392 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
393 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
394 
395 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
396 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
397 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
398 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
399 
400 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
401 
402 	if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
403 		REG_WRITE(ah, AR_DMISC(q),
404 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
405 	else
406 		REG_WRITE(ah, AR_DMISC(q),
407 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
408 
409 	if (qi->tqi_cbrPeriod) {
410 		REG_WRITE(ah, AR_QCBRCFG(q),
411 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
412 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
413 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
414 			    (qi->tqi_cbrOverflowLimit ?
415 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
416 	}
417 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
418 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
419 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
420 			  AR_Q_RDYTIMECFG_EN);
421 	}
422 
423 	REG_WRITE(ah, AR_DCHNTIME(q),
424 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
425 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
426 
427 	if (qi->tqi_burstTime
428 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
429 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
430 
431 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
432 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
433 
434 	REGWRITE_BUFFER_FLUSH(ah);
435 
436 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
437 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
438 
439 	switch (qi->tqi_type) {
440 	case ATH9K_TX_QUEUE_BEACON:
441 		ENABLE_REGWRITE_BUFFER(ah);
442 
443 		REG_SET_BIT(ah, AR_QMISC(q),
444 			    AR_Q_MISC_FSP_DBA_GATED
445 			    | AR_Q_MISC_BEACON_USE
446 			    | AR_Q_MISC_CBR_INCR_DIS1);
447 
448 		REG_SET_BIT(ah, AR_DMISC(q),
449 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
450 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
451 			    | AR_D_MISC_BEACON_USE
452 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
453 
454 		REGWRITE_BUFFER_FLUSH(ah);
455 
456 		/*
457 		 * cwmin and cwmax should be 0 for beacon queue
458 		 * but not for IBSS as we would create an imbalance
459 		 * on beaconing fairness for participating nodes.
460 		 */
461 		if (AR_SREV_9300_20_OR_LATER(ah) &&
462 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
463 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
464 				  | SM(0, AR_D_LCL_IFS_CWMAX)
465 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
466 		}
467 		break;
468 	case ATH9K_TX_QUEUE_CAB:
469 		ENABLE_REGWRITE_BUFFER(ah);
470 
471 		REG_SET_BIT(ah, AR_QMISC(q),
472 			    AR_Q_MISC_FSP_DBA_GATED
473 			    | AR_Q_MISC_CBR_INCR_DIS1
474 			    | AR_Q_MISC_CBR_INCR_DIS0);
475 		value = (qi->tqi_readyTime -
476 			 (ah->config.sw_beacon_response_time -
477 			  ah->config.dma_beacon_response_time)) * 1024;
478 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
479 			  value | AR_Q_RDYTIMECFG_EN);
480 		REG_SET_BIT(ah, AR_DMISC(q),
481 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
483 
484 		REGWRITE_BUFFER_FLUSH(ah);
485 
486 		break;
487 	case ATH9K_TX_QUEUE_PSPOLL:
488 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
489 		break;
490 	case ATH9K_TX_QUEUE_UAPSD:
491 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
492 		break;
493 	default:
494 		break;
495 	}
496 
497 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
498 		REG_SET_BIT(ah, AR_DMISC(q),
499 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
500 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
501 			    AR_D_MISC_POST_FR_BKOFF_DIS);
502 	}
503 
504 	if (AR_SREV_9300_20_OR_LATER(ah))
505 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
506 
507 	ath9k_hw_clear_queue_interrupts(ah, q);
508 	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
509 		ah->txok_interrupt_mask |= 1 << q;
510 		ah->txerr_interrupt_mask |= 1 << q;
511 	}
512 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
513 		ah->txdesc_interrupt_mask |= 1 << q;
514 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
515 		ah->txeol_interrupt_mask |= 1 << q;
516 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
517 		ah->txurn_interrupt_mask |= 1 << q;
518 	ath9k_hw_set_txq_interrupts(ah, qi);
519 
520 	return true;
521 }
522 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
523 
ath9k_hw_rxprocdesc(struct ath_hw * ah,struct ath_desc * ds,struct ath_rx_status * rs)524 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
525 			struct ath_rx_status *rs)
526 {
527 	struct ar5416_desc ads;
528 	struct ar5416_desc *adsp = AR5416DESC(ds);
529 	u32 phyerr;
530 
531 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
532 		return -EINPROGRESS;
533 
534 	ads.u.rx = adsp->u.rx;
535 
536 	rs->rs_status = 0;
537 	rs->rs_flags = 0;
538 	rs->flag = 0;
539 
540 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
541 	rs->rs_tstamp = ads.AR_RcvTimestamp;
542 
543 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
544 		rs->rs_rssi = ATH9K_RSSI_BAD;
545 		rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
546 		rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
547 		rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
548 		rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
549 		rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
550 		rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
551 	} else {
552 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
553 		rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
554 						AR_RxRSSIAnt00);
555 		rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
556 						AR_RxRSSIAnt01);
557 		rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
558 						AR_RxRSSIAnt02);
559 		rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
560 						AR_RxRSSIAnt10);
561 		rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
562 						AR_RxRSSIAnt11);
563 		rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
564 						AR_RxRSSIAnt12);
565 	}
566 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
567 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
568 	else
569 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
570 
571 	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
572 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
573 
574 	rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
575 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
576 	rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
577 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
578 
579 	/* directly mapped flags for ieee80211_rx_status */
580 	rs->flag |=
581 		(ads.ds_rxstatus3 & AR_GI) ? RX_FLAG_SHORT_GI : 0;
582 	rs->flag |=
583 		(ads.ds_rxstatus3 & AR_2040) ? RX_FLAG_40MHZ : 0;
584 	if (AR_SREV_9280_20_OR_LATER(ah))
585 		rs->flag |=
586 			(ads.ds_rxstatus3 & AR_STBC) ?
