• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* audit.c -- Auditing support
2  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3  * System-call specific features have moved to auditsc.c
4  *
5  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6  * All Rights Reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23  *
24  * Goals: 1) Integrate fully with Security Modules.
25  *	  2) Minimal run-time overhead:
26  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
27  *	     b) Small when syscall auditing is enabled and no audit record
28  *		is generated (defer as much work as possible to record
29  *		generation time):
30  *		i) context is allocated,
31  *		ii) names from getname are stored without a copy, and
32  *		iii) inode information stored from path_lookup.
33  *	  3) Ability to disable syscall auditing at boot time (audit=0).
34  *	  4) Usable by other parts of the kernel (if audit_log* is called,
35  *	     then a syscall record will be generated automatically for the
36  *	     current syscall).
37  *	  5) Netlink interface to user-space.
38  *	  6) Support low-overhead kernel-based filtering to minimize the
39  *	     information that must be passed to user-space.
40  *
41  * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42  */
43 
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 
46 #include <linux/init.h>
47 #include <linux/types.h>
48 #include <linux/atomic.h>
49 #include <linux/mm.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/err.h>
53 #include <linux/kthread.h>
54 #include <linux/kernel.h>
55 #include <linux/syscalls.h>
56 
57 #include <linux/audit.h>
58 
59 #include <net/sock.h>
60 #include <net/netlink.h>
61 #include <linux/skbuff.h>
62 #ifdef CONFIG_SECURITY
63 #include <linux/security.h>
64 #endif
65 #include <linux/freezer.h>
66 #include <linux/tty.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69 
70 #include "audit.h"
71 
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73  * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED		-1
75 #define AUDIT_UNINITIALIZED	0
76 #define AUDIT_INITIALIZED	1
77 static int	audit_initialized;
78 
79 #define AUDIT_OFF	0
80 #define AUDIT_ON	1
81 #define AUDIT_LOCKED	2
82 u32		audit_enabled = AUDIT_OFF;
83 u32		audit_ever_enabled = !!AUDIT_OFF;
84 
85 EXPORT_SYMBOL_GPL(audit_enabled);
86 
87 /* Default state when kernel boots without any parameters. */
88 static u32	audit_default = AUDIT_OFF;
89 
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32	audit_failure = AUDIT_FAIL_PRINTK;
92 
93 /*
94  * If audit records are to be written to the netlink socket, audit_pid
95  * contains the pid of the auditd process and audit_nlk_portid contains
96  * the portid to use to send netlink messages to that process.
97  */
98 int		audit_pid;
99 static __u32	audit_nlk_portid;
100 
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102  * to that number per second.  This prevents DoS attacks, but results in
103  * audit records being dropped. */
104 static u32	audit_rate_limit;
105 
106 /* Number of outstanding audit_buffers allowed.
107  * When set to zero, this means unlimited. */
108 static u32	audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
111 static u32	audit_backlog_wait_overflow = 0;
112 
113 /* The identity of the user shutting down the audit system. */
114 kuid_t		audit_sig_uid = INVALID_UID;
115 pid_t		audit_sig_pid = -1;
116 u32		audit_sig_sid = 0;
117 
118 /* Records can be lost in several ways:
119    0) [suppressed in audit_alloc]
120    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121    2) out of memory in audit_log_move [alloc_skb]
122    3) suppressed due to audit_rate_limit
123    4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t    audit_lost = ATOMIC_INIT(0);
126 
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 static int audit_net_id;
130 
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133 
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135  * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136  * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int	   audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140 
141 static struct sk_buff_head audit_skb_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_skb_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147 
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 				   .mask = -1,
150 				   .features = 0,
151 				   .lock = 0,};
152 
153 static char *audit_feature_names[2] = {
154 	"only_unset_loginuid",
155 	"loginuid_immutable",
156 };
157 
158 
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161 
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163  * audit records.  Since printk uses a 1024 byte buffer, this buffer
164  * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166 
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168  * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE  (2*NR_CPUS)
170 
171 /* The audit_buffer is used when formatting an audit record.  The caller
172  * locks briefly to get the record off the freelist or to allocate the
173  * buffer, and locks briefly to send the buffer to the netlink layer or
174  * to place it on a transmit queue.  Multiple audit_buffers can be in
175  * use simultaneously. */
176 struct audit_buffer {
177 	struct list_head     list;
178 	struct sk_buff       *skb;	/* formatted skb ready to send */
