• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
51 			       struct ath_atx_tid *tid, struct sk_buff *skb);
52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
53 			    int tx_flags, struct ath_txq *txq);
54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
55 				struct ath_txq *txq, struct list_head *bf_q,
56 				struct ath_tx_status *ts, int txok);
57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
58 			     struct list_head *head, bool internal);
59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
60 			     struct ath_tx_status *ts, int nframes, int nbad,
61 			     int txok);
62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
63 			      int seqno);
64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
65 					   struct ath_txq *txq,
66 					   struct ath_atx_tid *tid,
67 					   struct sk_buff *skb);
68 
69 enum {
70 	MCS_HT20,
71 	MCS_HT20_SGI,
72 	MCS_HT40,
73 	MCS_HT40_SGI,
74 };
75 
76 /*********************/
77 /* Aggregation logic */
78 /*********************/
79 
ath_txq_lock(struct ath_softc * sc,struct ath_txq * txq)80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
81 	__acquires(&txq->axq_lock)
82 {
83 	spin_lock_bh(&txq->axq_lock);
84 }
85 
ath_txq_unlock(struct ath_softc * sc,struct ath_txq * txq)86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
87 	__releases(&txq->axq_lock)
88 {
89 	spin_unlock_bh(&txq->axq_lock);
90 }
91 
ath_txq_unlock_complete(struct ath_softc * sc,struct ath_txq * txq)92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
93 	__releases(&txq->axq_lock)
94 {
95 	struct sk_buff_head q;
96 	struct sk_buff *skb;
97 
98 	__skb_queue_head_init(&q);
99 	skb_queue_splice_init(&txq->complete_q, &q);
100 	spin_unlock_bh(&txq->axq_lock);
101 
102 	while ((skb = __skb_dequeue(&q)))
103 		ieee80211_tx_status(sc->hw, skb);
104 }
105 
ath_tx_queue_tid(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq,
107 			     struct ath_atx_tid *tid)
108 {
109 	struct ath_atx_ac *ac = tid->ac;
110 	struct list_head *list;
111 	struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv;
112 	struct ath_chanctx *ctx = avp->chanctx;
113 
114 	if (!ctx)
115 		return;
116 
117 	if (tid->sched)
118 		return;
119 
120 	tid->sched = true;
121 	list_add_tail(&tid->list, &ac->tid_q);
122 
123 	if (ac->sched)
124 		return;
125 
126 	ac->sched = true;
127 
128 	list = &ctx->acq[TID_TO_WME_AC(tid->tidno)];
129 	list_add_tail(&ac->list, list);
130 }
131 
get_frame_info(struct sk_buff * skb)132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
133 {
134 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
135 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
136 		     sizeof(tx_info->rate_driver_data));
137 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
138 }
139 
ath_send_bar(struct ath_atx_tid * tid,u16 seqno)140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
141 {
142 	if (!tid->an->sta)
143 		return;
144 
145 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
146 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
147 }
148 
ath_set_rates(struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct ath_buf * bf)149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
150 			  struct ath_buf *bf)
151 {
152 	ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
153 			       ARRAY_SIZE(bf->rates));
154 }
155 
ath_txq_skb_done(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb)156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
157 			     struct sk_buff *skb)
158 {
159 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
160 	struct ath_frame_info *fi = get_frame_info(skb);
161 	int q = fi->txq;
162 
163 	if (q < 0)
164 		return;
165 
166 	txq = sc->tx.txq_map[q];
167 	if (WARN_ON(--txq->pending_frames < 0))
168 		txq->pending_frames = 0;
169 
170 	if (txq->stopped &&
171 	    txq->pending_frames < sc->tx.txq_max_pending[q]) {
172 		if (ath9k_is_chanctx_enabled())
173 			ieee80211_wake_queue(sc->hw, info->hw_queue);
174 		else
175 			ieee80211_wake_queue(sc->hw, q);
176 		txq->stopped = false;
177 	}
178 }
179 
180 static struct ath_atx_tid *
ath_get_skb_tid(struct ath_softc * sc,struct ath_node * an,struct sk_buff * skb)181 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
182 {
183 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
184 	return ATH_AN_2_TID(an, tidno);
185 }
186 
ath_tid_has_buffered(struct ath_atx_tid * tid)187 static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
188 {
189 	return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
190 }
191 
ath_tid_dequeue(struct ath_atx_tid * tid)192 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
193 {
194 	struct sk_buff *skb;
195 
196 	skb = __skb_dequeue(&tid->retry_q);
197 	if (!skb)
198 		skb = __skb_dequeue(&tid->buf_q);
199 
200 	return skb;
201 }
202 
203 /*
204  * ath_tx_tid_change_state:
205  * - clears a-mpdu flag of previous session
206  * - force sequence number allocation to fix next BlockAck Window
207  */
208 static void
ath_tx_tid_change_state(struct ath_softc * sc,struct ath_atx_tid * tid)209 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
210 {
211 	struct ath_txq *txq = tid->ac->txq;
212 	struct ieee80211_tx_info *tx_info;
213 	struct sk_buff *skb, *tskb;
214 	struct ath_buf *bf;
215 	struct ath_frame_info *fi;
216 
217 	skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
218 		fi = get_frame_info(skb);
219 		bf = fi->bf;
220 
221 		tx_info = IEEE80211_SKB_CB(skb);
222 		tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
223 
224 		if (bf)
225 			continue;
226 
227 		bf = ath_tx_setup_buffer(sc, txq, tid, skb);
228 		if (!bf) {
229 			__skb_unlink(skb, &tid->buf_q);
230 			ath_txq_skb_done(sc, txq, skb);
231 			ieee80211_free_txskb(sc->hw, skb);
232 			continue;
233 		}
234 	}
235 
236 }
237 
ath_tx_flush_tid(struct ath_softc * sc,struct ath_atx_tid * tid)238 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
239 {
240 	struct ath_txq *txq = tid->ac->txq;
241 	struct sk_buff *skb;
242 	struct ath_buf *bf;
243 	struct list_head bf_head;
244 	struct ath_tx_status ts;
245 	struct ath_frame_info *fi;
246 	bool sendbar = false;
247 
248 	INIT_LIST_HEAD(&bf_head);
249 
250 	memset(&ts, 0, sizeof(ts));
251 
252 	while ((skb = __skb_dequeue(&tid->retry_q))) {
253 		fi = get_frame_info(skb);
254 		bf = fi->bf;
255 		if (!bf) {
256 			ath_txq_skb_done(sc, txq, skb);
257 			ieee80211_free_txskb(sc->hw, skb);
258 			continue;
259 		}
260 
261 		if (fi->baw_tracked) {
262 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
263 			sendbar = true;
264 		}
265 
266 		list_add_tail(&bf->list, &bf_head);
267 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
268 	}
269 
270 	if (sendbar) {
271 		ath_txq_unlock(sc, txq);
272 		ath_send_bar(tid, tid->seq_start);
273 		ath_txq_lock(sc, txq);
274 	}
275 }
276 
ath_tx_update_baw(struct ath_softc * sc,struct ath_atx_tid * tid,int seqno)277 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
278 			      int seqno)
279 {
280 	int index, cindex;
281 
282 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
283 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
284 
285 	__clear_bit(cindex, tid->tx_buf);
286 
287 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
288 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
289 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
290 		if (tid->bar_index >= 0)
291 			tid->bar_index--;
292 	}
293 }
294 
ath_tx_addto_baw(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf)295 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
296 			     struct ath_buf *bf)
297 {
298 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
299 	u16 seqno = bf->bf_state.seqno;
300 	int index, cindex;
301 
302 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
303 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
304 	__set_bit(cindex, tid->tx_buf);
305 	fi->baw_tracked = 1;
306 
307 	if (index >= ((tid->baw_tail - tid->baw_head) &
308 		(ATH_TID_MAX_BUFS - 1))) {
309 		tid->baw_tail = cindex;
310 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
311 	}
312 }
313 
ath_tid_drain(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid)314 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
315 			  struct ath_atx_tid *tid)
316 
317 {
318 	struct sk_buff *skb;
319 	struct ath_buf *bf;
320 	struct list_head bf_head;
321 	struct ath_tx_status ts;
322 	struct ath_frame_info *fi;
323 
324 	memset(&ts, 0, sizeof(ts));
325 	INIT_LIST_HEAD(&bf_head);
326 
327 	while ((skb = ath_tid_dequeue(tid))) {
328 		fi = get_frame_info(skb);
329 		bf = fi->bf;
330 
331 		if (!bf) {
332 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
333 			continue;
334 		}
335 
336 		list_add_tail(&bf->list, &bf_head);
337 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
338 	}
339 }
340 
ath_tx_set_retry(struct ath_softc * sc,struct ath_txq * txq,struct sk_buff * skb,int count)341 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
342 			     struct sk_buff *skb, int count)
343 {
344 	struct ath_frame_info *fi = get_frame_info(skb);
345 	struct ath_buf *bf = fi->bf;
346 	struct ieee80211_hdr *hdr;
347 	int prev = fi->retries;
348 
349 	TX_STAT_INC(txq->axq_qnum, a_retries);
350 	fi->retries += count;
351 
352 	if (prev > 0)
353 		return;
354 
355 	hdr = (struct ieee80211_hdr *)skb->data;
356 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
357 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
358 		sizeof(*hdr), DMA_TO_DEVICE);
359 }
360 
ath_tx_get_buffer(struct ath_softc * sc)361 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
362 {
363 	struct ath_buf *bf = NULL;
364 
365 	spin_lock_bh(&sc->tx.txbuflock);
366 
367 	if (unlikely(list_empty(&sc->tx.txbuf))) {
368 		spin_unlock_bh(&sc->tx.txbuflock);
369 		return NULL;
370 	}
371 
372 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
373 	list_del(&bf->list);
374 
375 	spin_unlock_bh(&sc->tx.txbuflock);
376 
377 	return bf;
378 }
379 
ath_tx_return_buffer(struct ath_softc * sc,struct ath_buf * bf)380 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
381 {
382 	spin_lock_bh(&sc->tx.txbuflock);
383 	list_add_tail(&bf->list, &sc->tx.txbuf);
384 	spin_unlock_bh(&sc->tx.txbuflock);
385 }
386 
ath_clone_txbuf(struct ath_softc * sc,struct ath_buf * bf)387 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
388 {
389 	struct ath_buf *tbf;
390 
391 	tbf = ath_tx_get_buffer(sc);
392 	if (WARN_ON(!tbf))
393 		return NULL;
394 
395 	ATH_TXBUF_RESET(tbf);
396 
397 	tbf->bf_mpdu = bf->bf_mpdu;
398 	tbf->bf_buf_addr = bf->bf_buf_addr;
399 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
400 	tbf->bf_state = bf->bf_state;
401 	tbf->bf_state.stale = false;
402 
403 	return tbf;
404 }
405 
ath_tx_count_frames(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int txok,int * nframes,int * nbad)406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
407 			        struct ath_tx_status *ts, int txok,
408 			        int *nframes, int *nbad)
409 {
410 	struct ath_frame_info *fi;
411 	u16 seq_st = 0;
412 	u32 ba[WME_BA_BMP_SIZE >> 5];
413 	int ba_index;
414 	int isaggr = 0;
415 
416 	*nbad = 0;
417 	*nframes = 0;
418 
419 	isaggr = bf_isaggr(bf);
420 	if (isaggr) {
421 		seq_st = ts->ts_seqnum;
422 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
423 	}
424 
425 	while (bf) {
426 		fi = get_frame_info(bf->bf_mpdu);
427 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
428 
429 		(*nframes)++;
430 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
431 			(*nbad)++;
432 
433 		bf = bf->bf_next;
434 	}
435 }
436 
437 
ath_tx_complete_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_buf * bf,struct list_head * bf_q,struct ath_tx_status * ts,int txok)438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
439 				 struct ath_buf *bf, struct list_head *bf_q,
440 				 struct ath_tx_status *ts, int txok)
441 {
442 	struct ath_node *an = NULL;
443 	struct sk_buff *skb;
444 	struct ieee80211_sta *sta;
445 	struct ieee80211_hw *hw = sc->hw;
446 	struct ieee80211_hdr *hdr;
447 	struct ieee80211_tx_info *tx_info;
448 	struct ath_atx_tid *tid = NULL;
449 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
450 	struct list_head bf_head;
451 	struct sk_buff_head bf_pending;
452 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
453 	u32 ba[WME_BA_BMP_SIZE >> 5];
454 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
455 	bool rc_update = true, isba;
456 	struct ieee80211_tx_rate rates[4];
457 	struct ath_frame_info *fi;
458 	int nframes;
459 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
460 	int i, retries;
461 	int bar_index = -1;
462 
463 	skb = bf->bf_mpdu;
464 	hdr = (struct ieee80211_hdr *)skb->data;
465 
466 	tx_info = IEEE80211_SKB_CB(skb);
467 
468 	memcpy(rates, bf->rates, sizeof(rates));
469 
470 	retries = ts->ts_longretry + 1;
471 	for (i = 0; i < ts->ts_rateindex; i++)
472 		retries += rates[i].count;
473 
474 	rcu_read_lock();
475 
476 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
477 	if (!sta) {
478 		rcu_read_unlock();
479 
480 		INIT_LIST_HEAD(&bf_head);
481 		while (bf) {
482 			bf_next = bf->bf_next;
483 
484 			if (!bf->bf_state.stale || bf_next != NULL)
485 				list_move_tail(&bf->list, &bf_head);
486 
487 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
488 
489 			bf = bf_next;
490 		}
491 		return;
492 	}
493 
494 	an = (struct ath_node *)sta->drv_priv;
495 	tid = ath_get_skb_tid(sc, an, skb);
496 	seq_first = tid->seq_start;
497 	isba = ts->ts_flags & ATH9K_TX_BA;
498 
499 	/*
500 	 * The hardware occasionally sends a tx status for the wrong TID.
