1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/init.h>
47 #include <linux/types.h>
48 #include <linux/atomic.h>
49 #include <linux/mm.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
56
57 #include <linux/audit.h>
58
59 #include <net/sock.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
64 #endif
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69
70 #include "audit.h"
71
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized;
78
79 #define AUDIT_OFF 0
80 #define AUDIT_ON 1
81 #define AUDIT_LOCKED 2
82 u32 audit_enabled = AUDIT_OFF;
83 u32 audit_ever_enabled = !!AUDIT_OFF;
84
85 EXPORT_SYMBOL_GPL(audit_enabled);
86
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default = AUDIT_OFF;
89
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure = AUDIT_FAIL_PRINTK;
92
93 /*
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
97 */
98 int audit_pid;
99 static __u32 audit_nlk_portid;
100
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit;
105
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 static u32 audit_backlog_wait_overflow = 0;
112
113 /* The identity of the user shutting down the audit system. */
114 kuid_t audit_sig_uid = INVALID_UID;
115 pid_t audit_sig_pid = -1;
116 u32 audit_sig_sid = 0;
117
118 /* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t audit_lost = ATOMIC_INIT(0);
126
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 static int audit_net_id;
130
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 .mask = -1,
150 .features = 0,
151 .lock = 0,};
152
153 static char *audit_feature_names[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
156 };
157
158
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE (2*NR_CPUS)
170
171 /* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176 struct audit_buffer {
177 struct list_head list;
178 struct sk_buff *skb; /* formatted skb ready to send */
179 struct audit_context *ctx; /* NULL or associated context */
180 gfp_t gfp_mask;
181 };
182
183 struct audit_reply {
184 __u32 portid;
185 struct net *net;
186 struct sk_buff *skb;
187 };
188
audit_set_portid(struct audit_buffer * ab,__u32 portid)189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 if (ab) {
192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 nlh->nlmsg_pid = portid;
194 }
195 }
196
audit_panic(const char * message)197 void audit_panic(const char *message)
198 {
199 switch (audit_failure) {
200 case AUDIT_FAIL_SILENT:
201 break;
202 case AUDIT_FAIL_PRINTK:
203 if (printk_ratelimit())
204 pr_err("%s\n", message);
205 break;
206 case AUDIT_FAIL_PANIC:
207 /* test audit_pid since printk is always losey, why bother? */
208 if (audit_pid)
209 panic("audit: %s\n", message);
210 break;
211 }
212 }
213
audit_rate_check(void)214 static inline int audit_rate_check(void)
215 {
216 static unsigned long last_check = 0;
217 static int messages = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 unsigned long elapsed;
222 int retval = 0;
223
224 if (!audit_rate_limit) return 1;
225
226 spin_lock_irqsave(&lock, flags);
227 if (++messages < audit_rate_limit) {
228 retval = 1;
229 } else {
230 now = jiffies;
231 elapsed = now - last_check;
232 if (elapsed > HZ) {
233 last_check = now;
234 messages = 0;
235 retval = 1;
236 }
237 }
238 spin_unlock_irqrestore(&lock, flags);
239
240 return retval;
241 }
242
243 /**
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
246 *
247 * Emit at least 1 message per second, even if audit_rate_check is
248 * throttling.
249 * Always increment the lost messages counter.
250 */
audit_log_lost(const char * message)251 void audit_log_lost(const char *message)
252 {
253 static unsigned long last_msg = 0;
254 static DEFINE_SPINLOCK(lock);
255 unsigned long flags;
256 unsigned long now;
257 int print;
258
259 atomic_inc(&audit_lost);
260
261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262
263 if (!print) {
264 spin_lock_irqsave(&lock, flags);
265 now = jiffies;
266 if (now - last_msg > HZ) {
267 print = 1;
268 last_msg = now;
269 }
270 spin_unlock_irqrestore(&lock, flags);
271 }
272
273 if (print) {
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
280 }
281 }
282
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 int allow_changes)
285 {
286 struct audit_buffer *ab;
287 int rc = 0;
288
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
300 }
301
audit_do_config_change(char * function_name,u32 * to_change,u32 new)302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 int allow_changes, rc = 0;
305 u32 old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326 }
327
audit_set_rate_limit(u32 limit)328 static int audit_set_rate_limit(u32 limit)
329 {
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332
audit_set_backlog_limit(u32 limit)333 static int audit_set_backlog_limit(u32 limit)
334 {
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337
audit_set_backlog_wait_time(u32 timeout)338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time, timeout);
342 }
343
audit_set_enabled(u32 state)344 static int audit_set_enabled(u32 state)
345 {
346 int rc;
347 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355 }
356
audit_set_failure(u32 state)357 static int audit_set_failure(u32 state)
358 {
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366
367 /*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
audit_hold_skb(struct sk_buff * skb)376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
384 }
385
386 /*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
audit_printk_skb(struct sk_buff * skb)390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded");
400 }
401
402 audit_hold_skb(skb);
403 }
404
kauditd_send_skb(struct sk_buff * skb)405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 int err;
408 /* take a reference in case we can't send it and we want to hold it */
409 skb_get(skb);
410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 if (err < 0) {
412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 if (audit_pid) {
414 pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 audit_log_lost("auditd disappeared");
416 audit_pid = 0;
417 audit_sock = NULL;
418 }
419 /* we might get lucky and get this in the next auditd */
420 audit_hold_skb(skb);
421 } else
422 /* drop the extra reference if sent ok */
423 consume_skb(skb);
424 }
425
426 /*
427 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
428 *
429 * This function doesn't consume an skb as might be expected since it has to
430 * copy it anyways.
431 */
kauditd_send_multicast_skb(struct sk_buff * skb,gfp_t gfp_mask)432 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
433 {
434 struct sk_buff *copy;
435 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
436 struct sock *sock = aunet->nlsk;
437
438 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
439 return;
440
441 /*
442 * The seemingly wasteful skb_copy() rather than bumping the refcount
443 * using skb_get() is necessary because non-standard mods are made to
444 * the skb by the original kaudit unicast socket send routine. The
445 * existing auditd daemon assumes this breakage. Fixing this would
446 * require co-ordinating a change in the established protocol between
447 * the kaudit kernel subsystem and the auditd userspace code. There is
448 * no reason for new multicast clients to continue with this
449 * non-compliance.
450 */
451 copy = skb_copy(skb, gfp_mask);
452 if (!copy)
453 return;
454
455 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
456 }
457
458 /*
459 * flush_hold_queue - empty the hold queue if auditd appears
460 *
461 * If auditd just started, drain the queue of messages already
462 * sent to syslog/printk. Remember loss here is ok. We already
463 * called audit_log_lost() if it didn't go out normally. so the
464 * race between the skb_dequeue and the next check for audit_pid
465 * doesn't matter.
466 *
467 * If you ever find kauditd to be too slow we can get a perf win
468 * by doing our own locking and keeping better track if there
469 * are messages in this queue. I don't see the need now, but
470 * in 5 years when I want to play with this again I'll see this
471 * note and still have no friggin idea what i'm thinking today.