587 				/* we can only Nss=1 STBC */
588 				(1 << RX_FLAG_STBC_SHIFT) : 0;
589 
590 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
591 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
592 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
593 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
594 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
595 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
596 
597 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
598 		/*
599 		 * Treat these errors as mutually exclusive to avoid spurious
600 		 * extra error reports from the hardware. If a CRC error is
601 		 * reported, then decryption and MIC errors are irrelevant,
602 		 * the frame is going to be dropped either way
603 		 */
604 		if (ads.ds_rxstatus8 & AR_PHYErr) {
605 			rs->rs_status |= ATH9K_RXERR_PHY;
606 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
607 			rs->rs_phyerr = phyerr;
608 		} else if (ads.ds_rxstatus8 & AR_CRCErr)
609 			rs->rs_status |= ATH9K_RXERR_CRC;
610 		else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
611 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
612 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
613 			rs->rs_status |= ATH9K_RXERR_MIC;
614 	} else {
615 		if (ads.ds_rxstatus8 &
616 		    (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
617 			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
618 
619 		/* Only up to MCS16 supported, everything above is invalid */
620 		if (rs->rs_rate >= 0x90)
621 			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
622 	}
623 
624 	if (ads.ds_rxstatus8 & AR_KeyMiss)
625 		rs->rs_status |= ATH9K_RXERR_KEYMISS;
626 
627 	return 0;
628 }
629 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
630 
631 /*
632  * This can stop or re-enables RX.
633  *
634  * If bool is set this will kill any frame which is currently being
635  * transferred between the MAC and baseband and also prevent any new
636  * frames from getting started.
637  */
ath9k_hw_setrxabort(struct ath_hw * ah,bool set)638 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
639 {
640 	u32 reg;
641 
642 	if (set) {
643 		REG_SET_BIT(ah, AR_DIAG_SW,
644 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
645 
646 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
647 				   0, AH_WAIT_TIMEOUT)) {
648 			REG_CLR_BIT(ah, AR_DIAG_SW,
649 				    (AR_DIAG_RX_DIS |
650 				     AR_DIAG_RX_ABORT));
651 
652 			reg = REG_READ(ah, AR_OBS_BUS_1);
653 			ath_err(ath9k_hw_common(ah),
654 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
655 				reg);
656 
657 			return false;
658 		}
659 	} else {
660 		REG_CLR_BIT(ah, AR_DIAG_SW,
661 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
662 	}
663 
664 	return true;
665 }
666 EXPORT_SYMBOL(ath9k_hw_setrxabort);
667 
ath9k_hw_putrxbuf(struct ath_hw * ah,u32 rxdp)668 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
669 {
670 	REG_WRITE(ah, AR_RXDP, rxdp);
671 }
672 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
673 
ath9k_hw_startpcureceive(struct ath_hw * ah,bool is_scanning)674 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
675 {
676 	ath9k_enable_mib_counters(ah);
677 
678 	ath9k_ani_reset(ah, is_scanning);
679 
680 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
681 }
682 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
683 
ath9k_hw_abortpcurecv(struct ath_hw * ah)684 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
685 {
686 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
687 
688 	ath9k_hw_disable_mib_counters(ah);
689 }
690 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
691 
ath9k_hw_stopdmarecv(struct ath_hw * ah,bool * reset)692 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
693 {
694 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
695 	struct ath_common *common = ath9k_hw_common(ah);
696 	u32 mac_status, last_mac_status = 0;
697 	int i;
698 
699 	/* Enable access to the DMA observation bus */
700 	REG_WRITE(ah, AR_MACMISC,
701 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
702 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
703 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
704 
705 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
706 
707 	/* Wait for rx enable bit to go low */