501 	 * In this case, the BA status cannot be considered valid and all
502 	 * subframes need to be retransmitted
503 	 *
504 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
505 	 * checked
506 	 */
507 	if (isba && tid->tidno != ts->tid)
508 		txok = false;
509 
510 	isaggr = bf_isaggr(bf);
511 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
512 
513 	if (isaggr && txok) {
514 		if (ts->ts_flags & ATH9K_TX_BA) {
515 			seq_st = ts->ts_seqnum;
516 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
517 		} else {
518 			/*
519 			 * AR5416 can become deaf/mute when BA
520 			 * issue happens. Chip needs to be reset.
521 			 * But AP code may have sychronization issues
522 			 * when perform internal reset in this routine.
523 			 * Only enable reset in STA mode for now.
524 			 */
525 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
526 				needreset = 1;
527 		}
528 	}
529 
530 	__skb_queue_head_init(&bf_pending);
531 
532 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
533 	while (bf) {
534 		u16 seqno = bf->bf_state.seqno;
535 
536 		txfail = txpending = sendbar = 0;
537 		bf_next = bf->bf_next;
538 
539 		skb = bf->bf_mpdu;
540 		tx_info = IEEE80211_SKB_CB(skb);
541 		fi = get_frame_info(skb);
542 
543 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
544 		    !tid->active) {
545 			/*
546 			 * Outside of the current BlockAck window,
547 			 * maybe part of a previous session
548 			 */
549 			txfail = 1;
550 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
551 			/* transmit completion, subframe is
552 			 * acked by block ack */
553 			acked_cnt++;
554 		} else if (!isaggr && txok) {
555 			/* transmit completion */
556 			acked_cnt++;
557 		} else if (flush) {
558 			txpending = 1;
559 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
560 			if (txok || !an->sleeping)
561 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
562 						 retries);
563 
564 			txpending = 1;
565 		} else {
566 			txfail = 1;
567 			txfail_cnt++;
568 			bar_index = max_t(int, bar_index,
569 				ATH_BA_INDEX(seq_first, seqno));
570 		}
571 
572 		/*
573 		 * Make sure the last desc is reclaimed if it
574 		 * not a holding desc.
575 		 */
576 		INIT_LIST_HEAD(&bf_head);
577 		if (bf_next != NULL || !bf_last->bf_state.stale)
578 			list_move_tail(&bf->list, &bf_head);
579 
580 		if (!txpending) {
581 			/*
582 			 * complete the acked-ones/xretried ones; update
583 			 * block-ack window
584 			 */
585 			ath_tx_update_baw(sc, tid, seqno);
586 
587 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
588 				memcpy(tx_info->control.rates, rates, sizeof(rates));
589 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
590 				rc_update = false;
591 				if (bf == bf->bf_lastbf)
592 					ath_dynack_sample_tx_ts(sc->sc_ah,
593 								bf->bf_mpdu,
594 								ts);
595 			}
596 
597 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
598 				!txfail);
599 		} else {
600 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
601 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
602 				ieee80211_sta_eosp(sta);
603 			}
604 			/* retry the un-acked ones */
605 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
606 				struct ath_buf *tbf;
607 
608 				tbf = ath_clone_txbuf(sc, bf_last);
609 				/*
610 				 * Update tx baw and complete the
611 				 * frame with failed status if we
612 				 * run out of tx buf.
613 				 */
614 				if (!tbf) {
615 					ath_tx_update_baw(sc, tid, seqno);
616 
617 					ath_tx_complete_buf(sc, bf, txq,
618 							    &bf_head, ts, 0);
619 					bar_index = max_t(int, bar_index,
620 						ATH_BA_INDEX(seq_first, seqno));
621 					break;
622 				}
623 
624 				fi->bf = tbf;
625 			}
626 
627 			/*
628 			 * Put this buffer to the temporary pending
629 			 * queue to retain ordering
630 			 */
631 			__skb_queue_tail(&bf_pending, skb);
632 		}
633 
634 		bf = bf_next;
635 	}
636 
637 	/* prepend un-acked frames to the beginning of the pending frame queue */
638 	if (!skb_queue_empty(&bf_pending)) {
639 		if (an->sleeping)
640 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
641 
642 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
643 		if (!an->sleeping) {
644 			ath_tx_queue_tid(sc, txq, tid);
645 
646 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
647 				tid->ac->clear_ps_filter = true;
648 		}
649 	}
650 
651 	if (bar_index >= 0) {
652 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
653 
654 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
655 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
656 
657 		ath_txq_unlock(sc, txq);
658 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
659 		ath_txq_lock(sc, txq);
660 	}
661 
662 	rcu_read_unlock();
663 
664 	if (needreset)
665 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
666 }
667 
bf_is_ampdu_not_probing(struct ath_buf * bf)668 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
669 {
670     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
671     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
672 }
673 
ath_tx_process_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf,struct list_head * bf_head)674 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
675 				  struct ath_tx_status *ts, struct ath_buf *bf,
676 				  struct list_head *bf_head)
677 {
678 	struct ieee80211_tx_info *info;
679 	bool txok, flush;
680 
681 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
682 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
683 	txq->axq_tx_inprogress = false;
684 
685 	txq->axq_depth--;
686 	if (bf_is_ampdu_not_probing(bf))
687 		txq->axq_ampdu_depth--;
688 
689 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
690 					     ts->ts_rateindex);
691 	if (!bf_isampdu(bf)) {
692 		if (!flush) {
693 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
694 			memcpy(info->control.rates, bf->rates,
695 			       sizeof(info->control.rates));
696 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
697 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts);
698 		}
699 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
700 	} else
701 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
702 
703 	if (!flush)
704 		ath_txq_schedule(sc, txq);
705 }
706 
ath_lookup_legacy(struct ath_buf * bf)707 static bool ath_lookup_legacy(struct ath_buf *bf)
708 {
709 	struct sk_buff *skb;
710 	struct ieee80211_tx_info *tx_info;
711 	struct ieee80211_tx_rate *rates;
712 	int i;
713 
714 	skb = bf->bf_mpdu;
715 	tx_info = IEEE80211_SKB_CB(skb);
716 	rates = tx_info->control.rates;
717 
718 	for (i = 0; i < 4; i++) {
719 		if (!rates[i].count || rates[i].idx < 0)
720 			break;
721 
722 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
723 			return true;
724 	}
725 
726 	return false;
727 }
728 
ath_lookup_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_atx_tid * tid)729 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
730 			   struct ath_atx_tid *tid)
731 {
732 	struct sk_buff *skb;
733 	struct ieee80211_tx_info *tx_info;
734 	struct ieee80211_tx_rate *rates;
735 	u32 max_4ms_framelen, frmlen;
736 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
737 	int q = tid->ac->txq->mac80211_qnum;
738 	int i;
739 
740 	skb = bf->bf_mpdu;
741 	tx_info = IEEE80211_SKB_CB(skb);
742 	rates = bf->rates;
743 
744 	/*
745 	 * Find the lowest frame length among the rate series that will have a
746 	 * 4ms (or TXOP limited) transmit duration.
747 	 */
748 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
749 
750 	for (i = 0; i < 4; i++) {
751 		int modeidx;
752 
753 		if (!rates[i].count)
754 			continue;
755 
756 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
757 			legacy = 1;
758 			break;
759 		}
760 
761 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
762 			modeidx = MCS_HT40;
763 		else
764 			modeidx = MCS_HT20;
765 
766 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
767 			modeidx++;
768 
769 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
770 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
771 	}
772 
773 	/*
774 	 * limit aggregate size by the minimum rate if rate selected is
775 	 * not a probe rate, if rate selected is a probe rate then
776 	 * avoid aggregation of this packet.
777 	 */
778 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
779 		return 0;
780 
781 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
782 
783 	/*
784 	 * Override the default aggregation limit for BTCOEX.
785 	 */
786 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
787 	if (bt_aggr_limit)
788 		aggr_limit = bt_aggr_limit;
789 
790 	if (tid->an->maxampdu)
791 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
792 
793 	return aggr_limit;
794 }
795 
796 /*
797  * Returns the number of delimiters to be added to
798  * meet the minimum required mpdudensity.