472 */
flush_hold_queue(void)473 static void flush_hold_queue(void)
474 {
475 struct sk_buff *skb;
476
477 if (!audit_default || !audit_pid)
478 return;
479
480 skb = skb_dequeue(&audit_skb_hold_queue);
481 if (likely(!skb))
482 return;
483
484 while (skb && audit_pid) {
485 kauditd_send_skb(skb);
486 skb = skb_dequeue(&audit_skb_hold_queue);
487 }
488
489 /*
490 * if auditd just disappeared but we
491 * dequeued an skb we need to drop ref
492 */
493 if (skb)
494 consume_skb(skb);
495 }
496
kauditd_thread(void * dummy)497 static int kauditd_thread(void *dummy)
498 {
499 set_freezable();
500 while (!kthread_should_stop()) {
501 struct sk_buff *skb;
502 DECLARE_WAITQUEUE(wait, current);
503
504 flush_hold_queue();
505
506 skb = skb_dequeue(&audit_skb_queue);
507
508 if (skb) {
509 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
510 wake_up(&audit_backlog_wait);
511 if (audit_pid)
512 kauditd_send_skb(skb);
513 else
514 audit_printk_skb(skb);
515 continue;
516 }
517 set_current_state(TASK_INTERRUPTIBLE);
518 add_wait_queue(&kauditd_wait, &wait);
519
520 if (!skb_queue_len(&audit_skb_queue)) {
521 try_to_freeze();
522 schedule();
523 }
524
525 __set_current_state(TASK_RUNNING);
526 remove_wait_queue(&kauditd_wait, &wait);
527 }
528 return 0;
529 }
530
audit_send_list(void * _dest)531 int audit_send_list(void *_dest)
532 {
533 struct audit_netlink_list *dest = _dest;
534 struct sk_buff *skb;
535 struct net *net = dest->net;
536 struct audit_net *aunet = net_generic(net, audit_net_id);
537
538 /* wait for parent to finish and send an ACK */
539 mutex_lock(&audit_cmd_mutex);
540 mutex_unlock(&audit_cmd_mutex);
541
542 while ((skb = __skb_dequeue(&dest->q)) != NULL)
543 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
544
545 put_net(net);
546 kfree(dest);
547
548 return 0;
549 }
550
audit_make_reply(__u32 portid,int seq,int type,int done,int multi,const void * payload,int size)551 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
552 int multi, const void *payload, int size)
553 {
554 struct sk_buff *skb;
555 struct nlmsghdr *nlh;
556 void *data;
557 int flags = multi ? NLM_F_MULTI : 0;
558 int t = done ? NLMSG_DONE : type;
559
560 skb = nlmsg_new(size, GFP_KERNEL);
561 if (!skb)
562 return NULL;
563
564 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
565 if (!nlh)
566 goto out_kfree_skb;
567 data = nlmsg_data(nlh);
568 memcpy(data, payload, size);
569 return skb;
570
571 out_kfree_skb:
572 kfree_skb(skb);
573 return NULL;
574 }
575
audit_send_reply_thread(void * arg)576 static int audit_send_reply_thread(void *arg)
577 {
578 struct audit_reply *reply = (struct audit_reply *)arg;
579 struct net *net = reply->net;
580 struct audit_net *aunet = net_generic(net, audit_net_id);
581
582 mutex_lock(&audit_cmd_mutex);
583 mutex_unlock(&audit_cmd_mutex);
584
585 /* Ignore failure. It'll only happen if the sender goes away,
586 because our timeout is set to infinite. */
587 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
588 put_net(net);
589 kfree(reply);
590 return 0;
591 }
592 /**
593 * audit_send_reply - send an audit reply message via netlink
594 * @request_skb: skb of request we are replying to (used to target the reply)
595 * @seq: sequence number
596 * @type: audit message type
597 * @done: done (last) flag
598 * @multi: multi-part message flag
599 * @payload: payload data
600 * @size: payload size
601 *
602 * Allocates an skb, builds the netlink message, and sends it to the port id.
603 * No failure notifications.
604 */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)605 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
606 int multi, const void *payload, int size)
607 {
608 u32 portid = NETLINK_CB(request_skb).portid;
609 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
610 struct sk_buff *skb;
611 struct task_struct *tsk;
612 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
613 GFP_KERNEL);
614
615 if (!reply)
616 return;
617
618 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
619 if (!skb)
620 goto out;
621
622 reply->net = get_net(net);
623 reply->portid = portid;
624 reply->skb = skb;
625
626 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
627 if (!IS_ERR(tsk))
628 return;
629 kfree_skb(skb);
630 out:
631 kfree(reply);
632 }
633
634 /*
635 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
636 * control messages.
637 */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)638 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
639 {
640 int err = 0;
641
642 /* Only support initial user namespace for now. */
643 /*
644 * We return ECONNREFUSED because it tricks userspace into thinking
645 * that audit was not configured into the kernel. Lots of users
646 * configure their PAM stack (because that's what the distro does)
647 * to reject login if unable to send messages to audit. If we return
648 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
649 * configured in and will let login proceed. If we return EPERM
650 * userspace will reject all logins. This should be removed when we
651 * support non init namespaces!!