179 	struct audit_context *ctx;	/* NULL or associated context */
180 	gfp_t		     gfp_mask;
181 };
182 
183 struct audit_reply {
184 	__u32 portid;
185 	struct net *net;
186 	struct sk_buff *skb;
187 };
188 
audit_set_portid(struct audit_buffer * ab,__u32 portid)189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 	if (ab) {
192 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 		nlh->nlmsg_pid = portid;
194 	}
195 }
196 
audit_panic(const char * message)197 void audit_panic(const char *message)
198 {
199 	switch (audit_failure) {
200 	case AUDIT_FAIL_SILENT:
201 		break;
202 	case AUDIT_FAIL_PRINTK:
203 		if (printk_ratelimit())
204 			pr_err("%s\n", message);
205 		break;
206 	case AUDIT_FAIL_PANIC:
207 		/* test audit_pid since printk is always losey, why bother? */
208 		if (audit_pid)
209 			panic("audit: %s\n", message);
210 		break;
211 	}
212 }
213 
audit_rate_check(void)214 static inline int audit_rate_check(void)
215 {
216 	static unsigned long	last_check = 0;
217 	static int		messages   = 0;
218 	static DEFINE_SPINLOCK(lock);
219 	unsigned long		flags;
220 	unsigned long		now;
221 	unsigned long		elapsed;
222 	int			retval	   = 0;
223 
224 	if (!audit_rate_limit) return 1;
225 
226 	spin_lock_irqsave(&lock, flags);
227 	if (++messages < audit_rate_limit) {
228 		retval = 1;
229 	} else {
230 		now     = jiffies;
231 		elapsed = now - last_check;
232 		if (elapsed > HZ) {
233 			last_check = now;
234 			messages   = 0;
235 			retval     = 1;
236 		}
237 	}
238 	spin_unlock_irqrestore(&lock, flags);
239 
240 	return retval;
241 }
242 
243 /**
244  * audit_log_lost - conditionally log lost audit message event
245  * @message: the message stating reason for lost audit message
246  *
247  * Emit at least 1 message per second, even if audit_rate_check is
248  * throttling.
249  * Always increment the lost messages counter.
250 */
audit_log_lost(const char * message)251 void audit_log_lost(const char *message)
252 {
253 	static unsigned long	last_msg = 0;
254 	static DEFINE_SPINLOCK(lock);
255 	unsigned long		flags;
256 	unsigned long		now;
257 	int			print;
258 
259 	atomic_inc(&audit_lost);
260 
261 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262 
263 	if (!print) {
264 		spin_lock_irqsave(&lock, flags);
265 		now = jiffies;
266 		if (now - last_msg > HZ) {
267 			print = 1;
268 			last_msg = now;
269 		}
270 		spin_unlock_irqrestore(&lock, flags);
271 	}
272 
273 	if (print) {
274 		if (printk_ratelimit())
275 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 				atomic_read(&audit_lost),
277 				audit_rate_limit,
278 				audit_backlog_limit);
279 		audit_panic(message);
280 	}
281 }
282 
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 				   int allow_changes)
285 {
286 	struct audit_buffer *ab;
287 	int rc = 0;
288 
289 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 	if (unlikely(!ab))
291 		return rc;
292 	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 	audit_log_session_info(ab);
294 	rc = audit_log_task_context(ab);
295 	if (rc)
296 		allow_changes = 0; /* Something weird, deny request */
297 	audit_log_format(ab, " res=%d", allow_changes);
298 	audit_log_end(ab);
299 	return rc;
300 }
301 
audit_do_config_change(char * function_name,u32 * to_change,u32 new)302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 	int allow_changes, rc = 0;
305 	u32 old = *to_change;
306 
307 	/* check if we are locked */
308 	if (audit_enabled == AUDIT_LOCKED)
309 		allow_changes = 0;
310 	else
311 		allow_changes = 1;
312 
313 	if (audit_enabled != AUDIT_OFF) {
314 		rc = audit_log_config_change(function_name, new, old, allow_changes);
315 		if (rc)
316 			allow_changes = 0;
317 	}
318 
319 	/* If we are allowed, make the change */
320 	if (allow_changes == 1)
321 		*to_change = new;
322 	/* Not allowed, update reason */
323 	else if (rc == 0)
324 		rc = -EPERM;
325 	return rc;
326 }
327 
audit_set_rate_limit(u32 limit)328 static int audit_set_rate_limit(u32 limit)
329 {
330 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332 
audit_set_backlog_limit(u32 limit)333 static int audit_set_backlog_limit(u32 limit)
334 {
335 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337 
audit_set_backlog_wait_time(u32 timeout)338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 	return audit_do_config_change("audit_backlog_wait_time",
341 				      &audit_backlog_wait_time, timeout);
342 }
343 
audit_set_enabled(u32 state)344 static int audit_set_enabled(u32 state)
345 {
346 	int rc;
347 	if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 		return -EINVAL;
349 
350 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
351 	if (!rc)
352 		audit_ever_enabled |= !!state;
353 
354 	return rc;
355 }
356 
audit_set_failure(u32 state)357 static int audit_set_failure(u32 state)
358 {
359 	if (state != AUDIT_FAIL_SILENT
360 	    && state != AUDIT_FAIL_PRINTK
361 	    && state != AUDIT_FAIL_PANIC)
362 		return -EINVAL;
363 
364 	return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366 
367 /*
368  * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
369  * already have been sent via prink/syslog and so if these messages are dropped
370  * it is not a huge concern since we already passed the audit_log_lost()
371  * notification and stuff.  This is just nice to get audit messages during
372  * boot before auditd is running or messages generated while auditd is stopped.