799  */
ath_compute_num_delims(struct ath_softc * sc,struct ath_atx_tid * tid,struct ath_buf * bf,u16 frmlen,bool first_subfrm)800 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
801 				  struct ath_buf *bf, u16 frmlen,
802 				  bool first_subfrm)
803 {
804 #define FIRST_DESC_NDELIMS 60
805 	u32 nsymbits, nsymbols;
806 	u16 minlen;
807 	u8 flags, rix;
808 	int width, streams, half_gi, ndelim, mindelim;
809 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
810 
811 	/* Select standard number of delimiters based on frame length alone */
812 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
813 
814 	/*
815 	 * If encryption enabled, hardware requires some more padding between
816 	 * subframes.
817 	 * TODO - this could be improved to be dependent on the rate.
818 	 *      The hardware can keep up at lower rates, but not higher rates
819 	 */
820 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
821 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
822 		ndelim += ATH_AGGR_ENCRYPTDELIM;
823 
824 	/*
825 	 * Add delimiter when using RTS/CTS with aggregation
826 	 * and non enterprise AR9003 card
827 	 */
828 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
829 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
830 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
831 
832 	/*
833 	 * Convert desired mpdu density from microeconds to bytes based
834 	 * on highest rate in rate series (i.e. first rate) to determine
835 	 * required minimum length for subframe. Take into account
836 	 * whether high rate is 20 or 40Mhz and half or full GI.
837 	 *
838 	 * If there is no mpdu density restriction, no further calculation
839 	 * is needed.
840 	 */
841 
842 	if (tid->an->mpdudensity == 0)
843 		return ndelim;
844 
845 	rix = bf->rates[0].idx;
846 	flags = bf->rates[0].flags;
847 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
848 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
849 
850 	if (half_gi)
851 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
852 	else
853 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
854 
855 	if (nsymbols == 0)
856 		nsymbols = 1;
857 
858 	streams = HT_RC_2_STREAMS(rix);
859 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
860 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
861 
862 	if (frmlen < minlen) {
863 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
864 		ndelim = max(mindelim, ndelim);
865 	}
866 
867 	return ndelim;
868 }
869 
870 static struct ath_buf *
ath_tx_get_tid_subframe(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff_head ** q)871 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
872 			struct ath_atx_tid *tid, struct sk_buff_head **q)
873 {
874 	struct ieee80211_tx_info *tx_info;
875 	struct ath_frame_info *fi;
876 	struct sk_buff *skb;
877 	struct ath_buf *bf;
878 	u16 seqno;
879 
880 	while (1) {
881 		*q = &tid->retry_q;
882 		if (skb_queue_empty(*q))
883 			*q = &tid->buf_q;
884 
885 		skb = skb_peek(*q);
886 		if (!skb)
887 			break;
888 
889 		fi = get_frame_info(skb);
890 		bf = fi->bf;
891 		if (!fi->bf)
892 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
893 		else
894 			bf->bf_state.stale = false;
895 
896 		if (!bf) {
897 			__skb_unlink(skb, *q);
898 			ath_txq_skb_done(sc, txq, skb);
899 			ieee80211_free_txskb(sc->hw, skb);
900 			continue;
901 		}
902 
903 		bf->bf_next = NULL;
904 		bf->bf_lastbf = bf;
905 
906 		tx_info = IEEE80211_SKB_CB(skb);
907 		tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
908 
909 		/*
910 		 * No aggregation session is running, but there may be frames
911 		 * from a previous session or a failed attempt in the queue.
912 		 * Send them out as normal data frames
913 		 */
914 		if (!tid->active)
915 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
916 
917 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
918 			bf->bf_state.bf_type = 0;
919 			return bf;
920 		}
921 
922 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
923 		seqno = bf->bf_state.seqno;
924 
925 		/* do not step over block-ack window */
926 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
927 			break;
928 
929 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
930 			struct ath_tx_status ts = {};
931 			struct list_head bf_head;
932 
933 			INIT_LIST_HEAD(&bf_head);
934 			list_add(&bf->list, &bf_head);
935 			__skb_unlink(skb, *q);
936 			ath_tx_update_baw(sc, tid, seqno);
937 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
938 			continue;
939 		}
940 
941 		return bf;
942 	}
943 
944 	return NULL;
945 }
946 
947 static bool
ath_tx_form_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q,int * aggr_len)948 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
949 		 struct ath_atx_tid *tid, struct list_head *bf_q,
950 		 struct ath_buf *bf_first, struct sk_buff_head *tid_q,
951 		 int *aggr_len)
952 {
953 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
954 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
955 	int nframes = 0, ndelim;
956 	u16 aggr_limit = 0, al = 0, bpad = 0,
957 	    al_delta, h_baw = tid->baw_size / 2;
958 	struct ieee80211_tx_info *tx_info;
959 	struct ath_frame_info *fi;
960 	struct sk_buff *skb;
961 	bool closed = false;
962 
963 	bf = bf_first;
964 	aggr_limit = ath_lookup_rate(sc, bf, tid);
965 
966 	do {
967 		skb = bf->bf_mpdu;
968 		fi = get_frame_info(skb);
969 
970 		/* do not exceed aggregation limit */
971 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
972 		if (nframes) {
973 			if (aggr_limit < al + bpad + al_delta ||
974 			    ath_lookup_legacy(bf) || nframes >= h_baw)
975 				break;
976 
977 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
978 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
979 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
980 				break;
981 		}
982 
983 		/* add padding for previous frame to aggregation length */
984 		al += bpad + al_delta;
985 
986 		/*
987 		 * Get the delimiters needed to meet the MPDU
988 		 * density for this node.
989 		 */
990 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
991 						!nframes);
992 		bpad = PADBYTES(al_delta) + (ndelim << 2);
993 
994 		nframes++;
995 		bf->bf_next = NULL;
996 
997 		/* link buffers of this frame to the aggregate */
998 		if (!fi->baw_tracked)
999 			ath_tx_addto_baw(sc, tid, bf);
1000 		bf->bf_state.ndelim = ndelim;
1001 
1002 		__skb_unlink(skb, tid_q);
1003 		list_add_tail(&bf->list, bf_q);
1004 		if (bf_prev)
1005 			bf_prev->bf_next = bf;
1006 
1007 		bf_prev = bf;
1008 
1009 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1010 		if (!bf) {
1011 			closed = true;
1012 			break;
1013 		}
1014 	} while (ath_tid_has_buffered(tid));
1015 
1016 	bf = bf_first;
1017 	bf->bf_lastbf = bf_prev;
1018 
1019 	if (bf == bf_prev) {
1020 		al = get_frame_info(bf->bf_mpdu)->framelen;
1021 		bf->bf_state.bf_type = BUF_AMPDU;
1022 	} else {
1023 		TX_STAT_INC(txq->axq_qnum, a_aggr);
1024 	}
1025 
1026 	*aggr_len = al;
1027 
1028 	return closed;
1029 #undef PADBYTES
1030 }
1031 
1032 /*
1033  * rix - rate index
1034  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1035  * width  - 0 for 20 MHz, 1 for 40 MHz
1036  * half_gi - to use 4us v/s 3.6 us for symbol time
1037  */
ath_pkt_duration(struct ath_softc * sc,u8 rix,int pktlen,int width,int half_gi,bool shortPreamble)1038 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1039 			    int width, int half_gi, bool shortPreamble)
1040 {
1041 	u32 nbits, nsymbits, duration, nsymbols;
1042 	int streams;
1043 
1044 	/* find number of symbols: PLCP + data */
1045 	streams = HT_RC_2_STREAMS(rix);
1046 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1047 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1048 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1049 
1050 	if (!half_gi)
1051 		duration = SYMBOL_TIME(nsymbols);
1052 	else
1053 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1054 
1055 	/* addup duration for legacy/ht training and signal fields */
1056 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1057 
1058 	return duration;
1059 }
1060 
ath_max_framelen(int usec,int mcs,bool ht40,bool sgi)1061 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1062 {
1063 	int streams = HT_RC_2_STREAMS(mcs);
1064 	int symbols, bits;
1065 	int bytes = 0;
1066 
1067 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1068 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1069 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1070 	bits -= OFDM_PLCP_BITS;
1071 	bytes = bits / 8;
1072 	if (bytes > 65532)
1073 		bytes = 65532;
1074 
1075 	return bytes;
1076 }
1077 
ath_update_max_aggr_framelen(struct ath_softc * sc,int queue,int txop)1078 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1079 {
1080 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1081 	int mcs;
1082 
1083 	/* 4ms is the default (and maximum) duration */
1084 	if (!txop || txop > 4096)
1085 		txop = 4096;
1086 
1087 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1088 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1089 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1090 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1091 	for (mcs = 0; mcs < 32; mcs++) {
1092 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1093 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1094 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1095 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1096 	}
1097 }
1098 
ath_buf_set_rate(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_info * info,int len,bool rts)1099 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1100 			     struct ath_tx_info *info, int len, bool rts)
1101 {
1102 	struct ath_hw *ah = sc->sc_ah;
1103 	struct ath_common *common = ath9k_hw_common(ah);
1104 	struct sk_buff *skb;
1105 	struct ieee80211_tx_info *tx_info;
1106 	struct ieee80211_tx_rate *rates;
1107 	const struct ieee80211_rate *rate;
1108 	struct ieee80211_hdr *hdr;
1109 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1110 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1111 	int i;
1112 	u8 rix = 0;
1113 
1114 	skb = bf->bf_mpdu;
1115 	tx_info = IEEE80211_SKB_CB(skb);
1116 	rates = bf->rates;
1117 	hdr = (struct ieee80211_hdr *)skb->data;
1118 
1119 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1120 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1121 	info->rtscts_rate = fi->rtscts_rate;
1122 
1123 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1124 		bool is_40, is_sgi, is_sp;
1125 		int phy;
1126 
1127 		if (!rates[i].count || (rates[i].idx < 0))
1128 			continue;
1129 
1130 		rix = rates[i].idx;
1131 		info->rates[i].Tries = rates[i].count;
1132 
1133 		/*
1134 		 * Handle RTS threshold for unaggregated HT frames.