652 */
653 if (current_user_ns() != &init_user_ns)
654 return -ECONNREFUSED;
655
656 switch (msg_type) {
657 case AUDIT_LIST:
658 case AUDIT_ADD:
659 case AUDIT_DEL:
660 return -EOPNOTSUPP;
661 case AUDIT_GET:
662 case AUDIT_SET:
663 case AUDIT_GET_FEATURE:
664 case AUDIT_SET_FEATURE:
665 case AUDIT_LIST_RULES:
666 case AUDIT_ADD_RULE:
667 case AUDIT_DEL_RULE:
668 case AUDIT_SIGNAL_INFO:
669 case AUDIT_TTY_GET:
670 case AUDIT_TTY_SET:
671 case AUDIT_TRIM:
672 case AUDIT_MAKE_EQUIV:
673 /* Only support auditd and auditctl in initial pid namespace
674 * for now. */
675 if ((task_active_pid_ns(current) != &init_pid_ns))
676 return -EPERM;
677
678 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
679 err = -EPERM;
680 break;
681 case AUDIT_USER:
682 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
683 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
684 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
685 err = -EPERM;
686 break;
687 default: /* bad msg */
688 err = -EINVAL;
689 }
690
691 return err;
692 }
693
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)694 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
695 {
696 int rc = 0;
697 uid_t uid = from_kuid(&init_user_ns, current_uid());
698 pid_t pid = task_tgid_nr(current);
699
700 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
701 *ab = NULL;
702 return rc;
703 }
704
705 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
706 if (unlikely(!*ab))
707 return rc;
708 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
709 audit_log_session_info(*ab);
710 audit_log_task_context(*ab);
711
712 return rc;
713 }
714
is_audit_feature_set(int i)715 int is_audit_feature_set(int i)
716 {
717 return af.features & AUDIT_FEATURE_TO_MASK(i);
718 }
719
720
audit_get_feature(struct sk_buff * skb)721 static int audit_get_feature(struct sk_buff *skb)
722 {
723 u32 seq;
724
725 seq = nlmsg_hdr(skb)->nlmsg_seq;
726
727 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
728
729 return 0;
730 }
731
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)732 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
733 u32 old_lock, u32 new_lock, int res)
734 {
735 struct audit_buffer *ab;
736
737 if (audit_enabled == AUDIT_OFF)
738 return;
739
740 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
741 audit_log_task_info(ab, current);
742 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
743 audit_feature_names[which], !!old_feature, !!new_feature,
744 !!old_lock, !!new_lock, res);
745 audit_log_end(ab);
746 }
747
audit_set_feature(struct sk_buff * skb)748 static int audit_set_feature(struct sk_buff *skb)
749 {
750 struct audit_features *uaf;
751 int i;
752
753 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
754 uaf = nlmsg_data(nlmsg_hdr(skb));
755
756 /* if there is ever a version 2 we should handle that here */
757
758 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
759 u32 feature = AUDIT_FEATURE_TO_MASK(i);
760 u32 old_feature, new_feature, old_lock, new_lock;
761
762 /* if we are not changing this feature, move along */
763 if (!(feature & uaf->mask))
764 continue;
765
766 old_feature = af.features & feature;
767 new_feature = uaf->features & feature;
768 new_lock = (uaf->lock | af.lock) & feature;
769 old_lock = af.lock & feature;
770
771 /* are we changing a locked feature? */
772 if (old_lock && (new_feature != old_feature)) {
773 audit_log_feature_change(i, old_feature, new_feature,
774 old_lock, new_lock, 0);
775 return -EPERM;
776 }
777 }
778 /* nothing invalid, do the changes */
779 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
780 u32 feature = AUDIT_FEATURE_TO_MASK(i);
781 u32 old_feature, new_feature, old_lock, new_lock;
782
783 /* if we are not changing this feature, move along */
784 if (!(feature & uaf->mask))
785 continue;
786
787 old_feature = af.features & feature;
788 new_feature = uaf->features & feature;
789 old_lock = af.lock & feature;
790 new_lock = (uaf->lock | af.lock) & feature;
791
792 if (new_feature != old_feature)
793 audit_log_feature_change(i, old_feature, new_feature,
794 old_lock, new_lock, 1);
795
796 if (new_feature)
797 af.features |= feature;
798 else
799 af.features &= ~feature;
800 af.lock |= new_lock;
801 }
802
803 return 0;
804 }
805
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)806 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
807 {
808 u32 seq;
809 void *data;
810 int err;
811 struct audit_buffer *ab;
812 u16 msg_type = nlh->nlmsg_type;
813 struct audit_sig_info *sig_data;
814 char *ctx = NULL;
815 u32 len;
816
817 err = audit_netlink_ok(skb, msg_type);
818 if (err)
819 return err;
820
821 /* As soon as there's any sign of userspace auditd,
822 * start kauditd to talk to it */
823 if (!kauditd_task) {
824 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
825 if (IS_ERR(kauditd_task)) {
826 err = PTR_ERR(kauditd_task);
827 kauditd_task = NULL;
828 return err;
829 }
830 }
831 seq = nlh->nlmsg_seq;
832 data = nlmsg_data(nlh);
833
834 switch (msg_type) {
835 case AUDIT_GET: {
836 struct audit_status s;
837 memset(&s, 0, sizeof(s));
838 s.enabled = audit_enabled;
839 s.failure = audit_failure;
840 s.pid = audit_pid;
841 s.rate_limit = audit_rate_limit;
842 s.backlog_limit = audit_backlog_limit;
843 s.lost = atomic_read(&audit_lost);
844 s.backlog = skb_queue_len(&audit_skb_queue);
845 s.version = AUDIT_VERSION_LATEST;
846 s.backlog_wait_time = audit_backlog_wait_time;
847 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
848 break;
849 }
850 case AUDIT_SET: {
851 struct audit_status s;
852 memset(&s, 0, sizeof(s));
853 /* guard against past and future API changes */
854 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
855 if (s.mask & AUDIT_STATUS_ENABLED) {
856 err = audit_set_enabled(s.enabled);
857 if (err < 0)
858 return err;
859 }
860 if (s.mask & AUDIT_STATUS_FAILURE) {
861 err = audit_set_failure(s.failure);
862 if (err < 0)
863 return err;
864 }
865 if (s.mask & AUDIT_STATUS_PID) {
866 /* NOTE: we are using task_tgid_vnr() below because
867 * the s.pid value is relative to the namespace
868 * of the caller; at present this doesn't matter
869 * much since you can really only run auditd
870 * from the initial pid namespace, but something
871 * to keep in mind if this changes */
872 int new_pid = s.pid;
873
874 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
875 return -EACCES;
876 if (audit_enabled != AUDIT_OFF)
877 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
878 audit_pid = new_pid;
879 audit_nlk_portid = NETLINK_CB(skb).portid;
880 audit_sock = skb->sk;
881 }
882 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
883 err = audit_set_rate_limit(s.rate_limit);
884 if (err < 0)
885 return err;
886 }
887 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
888 err = audit_set_backlog_limit(s.backlog_limit);
889 if (err < 0)
890 return err;
891 }
892 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
893 if (sizeof(s) > (size_t)nlh->nlmsg_len)
894 return -EINVAL;
895 if (s.backlog_wait_time < 0 ||
896 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
897 return -EINVAL;
898 err = audit_set_backlog_wait_time(s.backlog_wait_time);
899 if (err < 0)
900 return err;
901 }
902 break;
903 }
904 case AUDIT_GET_FEATURE:
905 err = audit_get_feature(skb);
906 if (err)
907 return err;
908 break;
909 case AUDIT_SET_FEATURE:
910 err = audit_set_feature(skb);
911 if (err)
912 return err;
913 break;
914 case AUDIT_USER:
915 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
916 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
917 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
918 return 0;
919
920 err = audit_filter_user(msg_type);
921 if (err == 1) { /* match or error */
922 err = 0;
923 if (msg_type == AUDIT_USER_TTY) {
924 err = tty_audit_push_current();
925 if (err)
926 break;
927 }
928 mutex_unlock(&audit_cmd_mutex);