373  * This only holds messages is audit_default is set, aka booting with audit=1
374  * or building your kernel that way.
375  */
audit_hold_skb(struct sk_buff * skb)376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 	if (audit_default &&
379 	    (!audit_backlog_limit ||
380 	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 		skb_queue_tail(&audit_skb_hold_queue, skb);
382 	else
383 		kfree_skb(skb);
384 }
385 
386 /*
387  * For one reason or another this nlh isn't getting delivered to the userspace
388  * audit daemon, just send it to printk.
389  */
audit_printk_skb(struct sk_buff * skb)390 static void audit_printk_skb(struct sk_buff *skb)
391 {
392 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 	char *data = nlmsg_data(nlh);
394 
395 	if (nlh->nlmsg_type != AUDIT_EOE) {
396 		if (printk_ratelimit())
397 			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 		else
399 			audit_log_lost("printk limit exceeded");
400 	}
401 
402 	audit_hold_skb(skb);
403 }
404 
kauditd_send_skb(struct sk_buff * skb)405 static void kauditd_send_skb(struct sk_buff *skb)
406 {
407 	int err;
408 	/* take a reference in case we can't send it and we want to hold it */
409 	skb_get(skb);
410 	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 	if (err < 0) {
412 		BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 		if (audit_pid) {
414 			pr_err("*NO* daemon at audit_pid=%d\n", audit_pid);
415 			audit_log_lost("auditd disappeared");
416 			audit_pid = 0;
417 			audit_sock = NULL;
418 		}
419 		/* we might get lucky and get this in the next auditd */
420 		audit_hold_skb(skb);
421 	} else
422 		/* drop the extra reference if sent ok */
423 		consume_skb(skb);
424 }
425 
426 /*
427  * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
428  *
429  * This function doesn't consume an skb as might be expected since it has to
430  * copy it anyways.
431  */
kauditd_send_multicast_skb(struct sk_buff * skb,gfp_t gfp_mask)432 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
433 {
434 	struct sk_buff		*copy;
435 	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
436 	struct sock		*sock = aunet->nlsk;
437 
438 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
439 		return;
440 
441 	/*
442 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
443 	 * using skb_get() is necessary because non-standard mods are made to
444 	 * the skb by the original kaudit unicast socket send routine.  The
445 	 * existing auditd daemon assumes this breakage.  Fixing this would
446 	 * require co-ordinating a change in the established protocol between
447 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
448 	 * no reason for new multicast clients to continue with this
449 	 * non-compliance.
450 	 */
451 	copy = skb_copy(skb, gfp_mask);
452 	if (!copy)
453 		return;
454 
455 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
456 }
457 
458 /*
459  * flush_hold_queue - empty the hold queue if auditd appears
460  *
461  * If auditd just started, drain the queue of messages already
462  * sent to syslog/printk.  Remember loss here is ok.  We already
463  * called audit_log_lost() if it didn't go out normally.  so the
464  * race between the skb_dequeue and the next check for audit_pid
465  * doesn't matter.
466  *
467  * If you ever find kauditd to be too slow we can get a perf win
468  * by doing our own locking and keeping better track if there
469  * are messages in this queue.  I don't see the need now, but
470  * in 5 years when I want to play with this again I'll see this
471  * note and still have no friggin idea what i'm thinking today.
