1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20
21 #define BITS_PER_BYTE 8
22 #define OFDM_PLCP_BITS 22
23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF 8
25 #define L_LTF 8
26 #define L_SIG 4
27 #define HT_SIG 8
28 #define HT_STF 4
29 #define HT_LTF(_ns) (4 * (_ns))
30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t) ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36
37
38 static u16 bits_per_symbol[][2] = {
39 /* 20MHz 40MHz */
40 { 26, 54 }, /* 0: BPSK */
41 { 52, 108 }, /* 1: QPSK 1/2 */
42 { 78, 162 }, /* 2: QPSK 3/4 */
43 { 104, 216 }, /* 3: 16-QAM 1/2 */
44 { 156, 324 }, /* 4: 16-QAM 3/4 */
45 { 208, 432 }, /* 5: 64-QAM 2/3 */
46 { 234, 486 }, /* 6: 64-QAM 3/4 */
47 { 260, 540 }, /* 7: 64-QAM 5/6 */
48 };
49
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 struct ath_txq *txq, struct list_head *bf_q,
56 struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 struct ath_tx_status *ts, int nframes, int nbad,
61 int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 struct ath_txq *txq,
66 struct ath_atx_tid *tid,
67 struct sk_buff *skb);
68
69 enum {
70 MCS_HT20,
71 MCS_HT20_SGI,
72 MCS_HT40,
73 MCS_HT40_SGI,
74 };
75
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79
ath_txq_lock(struct ath_softc * sc,struct ath_txq * txq)80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 __acquires(&txq->axq_lock)
82 {
83 spin_lock_bh(&txq->axq_lock);
84 }
85
ath_txq_unlock(struct ath_softc * sc,struct ath_txq * txq)86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 __releases(&txq->axq_lock)
88 {
89 spin_unlock_bh(&txq->axq_lock);
90 }
91
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 __releases(&txq->axq_lock)
94 {
95 struct sk_buff_head q;
96 struct sk_buff *skb;
97
98 __skb_queue_head_init(&q);
99 skb_queue_splice_init(&txq->complete_q, &q);
100 spin_unlock_bh(&txq->axq_lock);
101
102 while ((skb = __skb_dequeue(&q)))
103 ieee80211_tx_status(sc->hw, skb);
104 }
105
ath_tx_queue_tid(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 struct ath_atx_tid *tid)
108 {
109 struct ath_atx_ac *ac = tid->ac;
110 struct list_head *list;
111 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
112 struct ath_chanctx *ctx = avp->chanctx;
113
114 if (!ctx)
115 return;
116
117 if (tid->sched)
118 return;
119
120 tid->sched = true;
121 list_add_tail(&tid->list, &ac->tid_q);
122
123 if (ac->sched)
124 return;
125
126 ac->sched = true;
127
128 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
129 list_add_tail(&ac->list, list);
130 }
131
get_frame_info(struct sk_buff * skb)132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
133 {
134 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
135 BUILD_BUG_ON(sizeof(struct ath_frame_info) >
136 sizeof(tx_info->rate_driver_data));
137 return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
138 }
139
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
141 {
142 if (!tid->an->sta)
143 return;
144
145 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
146 seqno << IEEE80211_SEQ_SEQ_SHIFT);
147 }
148
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
150 struct ath_buf *bf)
151 {
152 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
153 ARRAY_SIZE(bf->rates));
154 }
155
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
157 struct sk_buff *skb)
158 {
159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
160 struct ath_frame_info *fi = get_frame_info(skb);
161 int q = fi->txq;
162
163 if (q < 0)
164 return;
165
166 txq = sc->tx.txq_map[q];
167 if (WARN_ON(--txq->pending_frames < 0))
168 txq->pending_frames = 0;
169
170 if (txq->stopped &&
171 txq->pending_frames < sc->tx.txq_max_pending[q]) {
172 if (ath9k_is_chanctx_enabled())
173 ieee80211_wake_queue(sc->hw, info->hw_queue);
174 else
175 ieee80211_wake_queue(sc->hw, q);
176 txq->stopped = false;
177 }
178 }
179
180 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)181 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
182 {
183 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
184 return ATH_AN_2_TID(an, tidno);
185 }
186
ath_tid_has_buffered(struct ath_atx_tid * tid)187 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
188 {
189 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
190 }
191
ath_tid_dequeue(struct ath_atx_tid * tid)192 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
193 {
194 struct sk_buff *skb;
195
196 skb = __skb_dequeue(&tid->retry_q);
197 if (!skb)
198 skb = __skb_dequeue(&tid->buf_q);
199
200 return skb;
201 }
202
203 /*
204 * ath_tx_tid_change_state:
205 * - clears a-mpdu flag of previous session
206 * - force sequence number allocation to fix next BlockAck Window
207 */
208 static void
ath_tx_tid_change_state(struct ath_softc * sc,struct ath_atx_tid * tid)209 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
210 {
211 struct ath_txq *txq = tid->ac->txq;
212 struct ieee80211_tx_info *tx_info;
213 struct sk_buff *skb, *tskb;
214 struct ath_buf *bf;
215 struct ath_frame_info *fi;
216
217 skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
218 fi = get_frame_info(skb);
219 bf = fi->bf;
220
221 tx_info = IEEE80211_SKB_CB(skb);
222 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
223
224 if (bf)
225 continue;
226
227 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
228 if (!bf) {
229 __skb_unlink(skb, &tid->buf_q);
230 ath_txq_skb_done(sc, txq, skb);
231 ieee80211_free_txskb(sc->hw, skb);
232 continue;
233 }
234 }
235
236 }
237
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)238 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
239 {
240 struct ath_txq *txq = tid->ac->txq;
241 struct sk_buff *skb;
242 struct ath_buf *bf;
243 struct list_head bf_head;
244 struct ath_tx_status ts;
245 struct ath_frame_info *fi;
246 bool sendbar = false;
247
248 INIT_LIST_HEAD(&bf_head);
249
250 memset(&ts, 0, sizeof(ts));
251
252 while ((skb = __skb_dequeue(&tid->retry_q))) {
253 fi = get_frame_info(skb);
254 bf = fi->bf;
255 if (!bf) {
256 ath_txq_skb_done(sc, txq, skb);
257 ieee80211_free_txskb(sc->hw, skb);
258 continue;
259 }
260
261 if (fi->baw_tracked) {
262 ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
263 sendbar = true;
264 }
265
266 list_add_tail(&bf->list, &bf_head);
267 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
268 }
269
270 if (sendbar) {
271 ath_txq_unlock(sc, txq);
272 ath_send_bar(tid, tid->seq_start);
273 ath_txq_lock(sc, txq);
274 }
275 }
276
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,int seqno)277 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
278 int seqno)
279 {
280 int index, cindex;
281
282 index = ATH_BA_INDEX(tid->seq_start, seqno);
283 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
284
285 __clear_bit(cindex, tid->tx_buf);
286
287 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
288 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
289 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
290 if (tid->bar_index >= 0)
291 tid->bar_index--;
292 }
293 }
294
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)295 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
296 struct ath_buf *bf)
297 {
298 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
299 u16 seqno = bf->bf_state.seqno;
300 int index, cindex;
301
302 index = ATH_BA_INDEX(tid->seq_start, seqno);
303 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
304 __set_bit(cindex, tid->tx_buf);
305 fi->baw_tracked = 1;
306
307 if (index >= ((tid->baw_tail - tid->baw_head) &
308 (ATH_TID_MAX_BUFS - 1))) {
309 tid->baw_tail = cindex;
310 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
311 }
312 }
313
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)314 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
315 struct ath_atx_tid *tid)
316
317 {
318 struct sk_buff *skb;
319 struct ath_buf *bf;
320 struct list_head bf_head;
321 struct ath_tx_status ts;
322 struct ath_frame_info *fi;
323
324 memset(&ts, 0, sizeof(ts));
325 INIT_LIST_HEAD(&bf_head);
326
327 while ((skb = ath_tid_dequeue(tid))) {
328 fi = get_frame_info(skb);
329 bf = fi->bf;
330
331 if (!bf) {
332 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
333 continue;
334 }
335
336 list_add_tail(&bf->list, &bf_head);
337 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
338 }
339 }
340
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)341 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
342 struct sk_buff *skb, int count)
343 {
344 struct ath_frame_info *fi = get_frame_info(skb);
345 struct ath_buf *bf = fi->bf;
346 struct ieee80211_hdr *hdr;
347 int prev = fi->retries;
348
349 TX_STAT_INC(txq->axq_qnum, a_retries);
350 fi->retries += count;
351
352 if (prev > 0)
353 return;
354
355 hdr = (struct ieee80211_hdr *)skb->data;
356 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
357 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
358 sizeof(*hdr), DMA_TO_DEVICE);
359 }
360
ath_tx_get_buffer(struct ath_softc * sc)361 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
362 {
363 struct ath_buf *bf = NULL;
364
365 spin_lock_bh(&sc->tx.txbuflock);
366
367 if (unlikely(list_empty(&sc->tx.txbuf))) {
368 spin_unlock_bh(&sc->tx.txbuflock);
369 return NULL;
370 }
371
372 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
373 list_del(&bf->list);
374
375 spin_unlock_bh(&sc->tx.txbuflock);
376
377 return bf;
378 }
379
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)380 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
381 {
382 spin_lock_bh(&sc->tx.txbuflock);
383 list_add_tail(&bf->list, &sc->tx.txbuf);
384 spin_unlock_bh(&sc->tx.txbuflock);
385 }
386
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)387 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
388 {
389 struct ath_buf *tbf;
390
391 tbf = ath_tx_get_buffer(sc);
392 if (WARN_ON(!tbf))
393 return NULL;
394
395 ATH_TXBUF_RESET(tbf);
396
397 tbf->bf_mpdu = bf->bf_mpdu;
398 tbf->bf_buf_addr = bf->bf_buf_addr;
399 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
400 tbf->bf_state = bf->bf_state;
401 tbf->bf_state.stale = false;
402
403 return tbf;
404 }
405
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
407 struct ath_tx_status *ts, int txok,
408 int *nframes, int *nbad)
409 {
410 struct ath_frame_info *fi;
411 u16 seq_st = 0;
412 u32 ba[WME_BA_BMP_SIZE >> 5];
413 int ba_index;
414 int isaggr = 0;
415
416 *nbad = 0;
417 *nframes = 0;
418
419 isaggr = bf_isaggr(bf);
420 if (isaggr) {
421 seq_st = ts->ts_seqnum;
422 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
423 }
424
425 while (bf) {
426 fi = get_frame_info(bf->bf_mpdu);
427 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
428
429 (*nframes)++;
430 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
431 (*nbad)++;
432
433 bf = bf->bf_next;
434 }
435 }
436
437
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ath_tx_status * ts,int txok)438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
439 struct ath_buf *bf, struct list_head *bf_q,
440 struct ath_tx_status *ts, int txok)
441 {
442 struct ath_node *an = NULL;
443 struct sk_buff *skb;
444 struct ieee80211_sta *sta;
445 struct ieee80211_hw *hw = sc->hw;
446 struct ieee80211_hdr *hdr;
447 struct ieee80211_tx_info *tx_info;
448 struct ath_atx_tid *tid = NULL;
449 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
450 struct list_head bf_head;
451 struct sk_buff_head bf_pending;
452 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
453 u32 ba[WME_BA_BMP_SIZE >> 5];
454 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
455 bool rc_update = true, isba;
456 struct ieee80211_tx_rate rates[4];
457 struct ath_frame_info *fi;
458 int nframes;
459 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
460 int i, retries;
461 int bar_index = -1;
462
463 skb = bf->bf_mpdu;
464 hdr = (struct ieee80211_hdr *)skb->data;
465
466 tx_info = IEEE80211_SKB_CB(skb);
467
468 memcpy(rates, bf->rates, sizeof(rates));
469
470 retries = ts->ts_longretry + 1;
471 for (i = 0; i < ts->ts_rateindex; i++)
472 retries += rates[i].count;
473
474 rcu_read_lock();
475
476 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
477 if (!sta) {
478 rcu_read_unlock();
479
480 INIT_LIST_HEAD(&bf_head);
481 while (bf) {
482 bf_next = bf->bf_next;
483
484 if (!bf->bf_state.stale || bf_next != NULL)
485 list_move_tail(&bf->list, &bf_head);
486
487 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
488
489 bf = bf_next;
490 }
491 return;
492 }
493
494 an = (struct ath_node *)sta->drv_priv;
495 tid = ath_get_skb_tid(sc, an, skb);
496 seq_first = tid->seq_start;
497 isba = ts->ts_flags & ATH9K_TX_BA;
498
499 /*
500 * The hardware occasionally sends a tx status for the wrong TID.