708 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
709 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
710 			break;
711 
712 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
713 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
714 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
715 				*reset = true;
716 				break;
717 			}
718 
719 			last_mac_status = mac_status;
720 		}
721 
722 		udelay(AH_TIME_QUANTUM);
723 	}
724 
725 	if (i == 0) {
726 		ath_err(common,
727 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
728 			AH_RX_STOP_DMA_TIMEOUT / 1000,
729 			REG_READ(ah, AR_CR),
730 			REG_READ(ah, AR_DIAG_SW),
731 			REG_READ(ah, AR_DMADBG_7));
732 		return false;
733 	} else {
734 		return true;
735 	}
736 
737 #undef AH_RX_STOP_DMA_TIMEOUT
738 }
739 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
740 
ath9k_hw_beaconq_setup(struct ath_hw * ah)741 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
742 {
743 	struct ath9k_tx_queue_info qi;
744 
745 	memset(&qi, 0, sizeof(qi));
746 	qi.tqi_aifs = 1;
747 	qi.tqi_cwmin = 0;
748 	qi.tqi_cwmax = 0;
749 
750 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
751 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
752 
753 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
754 }
755 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
756 
ath9k_hw_intrpend(struct ath_hw * ah)757 bool ath9k_hw_intrpend(struct ath_hw *ah)
758 {
759 	u32 host_isr;
760 
761 	if (AR_SREV_9100(ah))
762 		return true;
763 
764 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
765 
766 	if (((host_isr & AR_INTR_MAC_IRQ) ||
767 	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
768 	    (host_isr != AR_INTR_SPURIOUS))
769 		return true;
770 
771 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
772 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
773 	    && (host_isr != AR_INTR_SPURIOUS))
774 		return true;
775 
776 	return false;
777 }
778 EXPORT_SYMBOL(ath9k_hw_intrpend);
779 
ath9k_hw_kill_interrupts(struct ath_hw * ah)780 void ath9k_hw_kill_interrupts(struct ath_hw *ah)
781 {
782 	struct ath_common *common = ath9k_hw_common(ah);
783 
784 	ath_dbg(common, INTERRUPT, "disable IER\n");
785 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
786 	(void) REG_READ(ah, AR_IER);
787 	if (!AR_SREV_9100(ah)) {
788 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
789 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
790 
791 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
792 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
793 	}
794 }
795 EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
796 
ath9k_hw_disable_interrupts(struct ath_hw * ah)797 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
798 {
799 	if (!(ah->imask & ATH9K_INT_GLOBAL))
800 		atomic_set(&ah->intr_ref_cnt, -1);
801 	else
802 		atomic_dec(&ah->intr_ref_cnt);
803 
804 	ath9k_hw_kill_interrupts(ah);
805 }
806 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
807 
ath9k_hw_enable_interrupts(struct ath_hw * ah)808 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
809 {
810 	struct ath_common *common = ath9k_hw_common(ah);
811 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
812 	u32 async_mask;
813 
814 	if (!(ah->imask & ATH9K_INT_GLOBAL))
815 		return;
816 
817 	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
818 		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
819 			atomic_read(&ah->intr_ref_cnt));
820 		return;
821 	}
822 
823 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
824 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
825 
826 	async_mask = AR_INTR_MAC_IRQ;
827 
828 	if (ah->imask & ATH9K_INT_MCI)
829 		async_mask |= AR_INTR_ASYNC_MASK_MCI;
830 
831 	ath_dbg(common, INTERRUPT, "enable IER\n");
832 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
833 	if (!AR_SREV_9100(ah)) {
834 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
835 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
836 
837 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
838 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
839 	}
840 	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
841 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
842 }