472  */
flush_hold_queue(void)473 static void flush_hold_queue(void)
474 {
475 	struct sk_buff *skb;
476 
477 	if (!audit_default || !audit_pid)
478 		return;
479 
480 	skb = skb_dequeue(&audit_skb_hold_queue);
481 	if (likely(!skb))
482 		return;
483 
484 	while (skb && audit_pid) {
485 		kauditd_send_skb(skb);
486 		skb = skb_dequeue(&audit_skb_hold_queue);
487 	}
488 
489 	/*
490 	 * if auditd just disappeared but we
491 	 * dequeued an skb we need to drop ref
492 	 */
493 	if (skb)
494 		consume_skb(skb);
495 }
496 
kauditd_thread(void * dummy)497 static int kauditd_thread(void *dummy)
498 {
499 	set_freezable();
500 	while (!kthread_should_stop()) {
501 		struct sk_buff *skb;
502 		DECLARE_WAITQUEUE(wait, current);
503 
504 		flush_hold_queue();
505 
506 		skb = skb_dequeue(&audit_skb_queue);
507 
508 		if (skb) {
509 			if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
510 				wake_up(&audit_backlog_wait);
511 			if (audit_pid)
512 				kauditd_send_skb(skb);
513 			else
514 				audit_printk_skb(skb);
515 			continue;
516 		}
517 		set_current_state(TASK_INTERRUPTIBLE);
518 		add_wait_queue(&kauditd_wait, &wait);
519 
520 		if (!skb_queue_len(&audit_skb_queue)) {
521 			try_to_freeze();
522 			schedule();
523 		}
524 
525 		__set_current_state(TASK_RUNNING);
526 		remove_wait_queue(&kauditd_wait, &wait);
527 	}
528 	return 0;
529 }
530 
audit_send_list(void * _dest)531 int audit_send_list(void *_dest)
532 {
533 	struct audit_netlink_list *dest = _dest;
534 	struct sk_buff *skb;
535 	struct net *net = dest->net;
536 	struct audit_net *aunet = net_generic(net, audit_net_id);
537 
538 	/* wait for parent to finish and send an ACK */
539 	mutex_lock(&audit_cmd_mutex);
540 	mutex_unlock(&audit_cmd_mutex);
541 
542 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
543 		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
544 
545 	put_net(net);
546 	kfree(dest);
547 
548 	return 0;
549 }
550 
audit_make_reply(__u32 portid,int seq,int type,int done,int multi,const void * payload,int size)551 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
552 				 int multi, const void *payload, int size)
553 {
554 	struct sk_buff	*skb;
555 	struct nlmsghdr	*nlh;
556 	void		*data;
557 	int		flags = multi ? NLM_F_MULTI : 0;
558 	int		t     = done  ? NLMSG_DONE  : type;
559 
560 	skb = nlmsg_new(size, GFP_KERNEL);
561 	if (!skb)
562 		return NULL;
563 
564 	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
565 	if (!nlh)
566 		goto out_kfree_skb;
567 	data = nlmsg_data(nlh);
568 	memcpy(data, payload, size);
569 	return skb;
570 
571 out_kfree_skb:
572 	kfree_skb(skb);
573 	return NULL;
574 }
575 
audit_send_reply_thread(void * arg)576 static int audit_send_reply_thread(void *arg)
577 {
578 	struct audit_reply *reply = (struct audit_reply *)arg;
579 	struct net *net = reply->net;
580 	struct audit_net *aunet = net_generic(net, audit_net_id);
581 
582 	mutex_lock(&audit_cmd_mutex);
583 	mutex_unlock(&audit_cmd_mutex);
584 
585 	/* Ignore failure. It'll only happen if the sender goes away,
586 	   because our timeout is set to infinite. */
587 	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
588 	put_net(net);
589 	kfree(reply);
590 	return 0;
591 }
592 /**
593  * audit_send_reply - send an audit reply message via netlink
594  * @request_skb: skb of request we are replying to (used to target the reply)
595  * @seq: sequence number
596  * @type: audit message type
597  * @done: done (last) flag
598  * @multi: multi-part message flag
599  * @payload: payload data
600  * @size: payload size
601  *
602  * Allocates an skb, builds the netlink message, and sends it to the port id.
603  * No failure notifications.