501 * In this case, the BA status cannot be considered valid and all
502 * subframes need to be retransmitted
503 *
504 * Only BlockAcks have a TID and therefore normal Acks cannot be
505 * checked
506 */
507 if (isba && tid->tidno != ts->tid)
508 txok = false;
509
510 isaggr = bf_isaggr(bf);
511 memset(ba, 0, WME_BA_BMP_SIZE >> 3);
512
513 if (isaggr && txok) {
514 if (ts->ts_flags & ATH9K_TX_BA) {
515 seq_st = ts->ts_seqnum;
516 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
517 } else {
518 /*
519 * AR5416 can become deaf/mute when BA
520 * issue happens. Chip needs to be reset.
521 * But AP code may have sychronization issues
522 * when perform internal reset in this routine.
523 * Only enable reset in STA mode for now.
524 */
525 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
526 needreset = 1;
527 }
528 }
529
530 __skb_queue_head_init(&bf_pending);
531
532 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
533 while (bf) {
534 u16 seqno = bf->bf_state.seqno;
535
536 txfail = txpending = sendbar = 0;
537 bf_next = bf->bf_next;
538
539 skb = bf->bf_mpdu;
540 tx_info = IEEE80211_SKB_CB(skb);
541 fi = get_frame_info(skb);
542
543 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
544 !tid->active) {
545 /*
546 * Outside of the current BlockAck window,
547 * maybe part of a previous session
548 */
549 txfail = 1;
550 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
551 /* transmit completion, subframe is
552 * acked by block ack */
553 acked_cnt++;
554 } else if (!isaggr && txok) {
555 /* transmit completion */
556 acked_cnt++;
557 } else if (flush) {
558 txpending = 1;
559 } else if (fi->retries < ATH_MAX_SW_RETRIES) {
560 if (txok || !an->sleeping)
561 ath_tx_set_retry(sc, txq, bf->bf_mpdu,
562 retries);
563
564 txpending = 1;
565 } else {
566 txfail = 1;
567 txfail_cnt++;
568 bar_index = max_t(int, bar_index,
569 ATH_BA_INDEX(seq_first, seqno));
570 }
571
572 /*
573 * Make sure the last desc is reclaimed if it
574 * not a holding desc.
575 */
576 INIT_LIST_HEAD(&bf_head);
577 if (bf_next != NULL || !bf_last->bf_state.stale)
578 list_move_tail(&bf->list, &bf_head);
579
580 if (!txpending) {
581 /*
582 * complete the acked-ones/xretried ones; update
583 * block-ack window
584 */
585 ath_tx_update_baw(sc, tid, seqno);
586
587 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
588 memcpy(tx_info->control.rates, rates, sizeof(rates));
589 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
590 rc_update = false;
591 if (bf == bf->bf_lastbf)
592 ath_dynack_sample_tx_ts(sc->sc_ah,
593 bf->bf_mpdu,
594 ts);
595 }
596
597 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
598 !txfail);
599 } else {
600 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
601 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
602 ieee80211_sta_eosp(sta);
603 }
604 /* retry the un-acked ones */
605 if (bf->bf_next == NULL && bf_last->bf_state.stale) {
606 struct ath_buf *tbf;
607
608 tbf = ath_clone_txbuf(sc, bf_last);
609 /*
610 * Update tx baw and complete the
611 * frame with failed status if we
612 * run out of tx buf.
613 */
614 if (!tbf) {
615 ath_tx_update_baw(sc, tid, seqno);
616
617 ath_tx_complete_buf(sc, bf, txq,
618 &bf_head, ts, 0);
619 bar_index = max_t(int, bar_index,
620 ATH_BA_INDEX(seq_first, seqno));
621 break;
622 }
623
624 fi->bf = tbf;
625 }
626
627 /*
628 * Put this buffer to the temporary pending
629 * queue to retain ordering
630 */
631 __skb_queue_tail(&bf_pending, skb);
632 }
633
634 bf = bf_next;
635 }
636
637 /* prepend un-acked frames to the beginning of the pending frame queue */
638 if (!skb_queue_empty(&bf_pending)) {
639 if (an->sleeping)
640 ieee80211_sta_set_buffered(sta, tid->tidno, true);
641
642 skb_queue_splice_tail(&bf_pending, &tid->retry_q);
643 if (!an->sleeping) {
644 ath_tx_queue_tid(sc, txq, tid);
645
646 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
647 tid->ac->clear_ps_filter = true;
648 }
649 }
650
651 if (bar_index >= 0) {
652 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
653
654 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
655 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
656
657 ath_txq_unlock(sc, txq);
658 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
659 ath_txq_lock(sc, txq);
660 }
661
662 rcu_read_unlock();
663
664 if (needreset)
665 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
666 }
667
bf_is_ampdu_not_probing(struct ath_buf * bf)668 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
669 {
670 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
671 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
672 }
673
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)674 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
675 struct ath_tx_status *ts, struct ath_buf *bf,
676 struct list_head *bf_head)
677 {
678 struct ieee80211_tx_info *info;
679 bool txok, flush;
680
681 txok = !(ts->ts_status & ATH9K_TXERR_MASK);
682 flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
683 txq->axq_tx_inprogress = false;
684
685 txq->axq_depth--;
686 if (bf_is_ampdu_not_probing(bf))
687 txq->axq_ampdu_depth--;
688
689 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
690 ts->ts_rateindex);
691 if (!bf_isampdu(bf)) {
692 if (!flush) {
693 info = IEEE80211_SKB_CB(bf->bf_mpdu);
694 memcpy(info->control.rates, bf->rates,
695 sizeof(info->control.rates));
696 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
697 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
698 }
699 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
700 } else
701 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
702
703 if (!flush)
704 ath_txq_schedule(sc, txq);
705 }
706
ath_lookup_legacy(struct ath_buf * bf)707 static bool ath_lookup_legacy(struct ath_buf *bf)
708 {
709 struct sk_buff *skb;
710 struct ieee80211_tx_info *tx_info;
711 struct ieee80211_tx_rate *rates;
712 int i;
713
714 skb = bf->bf_mpdu;
715 tx_info = IEEE80211_SKB_CB(skb);
716 rates = tx_info->control.rates;
717
718 for (i = 0; i < 4; i++) {
719 if (!rates[i].count || rates[i].idx < 0)
720 break;
721
722 if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
723 return true;
724 }
725
726 return false;
727 }
728
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)729 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
730 struct ath_atx_tid *tid)
731 {
732 struct sk_buff *skb;
733 struct ieee80211_tx_info *tx_info;
734 struct ieee80211_tx_rate *rates;
735 u32 max_4ms_framelen, frmlen;
736 u16 aggr_limit, bt_aggr_limit, legacy = 0;
737 int q = tid->ac->txq->mac80211_qnum;
738 int i;
739
740 skb = bf->bf_mpdu;
741 tx_info = IEEE80211_SKB_CB(skb);
742 rates = bf->rates;
743
744 /*
745 * Find the lowest frame length among the rate series that will have a
746 * 4ms (or TXOP limited) transmit duration.
747 */
748 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
749
750 for (i = 0; i < 4; i++) {
751 int modeidx;
752
753 if (!rates[i].count)
754 continue;
755
756 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
757 legacy = 1;
758 break;
759 }
760
761 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
762 modeidx = MCS_HT40;
763 else
764 modeidx = MCS_HT20;
765
766 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
767 modeidx++;
768
769 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
770 max_4ms_framelen = min(max_4ms_framelen, frmlen);
771 }
772
773 /*
774 * limit aggregate size by the minimum rate if rate selected is
775 * not a probe rate, if rate selected is a probe rate then
776 * avoid aggregation of this packet.
777 */
778 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
779 return 0;
780
781 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
782
783 /*
784 * Override the default aggregation limit for BTCOEX.
785 */
786 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
787 if (bt_aggr_limit)
788 aggr_limit = bt_aggr_limit;
789
790 if (tid->an->maxampdu)
791 aggr_limit = min(aggr_limit, tid->an->maxampdu);
792
793 return aggr_limit;
794 }
795
796 /*
797 * Returns the number of delimiters to be added to
798 * meet the minimum required mpdudensity.