1135 		 */
1136 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1137 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1138 		    unlikely(rts_thresh != (u32) -1)) {
1139 			if (!rts_thresh || (len > rts_thresh))
1140 				rts = true;
1141 		}
1142 
1143 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1144 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1145 			info->flags |= ATH9K_TXDESC_RTSENA;
1146 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1147 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1148 			info->flags |= ATH9K_TXDESC_CTSENA;
1149 		}
1150 
1151 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1152 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1153 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1154 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1155 
1156 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1157 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1158 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1159 
1160 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1161 			/* MCS rates */
1162 			info->rates[i].Rate = rix | 0x80;
1163 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1164 					ah->txchainmask, info->rates[i].Rate);
1165 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1166 				 is_40, is_sgi, is_sp);
1167 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1168 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1169 			continue;
1170 		}
1171 
1172 		/* legacy rates */
1173 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1174 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1175 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1176 			phy = WLAN_RC_PHY_CCK;
1177 		else
1178 			phy = WLAN_RC_PHY_OFDM;
1179 
1180 		info->rates[i].Rate = rate->hw_value;
1181 		if (rate->hw_value_short) {
1182 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1183 				info->rates[i].Rate |= rate->hw_value_short;
1184 		} else {
1185 			is_sp = false;
1186 		}
1187 
1188 		if (bf->bf_state.bfs_paprd)
1189 			info->rates[i].ChSel = ah->txchainmask;
1190 		else
1191 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1192 					ah->txchainmask, info->rates[i].Rate);
1193 
1194 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1195 			phy, rate->bitrate * 100, len, rix, is_sp);
1196 	}
1197 
1198 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1199 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1200 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1201 
1202 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1203 	if (info->flags & ATH9K_TXDESC_RTSENA)
1204 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1205 }
1206 
get_hw_packet_type(struct sk_buff * skb)1207 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1208 {
1209 	struct ieee80211_hdr *hdr;
1210 	enum ath9k_pkt_type htype;
1211 	__le16 fc;
1212 
1213 	hdr = (struct ieee80211_hdr *)skb->data;
1214 	fc = hdr->frame_control;
1215 
1216 	if (ieee80211_is_beacon(fc))
1217 		htype = ATH9K_PKT_TYPE_BEACON;
1218 	else if (ieee80211_is_probe_resp(fc))
1219 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1220 	else if (ieee80211_is_atim(fc))
1221 		htype = ATH9K_PKT_TYPE_ATIM;
1222 	else if (ieee80211_is_pspoll(fc))
1223 		htype = ATH9K_PKT_TYPE_PSPOLL;
1224 	else
1225 		htype = ATH9K_PKT_TYPE_NORMAL;
1226 
1227 	return htype;
1228 }
1229 
ath_tx_fill_desc(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,int len)1230 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1231 			     struct ath_txq *txq, int len)
1232 {
1233 	struct ath_hw *ah = sc->sc_ah;
1234 	struct ath_buf *bf_first = NULL;
1235 	struct ath_tx_info info;
1236 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1237 	bool rts = false;
1238 
1239 	memset(&info, 0, sizeof(info));
1240 	info.is_first = true;
1241 	info.is_last = true;
1242 	info.txpower = MAX_RATE_POWER;
1243 	info.qcu = txq->axq_qnum;
1244 
1245 	while (bf) {
1246 		struct sk_buff *skb = bf->bf_mpdu;
1247 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1248 		struct ath_frame_info *fi = get_frame_info(skb);
1249 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1250 
1251 		info.type = get_hw_packet_type(skb);
1252 		if (bf->bf_next)
1253 			info.link = bf->bf_next->bf_daddr;
1254 		else
1255 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1256 
1257 		if (!bf_first) {
1258 			bf_first = bf;
1259 
1260 			if (!sc->tx99_state)
1261 				info.flags = ATH9K_TXDESC_INTREQ;
1262 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1263 			    txq == sc->tx.uapsdq)
1264 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1265 
1266 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1267 				info.flags |= ATH9K_TXDESC_NOACK;
1268 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1269 				info.flags |= ATH9K_TXDESC_LDPC;
1270 
1271 			if (bf->bf_state.bfs_paprd)
1272 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1273 					      ATH9K_TXDESC_PAPRD_S;
1274 
1275 			/*
1276 			 * mac80211 doesn't handle RTS threshold for HT because
1277 			 * the decision has to be taken based on AMPDU length
1278 			 * and aggregation is done entirely inside ath9k.
1279 			 * Set the RTS/CTS flag for the first subframe based
1280 			 * on the threshold.
1281 			 */
1282 			if (aggr && (bf == bf_first) &&
1283 			    unlikely(rts_thresh != (u32) -1)) {
1284 				/*
1285 				 * "len" is the size of the entire AMPDU.
1286 				 */
1287 				if (!rts_thresh || (len > rts_thresh))
1288 					rts = true;
1289 			}
1290 
1291 			if (!aggr)
1292 				len = fi->framelen;
1293 
1294 			ath_buf_set_rate(sc, bf, &info, len, rts);
1295 		}
1296 
1297 		info.buf_addr[0] = bf->bf_buf_addr;
1298 		info.buf_len[0] = skb->len;
1299 		info.pkt_len = fi->framelen;
1300 		info.keyix = fi->keyix;
1301 		info.keytype = fi->keytype;
1302 
1303 		if (aggr) {
1304 			if (bf == bf_first)
1305 				info.aggr = AGGR_BUF_FIRST;
1306 			else if (bf == bf_first->bf_lastbf)
1307 				info.aggr = AGGR_BUF_LAST;
1308 			else
1309 				info.aggr = AGGR_BUF_MIDDLE;
1310 
1311 			info.ndelim = bf->bf_state.ndelim;
1312 			info.aggr_len = len;
1313 		}
1314 
1315 		if (bf == bf_first->bf_lastbf)
1316 			bf_first = NULL;
1317 
1318 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1319 		bf = bf->bf_next;
1320 	}
1321 }
1322 
1323 static void
ath_tx_form_burst(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct list_head * bf_q,struct ath_buf * bf_first,struct sk_buff_head * tid_q)1324 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1325 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1326 		  struct ath_buf *bf_first, struct sk_buff_head *tid_q)
1327 {
1328 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1329 	struct sk_buff *skb;
1330 	int nframes = 0;
1331 
1332 	do {
1333 		struct ieee80211_tx_info *tx_info;
1334 		skb = bf->bf_mpdu;
1335 
1336 		nframes++;
1337 		__skb_unlink(skb, tid_q);
1338 		list_add_tail(&bf->list, bf_q);
1339 		if (bf_prev)
1340 			bf_prev->bf_next = bf;
1341 		bf_prev = bf;
1342 
1343 		if (nframes >= 2)
1344 			break;
1345 
1346 		bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1347 		if (!bf)
1348 			break;
1349 
1350 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1351 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1352 			break;
1353 
1354 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1355 	} while (1);
1356 }
1357 
ath_tx_sched_aggr(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,bool * stop)1358 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1359 			      struct ath_atx_tid *tid, bool *stop)
1360 {
1361 	struct ath_buf *bf;
1362 	struct ieee80211_tx_info *tx_info;
1363 	struct sk_buff_head *tid_q;
1364 	struct list_head bf_q;
1365 	int aggr_len = 0;
1366 	bool aggr, last = true;
1367 
1368 	if (!ath_tid_has_buffered(tid))
1369 		return false;
1370 
1371 	INIT_LIST_HEAD(&bf_q);
1372 
1373 	bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
1374 	if (!bf)
1375 		return false;
1376 
1377 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1378 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1379 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1380 		(!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1381 		*stop = true;
1382 		return false;
1383 	}
1384 
1385 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1386 	if (aggr)
1387 		last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
1388 					tid_q, &aggr_len);
1389 	else
1390 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
1391 
1392 	if (list_empty(&bf_q))
1393 		return false;
1394 
1395 	if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) {
1396 		tid->ac->clear_ps_filter = false;
1397 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1398 	}
1399 
1400 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1401 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1402 	return true;
1403 }
1404 
ath_tx_aggr_start(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid,u16 * ssn)1405 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1406 		      u16 tid, u16 *ssn)
1407 {
1408 	struct ath_atx_tid *txtid;
1409 	struct ath_txq *txq;
1410 	struct ath_node *an;
1411 	u8 density;
1412 
1413 	an = (struct ath_node *)sta->drv_priv;
1414 	txtid = ATH_AN_2_TID(an, tid);
1415 	txq = txtid->ac->txq;
1416 
1417 	ath_txq_lock(sc, txq);
1418 
1419 	/* update ampdu factor/density, they may have changed. This may happen
1420 	 * in HT IBSS when a beacon with HT-info is received after the station
1421 	 * has already been added.
1422 	 */
1423 	if (sta->ht_cap.ht_supported) {
1424 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1425 				      sta->ht_cap.ampdu_factor)) - 1;
1426 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1427 		an->mpdudensity = density;
1428 	}
1429 
1430 	/* force sequence number allocation for pending frames */
1431 	ath_tx_tid_change_state(sc, txtid);
1432 
1433 	txtid->active = true;
1434 	*ssn = txtid->seq_start = txtid->seq_next;
1435 	txtid->bar_index = -1;
1436 
1437 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1438 	txtid->baw_head = txtid->baw_tail = 0;
1439 
1440 	ath_txq_unlock_complete(sc, txq);
1441 
1442 	return 0;
1443 }
1444 
ath_tx_aggr_stop(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tid)1445 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1446 {
1447 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1448 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1449 	struct ath_txq *txq = txtid->ac->txq;
1450 
1451 	ath_txq_lock(sc, txq);
1452 	txtid->active = false;
1453 	ath_tx_flush_tid(sc, txtid);
1454 	ath_tx_tid_change_state(sc, txtid);
1455 	ath_txq_unlock_complete(sc, txq);
1456 }
1457 
ath_tx_aggr_sleep(struct ieee80211_sta * sta,struct ath_softc * sc,struct ath_node * an)1458 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1459 		       struct ath_node *an)
1460 {
1461 	struct ath_atx_tid *tid;
1462 	struct ath_atx_ac *ac;
1463 	struct ath_txq *txq;
1464 	bool buffered;
1465 	int tidno;
1466 
1467 	for (tidno = 0, tid = &an->tid[tidno];
1468 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1469 
1470 		ac = tid->ac;
1471 		txq = ac->txq;
1472 
1473 		ath_txq_lock(sc, txq);
1474 
1475 		if (!tid->sched) {
1476 			ath_txq_unlock(sc, txq);
1477 			continue;
1478 		}
1479 