604  */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)605 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
606 			     int multi, const void *payload, int size)
607 {
608 	u32 portid = NETLINK_CB(request_skb).portid;
609 	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
610 	struct sk_buff *skb;
611 	struct task_struct *tsk;
612 	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
613 					    GFP_KERNEL);
614 
615 	if (!reply)
616 		return;
617 
618 	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
619 	if (!skb)
620 		goto out;
621 
622 	reply->net = get_net(net);
623 	reply->portid = portid;
624 	reply->skb = skb;
625 
626 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
627 	if (!IS_ERR(tsk))
628 		return;
629 	kfree_skb(skb);
630 out:
631 	kfree(reply);
632 }
633 
634 /*
635  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
636  * control messages.
637  */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)638 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
639 {
640 	int err = 0;
641 
642 	/* Only support initial user namespace for now. */
643 	/*
644 	 * We return ECONNREFUSED because it tricks userspace into thinking
645 	 * that audit was not configured into the kernel.  Lots of users
646 	 * configure their PAM stack (because that's what the distro does)
647 	 * to reject login if unable to send messages to audit.  If we return
648 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
649 	 * configured in and will let login proceed.  If we return EPERM
650 	 * userspace will reject all logins.  This should be removed when we
651 	 * support non init namespaces!!
652 	 */
653 	if (current_user_ns() != &init_user_ns)
654 		return -ECONNREFUSED;
655 
656 	switch (msg_type) {
657 	case AUDIT_LIST:
658 	case AUDIT_ADD:
659 	case AUDIT_DEL:
660 		return -EOPNOTSUPP;
661 	case AUDIT_GET:
662 	case AUDIT_SET:
663 	case AUDIT_GET_FEATURE:
664 	case AUDIT_SET_FEATURE:
665 	case AUDIT_LIST_RULES:
666 	case AUDIT_ADD_RULE:
667 	case AUDIT_DEL_RULE:
668 	case AUDIT_SIGNAL_INFO:
669 	case AUDIT_TTY_GET:
670 	case AUDIT_TTY_SET:
671 	case AUDIT_TRIM:
672 	case AUDIT_MAKE_EQUIV:
673 		/* Only support auditd and auditctl in initial pid namespace
674 		 * for now. */
675 		if ((task_active_pid_ns(current) != &init_pid_ns))
676 			return -EPERM;
677 
678 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
679 			err = -EPERM;
680 		break;
681 	case AUDIT_USER:
682 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
683 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
684 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
685 			err = -EPERM;
686 		break;
687 	default:  /* bad msg */
688 		err = -EINVAL;
689 	}
690 
691 	return err;
692 }
693 
audit_log_common_recv_msg(struct audit_buffer ** ab,u16 msg_type)694 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
695 {
696 	int rc = 0;
697 	uid_t uid = from_kuid(&init_user_ns, current_uid());
698 	pid_t pid = task_tgid_nr(current);
699 
700 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
701 		*ab = NULL;
702 		return rc;
703 	}
704 
705 	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
706 	if (unlikely(!*ab))
707 		return rc;
708 	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
709 	audit_log_session_info(*ab);
710 	audit_log_task_context(*ab);
711 
712 	return rc;
713 }
714 
is_audit_feature_set(int i)715 int is_audit_feature_set(int i)
716 {
717 	return af.features & AUDIT_FEATURE_TO_MASK(i);
718 }
719 
720 
audit_get_feature(struct sk_buff * skb)721 static int audit_get_feature(struct sk_buff *skb)
722 {
723 	u32 seq;
724 
725 	seq = nlmsg_hdr(skb)->nlmsg_seq;
726 
727 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
728 
729 	return 0;
730 }
731 
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)732 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
733 				     u32 old_lock, u32 new_lock, int res)
734 {
735 	struct audit_buffer *ab;
736 
737 	if (audit_enabled == AUDIT_OFF)
738 		return;
739 
740 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
741 	audit_log_task_info(ab, current);
742 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
743 			 audit_feature_names[which], !!old_feature, !!new_feature,
744 			 !!old_lock, !!new_lock, res);
745 	audit_log_end(ab);