799 */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)800 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
801 struct ath_buf *bf, u16 frmlen,
802 bool first_subfrm)
803 {
804 #define FIRST_DESC_NDELIMS 60
805 u32 nsymbits, nsymbols;
806 u16 minlen;
807 u8 flags, rix;
808 int width, streams, half_gi, ndelim, mindelim;
809 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
810
811 /* Select standard number of delimiters based on frame length alone */
812 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
813
814 /*
815 * If encryption enabled, hardware requires some more padding between
816 * subframes.
817 * TODO - this could be improved to be dependent on the rate.
818 * The hardware can keep up at lower rates, but not higher rates
819 */
820 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
821 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
822 ndelim += ATH_AGGR_ENCRYPTDELIM;
823
824 /*
825 * Add delimiter when using RTS/CTS with aggregation
826 * and non enterprise AR9003 card
827 */
828 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
829 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
830 ndelim = max(ndelim, FIRST_DESC_NDELIMS);
831
832 /*
833 * Convert desired mpdu density from microeconds to bytes based
834 * on highest rate in rate series (i.e. first rate) to determine
835 * required minimum length for subframe. Take into account
836 * whether high rate is 20 or 40Mhz and half or full GI.
837 *
838 * If there is no mpdu density restriction, no further calculation
839 * is needed.
840 */
841
842 if (tid->an->mpdudensity == 0)
843 return ndelim;
844
845 rix = bf->rates[0].idx;
846 flags = bf->rates[0].flags;
847 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
848 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
849
850 if (half_gi)
851 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
852 else
853 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
854
855 if (nsymbols == 0)
856 nsymbols = 1;
857
858 streams = HT_RC_2_STREAMS(rix);
859 nsymbits = bits_per_symbol[rix % 8][width] * streams;
860 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
861
862 if (frmlen < minlen) {
863 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
864 ndelim = max(mindelim, ndelim);
865 }
866
867 return ndelim;
868 }
869
870 static struct ath_buf *
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff_head ** q)871 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
872 struct ath_atx_tid *tid, struct sk_buff_head **q)
873 {
874 struct ieee80211_tx_info *tx_info;
875 struct ath_frame_info *fi;
876 struct sk_buff *skb;
877 struct ath_buf *bf;
878 u16 seqno;
879
880 while (1) {
881 *q = &tid->retry_q;
882 if (skb_queue_empty(*q))
883 *q = &tid->buf_q;
884
885 skb = skb_peek(*q);
886 if (!skb)
887 break;
888
889 fi = get_frame_info(skb);
890 bf = fi->bf;
891 if (!fi->bf)
892 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
893 else
894 bf->bf_state.stale = false;
895
896 if (!bf) {
897 __skb_unlink(skb, *q);
898 ath_txq_skb_done(sc, txq, skb);
899 ieee80211_free_txskb(sc->hw, skb);
900 continue;
901 }
902
903 bf->bf_next = NULL;
904 bf->bf_lastbf = bf;
905
906 tx_info = IEEE80211_SKB_CB(skb);
907 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
908
909 /*
910 * No aggregation session is running, but there may be frames
911 * from a previous session or a failed attempt in the queue.
912 * Send them out as normal data frames
913 */
914 if (!tid->active)
915 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
916
917 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
918 bf->bf_state.bf_type = 0;
919 return bf;
920 }
921
922 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
923 seqno = bf->bf_state.seqno;
924
925 /* do not step over block-ack window */
926 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
927 break;
928
929 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
930 struct ath_tx_status ts = {};
931 struct list_head bf_head;
932
933 INIT_LIST_HEAD(&bf_head);
934 list_add(&bf->list, &bf_head);
935 __skb_unlink(skb, *q);
936 ath_tx_update_baw(sc, tid, seqno);
937 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
938 continue;
939 }
940
941 return bf;
942 }
943
944 return NULL;
945 }
946
947 static bool
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q,int * aggr_len)948 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
949 struct ath_atx_tid *tid, struct list_head *bf_q,
950 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
951 int *aggr_len)
952 {
953 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
954 struct ath_buf *bf = bf_first, *bf_prev = NULL;
955 int nframes = 0, ndelim;
956 u16 aggr_limit = 0, al = 0, bpad = 0,
957 al_delta, h_baw = tid->baw_size / 2;
958 struct ieee80211_tx_info *tx_info;
959 struct ath_frame_info *fi;
960 struct sk_buff *skb;
961 bool closed = false;
962
963 bf = bf_first;
964 aggr_limit = ath_lookup_rate(sc, bf, tid);
965
966 do {
967 skb = bf->bf_mpdu;
968 fi = get_frame_info(skb);
969
970 /* do not exceed aggregation limit */
971 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
972 if (nframes) {
973 if (aggr_limit < al + bpad + al_delta ||
974 ath_lookup_legacy(bf) || nframes >= h_baw)
975 break;
976
977 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
978 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
979 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
980 break;
981 }
982
983 /* add padding for previous frame to aggregation length */
984 al += bpad + al_delta;
985
986 /*
987 * Get the delimiters needed to meet the MPDU
988 * density for this node.
989 */
990 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
991 !nframes);
992 bpad = PADBYTES(al_delta) + (ndelim << 2);
993
994 nframes++;
995 bf->bf_next = NULL;
996
997 /* link buffers of this frame to the aggregate */
998 if (!fi->baw_tracked)
999 ath_tx_addto_baw(sc, tid, bf);
1000 bf->bf_state.ndelim = ndelim;
1001
1002 __skb_unlink(skb, tid_q);
1003 list_add_tail(&bf->list, bf_q);
1004 if (bf_prev)
1005 bf_prev->bf_next = bf;
1006
1007 bf_prev = bf;
1008
1009 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1010 if (!bf) {
1011 closed = true;
1012 break;
1013 }
1014 } while (ath_tid_has_buffered(tid));
1015
1016 bf = bf_first;
1017 bf->bf_lastbf = bf_prev;
1018
1019 if (bf == bf_prev) {
1020 al = get_frame_info(bf->bf_mpdu)->framelen;
1021 bf->bf_state.bf_type = BUF_AMPDU;
1022 } else {
1023 TX_STAT_INC(txq->axq_qnum, a_aggr);
1024 }
1025
1026 *aggr_len = al;
1027
1028 return closed;
1029 #undef PADBYTES
1030 }
1031
1032 /*
1033 * rix - rate index
1034 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1035 * width - 0 for 20 MHz, 1 for 40 MHz
1036 * half_gi - to use 4us v/s 3.6 us for symbol time
1037 */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1038 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1039 int width, int half_gi, bool shortPreamble)
1040 {
1041 u32 nbits, nsymbits, duration, nsymbols;
1042 int streams;
1043
1044 /* find number of symbols: PLCP + data */
1045 streams = HT_RC_2_STREAMS(rix);
1046 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1047 nsymbits = bits_per_symbol[rix % 8][width] * streams;
1048 nsymbols = (nbits + nsymbits - 1) / nsymbits;
1049
1050 if (!half_gi)
1051 duration = SYMBOL_TIME(nsymbols);
1052 else
1053 duration = SYMBOL_TIME_HALFGI(nsymbols);
1054
1055 /* addup duration for legacy/ht training and signal fields */
1056 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057
1058 return duration;
1059 }
1060
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1061 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1062 {
1063 int streams = HT_RC_2_STREAMS(mcs);
1064 int symbols, bits;
1065 int bytes = 0;
1066
1067 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1068 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1069 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1070 bits -= OFDM_PLCP_BITS;
1071 bytes = bits / 8;
1072 if (bytes > 65532)
1073 bytes = 65532;
1074
1075 return bytes;
1076 }
1077
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1078 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1079 {
1080 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1081 int mcs;
1082
1083 /* 4ms is the default (and maximum) duration */
1084 if (!txop || txop > 4096)
1085 txop = 4096;
1086
1087 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1088 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1089 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1090 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1091 for (mcs = 0; mcs < 32; mcs++) {
1092 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1093 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1094 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1095 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1096 }
1097 }
1098
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1099 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1100 struct ath_tx_info *info, int len, bool rts)
1101 {
1102 struct ath_hw *ah = sc->sc_ah;
1103 struct ath_common *common = ath9k_hw_common(ah);
1104 struct sk_buff *skb;
1105 struct ieee80211_tx_info *tx_info;
1106 struct ieee80211_tx_rate *rates;
1107 const struct ieee80211_rate *rate;
1108 struct ieee80211_hdr *hdr;
1109 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1110 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1111 int i;
1112 u8 rix = 0;
1113
1114 skb = bf->bf_mpdu;
1115 tx_info = IEEE80211_SKB_CB(skb);
1116 rates = bf->rates;
1117 hdr = (struct ieee80211_hdr *)skb->data;
1118
1119 /* set dur_update_en for l-sig computation except for PS-Poll frames */
1120 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1121 info->rtscts_rate = fi->rtscts_rate;
1122
1123 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1124 bool is_40, is_sgi, is_sp;
1125 int phy;
1126
1127 if (!rates[i].count || (rates[i].idx < 0))
1128 continue;
1129
1130 rix = rates[i].idx;
1131 info->rates[i].Tries = rates[i].count;
1132
1133 /*
1134 * Handle RTS threshold for unaggregated HT frames.