1480 		buffered = ath_tid_has_buffered(tid);
1481 
1482 		tid->sched = false;
1483 		list_del(&tid->list);
1484 
1485 		if (ac->sched) {
1486 			ac->sched = false;
1487 			list_del(&ac->list);
1488 		}
1489 
1490 		ath_txq_unlock(sc, txq);
1491 
1492 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1493 	}
1494 }
1495 
ath_tx_aggr_wakeup(struct ath_softc * sc,struct ath_node * an)1496 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1497 {
1498 	struct ath_atx_tid *tid;
1499 	struct ath_atx_ac *ac;
1500 	struct ath_txq *txq;
1501 	int tidno;
1502 
1503 	for (tidno = 0, tid = &an->tid[tidno];
1504 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
1505 
1506 		ac = tid->ac;
1507 		txq = ac->txq;
1508 
1509 		ath_txq_lock(sc, txq);
1510 		ac->clear_ps_filter = true;
1511 
1512 		if (ath_tid_has_buffered(tid)) {
1513 			ath_tx_queue_tid(sc, txq, tid);
1514 			ath_txq_schedule(sc, txq);
1515 		}
1516 
1517 		ath_txq_unlock_complete(sc, txq);
1518 	}
1519 }
1520 
ath_tx_aggr_resume(struct ath_softc * sc,struct ieee80211_sta * sta,u16 tidno)1521 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
1522 			u16 tidno)
1523 {
1524 	struct ath_atx_tid *tid;
1525 	struct ath_node *an;
1526 	struct ath_txq *txq;
1527 
1528 	an = (struct ath_node *)sta->drv_priv;
1529 	tid = ATH_AN_2_TID(an, tidno);
1530 	txq = tid->ac->txq;
1531 
1532 	ath_txq_lock(sc, txq);
1533 
1534 	tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1535 
1536 	if (ath_tid_has_buffered(tid)) {
1537 		ath_tx_queue_tid(sc, txq, tid);
1538 		ath_txq_schedule(sc, txq);
1539 	}
1540 
1541 	ath_txq_unlock_complete(sc, txq);
1542 }
1543 
ath9k_release_buffered_frames(struct ieee80211_hw * hw,struct ieee80211_sta * sta,u16 tids,int nframes,enum ieee80211_frame_release_type reason,bool more_data)1544 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1545 				   struct ieee80211_sta *sta,
1546 				   u16 tids, int nframes,
1547 				   enum ieee80211_frame_release_type reason,
1548 				   bool more_data)
1549 {
1550 	struct ath_softc *sc = hw->priv;
1551 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1552 	struct ath_txq *txq = sc->tx.uapsdq;
1553 	struct ieee80211_tx_info *info;
1554 	struct list_head bf_q;
1555 	struct ath_buf *bf_tail = NULL, *bf;
1556 	struct sk_buff_head *tid_q;
1557 	int sent = 0;
1558 	int i;
1559 
1560 	INIT_LIST_HEAD(&bf_q);
1561 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1562 		struct ath_atx_tid *tid;
1563 
1564 		if (!(tids & 1))
1565 			continue;
1566 
1567 		tid = ATH_AN_2_TID(an, i);
1568 
1569 		ath_txq_lock(sc, tid->ac->txq);
1570 		while (nframes > 0) {
1571 			bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
1572 			if (!bf)
1573 				break;
1574 
1575 			__skb_unlink(bf->bf_mpdu, tid_q);
1576 			list_add_tail(&bf->list, &bf_q);
1577 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1578 			if (bf_isampdu(bf)) {
1579 				ath_tx_addto_baw(sc, tid, bf);
1580 				bf->bf_state.bf_type &= ~BUF_AGGR;
1581 			}
1582 			if (bf_tail)
1583 				bf_tail->bf_next = bf;
1584 
1585 			bf_tail = bf;
1586 			nframes--;
1587 			sent++;
1588 			TX_STAT_INC(txq->axq_qnum, a_queued_hw);
1589 
1590 			if (an->sta && !ath_tid_has_buffered(tid))
1591 				ieee80211_sta_set_buffered(an->sta, i, false);
1592 		}
1593 		ath_txq_unlock_complete(sc, tid->ac->txq);
1594 	}
1595 
1596 	if (list_empty(&bf_q))
1597 		return;
1598 
1599 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1600 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1601 
1602 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1603 	ath_txq_lock(sc, txq);
1604 	ath_tx_fill_desc(sc, bf, txq, 0);
1605 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1606 	ath_txq_unlock(sc, txq);
1607 }
1608 
1609 /********************/
1610 /* Queue Management */
1611 /********************/
1612 
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)1613 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1614 {
1615 	struct ath_hw *ah = sc->sc_ah;
1616 	struct ath9k_tx_queue_info qi;
1617 	static const int subtype_txq_to_hwq[] = {
1618 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1619 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1620 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1621 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1622 	};
1623 	int axq_qnum, i;
1624 
1625 	memset(&qi, 0, sizeof(qi));
1626 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1627 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1628 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1629 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1630 	qi.tqi_physCompBuf = 0;
1631 
1632 	/*
1633 	 * Enable interrupts only for EOL and DESC conditions.
1634 	 * We mark tx descriptors to receive a DESC interrupt
1635 	 * when a tx queue gets deep; otherwise waiting for the
1636 	 * EOL to reap descriptors.  Note that this is done to
1637 	 * reduce interrupt load and this only defers reaping
1638 	 * descriptors, never transmitting frames.  Aside from
1639 	 * reducing interrupts this also permits more concurrency.
1640 	 * The only potential downside is if the tx queue backs
1641 	 * up in which case the top half of the kernel may backup
1642 	 * due to a lack of tx descriptors.
1643 	 *
1644 	 * The UAPSD queue is an exception, since we take a desc-
1645 	 * based intr on the EOSP frames.
1646 	 */
1647 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1648 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1649 	} else {
1650 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1651 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1652 		else
1653 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1654 					TXQ_FLAG_TXDESCINT_ENABLE;
1655 	}
1656 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1657 	if (axq_qnum == -1) {
1658 		/*
1659 		 * NB: don't print a message, this happens
1660 		 * normally on parts with too few tx queues
1661 		 */
1662 		return NULL;
1663 	}
1664 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1665 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1666 
1667 		txq->axq_qnum = axq_qnum;
1668 		txq->mac80211_qnum = -1;
1669 		txq->axq_link = NULL;
1670 		__skb_queue_head_init(&txq->complete_q);
1671 		INIT_LIST_HEAD(&txq->axq_q);
1672 		spin_lock_init(&txq->axq_lock);
1673 		txq->axq_depth = 0;
1674 		txq->axq_ampdu_depth = 0;
1675 		txq->axq_tx_inprogress = false;
1676 		sc->tx.txqsetup |= 1<<axq_qnum;
1677 
1678 		txq->txq_headidx = txq->txq_tailidx = 0;
1679 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1680 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1681 	}
1682 	return &sc->tx.txq[axq_qnum];
1683 }
1684 
ath_txq_update(struct ath_softc * sc,int qnum,struct ath9k_tx_queue_info * qinfo)1685 int ath_txq_update(struct ath_softc *sc, int qnum,
1686 		   struct ath9k_tx_queue_info *qinfo)
1687 {
1688 	struct ath_hw *ah = sc->sc_ah;
1689 	int error = 0;
1690 	struct ath9k_tx_queue_info qi;
1691 
1692 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1693 
1694 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1695 	qi.tqi_aifs = qinfo->tqi_aifs;
1696 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1697 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1698 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1699 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1700 
1701 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1702 		ath_err(ath9k_hw_common(sc->sc_ah),
1703 			"Unable to update hardware queue %u!\n", qnum);
1704 		error = -EIO;
1705 	} else {
1706 		ath9k_hw_resettxqueue(ah, qnum);
1707 	}
1708 
1709 	return error;
1710 }
1711 
ath_cabq_update(struct ath_softc * sc)1712 int ath_cabq_update(struct ath_softc *sc)
1713 {
1714 	struct ath9k_tx_queue_info qi;
1715 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1716 	int qnum = sc->beacon.cabq->axq_qnum;
1717 
1718 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1719 
1720 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1721 			    ATH_CABQ_READY_TIME) / 100;
1722 	ath_txq_update(sc, qnum, &qi);
1723 
1724 	return 0;
1725 }
1726 
ath_drain_txq_list(struct ath_softc * sc,struct ath_txq * txq,struct list_head * list)1727 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1728 			       struct list_head *list)
1729 {
1730 	struct ath_buf *bf, *lastbf;
1731 	struct list_head bf_head;
1732 	struct ath_tx_status ts;
1733 
1734 	memset(&ts, 0, sizeof(ts));
1735 	ts.ts_status = ATH9K_TX_FLUSH;
1736 	INIT_LIST_HEAD(&bf_head);
1737 
1738 	while (!list_empty(list)) {
1739 		bf = list_first_entry(list, struct ath_buf, list);
1740 
1741 		if (bf->bf_state.stale) {
1742 			list_del(&bf->list);
1743 
1744 			ath_tx_return_buffer(sc, bf);
1745 			continue;
1746 		}
1747 
1748 		lastbf = bf->bf_lastbf;
1749 		list_cut_position(&bf_head, list, &lastbf->list);
1750 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1751 	}
1752 }
1753 
1754 /*
1755  * Drain a given TX queue (could be Beacon or Data)
1756  *
1757  * This assumes output has been stopped and
1758  * we do not need to block ath_tx_tasklet.
1759  */
ath_draintxq(struct ath_softc * sc,struct ath_txq * txq)1760 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1761 {
1762 	ath_txq_lock(sc, txq);
1763 
1764 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1765 		int idx = txq->txq_tailidx;
1766 
1767 		while (!list_empty(&txq->txq_fifo[idx])) {
1768 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1769 
1770 			INCR(idx, ATH_TXFIFO_DEPTH);
1771 		}
1772 		txq->txq_tailidx = idx;
1773 	}
1774 
1775 	txq->axq_link = NULL;
1776 	txq->axq_tx_inprogress = false;
1777 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1778 
1779 	ath_txq_unlock_complete(sc, txq);
1780 }
1781 
ath_drain_all_txq(struct ath_softc * sc)1782 bool ath_drain_all_txq(struct ath_softc *sc)
1783 {
1784 	struct ath_hw *ah = sc->sc_ah;
1785 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1786 	struct ath_txq *txq;
1787 	int i;
1788 	u32 npend = 0;
1789 
1790 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1791 		return true;
1792 
1793 	ath9k_hw_abort_tx_dma(ah);
1794 
1795 	/* Check if any queue remains active */
1796 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1797 		if (!ATH_TXQ_SETUP(sc, i))
1798 			continue;
1799 
1800 		if (!sc->tx.txq[i].axq_depth)
1801 			continue;
1802 
1803 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1804 			npend |= BIT(i);
1805 	}
1806 
1807 	if (npend)
1808 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1809 
1810 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1811 		if (!ATH_TXQ_SETUP(sc, i))
1812 			continue;
1813 
1814 		/*
1815 		 * The caller will resume queues with ieee80211_wake_queues.
1816 		 * Mark the queue as not stopped to prevent ath_tx_complete
1817 		 * from waking the queue too early.
1818 		 */
1819 		txq = &sc->tx.txq[i];
1820 		txq->stopped = false;
1821 		ath_draintxq(sc, txq);
1822 	}
1823 
1824 	return !npend;
1825 }
1826 
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)1827 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1828 {
1829 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1830 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1831 }
1832 
1833 /* For each acq entry, for each tid, try to schedule packets
1834  * for transmit until ampdu_depth has reached min Q depth.