746 }
747 
audit_set_feature(struct sk_buff * skb)748 static int audit_set_feature(struct sk_buff *skb)
749 {
750 	struct audit_features *uaf;
751 	int i;
752 
753 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
754 	uaf = nlmsg_data(nlmsg_hdr(skb));
755 
756 	/* if there is ever a version 2 we should handle that here */
757 
758 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
759 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
760 		u32 old_feature, new_feature, old_lock, new_lock;
761 
762 		/* if we are not changing this feature, move along */
763 		if (!(feature & uaf->mask))
764 			continue;
765 
766 		old_feature = af.features & feature;
767 		new_feature = uaf->features & feature;
768 		new_lock = (uaf->lock | af.lock) & feature;
769 		old_lock = af.lock & feature;
770 
771 		/* are we changing a locked feature? */
772 		if (old_lock && (new_feature != old_feature)) {
773 			audit_log_feature_change(i, old_feature, new_feature,
774 						 old_lock, new_lock, 0);
775 			return -EPERM;
776 		}
777 	}
778 	/* nothing invalid, do the changes */
779 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
780 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
781 		u32 old_feature, new_feature, old_lock, new_lock;
782 
783 		/* if we are not changing this feature, move along */
784 		if (!(feature & uaf->mask))
785 			continue;
786 
787 		old_feature = af.features & feature;
788 		new_feature = uaf->features & feature;
789 		old_lock = af.lock & feature;
790 		new_lock = (uaf->lock | af.lock) & feature;
791 
792 		if (new_feature != old_feature)
793 			audit_log_feature_change(i, old_feature, new_feature,
794 						 old_lock, new_lock, 1);
795 
796 		if (new_feature)
797 			af.features |= feature;
798 		else
799 			af.features &= ~feature;
800 		af.lock |= new_lock;
801 	}
802 
803 	return 0;
804 }
805 
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh)806 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
807 {
808 	u32			seq;
809 	void			*data;
810 	int			err;
811 	struct audit_buffer	*ab;
812 	u16			msg_type = nlh->nlmsg_type;
813 	struct audit_sig_info   *sig_data;
814 	char			*ctx = NULL;
815 	u32			len;
816 
817 	err = audit_netlink_ok(skb, msg_type);
818 	if (err)
819 		return err;
820 
821 	/* As soon as there's any sign of userspace auditd,
822 	 * start kauditd to talk to it */
823 	if (!kauditd_task) {
824 		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
825 		if (IS_ERR(kauditd_task)) {
826 			err = PTR_ERR(kauditd_task);
827 			kauditd_task = NULL;
828 			return err;
829 		}
830 	}
831 	seq  = nlh->nlmsg_seq;
832 	data = nlmsg_data(nlh);
833 
834 	switch (msg_type) {
835 	case AUDIT_GET: {
836 		struct audit_status	s;
837 		memset(&s, 0, sizeof(s));
838 		s.enabled		= audit_enabled;
839 		s.failure		= audit_failure;
840 		s.pid			= audit_pid;
841 		s.rate_limit		= audit_rate_limit;
842 		s.backlog_limit		= audit_backlog_limit;
843 		s.lost			= atomic_read(&audit_lost);
844 		s.backlog		= skb_queue_len(&audit_skb_queue);
845 		s.version		= AUDIT_VERSION_LATEST;
846 		s.backlog_wait_time	= audit_backlog_wait_time;
847 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
848 		break;
849 	}
850 	case AUDIT_SET: {
851 		struct audit_status	s;
852 		memset(&s, 0, sizeof(s));
853 		/* guard against past and future API changes */
854 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
855 		if (s.mask & AUDIT_STATUS_ENABLED) {
856 			err = audit_set_enabled(s.enabled);
857 			if (err < 0)
858 				return err;
859 		}
860 		if (s.mask & AUDIT_STATUS_FAILURE) {
861 			err = audit_set_failure(s.failure);
862 			if (err < 0)
863 				return err;
864 		}
865 		if (s.mask & AUDIT_STATUS_PID) {
866 			/* NOTE: we are using task_tgid_vnr() below because
867 			 *       the s.pid value is relative to the namespace
868 			 *       of the caller; at present this doesn't matter
869 			 *       much since you can really only run auditd
870 			 *       from the initial pid namespace, but something
871 			 *       to keep in mind if this changes */
872 			int new_pid = s.pid;
873 
874 			if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
875 				return -EACCES;
876 			if (audit_enabled != AUDIT_OFF)
877 				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