1135 */
1136 if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1137 (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1138 unlikely(rts_thresh != (u32) -1)) {
1139 if (!rts_thresh || (len > rts_thresh))
1140 rts = true;
1141 }
1142
1143 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1144 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1145 info->flags |= ATH9K_TXDESC_RTSENA;
1146 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1147 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1148 info->flags |= ATH9K_TXDESC_CTSENA;
1149 }
1150
1151 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1152 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1153 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1154 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1155
1156 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1157 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1158 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1159
1160 if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1161 /* MCS rates */
1162 info->rates[i].Rate = rix | 0x80;
1163 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1164 ah->txchainmask, info->rates[i].Rate);
1165 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1166 is_40, is_sgi, is_sp);
1167 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1168 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1169 continue;
1170 }
1171
1172 /* legacy rates */
1173 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1174 if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1175 !(rate->flags & IEEE80211_RATE_ERP_G))
1176 phy = WLAN_RC_PHY_CCK;
1177 else
1178 phy = WLAN_RC_PHY_OFDM;
1179
1180 info->rates[i].Rate = rate->hw_value;
1181 if (rate->hw_value_short) {
1182 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1183 info->rates[i].Rate |= rate->hw_value_short;
1184 } else {
1185 is_sp = false;
1186 }
1187
1188 if (bf->bf_state.bfs_paprd)
1189 info->rates[i].ChSel = ah->txchainmask;
1190 else
1191 info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1192 ah->txchainmask, info->rates[i].Rate);
1193
1194 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1195 phy, rate->bitrate * 100, len, rix, is_sp);
1196 }
1197
1198 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1199 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1200 info->flags &= ~ATH9K_TXDESC_RTSENA;
1201
1202 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1203 if (info->flags & ATH9K_TXDESC_RTSENA)
1204 info->flags &= ~ATH9K_TXDESC_CTSENA;
1205 }
1206
get_hw_packet_type(struct sk_buff * skb)1207 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1208 {
1209 struct ieee80211_hdr *hdr;
1210 enum ath9k_pkt_type htype;
1211 __le16 fc;
1212
1213 hdr = (struct ieee80211_hdr *)skb->data;
1214 fc = hdr->frame_control;
1215
1216 if (ieee80211_is_beacon(fc))
1217 htype = ATH9K_PKT_TYPE_BEACON;
1218 else if (ieee80211_is_probe_resp(fc))
1219 htype = ATH9K_PKT_TYPE_PROBE_RESP;
1220 else if (ieee80211_is_atim(fc))
1221 htype = ATH9K_PKT_TYPE_ATIM;
1222 else if (ieee80211_is_pspoll(fc))
1223 htype = ATH9K_PKT_TYPE_PSPOLL;
1224 else
1225 htype = ATH9K_PKT_TYPE_NORMAL;
1226
1227 return htype;
1228 }
1229
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1230 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1231 struct ath_txq *txq, int len)
1232 {
1233 struct ath_hw *ah = sc->sc_ah;
1234 struct ath_buf *bf_first = NULL;
1235 struct ath_tx_info info;
1236 u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1237 bool rts = false;
1238
1239 memset(&info, 0, sizeof(info));
1240 info.is_first = true;
1241 info.is_last = true;
1242 info.txpower = MAX_RATE_POWER;
1243 info.qcu = txq->axq_qnum;
1244
1245 while (bf) {
1246 struct sk_buff *skb = bf->bf_mpdu;
1247 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1248 struct ath_frame_info *fi = get_frame_info(skb);
1249 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1250
1251 info.type = get_hw_packet_type(skb);
1252 if (bf->bf_next)
1253 info.link = bf->bf_next->bf_daddr;
1254 else
1255 info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1256
1257 if (!bf_first) {
1258 bf_first = bf;
1259
1260 if (!sc->tx99_state)
1261 info.flags = ATH9K_TXDESC_INTREQ;
1262 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1263 txq == sc->tx.uapsdq)
1264 info.flags |= ATH9K_TXDESC_CLRDMASK;
1265
1266 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1267 info.flags |= ATH9K_TXDESC_NOACK;
1268 if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1269 info.flags |= ATH9K_TXDESC_LDPC;
1270
1271 if (bf->bf_state.bfs_paprd)
1272 info.flags |= (u32) bf->bf_state.bfs_paprd <<
1273 ATH9K_TXDESC_PAPRD_S;
1274
1275 /*
1276 * mac80211 doesn't handle RTS threshold for HT because
1277 * the decision has to be taken based on AMPDU length
1278 * and aggregation is done entirely inside ath9k.
1279 * Set the RTS/CTS flag for the first subframe based
1280 * on the threshold.
1281 */
1282 if (aggr && (bf == bf_first) &&
1283 unlikely(rts_thresh != (u32) -1)) {
1284 /*
1285 * "len" is the size of the entire AMPDU.
1286 */
1287 if (!rts_thresh || (len > rts_thresh))
1288 rts = true;
1289 }
1290
1291 if (!aggr)
1292 len = fi->framelen;
1293
1294 ath_buf_set_rate(sc, bf, &info, len, rts);
1295 }
1296
1297 info.buf_addr[0] = bf->bf_buf_addr;
1298 info.buf_len[0] = skb->len;
1299 info.pkt_len = fi->framelen;
1300 info.keyix = fi->keyix;
1301 info.keytype = fi->keytype;
1302
1303 if (aggr) {
1304 if (bf == bf_first)
1305 info.aggr = AGGR_BUF_FIRST;
1306 else if (bf == bf_first->bf_lastbf)
1307 info.aggr = AGGR_BUF_LAST;
1308 else
1309 info.aggr = AGGR_BUF_MIDDLE;
1310
1311 info.ndelim = bf->bf_state.ndelim;
1312 info.aggr_len = len;
1313 }
1314
1315 if (bf == bf_first->bf_lastbf)
1316 bf_first = NULL;
1317
1318 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1319 bf = bf->bf_next;
1320 }
1321 }
1322
1323 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q)1324 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1325 struct ath_atx_tid *tid, struct list_head *bf_q,
1326 struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1327 {
1328 struct ath_buf *bf = bf_first, *bf_prev = NULL;
1329 struct sk_buff *skb;
1330 int nframes = 0;
1331
1332 do {
1333 struct ieee80211_tx_info *tx_info;
1334 skb = bf->bf_mpdu;
1335
1336 nframes++;
1337 __skb_unlink(skb, tid_q);
1338 list_add_tail(&bf->list, bf_q);
1339 if (bf_prev)
1340 bf_prev->bf_next = bf;
1341 bf_prev = bf;
1342
1343 if (nframes >= 2)
1344 break;
1345
1346 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1347 if (!bf)
1348 break;
1349
1350 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1351 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1352 break;
1353
1354 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1355 } while (1);
1356 }
1357
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,bool * stop)1358 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1359 struct ath_atx_tid *tid, bool *stop)
1360 {
1361 struct ath_buf *bf;
1362 struct ieee80211_tx_info *tx_info;
1363 struct sk_buff_head *tid_q;
1364 struct list_head bf_q;
1365 int aggr_len = 0;
1366 bool aggr, last = true;
1367
1368 if (!ath_tid_has_buffered(tid))
1369 return false;
1370
1371 INIT_LIST_HEAD(&bf_q);
1372
1373 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1374 if (!bf)
1375 return false;
1376
1377 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1378 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1379 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1380 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1381 *stop = true;
1382 return false;
1383 }
1384
1385 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1386 if (aggr)
1387 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1388 tid_q, &aggr_len);
1389 else
1390 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1391
1392 if (list_empty(&bf_q))
1393 return false;
1394
1395 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1396 tid->ac->clear_ps_filter = false;
1397 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1398 }
1399
1400 ath_tx_fill_desc(sc, bf, txq, aggr_len);
1401 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1402 return true;
1403 }
1404
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1405 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1406 u16 tid, u16 *ssn)
1407 {
1408 struct ath_atx_tid *txtid;
1409 struct ath_txq *txq;
1410 struct ath_node *an;
1411 u8 density;
1412
1413 an = (struct ath_node *)sta->drv_priv;
1414 txtid = ATH_AN_2_TID(an, tid);
1415 txq = txtid->ac->txq;
1416
1417 ath_txq_lock(sc, txq);
1418
1419 /* update ampdu factor/density, they may have changed. This may happen
1420 * in HT IBSS when a beacon with HT-info is received after the station
1421 * has already been added.