929 audit_log_common_recv_msg(&ab, msg_type);
930 if (msg_type != AUDIT_USER_TTY)
931 audit_log_format(ab, " msg='%.*s'",
932 AUDIT_MESSAGE_TEXT_MAX,
933 (char *)data);
934 else {
935 int size;
936
937 audit_log_format(ab, " data=");
938 size = nlmsg_len(nlh);
939 if (size > 0 &&
940 ((unsigned char *)data)[size - 1] == '\0')
941 size--;
942 audit_log_n_untrustedstring(ab, data, size);
943 }
944 audit_set_portid(ab, NETLINK_CB(skb).portid);
945 audit_log_end(ab);
946 mutex_lock(&audit_cmd_mutex);
947 }
948 break;
949 case AUDIT_ADD_RULE:
950 case AUDIT_DEL_RULE:
951 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
952 return -EINVAL;
953 if (audit_enabled == AUDIT_LOCKED) {
954 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
955 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
956 audit_log_end(ab);
957 return -EPERM;
958 }
959 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
960 seq, data, nlmsg_len(nlh));
961 break;
962 case AUDIT_LIST_RULES:
963 err = audit_list_rules_send(skb, seq);
964 break;
965 case AUDIT_TRIM:
966 audit_trim_trees();
967 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
968 audit_log_format(ab, " op=trim res=1");
969 audit_log_end(ab);
970 break;
971 case AUDIT_MAKE_EQUIV: {
972 void *bufp = data;
973 u32 sizes[2];
974 size_t msglen = nlmsg_len(nlh);
975 char *old, *new;
976
977 err = -EINVAL;
978 if (msglen < 2 * sizeof(u32))
979 break;
980 memcpy(sizes, bufp, 2 * sizeof(u32));
981 bufp += 2 * sizeof(u32);
982 msglen -= 2 * sizeof(u32);
983 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
984 if (IS_ERR(old)) {
985 err = PTR_ERR(old);
986 break;
987 }
988 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
989 if (IS_ERR(new)) {
990 err = PTR_ERR(new);
991 kfree(old);
992 break;
993 }
994 /* OK, here comes... */
995 err = audit_tag_tree(old, new);
996
997 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
998
999 audit_log_format(ab, " op=make_equiv old=");
1000 audit_log_untrustedstring(ab, old);
1001 audit_log_format(ab, " new=");
1002 audit_log_untrustedstring(ab, new);
1003 audit_log_format(ab, " res=%d", !err);
1004 audit_log_end(ab);
1005 kfree(old);
1006 kfree(new);
1007 break;
1008 }
1009 case AUDIT_SIGNAL_INFO:
1010 len = 0;
1011 if (audit_sig_sid) {
1012 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1013 if (err)
1014 return err;
1015 }
1016 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1017 if (!sig_data) {
1018 if (audit_sig_sid)
1019 security_release_secctx(ctx, len);
1020 return -ENOMEM;
1021 }
1022 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1023 sig_data->pid = audit_sig_pid;
1024 if (audit_sig_sid) {
1025 memcpy(sig_data->ctx, ctx, len);
1026 security_release_secctx(ctx, len);
1027 }
1028 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1029 sig_data, sizeof(*sig_data) + len);
1030 kfree(sig_data);
1031 break;
1032 case AUDIT_TTY_GET: {
1033 struct audit_tty_status s;
1034 struct task_struct *tsk = current;
1035
1036 spin_lock(&tsk->sighand->siglock);
1037 s.enabled = tsk->signal->audit_tty;
1038 s.log_passwd = tsk->signal->audit_tty_log_passwd;
1039 spin_unlock(&tsk->sighand->siglock);
1040
1041 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1042 break;
1043 }
1044 case AUDIT_TTY_SET: {
1045 struct audit_tty_status s, old;
1046 struct task_struct *tsk = current;
1047 struct audit_buffer *ab;
1048
1049 memset(&s, 0, sizeof(s));
1050 /* guard against past and future API changes */
1051 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1052 /* check if new data is valid */
1053 if ((s.enabled != 0 && s.enabled != 1) ||
1054 (s.log_passwd != 0 && s.log_passwd != 1))
1055 err = -EINVAL;
1056
1057 spin_lock(&tsk->sighand->siglock);
1058 old.enabled = tsk->signal->audit_tty;
1059 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1060 if (!err) {
1061 tsk->signal->audit_tty = s.enabled;
1062 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1063 }
1064 spin_unlock(&tsk->sighand->siglock);
1065
1066 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1067 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1068 " old-log_passwd=%d new-log_passwd=%d res=%d",
1069 old.enabled, s.enabled, old.log_passwd,
1070 s.log_passwd, !err);
1071 audit_log_end(ab);
1072 break;
1073 }
1074 default:
1075 err = -EINVAL;
1076 break;
1077 }
1078
1079 return err < 0 ? err : 0;
1080 }
1081
1082 /*
1083 * Get message from skb. Each message is processed by audit_receive_msg.
1084 * Malformed skbs with wrong length are discarded silently.
1085 */
audit_receive_skb(struct sk_buff * skb)1086 static void audit_receive_skb(struct sk_buff *skb)
1087 {
1088 struct nlmsghdr *nlh;
1089 /*
1090 * len MUST be signed for nlmsg_next to be able to dec it below 0
1091 * if the nlmsg_len was not aligned
1092 */
1093 int len;
1094 int err;
1095
1096 nlh = nlmsg_hdr(skb);
1097 len = skb->len;
1098
1099 while (nlmsg_ok(nlh, len)) {
1100 err = audit_receive_msg(skb, nlh);
1101 /* if err or if this message says it wants a response */
1102 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1103 netlink_ack(skb, nlh, err);
1104
1105 nlh = nlmsg_next(nlh, &len);
1106 }
1107 }
1108
1109 /* Receive messages from netlink socket. */
audit_receive(struct sk_buff * skb)1110 static void audit_receive(struct sk_buff *skb)
1111 {
1112 mutex_lock(&audit_cmd_mutex);
1113 audit_receive_skb(skb);
1114 mutex_unlock(&audit_cmd_mutex);
1115 }
1116
1117 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(int group)1118 static int audit_bind(int group)
1119 {
1120 if (!capable(CAP_AUDIT_READ))
1121 return -EPERM;
1122
1123 return 0;
1124 }
1125
audit_net_init(struct net * net)1126 static int __net_init audit_net_init(struct net *net)
1127 {
1128 struct netlink_kernel_cfg cfg = {
1129 .input = audit_receive,
1130 .bind = audit_bind,
1131 .flags = NL_CFG_F_NONROOT_RECV,
1132 .groups = AUDIT_NLGRP_MAX,
1133 };
1134
1135 struct audit_net *aunet = net_generic(net, audit_net_id);
1136
1137 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1138 if (aunet->nlsk == NULL) {
1139 audit_panic("cannot initialize netlink socket in namespace");
1140 return -ENOMEM;
1141 }
1142 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1143 return 0;
1144 }
1145
audit_net_exit(struct net * net)1146 static void __net_exit audit_net_exit(struct net *net)
1147 {
1148 struct audit_net *aunet = net_generic(net, audit_net_id);
1149 struct sock *sock = aunet->nlsk;
1150 if (sock == audit_sock) {
1151 audit_pid = 0;
1152 audit_sock = NULL;
1153 }
1154
1155 RCU_INIT_POINTER(aunet->nlsk, NULL);
1156 synchronize_net();
1157 netlink_kernel_release(sock);
1158 }
1159
1160 static struct pernet_operations audit_net_ops __net_initdata = {
1161 .init = audit_net_init,
1162 .exit = audit_net_exit,
1163 .id = &audit_net_id,
1164 .size = sizeof(struct audit_net),
1165 };
1166
1167 /* Initialize audit support at boot time. */
audit_init(void)1168 static int __init audit_init(void)
1169 {
1170 int i;
1171
1172 if (audit_initialized == AUDIT_DISABLED)
1173 return 0;
1174
1175 pr_info("initializing netlink subsys (%s)\n",
1176 audit_default ? "enabled" : "disabled");
1177 register_pernet_subsys(&audit_net_ops);
1178
1179 skb_queue_head_init(&audit_skb_queue);
1180 skb_queue_head_init(&audit_skb_hold_queue);
1181 audit_initialized = AUDIT_INITIALIZED;
1182
1183 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1184
1185 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1186 INIT_LIST_HEAD(&audit_inode_hash[i]);
1187
1188 return 0;
1189 }
1190 __initcall(audit_init);
1191
1192 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
audit_enable(char * str)1193 static int __init audit_enable(char *str)
1194 {
1195 audit_default = !!simple_strtol(str, NULL, 0);
1196 if (!audit_default)
1197 audit_initialized = AUDIT_DISABLED;
1198 audit_enabled = audit_default;
1199 audit_ever_enabled = !!audit_enabled;
1200
1201 pr_info("%s\n", audit_default ?