1835  */
ath_txq_schedule(struct ath_softc * sc,struct ath_txq * txq)1836 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1837 {
1838 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1839 	struct ath_atx_ac *ac, *last_ac;
1840 	struct ath_atx_tid *tid, *last_tid;
1841 	struct list_head *ac_list;
1842 	bool sent = false;
1843 
1844 	if (txq->mac80211_qnum < 0)
1845 		return;
1846 
1847 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1848 		return;
1849 
1850 	spin_lock_bh(&sc->chan_lock);
1851 	ac_list = &sc->cur_chan->acq[txq->mac80211_qnum];
1852 
1853 	if (list_empty(ac_list)) {
1854 		spin_unlock_bh(&sc->chan_lock);
1855 		return;
1856 	}
1857 
1858 	rcu_read_lock();
1859 
1860 	last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list);
1861 	while (!list_empty(ac_list)) {
1862 		bool stop = false;
1863 
1864 		if (sc->cur_chan->stopped)
1865 			break;
1866 
1867 		ac = list_first_entry(ac_list, struct ath_atx_ac, list);
1868 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1869 		list_del(&ac->list);
1870 		ac->sched = false;
1871 
1872 		while (!list_empty(&ac->tid_q)) {
1873 
1874 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1875 					       list);
1876 			list_del(&tid->list);
1877 			tid->sched = false;
1878 
1879 			if (ath_tx_sched_aggr(sc, txq, tid, &stop))
1880 				sent = true;
1881 
1882 			/*
1883 			 * add tid to round-robin queue if more frames
1884 			 * are pending for the tid
1885 			 */
1886 			if (ath_tid_has_buffered(tid))
1887 				ath_tx_queue_tid(sc, txq, tid);
1888 
1889 			if (stop || tid == last_tid)
1890 				break;
1891 		}
1892 
1893 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1894 			ac->sched = true;
1895 			list_add_tail(&ac->list, ac_list);
1896 		}
1897 
1898 		if (stop)
1899 			break;
1900 
1901 		if (ac == last_ac) {
1902 			if (!sent)
1903 				break;
1904 
1905 			sent = false;
1906 			last_ac = list_entry(ac_list->prev,
1907 					     struct ath_atx_ac, list);
1908 		}
1909 	}
1910 
1911 	rcu_read_unlock();
1912 	spin_unlock_bh(&sc->chan_lock);
1913 }
1914 
ath_txq_schedule_all(struct ath_softc * sc)1915 void ath_txq_schedule_all(struct ath_softc *sc)
1916 {
1917 	struct ath_txq *txq;
1918 	int i;
1919 
1920 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1921 		txq = sc->tx.txq_map[i];
1922 
1923 		spin_lock_bh(&txq->axq_lock);
1924 		ath_txq_schedule(sc, txq);
1925 		spin_unlock_bh(&txq->axq_lock);
1926 	}
1927 }
1928 
1929 /***********/
1930 /* TX, DMA */
1931 /***********/
1932 
1933 /*
1934  * Insert a chain of ath_buf (descriptors) on a txq and
1935  * assume the descriptors are already chained together by caller.
1936  */
ath_tx_txqaddbuf(struct ath_softc * sc,struct ath_txq * txq,struct list_head * head,bool internal)1937 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1938 			     struct list_head *head, bool internal)
1939 {
1940 	struct ath_hw *ah = sc->sc_ah;
1941 	struct ath_common *common = ath9k_hw_common(ah);
1942 	struct ath_buf *bf, *bf_last;
1943 	bool puttxbuf = false;
1944 	bool edma;
1945 
1946 	/*
1947 	 * Insert the frame on the outbound list and
1948 	 * pass it on to the hardware.
1949 	 */
1950 
1951 	if (list_empty(head))
1952 		return;
1953 
1954 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1955 	bf = list_first_entry(head, struct ath_buf, list);
1956 	bf_last = list_entry(head->prev, struct ath_buf, list);
1957 
1958 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1959 		txq->axq_qnum, txq->axq_depth);
1960 
1961 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1962 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1963 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1964 		puttxbuf = true;
1965 	} else {
1966 		list_splice_tail_init(head, &txq->axq_q);
1967 
1968 		if (txq->axq_link) {
1969 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1970 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1971 				txq->axq_qnum, txq->axq_link,
1972 				ito64(bf->bf_daddr), bf->bf_desc);
1973 		} else if (!edma)
1974 			puttxbuf = true;
1975 
1976 		txq->axq_link = bf_last->bf_desc;
1977 	}
1978 
1979 	if (puttxbuf) {
1980 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1981 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1982 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1983 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1984 	}
1985 
1986 	if (!edma || sc->tx99_state) {
1987 		TX_STAT_INC(txq->axq_qnum, txstart);
1988 		ath9k_hw_txstart(ah, txq->axq_qnum);
1989 	}
1990 
1991 	if (!internal) {
1992 		while (bf) {
1993 			txq->axq_depth++;
1994 			if (bf_is_ampdu_not_probing(bf))
1995 				txq->axq_ampdu_depth++;
1996 
1997 			bf_last = bf->bf_lastbf;
1998 			bf = bf_last->bf_next;
1999 			bf_last->bf_next = NULL;
2000 		}
2001 	}
2002 }
2003 
ath_tx_send_normal(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2004 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2005 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2006 {
2007 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2008 	struct ath_frame_info *fi = get_frame_info(skb);
2009 	struct list_head bf_head;
2010 	struct ath_buf *bf = fi->bf;
2011 
2012 	INIT_LIST_HEAD(&bf_head);
2013 	list_add_tail(&bf->list, &bf_head);
2014 	bf->bf_state.bf_type = 0;
2015 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2016 		bf->bf_state.bf_type = BUF_AMPDU;
2017 		ath_tx_addto_baw(sc, tid, bf);
2018 	}
2019 
2020 	bf->bf_next = NULL;
2021 	bf->bf_lastbf = bf;
2022 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2023 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2024 	TX_STAT_INC(txq->axq_qnum, queued);
2025 }
2026 
setup_frame_info(struct ieee80211_hw * hw,struct ieee80211_sta * sta,struct sk_buff * skb,int framelen)2027 static void setup_frame_info(struct ieee80211_hw *hw,
2028 			     struct ieee80211_sta *sta,
2029 			     struct sk_buff *skb,
2030 			     int framelen)
2031 {
2032 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2033 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2034 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2035 	const struct ieee80211_rate *rate;
2036 	struct ath_frame_info *fi = get_frame_info(skb);
2037 	struct ath_node *an = NULL;
2038 	enum ath9k_key_type keytype;
2039 	bool short_preamble = false;
2040 
2041 	/*
2042 	 * We check if Short Preamble is needed for the CTS rate by
2043 	 * checking the BSS's global flag.
2044 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2045 	 */
2046 	if (tx_info->control.vif &&
2047 	    tx_info->control.vif->bss_conf.use_short_preamble)
2048 		short_preamble = true;
2049 
2050 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2051 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2052 
2053 	if (sta)
2054 		an = (struct ath_node *) sta->drv_priv;
2055 
2056 	memset(fi, 0, sizeof(*fi));
2057 	fi->txq = -1;
2058 	if (hw_key)
2059 		fi->keyix = hw_key->hw_key_idx;
2060 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2061 		fi->keyix = an->ps_key;
2062 	else
2063 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2064 	fi->keytype = keytype;
2065 	fi->framelen = framelen;
2066 
2067 	if (!rate)
2068 		return;
2069 	fi->rtscts_rate = rate->hw_value;
2070 	if (short_preamble)
2071 		fi->rtscts_rate |= rate->hw_value_short;
2072 }
2073 
ath_txchainmask_reduction(struct ath_softc * sc,u8 chainmask,u32 rate)2074 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2075 {
2076 	struct ath_hw *ah = sc->sc_ah;
2077 	struct ath9k_channel *curchan = ah->curchan;
2078 
2079 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2080 	    (chainmask == 0x7) && (rate < 0x90))
2081 		return 0x3;
2082 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2083 		 IS_CCK_RATE(rate))
2084 		return 0x2;
2085 	else
2086 		return chainmask;
2087 }
2088 
2089 /*
2090  * Assign a descriptor (and sequence number if necessary,
2091  * and map buffer for DMA. Frees skb on error
2092  */
ath_tx_setup_buffer(struct ath_softc * sc,struct ath_txq * txq,struct ath_atx_tid * tid,struct sk_buff * skb)2093 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2094 					   struct ath_txq *txq,
2095 					   struct ath_atx_tid *tid,
2096 					   struct sk_buff *skb)
2097 {
2098 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2099 	struct ath_frame_info *fi = get_frame_info(skb);
2100 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2101 	struct ath_buf *bf;
2102 	int fragno;
2103 	u16 seqno;
2104 
2105 	bf = ath_tx_get_buffer(sc);
2106 	if (!bf) {
2107 		ath_dbg(common, XMIT, "TX buffers are full\n");
2108 		return NULL;
2109 	}
2110 
2111 	ATH_TXBUF_RESET(bf);
2112 
2113 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2114 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2115 		seqno = tid->seq_next;
2116 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2117 
2118 		if (fragno)
2119 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2120 
2121 		if (!ieee80211_has_morefrags(hdr->frame_control))
2122 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2123 
2124 		bf->bf_state.seqno = seqno;
2125 	}
2126 
2127 	bf->bf_mpdu = skb;
2128 
2129 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2130 					 skb->len, DMA_TO_DEVICE);
2131 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2132 		bf->bf_mpdu = NULL;
2133 		bf->bf_buf_addr = 0;
2134 		ath_err(ath9k_hw_common(sc->sc_ah),
2135 			"dma_mapping_error() on TX\n");
2136 		ath_tx_return_buffer(sc, bf);
2137 		return NULL;
2138 	}
2139 
2140 	fi->bf = bf;
2141 
2142 	return bf;
2143 }
2144 
ath_assign_seq(struct ath_common * common,struct sk_buff * skb)2145 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2146 {
2147 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2148 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2149 	struct ieee80211_vif *vif = info->control.vif;
2150 	struct ath_vif *avp;
2151 
2152 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2153 		return;
2154 
2155 	if (!vif)
2156 		return;
2157 
2158 	avp = (struct ath_vif *)vif->drv_priv;
2159 
2160 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2161 		avp->seq_no += 0x10;
2162 
2163 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2164 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2165 }
2166 
ath_tx_prepare(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2167 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2168 			  struct ath_tx_control *txctl)
2169 {
2170 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2171 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2172 	struct ieee80211_sta *sta = txctl->sta;
2173 	struct ieee80211_vif *vif = info->control.vif;
2174 	struct ath_vif *avp;
2175 	struct ath_softc *sc = hw->priv;
2176 	int frmlen = skb->len + FCS_LEN;
2177 	int padpos, padsize;
2178 
2179 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2180 	if (sta)
2181 		txctl->an = (struct ath_node *)sta->drv_priv;
2182 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2183 		avp = (void *)vif->drv_priv;
2184 		txctl->an = &avp->mcast_node;
2185 	}
2186 
2187 	if (info->control.hw_key)
2188 		frmlen += info->control.hw_key->icv_len;
2189 
2190 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2191 
2192 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2193 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2194 	    !ieee80211_is_data(hdr->frame_control))
2195 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2196 
2197 	/* Add the padding after the header if this is not already done */
2198 	padpos = ieee80211_hdrlen(hdr->frame_control);
2199 	padsize = padpos & 3;
2200 	if (padsize && skb->len > padpos) {
2201 		if (skb_headroom(skb) < padsize)
2202 			return -ENOMEM;
2203 
2204 		skb_push(skb, padsize);
2205 		memmove(skb->data, skb->data + padsize, padpos);
2206 	}
2207 
2208 	setup_frame_info(hw, sta, skb, frmlen);
2209 	return 0;
2210 }
2211 
2212 
2213 /* Upon failure caller should free skb */
ath_tx_start(struct ieee80211_hw * hw,struct sk_buff * skb,struct ath_tx_control * txctl)2214 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2215 		 struct ath_tx_control *txctl)
2216 {
2217 	struct ieee80211_hdr *hdr;
2218 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2219 	struct ieee80211_sta *sta = txctl->sta;
2220 	struct ieee80211_vif *vif = info->control.vif;
2221 	struct ath_frame_info *fi = get_frame_info(skb);
2222 	struct ath_vif *avp = NULL;
2223 	struct ath_softc *sc = hw->priv;
2224 	struct ath_txq *txq = txctl->txq;
2225 	struct ath_atx_tid *tid = NULL;
2226 	struct ath_buf *bf;
2227 	bool queue, skip_uapsd = false;
2228 	int q, ret;
2229 
2230 	if (vif)
2231 		avp = (void *)vif->drv_priv;
2232 
2233 	if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN)
2234 		txctl->force_channel = true;
2235 
2236 	ret = ath_tx_prepare(hw, skb, txctl);
2237 	if (ret)
2238 	    return ret;
2239 
2240 	hdr = (struct ieee80211_hdr *) skb->data;
2241 	/*
2242 	 * At this point, the vif, hw_key and sta pointers in the tx control
2243 	 * info are no longer valid (overwritten by the ath_frame_info data.