1422 */
1423 if (sta->ht_cap.ht_supported) {
1424 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1425 sta->ht_cap.ampdu_factor)) - 1;
1426 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1427 an->mpdudensity = density;
1428 }
1429
1430 /* force sequence number allocation for pending frames */
1431 ath_tx_tid_change_state(sc, txtid);
1432
1433 txtid->active = true;
1434 *ssn = txtid->seq_start = txtid->seq_next;
1435 txtid->bar_index = -1;
1436
1437 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1438 txtid->baw_head = txtid->baw_tail = 0;
1439
1440 ath_txq_unlock_complete(sc, txq);
1441
1442 return 0;
1443 }
1444
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1445 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1446 {
1447 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1448 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1449 struct ath_txq *txq = txtid->ac->txq;
1450
1451 ath_txq_lock(sc, txq);
1452 txtid->active = false;
1453 ath_tx_flush_tid(sc, txtid);
1454 ath_tx_tid_change_state(sc, txtid);
1455 ath_txq_unlock_complete(sc, txq);
1456 }
1457
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1458 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1459 struct ath_node *an)
1460 {
1461 struct ath_atx_tid *tid;
1462 struct ath_atx_ac *ac;
1463 struct ath_txq *txq;
1464 bool buffered;
1465 int tidno;
1466
1467 for (tidno = 0, tid = &an->tid[tidno];
1468 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1469
1470 ac = tid->ac;
1471 txq = ac->txq;
1472
1473 ath_txq_lock(sc, txq);
1474
1475 if (!tid->sched) {
1476 ath_txq_unlock(sc, txq);
1477 continue;
1478 }
1479
1480 buffered = ath_tid_has_buffered(tid);
1481
1482 tid->sched = false;
1483 list_del(&tid->list);
1484
1485 if (ac->sched) {
1486 ac->sched = false;
1487 list_del(&ac->list);
1488 }
1489
1490 ath_txq_unlock(sc, txq);
1491
1492 ieee80211_sta_set_buffered(sta, tidno, buffered);
1493 }
1494 }
1495
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1496 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1497 {
1498 struct ath_atx_tid *tid;
1499 struct ath_atx_ac *ac;
1500 struct ath_txq *txq;
1501 int tidno;
1502
1503 for (tidno = 0, tid = &an->tid[tidno];
1504 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1505
1506 ac = tid->ac;
1507 txq = ac->txq;
1508
1509 ath_txq_lock(sc, txq);
1510 ac->clear_ps_filter = true;
1511
1512 if (ath_tid_has_buffered(tid)) {
1513 ath_tx_queue_tid(sc, txq, tid);
1514 ath_txq_schedule(sc, txq);
1515 }
1516
1517 ath_txq_unlock_complete(sc, txq);
1518 }
1519 }
1520
ath_tx_aggr_resume(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tidno)1521 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1522 u16 tidno)
1523 {
1524 struct ath_atx_tid *tid;
1525 struct ath_node *an;
1526 struct ath_txq *txq;
1527
1528 an = (struct ath_node *)sta->drv_priv;
1529 tid = ATH_AN_2_TID(an, tidno);
1530 txq = tid->ac->txq;
1531
1532 ath_txq_lock(sc, txq);
1533
1534 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1535
1536 if (ath_tid_has_buffered(tid)) {
1537 ath_tx_queue_tid(sc, txq, tid);
1538 ath_txq_schedule(sc, txq);
1539 }
1540
1541 ath_txq_unlock_complete(sc, txq);
1542 }
1543
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1544 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1545 struct ieee80211_sta *sta,
1546 u16 tids, int nframes,
1547 enum ieee80211_frame_release_type reason,
1548 bool more_data)
1549 {
1550 struct ath_softc *sc = hw->priv;
1551 struct ath_node *an = (struct ath_node *)sta->drv_priv;
1552 struct ath_txq *txq = sc->tx.uapsdq;
1553 struct ieee80211_tx_info *info;
1554 struct list_head bf_q;
1555 struct ath_buf *bf_tail = NULL, *bf;
1556 struct sk_buff_head *tid_q;
1557 int sent = 0;
1558 int i;
1559
1560 INIT_LIST_HEAD(&bf_q);
1561 for (i = 0; tids && nframes; i++, tids >>= 1) {
1562 struct ath_atx_tid *tid;
1563
1564 if (!(tids & 1))
1565 continue;
1566
1567 tid = ATH_AN_2_TID(an, i);
1568
1569 ath_txq_lock(sc, tid->ac->txq);
1570 while (nframes > 0) {
1571 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1572 if (!bf)
1573 break;
1574
1575 __skb_unlink(bf->bf_mpdu, tid_q);
1576 list_add_tail(&bf->list, &bf_q);
1577 ath_set_rates(tid->an->vif, tid->an->sta, bf);
1578 if (bf_isampdu(bf)) {
1579 ath_tx_addto_baw(sc, tid, bf);
1580 bf->bf_state.bf_type &= ~BUF_AGGR;
1581 }
1582 if (bf_tail)
1583 bf_tail->bf_next = bf;
1584
1585 bf_tail = bf;
1586 nframes--;
1587 sent++;
1588 TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1589
1590 if (an->sta && !ath_tid_has_buffered(tid))
1591 ieee80211_sta_set_buffered(an->sta, i, false);
1592 }
1593 ath_txq_unlock_complete(sc, tid->ac->txq);
1594 }
1595
1596 if (list_empty(&bf_q))
1597 return;
1598
1599 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1600 info->flags |= IEEE80211_TX_STATUS_EOSP;
1601
1602 bf = list_first_entry(&bf_q, struct ath_buf, list);
1603 ath_txq_lock(sc, txq);
1604 ath_tx_fill_desc(sc, bf, txq, 0);
1605 ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1606 ath_txq_unlock(sc, txq);
1607 }
1608
1609 /********************/
1610 /* Queue Management */
1611 /********************/
1612
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1613 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1614 {
1615 struct ath_hw *ah = sc->sc_ah;
1616 struct ath9k_tx_queue_info qi;
1617 static const int subtype_txq_to_hwq[] = {
1618 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1619 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1620 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1621 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1622 };
1623 int axq_qnum, i;
1624
1625 memset(&qi, 0, sizeof(qi));
1626 qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1627 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1628 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1629 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1630 qi.tqi_physCompBuf = 0;
1631
1632 /*
1633 * Enable interrupts only for EOL and DESC conditions.
1634 * We mark tx descriptors to receive a DESC interrupt
1635 * when a tx queue gets deep; otherwise waiting for the
1636 * EOL to reap descriptors. Note that this is done to
1637 * reduce interrupt load and this only defers reaping
1638 * descriptors, never transmitting frames. Aside from
1639 * reducing interrupts this also permits more concurrency.
1640 * The only potential downside is if the tx queue backs
1641 * up in which case the top half of the kernel may backup
1642 * due to a lack of tx descriptors.
1643 *
1644 * The UAPSD queue is an exception, since we take a desc-
1645 * based intr on the EOSP frames.
1646 */
1647 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1648 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1649 } else {
1650 if (qtype == ATH9K_TX_QUEUE_UAPSD)
1651 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1652 else
1653 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1654 TXQ_FLAG_TXDESCINT_ENABLE;
1655 }
1656 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1657 if (axq_qnum == -1) {
1658 /*
1659 * NB: don't print a message, this happens
1660 * normally on parts with too few tx queues
1661 */
1662 return NULL;
1663 }
1664 if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1665 struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1666
1667 txq->axq_qnum = axq_qnum;
1668 txq->mac80211_qnum = -1;
1669 txq->axq_link = NULL;
1670 __skb_queue_head_init(&txq->complete_q);
1671 INIT_LIST_HEAD(&txq->axq_q);
1672 spin_lock_init(&txq->axq_lock);
1673 txq->axq_depth = 0;
1674 txq->axq_ampdu_depth = 0;
1675 txq->axq_tx_inprogress = false;
1676 sc->tx.txqsetup |= 1<<axq_qnum;
1677
1678 txq->txq_headidx = txq->txq_tailidx = 0;
1679 for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1680 INIT_LIST_HEAD(&txq->txq_fifo[i]);
1681 }
1682 return &sc->tx.txq[axq_qnum];
1683 }
1684
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1685 int ath_txq_update(struct ath_softc *sc, int qnum,
1686 struct ath9k_tx_queue_info *qinfo)
1687 {
1688 struct ath_hw *ah = sc->sc_ah;
1689 int error = 0;
1690 struct ath9k_tx_queue_info qi;
1691
1692 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1693
1694 ath9k_hw_get_txq_props(ah, qnum, &qi);
1695 qi.tqi_aifs = qinfo->tqi_aifs;
1696 qi.tqi_cwmin = qinfo->tqi_cwmin;
1697 qi.tqi_cwmax = qinfo->tqi_cwmax;
1698 qi.tqi_burstTime = qinfo->tqi_burstTime;
1699 qi.tqi_readyTime = qinfo->tqi_readyTime;
1700
1701 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1702 ath_err(ath9k_hw_common(sc->sc_ah),
1703 "Unable to update hardware queue %u!\n", qnum);
1704 error = -EIO;
1705 } else {
1706 ath9k_hw_resettxqueue(ah, qnum);
1707 }
1708
1709 return error;
1710 }
1711
ath_cabq_update(struct ath_softc * sc)1712 int ath_cabq_update(struct ath_softc *sc)
1713 {
1714 struct ath9k_tx_queue_info qi;
1715 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1716 int qnum = sc->beacon.cabq->axq_qnum;
1717
1718 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1719
1720 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1721 ATH_CABQ_READY_TIME) / 100;
1722 ath_txq_update(sc, qnum, &qi);
1723
1724 return 0;
1725 }
1726
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1727 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1728 struct list_head *list)
1729 {
1730 struct ath_buf *bf, *lastbf;
1731 struct list_head bf_head;
1732 struct ath_tx_status ts;
1733
1734 memset(&ts, 0, sizeof(ts));
1735 ts.ts_status = ATH9K_TX_FLUSH;
1736 INIT_LIST_HEAD(&bf_head);
1737
1738 while (!list_empty(list)) {
1739 bf = list_first_entry(list, struct ath_buf, list);
1740
1741 if (bf->bf_state.stale) {
1742 list_del(&bf->list);
1743
1744 ath_tx_return_buffer(sc, bf);
1745 continue;
1746 }
1747
1748 lastbf = bf->bf_lastbf;
1749 list_cut_position(&bf_head, list, &lastbf->list);
1750 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1751 }
1752 }
1753
1754 /*
1755 * Drain a given TX queue (could be Beacon or Data)
1756 *
1757 * This assumes output has been stopped and
1758 * we do not need to block ath_tx_tasklet.
1759 */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1760 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1761 {
1762 ath_txq_lock(sc, txq);
1763
1764 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1765 int idx = txq->txq_tailidx;
1766
1767 while (!list_empty(&txq->txq_fifo[idx])) {
1768 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1769
1770 INCR(idx, ATH_TXFIFO_DEPTH);
1771 }
1772 txq->txq_tailidx = idx;
1773 }
1774
1775 txq->axq_link = NULL;
1776 txq->axq_tx_inprogress = false;
1777 ath_drain_txq_list(sc, txq, &txq->axq_q);
1778
1779 ath_txq_unlock_complete(sc, txq);
1780 }
1781
ath_drain_all_txq(struct ath_softc * sc)1782 bool ath_drain_all_txq(struct ath_softc *sc)
1783 {
1784 struct ath_hw *ah = sc->sc_ah;
1785 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1786 struct ath_txq *txq;
1787 int i;
1788 u32 npend = 0;
1789
1790 if (test_bit(ATH_OP_INVALID, &common->op_flags))
1791 return true;
1792
1793 ath9k_hw_abort_tx_dma(ah);
1794
1795 /* Check if any queue remains active */
1796 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1797 if (!ATH_TXQ_SETUP(sc, i))
1798 continue;
1799
1800 if (!sc->tx.txq[i].axq_depth)
1801 continue;
1802
1803 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1804 npend |= BIT(i);
1805 }
1806
1807 if (npend)
1808 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1809
1810 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1811 if (!ATH_TXQ_SETUP(sc, i))
1812 continue;
1813
1814 /*
1815 * The caller will resume queues with ieee80211_wake_queues.
1816 * Mark the queue as not stopped to prevent ath_tx_complete
1817 * from waking the queue too early.
1818 */
1819 txq = &sc->tx.txq[i];
1820 txq->stopped = false;
1821 ath_draintxq(sc, txq);
1822 }
1823
1824 return !npend;
1825 }
1826
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1827 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1828 {
1829 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1830 sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1831 }
1832
1833 /* For each acq entry, for each tid, try to schedule packets
1834 * for transmit until ampdu_depth has reached min Q depth.