1202 "enabled (after initialization)" : "disabled (until reboot)");
1203
1204 return 1;
1205 }
1206 __setup("audit=", audit_enable);
1207
1208 /* Process kernel command-line parameter at boot time.
1209 * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1210 static int __init audit_backlog_limit_set(char *str)
1211 {
1212 u32 audit_backlog_limit_arg;
1213
1214 pr_info("audit_backlog_limit: ");
1215 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1216 pr_cont("using default of %u, unable to parse %s\n",
1217 audit_backlog_limit, str);
1218 return 1;
1219 }
1220
1221 audit_backlog_limit = audit_backlog_limit_arg;
1222 pr_cont("%d\n", audit_backlog_limit);
1223
1224 return 1;
1225 }
1226 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1227
audit_buffer_free(struct audit_buffer * ab)1228 static void audit_buffer_free(struct audit_buffer *ab)
1229 {
1230 unsigned long flags;
1231
1232 if (!ab)
1233 return;
1234
1235 if (ab->skb)
1236 kfree_skb(ab->skb);
1237
1238 spin_lock_irqsave(&audit_freelist_lock, flags);
1239 if (audit_freelist_count > AUDIT_MAXFREE)
1240 kfree(ab);
1241 else {
1242 audit_freelist_count++;
1243 list_add(&ab->list, &audit_freelist);
1244 }
1245 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1246 }
1247
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1248 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1249 gfp_t gfp_mask, int type)
1250 {
1251 unsigned long flags;
1252 struct audit_buffer *ab = NULL;
1253 struct nlmsghdr *nlh;
1254
1255 spin_lock_irqsave(&audit_freelist_lock, flags);
1256 if (!list_empty(&audit_freelist)) {
1257 ab = list_entry(audit_freelist.next,
1258 struct audit_buffer, list);
1259 list_del(&ab->list);
1260 --audit_freelist_count;
1261 }
1262 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1263
1264 if (!ab) {
1265 ab = kmalloc(sizeof(*ab), gfp_mask);
1266 if (!ab)
1267 goto err;
1268 }
1269
1270 ab->ctx = ctx;
1271 ab->gfp_mask = gfp_mask;
1272
1273 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1274 if (!ab->skb)
1275 goto err;
1276
1277 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1278 if (!nlh)
1279 goto out_kfree_skb;
1280
1281 return ab;
1282
1283 out_kfree_skb:
1284 kfree_skb(ab->skb);
1285 ab->skb = NULL;
1286 err:
1287 audit_buffer_free(ab);
1288 return NULL;
1289 }
1290
1291 /**
1292 * audit_serial - compute a serial number for the audit record
1293 *
1294 * Compute a serial number for the audit record. Audit records are
1295 * written to user-space as soon as they are generated, so a complete
1296 * audit record may be written in several pieces. The timestamp of the
1297 * record and this serial number are used by the user-space tools to
1298 * determine which pieces belong to the same audit record. The
1299 * (timestamp,serial) tuple is unique for each syscall and is live from
1300 * syscall entry to syscall exit.
1301 *
1302 * NOTE: Another possibility is to store the formatted records off the
1303 * audit context (for those records that have a context), and emit them
1304 * all at syscall exit. However, this could delay the reporting of
1305 * significant errors until syscall exit (or never, if the system
1306 * halts).
1307 */
audit_serial(void)1308 unsigned int audit_serial(void)
1309 {
1310 static atomic_t serial = ATOMIC_INIT(0);
1311
1312 return atomic_add_return(1, &serial);
1313 }
1314
audit_get_stamp(struct audit_context * ctx,struct timespec * t,unsigned int * serial)1315 static inline void audit_get_stamp(struct audit_context *ctx,
1316 struct timespec *t, unsigned int *serial)
1317 {
1318 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1319 *t = CURRENT_TIME;
1320 *serial = audit_serial();
1321 }
1322 }
1323
1324 /*
1325 * Wait for auditd to drain the queue a little
1326 */
wait_for_auditd(long sleep_time)1327 static long wait_for_auditd(long sleep_time)
1328 {
1329 DECLARE_WAITQUEUE(wait, current);
1330 set_current_state(TASK_UNINTERRUPTIBLE);
1331 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1332
1333 if (audit_backlog_limit &&
1334 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1335 sleep_time = schedule_timeout(sleep_time);
1336
1337 __set_current_state(TASK_RUNNING);
1338 remove_wait_queue(&audit_backlog_wait, &wait);
1339
1340 return sleep_time;
1341 }
1342
1343 /**
1344 * audit_log_start - obtain an audit buffer
1345 * @ctx: audit_context (may be NULL)
1346 * @gfp_mask: type of allocation
1347 * @type: audit message type
1348 *
1349 * Returns audit_buffer pointer on success or NULL on error.
1350 *
1351 * Obtain an audit buffer. This routine does locking to obtain the
1352 * audit buffer, but then no locking is required for calls to
1353 * audit_log_*format. If the task (ctx) is a task that is currently in a
1354 * syscall, then the syscall is marked as auditable and an audit record
1355 * will be written at syscall exit. If there is no associated task, then
1356 * task context (ctx) should be NULL.