878 			audit_pid = new_pid;
879 			audit_nlk_portid = NETLINK_CB(skb).portid;
880 			audit_sock = skb->sk;
881 		}
882 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
883 			err = audit_set_rate_limit(s.rate_limit);
884 			if (err < 0)
885 				return err;
886 		}
887 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
888 			err = audit_set_backlog_limit(s.backlog_limit);
889 			if (err < 0)
890 				return err;
891 		}
892 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
893 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
894 				return -EINVAL;
895 			if (s.backlog_wait_time < 0 ||
896 			    s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
897 				return -EINVAL;
898 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
899 			if (err < 0)
900 				return err;
901 		}
902 		break;
903 	}
904 	case AUDIT_GET_FEATURE:
905 		err = audit_get_feature(skb);
906 		if (err)
907 			return err;
908 		break;
909 	case AUDIT_SET_FEATURE:
910 		err = audit_set_feature(skb);
911 		if (err)
912 			return err;
913 		break;
914 	case AUDIT_USER:
915 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
916 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
917 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
918 			return 0;
919 
920 		err = audit_filter_user(msg_type);
921 		if (err == 1) { /* match or error */
922 			err = 0;
923 			if (msg_type == AUDIT_USER_TTY) {
924 				err = tty_audit_push_current();
925 				if (err)
926 					break;
927 			}
928 			mutex_unlock(&audit_cmd_mutex);
929 			audit_log_common_recv_msg(&ab, msg_type);
930 			if (msg_type != AUDIT_USER_TTY)
931 				audit_log_format(ab, " msg='%.*s'",
932 						 AUDIT_MESSAGE_TEXT_MAX,
933 						 (char *)data);
934 			else {
935 				int size;
936 
937 				audit_log_format(ab, " data=");
938 				size = nlmsg_len(nlh);
939 				if (size > 0 &&
940 				    ((unsigned char *)data)[size - 1] == '\0')
941 					size--;
942 				audit_log_n_untrustedstring(ab, data, size);
943 			}
944 			audit_set_portid(ab, NETLINK_CB(skb).portid);
945 			audit_log_end(ab);
946 			mutex_lock(&audit_cmd_mutex);
947 		}
948 		break;
949 	case AUDIT_ADD_RULE:
950 	case AUDIT_DEL_RULE:
951 		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
952 			return -EINVAL;
953 		if (audit_enabled == AUDIT_LOCKED) {
954 			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
955 			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
956 			audit_log_end(ab);
957 			return -EPERM;
958 		}
959 		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
960 					   seq, data, nlmsg_len(nlh));
961 		break;
962 	case AUDIT_LIST_RULES:
963 		err = audit_list_rules_send(skb, seq);
964 		break;
965 	case AUDIT_TRIM:
966 		audit_trim_trees();
967 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
968 		audit_log_format(ab, " op=trim res=1");
969 		audit_log_end(ab);
970 		break;
971 	case AUDIT_MAKE_EQUIV: {
972 		void *bufp = data;
973 		u32 sizes[2];
974 		size_t msglen = nlmsg_len(nlh);
975 		char *old, *new;
976 
977 		err = -EINVAL;
978 		if (msglen < 2 * sizeof(u32))
979 			break;
980 		memcpy(sizes, bufp, 2 * sizeof(u32));
981 		bufp += 2 * sizeof(u32);
982 		msglen -= 2 * sizeof(u32);
983 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
984 		if (IS_ERR(old)) {
985 			err = PTR_ERR(old);
986 			break;
987 		}
988 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
989 		if (IS_ERR(new)) {
990 			err = PTR_ERR(new);
991 			kfree(old);
992 			break;
993 		}
994 		/* OK, here comes... */
995 		err = audit_tag_tree(old, new);
996 
997 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
998 
999 		audit_log_format(ab, " op=make_equiv old=");
1000 		audit_log_untrustedstring(ab, old);
1001 		audit_log_format(ab, " new=");
1002 		audit_log_untrustedstring(ab, new);
1003 		audit_log_format(ab, " res=%d", !err);
1004 		audit_log_end(ab);
1005 		kfree(old);
1006 		kfree(new);
1007 		break;
1008 	}
1009 	case AUDIT_SIGNAL_INFO:
1010 		len = 0;
1011 		if (audit_sig_sid) {
1012 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1013 			if (err)
1014 				return err;
1015 		}
1016 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1017 		if (!sig_data) {
1018 			if (audit_sig_sid)
1019 				security_release_secctx(ctx, len);
1020 			return -ENOMEM;