1835 */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1836 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1837 {
1838 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1839 struct ath_atx_ac *ac, *last_ac;
1840 struct ath_atx_tid *tid, *last_tid;
1841 struct list_head *ac_list;
1842 bool sent = false;
1843
1844 if (txq->mac80211_qnum < 0)
1845 return;
1846
1847 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1848 return;
1849
1850 spin_lock_bh(&sc->chan_lock);
1851 ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1852
1853 if (list_empty(ac_list)) {
1854 spin_unlock_bh(&sc->chan_lock);
1855 return;
1856 }
1857
1858 rcu_read_lock();
1859
1860 last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
1861 while (!list_empty(ac_list)) {
1862 bool stop = false;
1863
1864 if (sc->cur_chan->stopped)
1865 break;
1866
1867 ac = list_first_entry(ac_list, struct ath_atx_ac, list);
1868 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1869 list_del(&ac->list);
1870 ac->sched = false;
1871
1872 while (!list_empty(&ac->tid_q)) {
1873
1874 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1875 list);
1876 list_del(&tid->list);
1877 tid->sched = false;
1878
1879 if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1880 sent = true;
1881
1882 /*
1883 * add tid to round-robin queue if more frames
1884 * are pending for the tid
1885 */
1886 if (ath_tid_has_buffered(tid))
1887 ath_tx_queue_tid(sc, txq, tid);
1888
1889 if (stop || tid == last_tid)
1890 break;
1891 }
1892
1893 if (!list_empty(&ac->tid_q) && !ac->sched) {
1894 ac->sched = true;
1895 list_add_tail(&ac->list, ac_list);
1896 }
1897
1898 if (stop)
1899 break;
1900
1901 if (ac == last_ac) {
1902 if (!sent)
1903 break;
1904
1905 sent = false;
1906 last_ac = list_entry(ac_list->prev,
1907 struct ath_atx_ac, list);
1908 }
1909 }
1910
1911 rcu_read_unlock();
1912 spin_unlock_bh(&sc->chan_lock);
1913 }
1914
ath_txq_schedule_all(struct ath_softc * sc)1915 void ath_txq_schedule_all(struct ath_softc *sc)
1916 {
1917 struct ath_txq *txq;
1918 int i;
1919
1920 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1921 txq = sc->tx.txq_map[i];
1922
1923 spin_lock_bh(&txq->axq_lock);
1924 ath_txq_schedule(sc, txq);
1925 spin_unlock_bh(&txq->axq_lock);
1926 }
1927 }
1928
1929 /***********/
1930 /* TX, DMA */
1931 /***********/
1932
1933 /*
1934 * Insert a chain of ath_buf (descriptors) on a txq and
1935 * assume the descriptors are already chained together by caller.
1936 */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)1937 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1938 struct list_head *head, bool internal)
1939 {
1940 struct ath_hw *ah = sc->sc_ah;
1941 struct ath_common *common = ath9k_hw_common(ah);
1942 struct ath_buf *bf, *bf_last;
1943 bool puttxbuf = false;
1944 bool edma;
1945
1946 /*
1947 * Insert the frame on the outbound list and
1948 * pass it on to the hardware.
1949 */
1950
1951 if (list_empty(head))
1952 return;
1953
1954 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1955 bf = list_first_entry(head, struct ath_buf, list);
1956 bf_last = list_entry(head->prev, struct ath_buf, list);
1957
1958 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1959 txq->axq_qnum, txq->axq_depth);
1960
1961 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1962 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1963 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1964 puttxbuf = true;
1965 } else {
1966 list_splice_tail_init(head, &txq->axq_q);
1967
1968 if (txq->axq_link) {
1969 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1970 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1971 txq->axq_qnum, txq->axq_link,
1972 ito64(bf->bf_daddr), bf->bf_desc);
1973 } else if (!edma)
1974 puttxbuf = true;
1975
1976 txq->axq_link = bf_last->bf_desc;
1977 }
1978
1979 if (puttxbuf) {
1980 TX_STAT_INC(txq->axq_qnum, puttxbuf);
1981 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1982 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1983 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1984 }
1985
1986 if (!edma || sc->tx99_state) {
1987 TX_STAT_INC(txq->axq_qnum, txstart);
1988 ath9k_hw_txstart(ah, txq->axq_qnum);
1989 }
1990
1991 if (!internal) {
1992 while (bf) {
1993 txq->axq_depth++;
1994 if (bf_is_ampdu_not_probing(bf))
1995 txq->axq_ampdu_depth++;
1996
1997 bf_last = bf->bf_lastbf;
1998 bf = bf_last->bf_next;
1999 bf_last->bf_next = NULL;
2000 }
2001 }
2002 }
2003
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2004 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2005 struct ath_atx_tid *tid, struct sk_buff *skb)
2006 {
2007 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2008 struct ath_frame_info *fi = get_frame_info(skb);
2009 struct list_head bf_head;
2010 struct ath_buf *bf = fi->bf;
2011
2012 INIT_LIST_HEAD(&bf_head);
2013 list_add_tail(&bf->list, &bf_head);
2014 bf->bf_state.bf_type = 0;
2015 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2016 bf->bf_state.bf_type = BUF_AMPDU;
2017 ath_tx_addto_baw(sc, tid, bf);
2018 }
2019
2020 bf->bf_next = NULL;
2021 bf->bf_lastbf = bf;
2022 ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2023 ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2024 TX_STAT_INC(txq->axq_qnum, queued);
2025 }
2026
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2027 static void setup_frame_info(struct ieee80211_hw *hw,
2028 struct ieee80211_sta *sta,
2029 struct sk_buff *skb,
2030 int framelen)
2031 {
2032 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2033 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2034 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2035 const struct ieee80211_rate *rate;
2036 struct ath_frame_info *fi = get_frame_info(skb);
2037 struct ath_node *an = NULL;
2038 enum ath9k_key_type keytype;
2039 bool short_preamble = false;
2040
2041 /*
2042 * We check if Short Preamble is needed for the CTS rate by
2043 * checking the BSS's global flag.
2044 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2045 */
2046 if (tx_info->control.vif &&
2047 tx_info->control.vif->bss_conf.use_short_preamble)
2048 short_preamble = true;
2049
2050 rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2051 keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2052
2053 if (sta)
2054 an = (struct ath_node *) sta->drv_priv;
2055
2056 memset(fi, 0, sizeof(*fi));
2057 fi->txq = -1;
2058 if (hw_key)
2059 fi->keyix = hw_key->hw_key_idx;
2060 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2061 fi->keyix = an->ps_key;
2062 else
2063 fi->keyix = ATH9K_TXKEYIX_INVALID;
2064 fi->keytype = keytype;
2065 fi->framelen = framelen;
2066
2067 if (!rate)
2068 return;
2069 fi->rtscts_rate = rate->hw_value;
2070 if (short_preamble)
2071 fi->rtscts_rate |= rate->hw_value_short;
2072 }
2073
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2074 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2075 {
2076 struct ath_hw *ah = sc->sc_ah;
2077 struct ath9k_channel *curchan = ah->curchan;
2078
2079 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2080 (chainmask == 0x7) && (rate < 0x90))
2081 return 0x3;
2082 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2083 IS_CCK_RATE(rate))
2084 return 0x2;
2085 else
2086 return chainmask;
2087 }
2088
2089 /*
2090 * Assign a descriptor (and sequence number if necessary,
2091 * and map buffer for DMA. Frees skb on error
2092 */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2093 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2094 struct ath_txq *txq,
2095 struct ath_atx_tid *tid,
2096 struct sk_buff *skb)
2097 {
2098 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2099 struct ath_frame_info *fi = get_frame_info(skb);
2100 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2101 struct ath_buf *bf;
2102 int fragno;
2103 u16 seqno;
2104
2105 bf = ath_tx_get_buffer(sc);
2106 if (!bf) {
2107 ath_dbg(common, XMIT, "TX buffers are full\n");
2108 return NULL;
2109 }
2110
2111 ATH_TXBUF_RESET(bf);
2112
2113 if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2114 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2115 seqno = tid->seq_next;
2116 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2117
2118 if (fragno)
2119 hdr->seq_ctrl |= cpu_to_le16(fragno);
2120
2121 if (!ieee80211_has_morefrags(hdr->frame_control))
2122 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2123
2124 bf->bf_state.seqno = seqno;
2125 }
2126
2127 bf->bf_mpdu = skb;
2128
2129 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2130 skb->len, DMA_TO_DEVICE);
2131 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2132 bf->bf_mpdu = NULL;
2133 bf->bf_buf_addr = 0;
2134 ath_err(ath9k_hw_common(sc->sc_ah),
2135 "dma_mapping_error() on TX\n");
2136 ath_tx_return_buffer(sc, bf);
2137 return NULL;
2138 }
2139
2140 fi->bf = bf;
2141
2142 return bf;
2143 }
2144
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2145 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2146 {
2147 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2148 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2149 struct ieee80211_vif *vif = info->control.vif;
2150 struct ath_vif *avp;
2151
2152 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2153 return;
2154
2155 if (!vif)
2156 return;
2157
2158 avp = (struct ath_vif *)vif->drv_priv;
2159
2160 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2161 avp->seq_no += 0x10;
2162
2163 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2164 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2165 }
2166
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2167 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2168 struct ath_tx_control *txctl)
2169 {
2170 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2171 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2172 struct ieee80211_sta *sta = txctl->sta;
2173 struct ieee80211_vif *vif = info->control.vif;
2174 struct ath_vif *avp;
2175 struct ath_softc *sc = hw->priv;
2176 int frmlen = skb->len + FCS_LEN;
2177 int padpos, padsize;
2178
2179 /* NOTE: sta can be NULL according to net/mac80211.h */
2180 if (sta)
2181 txctl->an = (struct ath_node *)sta->drv_priv;
2182 else if (vif && ieee80211_is_data(hdr->frame_control)) {
2183 avp = (void *)vif->drv_priv;
2184 txctl->an = &avp->mcast_node;
2185 }
2186
2187 if (info->control.hw_key)
2188 frmlen += info->control.hw_key->icv_len;
2189
2190 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2191
2192 if ((vif && vif->type != NL80211_IFTYPE_AP &&
2193 vif->type != NL80211_IFTYPE_AP_VLAN) ||
2194 !ieee80211_is_data(hdr->frame_control))
2195 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2196
2197 /* Add the padding after the header if this is not already done */
2198 padpos = ieee80211_hdrlen(hdr->frame_control);
2199 padsize = padpos & 3;
2200 if (padsize && skb->len > padpos) {
2201 if (skb_headroom(skb) < padsize)
2202 return -ENOMEM;
2203
2204 skb_push(skb, padsize);
2205 memmove(skb->data, skb->data + padsize, padpos);
2206 }
2207
2208 setup_frame_info(hw, sta, skb, frmlen);
2209 return 0;
2210 }
2211
2212
2213 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2214 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2215 struct ath_tx_control *txctl)
2216 {
2217 struct ieee80211_hdr *hdr;
2218 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2219 struct ieee80211_sta *sta = txctl->sta;
2220 struct ieee80211_vif *vif = info->control.vif;
2221 struct ath_frame_info *fi = get_frame_info(skb);
2222 struct ath_vif *avp = NULL;
2223 struct ath_softc *sc = hw->priv;
2224 struct ath_txq *txq = txctl->txq;
2225 struct ath_atx_tid *tid = NULL;
2226 struct ath_buf *bf;
2227 bool queue, skip_uapsd = false;
2228 int q, ret;
2229
2230 if (vif)
2231 avp = (void *)vif->drv_priv;
2232
2233 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2234 txctl->force_channel = true;
2235
2236 ret = ath_tx_prepare(hw, skb, txctl);
2237 if (ret)
2238 return ret;
2239
2240 hdr = (struct ieee80211_hdr *) skb->data;
2241 /*
2242 * At this point, the vif, hw_key and sta pointers in the tx control
2243 * info are no longer valid (overwritten by the ath_frame_info data.