1357 */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1358 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1359 int type)
1360 {
1361 struct audit_buffer *ab = NULL;
1362 struct timespec t;
1363 unsigned int uninitialized_var(serial);
1364 int reserve = 5; /* Allow atomic callers to go up to five
1365 entries over the normal backlog limit */
1366 unsigned long timeout_start = jiffies;
1367
1368 if (audit_initialized != AUDIT_INITIALIZED)
1369 return NULL;
1370
1371 if (unlikely(audit_filter_type(type)))
1372 return NULL;
1373
1374 if (gfp_mask & __GFP_WAIT) {
1375 if (audit_pid && audit_pid == current->pid)
1376 gfp_mask &= ~__GFP_WAIT;
1377 else
1378 reserve = 0;
1379 }
1380
1381 while (audit_backlog_limit
1382 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1383 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1384 long sleep_time;
1385
1386 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1387 if (sleep_time > 0) {
1388 sleep_time = wait_for_auditd(sleep_time);
1389 if (sleep_time > 0)
1390 continue;
1391 }
1392 }
1393 if (audit_rate_check() && printk_ratelimit())
1394 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1395 skb_queue_len(&audit_skb_queue),
1396 audit_backlog_limit);
1397 audit_log_lost("backlog limit exceeded");
1398 audit_backlog_wait_time = audit_backlog_wait_overflow;
1399 wake_up(&audit_backlog_wait);
1400 return NULL;
1401 }
1402
1403 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1404
1405 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1406 if (!ab) {
1407 audit_log_lost("out of memory in audit_log_start");
1408 return NULL;
1409 }
1410
1411 audit_get_stamp(ab->ctx, &t, &serial);
1412
1413 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1414 t.tv_sec, t.tv_nsec/1000000, serial);
1415 return ab;
1416 }
1417
1418 /**
1419 * audit_expand - expand skb in the audit buffer
1420 * @ab: audit_buffer
1421 * @extra: space to add at tail of the skb
1422 *
1423 * Returns 0 (no space) on failed expansion, or available space if
1424 * successful.
1425 */
audit_expand(struct audit_buffer * ab,int extra)1426 static inline int audit_expand(struct audit_buffer *ab, int extra)
1427 {
1428 struct sk_buff *skb = ab->skb;
1429 int oldtail = skb_tailroom(skb);
1430 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1431 int newtail = skb_tailroom(skb);
1432
1433 if (ret < 0) {
1434 audit_log_lost("out of memory in audit_expand");
1435 return 0;
1436 }
1437
1438 skb->truesize += newtail - oldtail;
1439 return newtail;
1440 }
1441
1442 /*
1443 * Format an audit message into the audit buffer. If there isn't enough
1444 * room in the audit buffer, more room will be allocated and vsnprint
1445 * will be called a second time. Currently, we assume that a printk
1446 * can't format message larger than 1024 bytes, so we don't either.
1447 */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1448 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1449 va_list args)
1450 {
1451 int len, avail;
1452 struct sk_buff *skb;
1453 va_list args2;
1454
1455 if (!ab)
1456 return;
1457
1458 BUG_ON(!ab->skb);
1459 skb = ab->skb;
1460 avail = skb_tailroom(skb);
1461 if (avail == 0) {
1462 avail = audit_expand(ab, AUDIT_BUFSIZ);
1463 if (!avail)
1464 goto out;
1465 }
1466 va_copy(args2, args);
1467 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1468 if (len >= avail) {
1469 /* The printk buffer is 1024 bytes long, so if we get
1470 * here and AUDIT_BUFSIZ is at least 1024, then we can
1471 * log everything that printk could have logged. */
1472 avail = audit_expand(ab,
1473 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1474 if (!avail)
1475 goto out_va_end;
1476 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1477 }
1478 if (len > 0)
1479 skb_put(skb, len);
1480 out_va_end:
1481 va_end(args2);
1482 out:
1483 return;
1484 }
1485
1486 /**
1487 * audit_log_format - format a message into the audit buffer.
1488 * @ab: audit_buffer
1489 * @fmt: format string
1490 * @...: optional parameters matching @fmt string
1491 *
1492 * All the work is done in audit_log_vformat.
1493 */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1494 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1495 {
1496 va_list args;
1497
1498 if (!ab)
1499 return;
1500 va_start(args, fmt);
1501 audit_log_vformat(ab, fmt, args);
1502 va_end(args);
1503 }
1504
1505 /**
1506 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1507 * @ab: the audit_buffer
1508 * @buf: buffer to convert to hex
1509 * @len: length of @buf to be converted
1510 *
1511 * No return value; failure to expand is silently ignored.
1512 *
1513 * This function will take the passed buf and convert it into a string of
1514 * ascii hex digits. The new string is placed onto the skb.
1515 */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1516 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1517 size_t len)
1518 {
1519 int i, avail, new_len;
1520 unsigned char *ptr;
1521 struct sk_buff *skb;
1522
1523 if (!ab)
1524 return;
1525
1526 BUG_ON(!ab->skb);
1527 skb = ab->skb;
1528 avail = skb_tailroom(skb);
1529 new_len = len<<1;
1530 if (new_len >= avail) {
1531 /* Round the buffer request up to the next multiple */
1532 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1533 avail = audit_expand(ab, new_len);
1534 if (!avail)
1535 return;
1536 }
1537
1538 ptr = skb_tail_pointer(skb);
1539 for (i = 0; i < len; i++)
1540 ptr = hex_byte_pack_upper(ptr, buf[i]);
1541 *ptr = 0;
1542 skb_put(skb, len << 1); /* new string is twice the old string */
1543 }
1544
1545 /*
1546 * Format a string of no more than slen characters into the audit buffer,
1547 * enclosed in quote marks.
1548 */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1549 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1550 size_t slen)
1551 {
1552 int avail, new_len;
1553 unsigned char *ptr;
1554 struct sk_buff *skb;
1555
1556 if (!ab)
1557 return;
1558
1559 BUG_ON(!ab->skb);
1560 skb = ab->skb;
1561 avail = skb_tailroom(skb);
1562 new_len = slen + 3; /* enclosing quotes + null terminator */
1563 if (new_len > avail) {
1564 avail = audit_expand(ab, new_len);
1565 if (!avail)
1566 return;
1567 }
1568 ptr = skb_tail_pointer(skb);
1569 *ptr++ = '"';
1570 memcpy(ptr, string, slen);
1571 ptr += slen;
1572 *ptr++ = '"';
1573 *ptr = 0;
1574 skb_put(skb, slen + 2); /* don't include null terminator */
1575 }
1576
1577 /**
1578 * audit_string_contains_control - does a string need to be logged in hex
1579 * @string: string to be checked
1580 * @len: max length of the string to check
1581 */
audit_string_contains_control(const char * string,size_t len)1582 int audit_string_contains_control(const char *string, size_t len)
1583 {
1584 const unsigned char *p;
1585 for (p = string; p < (const unsigned char *)string + len; p++) {
1586 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1587 return 1;
1588 }
1589 return 0;
1590 }
1591
1592 /**
1593 * audit_log_n_untrustedstring - log a string that may contain random characters
1594 * @ab: audit_buffer
1595 * @len: length of string (not including trailing null)
1596 * @string: string to be logged
1597 *
1598 * This code will escape a string that is passed to it if the string
1599 * contains a control character, unprintable character, double quote mark,
1600 * or a space. Unescaped strings will start and end with a double quote mark.
1601 * Strings that are escaped are printed in hex (2 digits per char).
1602 *
1603 * The caller specifies the number of characters in the string to log, which may
1604 * or may not be the entire string.
1605 */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)1606 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1607 size_t len)
1608 {
1609 if (audit_string_contains_control(string, len))
1610 audit_log_n_hex(ab, string, len);
1611 else
1612 audit_log_n_string(ab, string, len);
1613 }
1614
1615 /**
1616 * audit_log_untrustedstring - log a string that may contain random characters
1617 * @ab: audit_buffer
1618 * @string: string to be logged
1619 *
1620 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1621 * determine string length.