2244 	 */
2245 
2246 	q = skb_get_queue_mapping(skb);
2247 
2248 	ath_txq_lock(sc, txq);
2249 	if (txq == sc->tx.txq_map[q]) {
2250 		fi->txq = q;
2251 		if (++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2252 		    !txq->stopped) {
2253 			if (ath9k_is_chanctx_enabled())
2254 				ieee80211_stop_queue(sc->hw, info->hw_queue);
2255 			else
2256 				ieee80211_stop_queue(sc->hw, q);
2257 			txq->stopped = true;
2258 		}
2259 	}
2260 
2261 	queue = ieee80211_is_data_present(hdr->frame_control);
2262 
2263 	/* Force queueing of all frames that belong to a virtual interface on
2264 	 * a different channel context, to ensure that they are sent on the
2265 	 * correct channel.
2266 	 */
2267 	if (((avp && avp->chanctx != sc->cur_chan) ||
2268 	     sc->cur_chan->stopped) && !txctl->force_channel) {
2269 		if (!txctl->an)
2270 			txctl->an = &avp->mcast_node;
2271 		queue = true;
2272 		skip_uapsd = true;
2273 	}
2274 
2275 	if (txctl->an && queue)
2276 		tid = ath_get_skb_tid(sc, txctl->an, skb);
2277 
2278 	if (!skip_uapsd && (info->flags & IEEE80211_TX_CTL_PS_RESPONSE)) {
2279 		ath_txq_unlock(sc, txq);
2280 		txq = sc->tx.uapsdq;
2281 		ath_txq_lock(sc, txq);
2282 	} else if (txctl->an && queue) {
2283 		WARN_ON(tid->ac->txq != txctl->txq);
2284 
2285 		if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
2286 			tid->ac->clear_ps_filter = true;
2287 
2288 		/*
2289 		 * Add this frame to software queue for scheduling later
2290 		 * for aggregation.
2291 		 */
2292 		TX_STAT_INC(txq->axq_qnum, a_queued_sw);
2293 		__skb_queue_tail(&tid->buf_q, skb);
2294 		if (!txctl->an->sleeping)
2295 			ath_tx_queue_tid(sc, txq, tid);
2296 
2297 		ath_txq_schedule(sc, txq);
2298 		goto out;
2299 	}
2300 
2301 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2302 	if (!bf) {
2303 		ath_txq_skb_done(sc, txq, skb);
2304 		if (txctl->paprd)
2305 			dev_kfree_skb_any(skb);
2306 		else
2307 			ieee80211_free_txskb(sc->hw, skb);
2308 		goto out;
2309 	}
2310 
2311 	bf->bf_state.bfs_paprd = txctl->paprd;
2312 
2313 	if (txctl->paprd)
2314 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2315 
2316 	ath_set_rates(vif, sta, bf);
2317 	ath_tx_send_normal(sc, txq, tid, skb);
2318 
2319 out:
2320 	ath_txq_unlock(sc, txq);
2321 
2322 	return 0;
2323 }
2324 
ath_tx_cabq(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct sk_buff * skb)2325 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2326 		 struct sk_buff *skb)
2327 {
2328 	struct ath_softc *sc = hw->priv;
2329 	struct ath_tx_control txctl = {
2330 		.txq = sc->beacon.cabq
2331 	};
2332 	struct ath_tx_info info = {};
2333 	struct ieee80211_hdr *hdr;
2334 	struct ath_buf *bf_tail = NULL;
2335 	struct ath_buf *bf;
2336 	LIST_HEAD(bf_q);
2337 	int duration = 0;
2338 	int max_duration;
2339 
2340 	max_duration =
2341 		sc->cur_chan->beacon.beacon_interval * 1000 *
2342 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2343 
2344 	do {
2345 		struct ath_frame_info *fi = get_frame_info(skb);
2346 
2347 		if (ath_tx_prepare(hw, skb, &txctl))
2348 			break;
2349 
2350 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2351 		if (!bf)
2352 			break;
2353 
2354 		bf->bf_lastbf = bf;
2355 		ath_set_rates(vif, NULL, bf);
2356 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2357 		duration += info.rates[0].PktDuration;
2358 		if (bf_tail)
2359 			bf_tail->bf_next = bf;
2360 
2361 		list_add_tail(&bf->list, &bf_q);
2362 		bf_tail = bf;
2363 		skb = NULL;
2364 
2365 		if (duration > max_duration)
2366 			break;
2367 
2368 		skb = ieee80211_get_buffered_bc(hw, vif);
2369 	} while(skb);
2370 
2371 	if (skb)
2372 		ieee80211_free_txskb(hw, skb);
2373 
2374 	if (list_empty(&bf_q))
2375 		return;
2376 
2377 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2378 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
2379 
2380 	if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
2381 		hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
2382 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
2383 			sizeof(*hdr), DMA_TO_DEVICE);
2384 	}
2385 
2386 	ath_txq_lock(sc, txctl.txq);
2387 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2388 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2389 	TX_STAT_INC(txctl.txq->axq_qnum, queued);
2390 	ath_txq_unlock(sc, txctl.txq);
2391 }
2392 
2393 /*****************/
2394 /* TX Completion */
2395 /*****************/
2396 
ath_tx_complete(struct ath_softc * sc,struct sk_buff * skb,int tx_flags,struct ath_txq * txq)2397 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2398 			    int tx_flags, struct ath_txq *txq)
2399 {
2400 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2401 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2402 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2403 	int padpos, padsize;
2404 	unsigned long flags;
2405 
2406 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2407 
2408 	if (sc->sc_ah->caldata)
2409 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2410 
2411 	if (!(tx_flags & ATH_TX_ERROR))
2412 		/* Frame was ACKed */
2413 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2414 
2415 	padpos = ieee80211_hdrlen(hdr->frame_control);
2416 	padsize = padpos & 3;
2417 	if (padsize && skb->len>padpos+padsize) {
2418 		/*
2419 		 * Remove MAC header padding before giving the frame back to
2420 		 * mac80211.
2421 		 */
2422 		memmove(skb->data + padsize, skb->data, padpos);
2423 		skb_pull(skb, padsize);
2424 	}
2425 
2426 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2427 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2428 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2429 		ath_dbg(common, PS,
2430 			"Going back to sleep after having received TX status (0x%lx)\n",
2431 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2432 					PS_WAIT_FOR_CAB |
2433 					PS_WAIT_FOR_PSPOLL_DATA |
2434 					PS_WAIT_FOR_TX_ACK));
2435 	}
2436 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2437 
2438 	__skb_queue_tail(&txq->complete_q, skb);
2439 	ath_txq_skb_done(sc, txq, skb);
2440 }
2441 
ath_tx_complete_buf(struct ath_softc * sc,struct ath_buf * bf,struct ath_txq * txq,struct list_head * bf_q,struct ath_tx_status * ts,int txok)2442 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2443 				struct ath_txq *txq, struct list_head *bf_q,
2444 				struct ath_tx_status *ts, int txok)
2445 {
2446 	struct sk_buff *skb = bf->bf_mpdu;
2447 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2448 	unsigned long flags;
2449 	int tx_flags = 0;
2450 
2451 	if (!txok)
2452 		tx_flags |= ATH_TX_ERROR;
2453 
2454 	if (ts->ts_status & ATH9K_TXERR_FILT)
2455 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2456 
2457 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2458 	bf->bf_buf_addr = 0;
2459 	if (sc->tx99_state)
2460 		goto skip_tx_complete;
2461 
2462 	if (bf->bf_state.bfs_paprd) {
2463 		if (time_after(jiffies,
2464 				bf->bf_state.bfs_paprd_timestamp +
2465 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2466 			dev_kfree_skb_any(skb);
2467 		else
2468 			complete(&sc->paprd_complete);
2469 	} else {
2470 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2471 		ath_tx_complete(sc, skb, tx_flags, txq);
2472 	}
2473 skip_tx_complete:
2474 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2475 	 * accidentally reference it later.
2476 	 */
2477 	bf->bf_mpdu = NULL;
2478 
2479 	/*
2480 	 * Return the list of ath_buf of this mpdu to free queue
2481 	 */
2482 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2483 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2484 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2485 }
2486 
ath_tx_rc_status(struct ath_softc * sc,struct ath_buf * bf,struct ath_tx_status * ts,int nframes,int nbad,int txok)2487 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2488 			     struct ath_tx_status *ts, int nframes, int nbad,
2489 			     int txok)
2490 {
2491 	struct sk_buff *skb = bf->bf_mpdu;
2492 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2493 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2494 	struct ieee80211_hw *hw = sc->hw;
2495 	struct ath_hw *ah = sc->sc_ah;
2496 	u8 i, tx_rateindex;
2497 
2498 	if (txok)
2499 		tx_info->status.ack_signal = ts->ts_rssi;
2500 
2501 	tx_rateindex = ts->ts_rateindex;
2502 	WARN_ON(tx_rateindex >= hw->max_rates);
2503 
2504 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2505 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2506 
2507 		BUG_ON(nbad > nframes);
2508 	}
2509 	tx_info->status.ampdu_len = nframes;
2510 	tx_info->status.ampdu_ack_len = nframes - nbad;
2511 
2512 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2513 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2514 		/*
2515 		 * If an underrun error is seen assume it as an excessive
2516 		 * retry only if max frame trigger level has been reached
2517 		 * (2 KB for single stream, and 4 KB for dual stream).
2518 		 * Adjust the long retry as if the frame was tried
2519 		 * hw->max_rate_tries times to affect how rate control updates
2520 		 * PER for the failed rate.
2521 		 * In case of congestion on the bus penalizing this type of
2522 		 * underruns should help hardware actually transmit new frames
2523 		 * successfully by eventually preferring slower rates.
2524 		 * This itself should also alleviate congestion on the bus.