2244 */
2245
2246 q = skb_get_queue_mapping(skb);
2247
2248 ath_txq_lock(sc, txq);
2249 if (txq == sc->tx.txq_map[q]) {
2250 fi->txq = q;
2251 if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2252 !txq->stopped) {
2253 if (ath9k_is_chanctx_enabled())
2254 ieee80211_stop_queue(sc->hw, info->hw_queue);
2255 else
2256 ieee80211_stop_queue(sc->hw, q);
2257 txq->stopped = true;
2258 }
2259 }
2260
2261 queue = ieee80211_is_data_present(hdr->frame_control);
2262
2263 /* Force queueing of all frames that belong to a virtual interface on
2264 * a different channel context, to ensure that they are sent on the
2265 * correct channel.
2266 */
2267 if (((avp && avp->chanctx != sc->cur_chan) ||
2268 sc->cur_chan->stopped) && !txctl->force_channel) {
2269 if (!txctl->an)
2270 txctl->an = &avp->mcast_node;
2271 queue = true;
2272 skip_uapsd = true;
2273 }
2274
2275 if (txctl->an && queue)
2276 tid = ath_get_skb_tid(sc, txctl->an, skb);
2277
2278 if (!skip_uapsd && (info->flags & IEEE80211_TX_CTL_PS_RESPONSE)) {
2279 ath_txq_unlock(sc, txq);
2280 txq = sc->tx.uapsdq;
2281 ath_txq_lock(sc, txq);
2282 } else if (txctl->an && queue) {
2283 WARN_ON(tid->ac->txq != txctl->txq);
2284
2285 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2286 tid->ac->clear_ps_filter = true;
2287
2288 /*
2289 * Add this frame to software queue for scheduling later
2290 * for aggregation.
2291 */
2292 TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2293 __skb_queue_tail(&tid->buf_q, skb);
2294 if (!txctl->an->sleeping)
2295 ath_tx_queue_tid(sc, txq, tid);
2296
2297 ath_txq_schedule(sc, txq);
2298 goto out;
2299 }
2300
2301 bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2302 if (!bf) {
2303 ath_txq_skb_done(sc, txq, skb);
2304 if (txctl->paprd)
2305 dev_kfree_skb_any(skb);
2306 else
2307 ieee80211_free_txskb(sc->hw, skb);
2308 goto out;
2309 }
2310
2311 bf->bf_state.bfs_paprd = txctl->paprd;
2312
2313 if (txctl->paprd)
2314 bf->bf_state.bfs_paprd_timestamp = jiffies;
2315
2316 ath_set_rates(vif, sta, bf);
2317 ath_tx_send_normal(sc, txq, tid, skb);
2318
2319 out:
2320 ath_txq_unlock(sc, txq);
2321
2322 return 0;
2323 }
2324
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2325 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2326 struct sk_buff *skb)
2327 {
2328 struct ath_softc *sc = hw->priv;
2329 struct ath_tx_control txctl = {
2330 .txq = sc->beacon.cabq
2331 };
2332 struct ath_tx_info info = {};
2333 struct ieee80211_hdr *hdr;
2334 struct ath_buf *bf_tail = NULL;
2335 struct ath_buf *bf;
2336 LIST_HEAD(bf_q);
2337 int duration = 0;
2338 int max_duration;
2339
2340 max_duration =
2341 sc->cur_chan->beacon.beacon_interval * 1000 *
2342 sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2343
2344 do {
2345 struct ath_frame_info *fi = get_frame_info(skb);
2346
2347 if (ath_tx_prepare(hw, skb, &txctl))
2348 break;
2349
2350 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2351 if (!bf)
2352 break;
2353
2354 bf->bf_lastbf = bf;
2355 ath_set_rates(vif, NULL, bf);
2356 ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2357 duration += info.rates[0].PktDuration;
2358 if (bf_tail)
2359 bf_tail->bf_next = bf;
2360
2361 list_add_tail(&bf->list, &bf_q);
2362 bf_tail = bf;
2363 skb = NULL;
2364
2365 if (duration > max_duration)
2366 break;
2367
2368 skb = ieee80211_get_buffered_bc(hw, vif);
2369 } while(skb);
2370
2371 if (skb)
2372 ieee80211_free_txskb(hw, skb);
2373
2374 if (list_empty(&bf_q))
2375 return;
2376
2377 bf = list_first_entry(&bf_q, struct ath_buf, list);
2378 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2379
2380 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2381 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2382 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2383 sizeof(*hdr), DMA_TO_DEVICE);
2384 }
2385
2386 ath_txq_lock(sc, txctl.txq);
2387 ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2388 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2389 TX_STAT_INC(txctl.txq->axq_qnum, queued);
2390 ath_txq_unlock(sc, txctl.txq);
2391 }
2392
2393 /*****************/
2394 /* TX Completion */
2395 /*****************/
2396
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq)2397 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2398 int tx_flags, struct ath_txq *txq)
2399 {
2400 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2401 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2402 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2403 int padpos, padsize;
2404 unsigned long flags;
2405
2406 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2407
2408 if (sc->sc_ah->caldata)
2409 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2410
2411 if (!(tx_flags & ATH_TX_ERROR))
2412 /* Frame was ACKed */
2413 tx_info->flags |= IEEE80211_TX_STAT_ACK;
2414
2415 padpos = ieee80211_hdrlen(hdr->frame_control);
2416 padsize = padpos & 3;
2417 if (padsize && skb->len>padpos+padsize) {
2418 /*
2419 * Remove MAC header padding before giving the frame back to
2420 * mac80211.
2421 */
2422 memmove(skb->data + padsize, skb->data, padpos);
2423 skb_pull(skb, padsize);
2424 }
2425
2426 spin_lock_irqsave(&sc->sc_pm_lock, flags);
2427 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2428 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2429 ath_dbg(common, PS,
2430 "Going back to sleep after having received TX status (0x%lx)\n",
2431 sc->ps_flags & (PS_WAIT_FOR_BEACON |
2432 PS_WAIT_FOR_CAB |
2433 PS_WAIT_FOR_PSPOLL_DATA |
2434 PS_WAIT_FOR_TX_ACK));
2435 }
2436 spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2437
2438 __skb_queue_tail(&txq->complete_q, skb);
2439 ath_txq_skb_done(sc, txq, skb);
2440 }
2441
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ath_tx_status * ts,int txok)2442 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2443 struct ath_txq *txq, struct list_head *bf_q,
2444 struct ath_tx_status *ts, int txok)
2445 {
2446 struct sk_buff *skb = bf->bf_mpdu;
2447 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2448 unsigned long flags;
2449 int tx_flags = 0;
2450
2451 if (!txok)
2452 tx_flags |= ATH_TX_ERROR;
2453
2454 if (ts->ts_status & ATH9K_TXERR_FILT)
2455 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2456
2457 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2458 bf->bf_buf_addr = 0;
2459 if (sc->tx99_state)
2460 goto skip_tx_complete;
2461
2462 if (bf->bf_state.bfs_paprd) {
2463 if (time_after(jiffies,
2464 bf->bf_state.bfs_paprd_timestamp +
2465 msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2466 dev_kfree_skb_any(skb);
2467 else
2468 complete(&sc->paprd_complete);
2469 } else {
2470 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2471 ath_tx_complete(sc, skb, tx_flags, txq);
2472 }
2473 skip_tx_complete:
2474 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2475 * accidentally reference it later.
2476 */
2477 bf->bf_mpdu = NULL;
2478
2479 /*
2480 * Return the list of ath_buf of this mpdu to free queue
2481 */
2482 spin_lock_irqsave(&sc->tx.txbuflock, flags);
2483 list_splice_tail_init(bf_q, &sc->tx.txbuf);
2484 spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2485 }
2486
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2487 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2488 struct ath_tx_status *ts, int nframes, int nbad,
2489 int txok)
2490 {
2491 struct sk_buff *skb = bf->bf_mpdu;
2492 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2493 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2494 struct ieee80211_hw *hw = sc->hw;
2495 struct ath_hw *ah = sc->sc_ah;
2496 u8 i, tx_rateindex;
2497
2498 if (txok)
2499 tx_info->status.ack_signal = ts->ts_rssi;
2500
2501 tx_rateindex = ts->ts_rateindex;
2502 WARN_ON(tx_rateindex >= hw->max_rates);
2503
2504 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2505 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2506
2507 BUG_ON(nbad > nframes);
2508 }
2509 tx_info->status.ampdu_len = nframes;
2510 tx_info->status.ampdu_ack_len = nframes - nbad;
2511
2512 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2513 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2514 /*
2515 * If an underrun error is seen assume it as an excessive
2516 * retry only if max frame trigger level has been reached
2517 * (2 KB for single stream, and 4 KB for dual stream).
2518 * Adjust the long retry as if the frame was tried
2519 * hw->max_rate_tries times to affect how rate control updates
2520 * PER for the failed rate.
2521 * In case of congestion on the bus penalizing this type of
2522 * underruns should help hardware actually transmit new frames
2523 * successfully by eventually preferring slower rates.
2524 * This itself should also alleviate congestion on the bus.