1622 */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)1623 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1624 {
1625 audit_log_n_untrustedstring(ab, string, strlen(string));
1626 }
1627
1628 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)1629 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1630 const struct path *path)
1631 {
1632 char *p, *pathname;
1633
1634 if (prefix)
1635 audit_log_format(ab, "%s", prefix);
1636
1637 /* We will allow 11 spaces for ' (deleted)' to be appended */
1638 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1639 if (!pathname) {
1640 audit_log_string(ab, "<no_memory>");
1641 return;
1642 }
1643 p = d_path(path, pathname, PATH_MAX+11);
1644 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1645 /* FIXME: can we save some information here? */
1646 audit_log_string(ab, "<too_long>");
1647 } else
1648 audit_log_untrustedstring(ab, p);
1649 kfree(pathname);
1650 }
1651
audit_log_session_info(struct audit_buffer * ab)1652 void audit_log_session_info(struct audit_buffer *ab)
1653 {
1654 unsigned int sessionid = audit_get_sessionid(current);
1655 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1656
1657 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1658 }
1659
audit_log_key(struct audit_buffer * ab,char * key)1660 void audit_log_key(struct audit_buffer *ab, char *key)
1661 {
1662 audit_log_format(ab, " key=");
1663 if (key)
1664 audit_log_untrustedstring(ab, key);
1665 else
1666 audit_log_format(ab, "(null)");
1667 }
1668
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1669 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1670 {
1671 int i;
1672
1673 audit_log_format(ab, " %s=", prefix);
1674 CAP_FOR_EACH_U32(i) {
1675 audit_log_format(ab, "%08x",
1676 cap->cap[CAP_LAST_U32 - i]);
1677 }
1678 }
1679
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1680 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1681 {
1682 kernel_cap_t *perm = &name->fcap.permitted;
1683 kernel_cap_t *inh = &name->fcap.inheritable;
1684 int log = 0;
1685
1686 if (!cap_isclear(*perm)) {
1687 audit_log_cap(ab, "cap_fp", perm);
1688 log = 1;
1689 }
1690 if (!cap_isclear(*inh)) {
1691 audit_log_cap(ab, "cap_fi", inh);
1692 log = 1;
1693 }
1694
1695 if (log)
1696 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1697 name->fcap.fE, name->fcap_ver);
1698 }
1699
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1700 static inline int audit_copy_fcaps(struct audit_names *name,
1701 const struct dentry *dentry)
1702 {
1703 struct cpu_vfs_cap_data caps;
1704 int rc;
1705
1706 if (!dentry)
1707 return 0;
1708
1709 rc = get_vfs_caps_from_disk(dentry, &caps);
1710 if (rc)
1711 return rc;
1712
1713 name->fcap.permitted = caps.permitted;
1714 name->fcap.inheritable = caps.inheritable;
1715 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1716 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1717 VFS_CAP_REVISION_SHIFT;
1718
1719 return 0;
1720 }
1721
1722 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,const struct inode * inode)1723 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1724 const struct inode *inode)
1725 {
1726 name->ino = inode->i_ino;
1727 name->dev = inode->i_sb->s_dev;
1728 name->mode = inode->i_mode;
1729 name->uid = inode->i_uid;
1730 name->gid = inode->i_gid;
1731 name->rdev = inode->i_rdev;
1732 security_inode_getsecid(inode, &name->osid);
1733 audit_copy_fcaps(name, dentry);
1734 }
1735
1736 /**
1737 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1738 * @context: audit_context for the task
1739 * @n: audit_names structure with reportable details
1740 * @path: optional path to report instead of audit_names->name
1741 * @record_num: record number to report when handling a list of names
1742 * @call_panic: optional pointer to int that will be updated if secid fails
1743 */
audit_log_name(struct audit_context * context,struct audit_names * n,struct path * path,int record_num,int * call_panic)1744 void audit_log_name(struct audit_context *context, struct audit_names *n,
1745 struct path *path, int record_num, int *call_panic)
1746 {
1747 struct audit_buffer *ab;
1748 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1749 if (!ab)
1750 return;
1751
1752 audit_log_format(ab, "item=%d", record_num);
1753
1754 if (path)
1755 audit_log_d_path(ab, " name=", path);
1756 else if (n->name) {
1757 switch (n->name_len) {
1758 case AUDIT_NAME_FULL:
1759 /* log the full path */
1760 audit_log_format(ab, " name=");
1761 audit_log_untrustedstring(ab, n->name->name);
1762 break;
1763 case 0:
1764 /* name was specified as a relative path and the
1765 * directory component is the cwd */
1766 audit_log_d_path(ab, " name=", &context->pwd);
1767 break;
1768 default:
1769 /* log the name's directory component */
1770 audit_log_format(ab, " name=");
1771 audit_log_n_untrustedstring(ab, n->name->name,
1772 n->name_len);
1773 }
1774 } else
1775 audit_log_format(ab, " name=(null)");
1776
1777 if (n->ino != (unsigned long)-1) {
1778 audit_log_format(ab, " inode=%lu"
1779 " dev=%02x:%02x mode=%#ho"
1780 " ouid=%u ogid=%u rdev=%02x:%02x",
1781 n->ino,
1782 MAJOR(n->dev),
1783 MINOR(n->dev),
1784 n->mode,
1785 from_kuid(&init_user_ns, n->uid),
1786 from_kgid(&init_user_ns, n->gid),
1787 MAJOR(n->rdev),
1788 MINOR(n->rdev));
1789 }
1790 if (n->osid != 0) {
1791 char *ctx = NULL;
1792 u32 len;
1793 if (security_secid_to_secctx(
1794 n->osid, &ctx, &len)) {
1795 audit_log_format(ab, " osid=%u", n->osid);
1796 if (call_panic)
1797 *call_panic = 2;
1798 } else {
1799 audit_log_format(ab, " obj=%s", ctx);
1800 security_release_secctx(ctx, len);
1801 }
1802 }
1803
1804 /* log the audit_names record type */
1805 audit_log_format(ab, " nametype=");
1806 switch(n->type) {
1807 case AUDIT_TYPE_NORMAL:
1808 audit_log_format(ab, "NORMAL");
1809 break;
1810 case AUDIT_TYPE_PARENT:
1811 audit_log_format(ab, "PARENT");
1812 break;
1813 case AUDIT_TYPE_CHILD_DELETE:
1814 audit_log_format(ab, "DELETE");
1815 break;
1816 case AUDIT_TYPE_CHILD_CREATE:
1817 audit_log_format(ab, "CREATE");
1818 break;
1819 default:
1820 audit_log_format(ab, "UNKNOWN");
1821 break;
1822 }
1823
1824 audit_log_fcaps(ab, n);
1825 audit_log_end(ab);
1826 }
1827
audit_log_task_context(struct audit_buffer * ab)1828 int audit_log_task_context(struct audit_buffer *ab)
1829 {
1830 char *ctx = NULL;
1831 unsigned len;
1832 int error;
1833 u32 sid;
1834
1835 security_task_getsecid(current, &sid);