843 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
844 
ath9k_hw_set_interrupts(struct ath_hw * ah)845 void ath9k_hw_set_interrupts(struct ath_hw *ah)
846 {
847 	enum ath9k_int ints = ah->imask;
848 	u32 mask, mask2;
849 	struct ath9k_hw_capabilities *pCap = &ah->caps;
850 	struct ath_common *common = ath9k_hw_common(ah);
851 
852 	if (!(ints & ATH9K_INT_GLOBAL))
853 		ath9k_hw_disable_interrupts(ah);
854 
855 	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
856 
857 	mask = ints & ATH9K_INT_COMMON;
858 	mask2 = 0;
859 
860 	if (ints & ATH9K_INT_TX) {
861 		if (ah->config.tx_intr_mitigation)
862 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
863 		else {
864 			if (ah->txok_interrupt_mask)
865 				mask |= AR_IMR_TXOK;
866 			if (ah->txdesc_interrupt_mask)
867 				mask |= AR_IMR_TXDESC;
868 		}
869 		if (ah->txerr_interrupt_mask)
870 			mask |= AR_IMR_TXERR;
871 		if (ah->txeol_interrupt_mask)
872 			mask |= AR_IMR_TXEOL;
873 	}
874 	if (ints & ATH9K_INT_RX) {
875 		if (AR_SREV_9300_20_OR_LATER(ah)) {
876 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
877 			if (ah->config.rx_intr_mitigation) {
878 				mask &= ~AR_IMR_RXOK_LP;
879 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
880 			} else {
881 				mask |= AR_IMR_RXOK_LP;
882 			}
883 		} else {
884 			if (ah->config.rx_intr_mitigation)
885 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
886 			else
887 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
888 		}
889 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
890 			mask |= AR_IMR_GENTMR;
891 	}
892 
893 	if (ints & ATH9K_INT_GENTIMER)
894 		mask |= AR_IMR_GENTMR;
895 
896 	if (ints & (ATH9K_INT_BMISC)) {
897 		mask |= AR_IMR_BCNMISC;
898 		if (ints & ATH9K_INT_TIM)
899 			mask2 |= AR_IMR_S2_TIM;
900 		if (ints & ATH9K_INT_DTIM)
901 			mask2 |= AR_IMR_S2_DTIM;
902 		if (ints & ATH9K_INT_DTIMSYNC)
903 			mask2 |= AR_IMR_S2_DTIMSYNC;
904 		if (ints & ATH9K_INT_CABEND)
905 			mask2 |= AR_IMR_S2_CABEND;
906 		if (ints & ATH9K_INT_TSFOOR)
907 			mask2 |= AR_IMR_S2_TSFOOR;
908 	}
909 
910 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
911 		mask |= AR_IMR_BCNMISC;
912 		if (ints & ATH9K_INT_GTT)
913 			mask2 |= AR_IMR_S2_GTT;
914 		if (ints & ATH9K_INT_CST)
915 			mask2 |= AR_IMR_S2_CST;
916 	}
917 
918 	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
919 		if (ints & ATH9K_INT_BB_WATCHDOG) {
920 			mask |= AR_IMR_BCNMISC;
921 			mask2 |= AR_IMR_S2_BB_WATCHDOG;
922 		}
923 	}
924 
925 	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
926 	REG_WRITE(ah, AR_IMR, mask);
927 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
928 			   AR_IMR_S2_DTIM |
929 			   AR_IMR_S2_DTIMSYNC |
930 			   AR_IMR_S2_CABEND |
931 			   AR_IMR_S2_CABTO |
932 			   AR_IMR_S2_TSFOOR |
933 			   AR_IMR_S2_GTT |
934 			   AR_IMR_S2_CST);
935 
936 	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
937 		if (ints & ATH9K_INT_BB_WATCHDOG)
938 			ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
939 	}
940 
941 	ah->imrs2_reg |= mask2;
942 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
943 
944 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
945 		if (ints & ATH9K_INT_TIM_TIMER)
946 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
947 		else
948 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
949 	}
950 
951 	return;
952 }
953 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
954 
955 #define ATH9K_HW_MAX_DCU       10
956 #define ATH9K_HW_SLICE_PER_DCU 16
957 #define ATH9K_HW_BIT_IN_SLICE  16
ath9k_hw_set_tx_filter(struct ath_hw * ah,u8 destidx,bool set)958 void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
959 {
960 	int dcu_idx;
961 	u32 filter;
962 
963 	for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
964 		filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
965 		filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
966 		filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
967 			     AR_D_TXBLK_WRITE_SLICE);
968 		filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
969 		ath_dbg(ath9k_hw_common(ah), PS,
970 			"DCU%d staid %d set %d txfilter %08x\n",
971 			dcu_idx, destidx, set, filter);
972 		REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
973 	}
974 }
975 EXPORT_SYMBOL(ath9k_hw_set_tx_filter);
976