2525 */
2526 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2527 ATH9K_TX_DELIM_UNDERRUN)) &&
2528 ieee80211_is_data(hdr->frame_control) &&
2529 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2530 tx_info->status.rates[tx_rateindex].count =
2531 hw->max_rate_tries;
2532 }
2533
2534 for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2535 tx_info->status.rates[i].count = 0;
2536 tx_info->status.rates[i].idx = -1;
2537 }
2538
2539 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2540 }
2541
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2542 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2543 {
2544 struct ath_hw *ah = sc->sc_ah;
2545 struct ath_common *common = ath9k_hw_common(ah);
2546 struct ath_buf *bf, *lastbf, *bf_held = NULL;
2547 struct list_head bf_head;
2548 struct ath_desc *ds;
2549 struct ath_tx_status ts;
2550 int status;
2551
2552 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2553 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2554 txq->axq_link);
2555
2556 ath_txq_lock(sc, txq);
2557 for (;;) {
2558 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2559 break;
2560
2561 if (list_empty(&txq->axq_q)) {
2562 txq->axq_link = NULL;
2563 ath_txq_schedule(sc, txq);
2564 break;
2565 }
2566 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2567
2568 /*
2569 * There is a race condition that a BH gets scheduled
2570 * after sw writes TxE and before hw re-load the last
2571 * descriptor to get the newly chained one.
2572 * Software must keep the last DONE descriptor as a
2573 * holding descriptor - software does so by marking
2574 * it with the STALE flag.
2575 */
2576 bf_held = NULL;
2577 if (bf->bf_state.stale) {
2578 bf_held = bf;
2579 if (list_is_last(&bf_held->list, &txq->axq_q))
2580 break;
2581
2582 bf = list_entry(bf_held->list.next, struct ath_buf,
2583 list);
2584 }
2585
2586 lastbf = bf->bf_lastbf;
2587 ds = lastbf->bf_desc;
2588
2589 memset(&ts, 0, sizeof(ts));
2590 status = ath9k_hw_txprocdesc(ah, ds, &ts);
2591 if (status == -EINPROGRESS)
2592 break;
2593
2594 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2595
2596 /*
2597 * Remove ath_buf's of the same transmit unit from txq,
2598 * however leave the last descriptor back as the holding
2599 * descriptor for hw.
2600 */
2601 lastbf->bf_state.stale = true;
2602 INIT_LIST_HEAD(&bf_head);
2603 if (!list_is_singular(&lastbf->list))
2604 list_cut_position(&bf_head,
2605 &txq->axq_q, lastbf->list.prev);
2606
2607 if (bf_held) {
2608 list_del(&bf_held->list);
2609 ath_tx_return_buffer(sc, bf_held);
2610 }
2611
2612 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2613 }
2614 ath_txq_unlock_complete(sc, txq);
2615 }
2616
ath_tx_tasklet(struct ath_softc * sc)2617 void ath_tx_tasklet(struct ath_softc *sc)
2618 {
2619 struct ath_hw *ah = sc->sc_ah;
2620 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2621 int i;
2622
2623 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2624 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2625 ath_tx_processq(sc, &sc->tx.txq[i]);
2626 }
2627 }
2628
ath_tx_edma_tasklet(struct ath_softc * sc)2629 void ath_tx_edma_tasklet(struct ath_softc *sc)
2630 {
2631 struct ath_tx_status ts;
2632 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2633 struct ath_hw *ah = sc->sc_ah;
2634 struct ath_txq *txq;
2635 struct ath_buf *bf, *lastbf;
2636 struct list_head bf_head;
2637 struct list_head *fifo_list;
2638 int status;
2639
2640 for (;;) {
2641 if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2642 break;
2643
2644 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2645 if (status == -EINPROGRESS)
2646 break;
2647 if (status == -EIO) {
2648 ath_dbg(common, XMIT, "Error processing tx status\n");
2649 break;
2650 }
2651
2652 /* Process beacon completions separately */
2653 if (ts.qid == sc->beacon.beaconq) {
2654 sc->beacon.tx_processed = true;
2655 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2656
2657 if (ath9k_is_chanctx_enabled()) {
2658 ath_chanctx_event(sc, NULL,
2659 ATH_CHANCTX_EVENT_BEACON_SENT);
2660 }
2661
2662 ath9k_csa_update(sc);
2663 continue;
2664 }
2665
2666 txq = &sc->tx.txq[ts.qid];
2667
2668 ath_txq_lock(sc, txq);
2669
2670 TX_STAT_INC(txq->axq_qnum, txprocdesc);
2671
2672 fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2673 if (list_empty(fifo_list)) {
2674 ath_txq_unlock(sc, txq);
2675 return;
2676 }
2677
2678 bf = list_first_entry(fifo_list, struct ath_buf, list);
2679 if (bf->bf_state.stale) {
2680 list_del(&bf->list);
2681 ath_tx_return_buffer(sc, bf);
2682 bf = list_first_entry(fifo_list, struct ath_buf, list);
2683 }
2684
2685 lastbf = bf->bf_lastbf;
2686
2687 INIT_LIST_HEAD(&bf_head);
2688 if (list_is_last(&lastbf->list, fifo_list)) {
2689 list_splice_tail_init(fifo_list, &bf_head);
2690 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2691
2692 if (!list_empty(&txq->axq_q)) {
2693 struct list_head bf_q;
2694
2695 INIT_LIST_HEAD(&bf_q);
2696 txq->axq_link = NULL;
2697 list_splice_tail_init(&txq->axq_q, &bf_q);
2698 ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2699 }
2700 } else {
2701 lastbf->bf_state.stale = true;
2702 if (bf != lastbf)
2703 list_cut_position(&bf_head, fifo_list,
2704 lastbf->list.prev);
2705 }
2706
2707 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2708 ath_txq_unlock_complete(sc, txq);
2709 }
2710 }
2711
2712 /*****************/
2713 /* Init, Cleanup */
2714 /*****************/
2715
ath_txstatus_setup(struct ath_softc * sc,int size)2716 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2717 {
2718 struct ath_descdma *dd = &sc->txsdma;
2719 u8 txs_len = sc->sc_ah->caps.txs_len;
2720
2721 dd->dd_desc_len = size * txs_len;
2722 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2723 &dd->dd_desc_paddr, GFP_KERNEL);
2724 if (!dd->dd_desc)
2725 return -ENOMEM;
2726
2727 return 0;
2728 }
2729
ath_tx_edma_init(struct ath_softc * sc)2730 static int ath_tx_edma_init(struct ath_softc *sc)
2731 {
2732 int err;
2733
2734 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2735 if (!err)
2736 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2737 sc->txsdma.dd_desc_paddr,
2738 ATH_TXSTATUS_RING_SIZE);
2739
2740 return err;
2741 }
2742
ath_tx_init(struct ath_softc * sc,int nbufs)2743 int ath_tx_init(struct ath_softc *sc, int nbufs)
2744 {
2745 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2746 int error = 0;
2747
2748 spin_lock_init(&sc->tx.txbuflock);
2749
2750 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2751 "tx", nbufs, 1, 1);
2752 if (error != 0) {
2753 ath_err(common,
2754 "Failed to allocate tx descriptors: %d\n", error);
2755 return error;
2756 }
2757
2758 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2759 "beacon", ATH_BCBUF, 1, 1);
2760 if (error != 0) {
2761 ath_err(common,
2762 "Failed to allocate beacon descriptors: %d\n", error);
2763 return error;
2764 }
2765
2766 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2767
2768 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2769 error = ath_tx_edma_init(sc);
2770
2771 return error;
2772 }
2773
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2774 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2775 {
2776 struct ath_atx_tid *tid;
2777 struct ath_atx_ac *ac;
2778 int tidno, acno;
2779
2780 for (tidno = 0, tid = &an->tid[tidno];
2781 tidno < IEEE80211_NUM_TIDS;
2782 tidno++, tid++) {
2783 tid->an = an;
2784 tid->tidno = tidno;
2785 tid->seq_start = tid->seq_next = 0;
2786 tid->baw_size = WME_MAX_BA;
2787 tid->baw_head = tid->baw_tail = 0;
2788 tid->sched = false;
2789 tid->active = false;
2790 __skb_queue_head_init(&tid->buf_q);
2791 __skb_queue_head_init(&tid->retry_q);
2792 acno = TID_TO_WME_AC(tidno);
2793 tid->ac = &an->ac[acno];
2794 }
2795
2796 for (acno = 0, ac = &an->ac[acno];
2797 acno < IEEE80211_NUM_ACS; acno++, ac++) {
2798 ac->sched = false;
2799 ac->clear_ps_filter = true;
2800 ac->txq = sc->tx.txq_map[acno];
2801 INIT_LIST_HEAD(&ac->tid_q);
2802 }
2803 }
2804
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2805 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2806 {
2807 struct ath_atx_ac *ac;
2808 struct ath_atx_tid *tid;
2809 struct ath_txq *txq;
2810 int tidno;
2811
2812 for (tidno = 0, tid = &an->tid[tidno];
2813 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2814
2815 ac = tid->ac;
2816 txq = ac->txq;
2817
2818 ath_txq_lock(sc, txq);
2819
2820 if (tid->sched) {
2821 list_del(&tid->list);
2822 tid->sched = false;
2823 }
2824
2825 if (ac->sched) {
2826 list_del(&ac->list);
2827 tid->ac->sched = false;
2828 }
2829
2830 ath_tid_drain(sc, txq, tid);
2831 tid->active = false;
2832
2833 ath_txq_unlock(sc, txq);
2834 }
2835 }
2836
2837 #ifdef CONFIG_ATH9K_TX99
2838
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2839 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2840 struct ath_tx_control *txctl)
2841 {
2842 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2843 struct ath_frame_info *fi = get_frame_info(skb);
2844 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2845 struct ath_buf *bf;
2846 int padpos, padsize;
2847
2848 padpos = ieee80211_hdrlen(hdr->frame_control);
2849 padsize = padpos & 3;
2850
2851 if (padsize && skb->len > padpos) {
2852 if (skb_headroom(skb) < padsize) {
2853 ath_dbg(common, XMIT,
2854 "tx99 padding failed\n");
2855 return -EINVAL;
2856 }
2857
2858 skb_push(skb, padsize);
2859 memmove(skb->data, skb->data + padsize, padpos);
2860 }
2861
2862 fi->keyix = ATH9K_TXKEYIX_INVALID;
2863 fi->framelen = skb->len + FCS_LEN;
2864 fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2865
2866 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2867 if (!bf) {
2868 ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2869 return -EINVAL;
2870 }
2871
2872 ath_set_rates(sc->tx99_vif, NULL, bf);
2873
2874 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2875 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2876
2877 ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2878
2879 return 0;
2880 }
2881
2882 #endif /* CONFIG_ATH9K_TX99 */
2883