1836 if (!sid)
1837 return 0;
1838
1839 error = security_secid_to_secctx(sid, &ctx, &len);
1840 if (error) {
1841 if (error != -EINVAL)
1842 goto error_path;
1843 return 0;
1844 }
1845
1846 audit_log_format(ab, " subj=%s", ctx);
1847 security_release_secctx(ctx, len);
1848 return 0;
1849
1850 error_path:
1851 audit_panic("error in audit_log_task_context");
1852 return error;
1853 }
1854 EXPORT_SYMBOL(audit_log_task_context);
1855
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)1856 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1857 {
1858 const struct cred *cred;
1859 char comm[sizeof(tsk->comm)];
1860 struct mm_struct *mm = tsk->mm;
1861 char *tty;
1862
1863 if (!ab)
1864 return;
1865
1866 /* tsk == current */
1867 cred = current_cred();
1868
1869 spin_lock_irq(&tsk->sighand->siglock);
1870 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1871 tty = tsk->signal->tty->name;
1872 else
1873 tty = "(none)";
1874 spin_unlock_irq(&tsk->sighand->siglock);
1875
1876 audit_log_format(ab,
1877 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1878 " euid=%u suid=%u fsuid=%u"
1879 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1880 task_ppid_nr(tsk),
1881 task_tgid_nr(tsk),
1882 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1883 from_kuid(&init_user_ns, cred->uid),
1884 from_kgid(&init_user_ns, cred->gid),
1885 from_kuid(&init_user_ns, cred->euid),
1886 from_kuid(&init_user_ns, cred->suid),
1887 from_kuid(&init_user_ns, cred->fsuid),
1888 from_kgid(&init_user_ns, cred->egid),
1889 from_kgid(&init_user_ns, cred->sgid),
1890 from_kgid(&init_user_ns, cred->fsgid),
1891 tty, audit_get_sessionid(tsk));
1892
1893 audit_log_format(ab, " comm=");
1894 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1895
1896 if (mm) {
1897 down_read(&mm->mmap_sem);
1898 if (mm->exe_file)
1899 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1900 up_read(&mm->mmap_sem);
1901 } else
1902 audit_log_format(ab, " exe=(null)");
1903 audit_log_task_context(ab);
1904 }
1905 EXPORT_SYMBOL(audit_log_task_info);
1906
1907 /**
1908 * audit_log_link_denied - report a link restriction denial
1909 * @operation: specific link opreation
1910 * @link: the path that triggered the restriction
1911 */
audit_log_link_denied(const char * operation,struct path * link)1912 void audit_log_link_denied(const char *operation, struct path *link)
1913 {
1914 struct audit_buffer *ab;
1915 struct audit_names *name;
1916
1917 name = kzalloc(sizeof(*name), GFP_NOFS);
1918 if (!name)
1919 return;
1920
1921 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1922 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1923 AUDIT_ANOM_LINK);
1924 if (!ab)
1925 goto out;
1926 audit_log_format(ab, "op=%s", operation);
1927 audit_log_task_info(ab, current);
1928 audit_log_format(ab, " res=0");
1929 audit_log_end(ab);
1930
1931 /* Generate AUDIT_PATH record with object. */
1932 name->type = AUDIT_TYPE_NORMAL;
1933 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1934 audit_log_name(current->audit_context, name, link, 0, NULL);
1935 out:
1936 kfree(name);
1937 }
1938
1939 /**
1940 * audit_log_end - end one audit record
1941 * @ab: the audit_buffer
1942 *
1943 * netlink_unicast() cannot be called inside an irq context because it blocks
1944 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1945 * on a queue and a tasklet is scheduled to remove them from the queue outside
1946 * the irq context. May be called in any context.
1947 */
audit_log_end(struct audit_buffer * ab)1948 void audit_log_end(struct audit_buffer *ab)
1949 {
1950 if (!ab)
1951 return;
1952 if (!audit_rate_check()) {
1953 audit_log_lost("rate limit exceeded");
1954 } else {
1955 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1956
1957 nlh->nlmsg_len = ab->skb->len;
1958 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1959
1960 /*
1961 * The original kaudit unicast socket sends up messages with
1962 * nlmsg_len set to the payload length rather than the entire
1963 * message length. This breaks the standard set by netlink.
1964 * The existing auditd daemon assumes this breakage. Fixing
1965 * this would require co-ordinating a change in the established
1966 * protocol between the kaudit kernel subsystem and the auditd
1967 * userspace code.
1968 */
1969 nlh->nlmsg_len -= NLMSG_HDRLEN;
1970
1971 if (audit_pid) {
1972 skb_queue_tail(&audit_skb_queue, ab->skb);
1973 wake_up_interruptible(&kauditd_wait);
1974 } else {
1975 audit_printk_skb(ab->skb);
1976 }
1977 ab->skb = NULL;
1978 }
1979 audit_buffer_free(ab);
1980 }
1981
1982 /**
1983 * audit_log - Log an audit record
1984 * @ctx: audit context
1985 * @gfp_mask: type of allocation
1986 * @type: audit message type
1987 * @fmt: format string to use
1988 * @...: variable parameters matching the format string
1989 *
1990 * This is a convenience function that calls audit_log_start,
1991 * audit_log_vformat, and audit_log_end. It may be called
1992 * in any context.
1993 */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)1994 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1995 const char *fmt, ...)
1996 {
1997 struct audit_buffer *ab;
1998 va_list args;
1999
2000 ab = audit_log_start(ctx, gfp_mask, type);
2001 if (ab) {
2002 va_start(args, fmt);
2003 audit_log_vformat(ab, fmt, args);
2004 va_end(args);
2005 audit_log_end(ab);
2006 }
2007 }
2008
2009 #ifdef CONFIG_SECURITY
2010 /**
2011 * audit_log_secctx - Converts and logs SELinux context
2012 * @ab: audit_buffer
2013 * @secid: security number
2014 *
2015 * This is a helper function that calls security_secid_to_secctx to convert
2016 * secid to secctx and then adds the (converted) SELinux context to the audit
2017 * log by calling audit_log_format, thus also preventing leak of internal secid
2018 * to userspace. If secid cannot be converted audit_panic is called.
2019 */
audit_log_secctx(struct audit_buffer * ab,u32 secid)2020 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2021 {
2022 u32 len;
2023 char *secctx;
2024
2025 if (security_secid_to_secctx(secid, &secctx, &len)) {
2026 audit_panic("Cannot convert secid to context");
2027 } else {
2028 audit_log_format(ab, " obj=%s", secctx);
2029 security_release_secctx(secctx, len);
2030 }
2031 }
2032 EXPORT_SYMBOL(audit_log_secctx);
2033 #endif
2034
2035 EXPORT_SYMBOL(audit_log_start);
2036 EXPORT_SYMBOL(audit_log_end);
2037 EXPORT_SYMBOL(audit_log_format);
2038 EXPORT_SYMBOL(audit_log);
2039