2525 		 */
2526 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2527 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2528 		    ieee80211_is_data(hdr->frame_control) &&
2529 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2530 			tx_info->status.rates[tx_rateindex].count =
2531 				hw->max_rate_tries;
2532 	}
2533 
2534 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2535 		tx_info->status.rates[i].count = 0;
2536 		tx_info->status.rates[i].idx = -1;
2537 	}
2538 
2539 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2540 }
2541 
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq)2542 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2543 {
2544 	struct ath_hw *ah = sc->sc_ah;
2545 	struct ath_common *common = ath9k_hw_common(ah);
2546 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2547 	struct list_head bf_head;
2548 	struct ath_desc *ds;
2549 	struct ath_tx_status ts;
2550 	int status;
2551 
2552 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2553 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2554 		txq->axq_link);
2555 
2556 	ath_txq_lock(sc, txq);
2557 	for (;;) {
2558 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2559 			break;
2560 
2561 		if (list_empty(&txq->axq_q)) {
2562 			txq->axq_link = NULL;
2563 			ath_txq_schedule(sc, txq);
2564 			break;
2565 		}
2566 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2567 
2568 		/*
2569 		 * There is a race condition that a BH gets scheduled
2570 		 * after sw writes TxE and before hw re-load the last
2571 		 * descriptor to get the newly chained one.
2572 		 * Software must keep the last DONE descriptor as a
2573 		 * holding descriptor - software does so by marking
2574 		 * it with the STALE flag.
2575 		 */
2576 		bf_held = NULL;
2577 		if (bf->bf_state.stale) {
2578 			bf_held = bf;
2579 			if (list_is_last(&bf_held->list, &txq->axq_q))
2580 				break;
2581 
2582 			bf = list_entry(bf_held->list.next, struct ath_buf,
2583 					list);
2584 		}
2585 
2586 		lastbf = bf->bf_lastbf;
2587 		ds = lastbf->bf_desc;
2588 
2589 		memset(&ts, 0, sizeof(ts));
2590 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2591 		if (status == -EINPROGRESS)
2592 			break;
2593 
2594 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2595 
2596 		/*
2597 		 * Remove ath_buf's of the same transmit unit from txq,
2598 		 * however leave the last descriptor back as the holding
2599 		 * descriptor for hw.
2600 		 */
2601 		lastbf->bf_state.stale = true;
2602 		INIT_LIST_HEAD(&bf_head);
2603 		if (!list_is_singular(&lastbf->list))
2604 			list_cut_position(&bf_head,
2605 				&txq->axq_q, lastbf->list.prev);
2606 
2607 		if (bf_held) {
2608 			list_del(&bf_held->list);
2609 			ath_tx_return_buffer(sc, bf_held);
2610 		}
2611 
2612 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2613 	}
2614 	ath_txq_unlock_complete(sc, txq);
2615 }
2616 
ath_tx_tasklet(struct ath_softc * sc)2617 void ath_tx_tasklet(struct ath_softc *sc)
2618 {
2619 	struct ath_hw *ah = sc->sc_ah;
2620 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2621 	int i;
2622 
2623 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2624 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2625 			ath_tx_processq(sc, &sc->tx.txq[i]);
2626 	}
2627 }
2628 
ath_tx_edma_tasklet(struct ath_softc * sc)2629 void ath_tx_edma_tasklet(struct ath_softc *sc)
2630 {
2631 	struct ath_tx_status ts;
2632 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2633 	struct ath_hw *ah = sc->sc_ah;
2634 	struct ath_txq *txq;
2635 	struct ath_buf *bf, *lastbf;
2636 	struct list_head bf_head;
2637 	struct list_head *fifo_list;
2638 	int status;
2639 
2640 	for (;;) {
2641 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2642 			break;
2643 
2644 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2645 		if (status == -EINPROGRESS)
2646 			break;
2647 		if (status == -EIO) {
2648 			ath_dbg(common, XMIT, "Error processing tx status\n");
2649 			break;
2650 		}
2651 
2652 		/* Process beacon completions separately */
2653 		if (ts.qid == sc->beacon.beaconq) {
2654 			sc->beacon.tx_processed = true;
2655 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2656 
2657 			if (ath9k_is_chanctx_enabled()) {
2658 				ath_chanctx_event(sc, NULL,
2659 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2660 			}
2661 
2662 			ath9k_csa_update(sc);
2663 			continue;
2664 		}
2665 
2666 		txq = &sc->tx.txq[ts.qid];
2667 
2668 		ath_txq_lock(sc, txq);
2669 
2670 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2671 
2672 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2673 		if (list_empty(fifo_list)) {
2674 			ath_txq_unlock(sc, txq);
2675 			return;
2676 		}
2677 
2678 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2679 		if (bf->bf_state.stale) {
2680 			list_del(&bf->list);
2681 			ath_tx_return_buffer(sc, bf);
2682 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2683 		}
2684 
2685 		lastbf = bf->bf_lastbf;
2686 
2687 		INIT_LIST_HEAD(&bf_head);
2688 		if (list_is_last(&lastbf->list, fifo_list)) {
2689 			list_splice_tail_init(fifo_list, &bf_head);
2690 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2691 
2692 			if (!list_empty(&txq->axq_q)) {
2693 				struct list_head bf_q;
2694 
2695 				INIT_LIST_HEAD(&bf_q);
2696 				txq->axq_link = NULL;
2697 				list_splice_tail_init(&txq->axq_q, &bf_q);
2698 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2699 			}
2700 		} else {
2701 			lastbf->bf_state.stale = true;
2702 			if (bf != lastbf)
2703 				list_cut_position(&bf_head, fifo_list,
2704 						  lastbf->list.prev);
2705 		}
2706 
2707 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2708 		ath_txq_unlock_complete(sc, txq);
2709 	}
2710 }
2711 
2712 /*****************/
2713 /* Init, Cleanup */
2714 /*****************/
2715 
ath_txstatus_setup(struct ath_softc * sc,int size)2716 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2717 {
2718 	struct ath_descdma *dd = &sc->txsdma;
2719 	u8 txs_len = sc->sc_ah->caps.txs_len;
2720 
2721 	dd->dd_desc_len = size * txs_len;
2722 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2723 					  &dd->dd_desc_paddr, GFP_KERNEL);
2724 	if (!dd->dd_desc)
2725 		return -ENOMEM;
2726 
2727 	return 0;
2728 }
2729 
ath_tx_edma_init(struct ath_softc * sc)2730 static int ath_tx_edma_init(struct ath_softc *sc)
2731 {
2732 	int err;
2733 
2734 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2735 	if (!err)
2736 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2737 					  sc->txsdma.dd_desc_paddr,
2738 					  ATH_TXSTATUS_RING_SIZE);
2739 
2740 	return err;
2741 }
2742 
ath_tx_init(struct ath_softc * sc,int nbufs)2743 int ath_tx_init(struct ath_softc *sc, int nbufs)
2744 {
2745 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2746 	int error = 0;
2747 
2748 	spin_lock_init(&sc->tx.txbuflock);
2749 
2750 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2751 				  "tx", nbufs, 1, 1);
2752 	if (error != 0) {
2753 		ath_err(common,
2754 			"Failed to allocate tx descriptors: %d\n", error);
2755 		return error;
2756 	}
2757 
2758 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2759 				  "beacon", ATH_BCBUF, 1, 1);
2760 	if (error != 0) {
2761 		ath_err(common,
2762 			"Failed to allocate beacon descriptors: %d\n", error);
2763 		return error;
2764 	}
2765 
2766 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2767 
2768 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2769 		error = ath_tx_edma_init(sc);
2770 
2771 	return error;
2772 }
2773 
ath_tx_node_init(struct ath_softc * sc,struct ath_node * an)2774 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2775 {
2776 	struct ath_atx_tid *tid;
2777 	struct ath_atx_ac *ac;
2778 	int tidno, acno;
2779 
2780 	for (tidno = 0, tid = &an->tid[tidno];
2781 	     tidno < IEEE80211_NUM_TIDS;
2782 	     tidno++, tid++) {
2783 		tid->an        = an;
2784 		tid->tidno     = tidno;
2785 		tid->seq_start = tid->seq_next = 0;
2786 		tid->baw_size  = WME_MAX_BA;
2787 		tid->baw_head  = tid->baw_tail = 0;
2788 		tid->sched     = false;
2789 		tid->active	   = false;
2790 		__skb_queue_head_init(&tid->buf_q);
2791 		__skb_queue_head_init(&tid->retry_q);
2792 		acno = TID_TO_WME_AC(tidno);
2793 		tid->ac = &an->ac[acno];
2794 	}
2795 
2796 	for (acno = 0, ac = &an->ac[acno];
2797 	     acno < IEEE80211_NUM_ACS; acno++, ac++) {
2798 		ac->sched    = false;
2799 		ac->clear_ps_filter = true;
2800 		ac->txq = sc->tx.txq_map[acno];
2801 		INIT_LIST_HEAD(&ac->tid_q);
2802 	}
2803 }
2804 
ath_tx_node_cleanup(struct ath_softc * sc,struct ath_node * an)2805 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2806 {
2807 	struct ath_atx_ac *ac;
2808 	struct ath_atx_tid *tid;
2809 	struct ath_txq *txq;
2810 	int tidno;
2811 
2812 	for (tidno = 0, tid = &an->tid[tidno];
2813 	     tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
2814 
2815 		ac = tid->ac;
2816 		txq = ac->txq;
2817 
2818 		ath_txq_lock(sc, txq);
2819 
2820 		if (tid->sched) {
2821 			list_del(&tid->list);
2822 			tid->sched = false;
2823 		}
2824 
2825 		if (ac->sched) {
2826 			list_del(&ac->list);
2827 			tid->ac->sched = false;
2828 		}
2829 
2830 		ath_tid_drain(sc, txq, tid);
2831 		tid->active = false;
2832 
2833 		ath_txq_unlock(sc, txq);
2834 	}
2835 }
2836 
2837 #ifdef CONFIG_ATH9K_TX99
2838 
ath9k_tx99_send(struct ath_softc * sc,struct sk_buff * skb,struct ath_tx_control * txctl)2839 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2840 		    struct ath_tx_control *txctl)
2841 {
2842 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2843 	struct ath_frame_info *fi = get_frame_info(skb);
2844 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2845 	struct ath_buf *bf;
2846 	int padpos, padsize;
2847 
2848 	padpos = ieee80211_hdrlen(hdr->frame_control);
2849 	padsize = padpos & 3;
2850 
2851 	if (padsize && skb->len > padpos) {
2852 		if (skb_headroom(skb) < padsize) {
2853 			ath_dbg(common, XMIT,
2854 				"tx99 padding failed\n");
2855 		return -EINVAL;
2856 		}
2857 
2858 		skb_push(skb, padsize);
2859 		memmove(skb->data, skb->data + padsize, padpos);
2860 	}
2861 
2862 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2863 	fi->framelen = skb->len + FCS_LEN;
2864 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2865 
2866 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2867 	if (!bf) {
2868 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2869 		return -EINVAL;
2870 	}
2871 
2872 	ath_set_rates(sc->tx99_vif, NULL, bf);
2873 
2874 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2875 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2876 
2877 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2878 
2879 	return 0;
2880 }
2881 
2882 #endif /* CONFIG_ATH9K_TX99 */
2883