1021 		}
1022 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1023 		sig_data->pid = audit_sig_pid;
1024 		if (audit_sig_sid) {
1025 			memcpy(sig_data->ctx, ctx, len);
1026 			security_release_secctx(ctx, len);
1027 		}
1028 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1029 				 sig_data, sizeof(*sig_data) + len);
1030 		kfree(sig_data);
1031 		break;
1032 	case AUDIT_TTY_GET: {
1033 		struct audit_tty_status s;
1034 		struct task_struct *tsk = current;
1035 
1036 		spin_lock(&tsk->sighand->siglock);
1037 		s.enabled = tsk->signal->audit_tty;
1038 		s.log_passwd = tsk->signal->audit_tty_log_passwd;
1039 		spin_unlock(&tsk->sighand->siglock);
1040 
1041 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1042 		break;
1043 	}
1044 	case AUDIT_TTY_SET: {
1045 		struct audit_tty_status s, old;
1046 		struct task_struct *tsk = current;
1047 		struct audit_buffer	*ab;
1048 
1049 		memset(&s, 0, sizeof(s));
1050 		/* guard against past and future API changes */
1051 		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1052 		/* check if new data is valid */
1053 		if ((s.enabled != 0 && s.enabled != 1) ||
1054 		    (s.log_passwd != 0 && s.log_passwd != 1))
1055 			err = -EINVAL;
1056 
1057 		spin_lock(&tsk->sighand->siglock);
1058 		old.enabled = tsk->signal->audit_tty;
1059 		old.log_passwd = tsk->signal->audit_tty_log_passwd;
1060 		if (!err) {
1061 			tsk->signal->audit_tty = s.enabled;
1062 			tsk->signal->audit_tty_log_passwd = s.log_passwd;
1063 		}
1064 		spin_unlock(&tsk->sighand->siglock);
1065 
1066 		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1067 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1068 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1069 				 old.enabled, s.enabled, old.log_passwd,
1070 				 s.log_passwd, !err);
1071 		audit_log_end(ab);
1072 		break;
1073 	}
1074 	default:
1075 		err = -EINVAL;
1076 		break;
1077 	}
1078 
1079 	return err < 0 ? err : 0;
1080 }
1081 
1082 /*
1083  * Get message from skb.  Each message is processed by audit_receive_msg.
1084  * Malformed skbs with wrong length are discarded silently.
1085  */
audit_receive_skb(struct sk_buff * skb)1086 static void audit_receive_skb(struct sk_buff *skb)
1087 {
1088 	struct nlmsghdr *nlh;
1089 	/*
1090 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1091 	 * if the nlmsg_len was not aligned
1092 	 */
1093 	int len;
1094 	int err;
1095 
1096 	nlh = nlmsg_hdr(skb);
1097 	len = skb->len;
1098 
1099 	while (nlmsg_ok(nlh, len)) {
1100 		err = audit_receive_msg(skb, nlh);
1101 		/* if err or if this message says it wants a response */
1102 		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1103 			netlink_ack(skb, nlh, err);
1104 
1105 		nlh = nlmsg_next(nlh, &len);
1106 	}
1107 }
1108 
1109 /* Receive messages from netlink socket. */
audit_receive(struct sk_buff * skb)1110 static void audit_receive(struct sk_buff  *skb)
1111 {
1112 	mutex_lock(&audit_cmd_mutex);
1113 	audit_receive_skb(skb);
1114 	mutex_unlock(&audit_cmd_mutex);
1115 }
1116 
1117 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(int group)1118 static int audit_bind(int group)
1119 {
1120 	if (!capable(CAP_AUDIT_READ))
1121 		return -EPERM;
1122 
1123 	return 0;
1124 }
1125 
audit_net_init(struct net * net)1126 static int __net_init audit_net_init(struct net *net)
1127 {
1128 	struct netlink_kernel_cfg cfg = {
1129 		.input	= audit_receive,
1130 		.bind	= audit_bind,
1131 		.flags	= NL_CFG_F_NONROOT_RECV,
1132 		.groups	= AUDIT_NLGRP_MAX,
1133 	};
1134 
1135 	struct audit_net *aunet = net_generic(net, audit_net_id);
1136 
1137 	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1138 	if (aunet->nlsk == NULL) {
1139 		audit_panic("cannot initialize netlink socket in namespace");
1140 		return -ENOMEM;
1141 	}
1142 	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1143 	return 0;
1144 }
1145 
audit_net_exit(struct net * net)1146 static void __net_exit audit_net_exit(struct net *net)
1147 {
1148 	struct audit_net *aunet = net_generic(net, audit_net_id);
1149 	struct sock *sock = aunet->nlsk;
1150 	if (sock == audit_sock) {
1151 		audit_pid = 0;
1152 		audit_sock = NULL;
1153 	}
1154 
1155 	RCU_INIT_POINTER(aunet->nlsk, NULL);
1156 	synchronize_net();
1157 	netlink_kernel_release(sock);
1158 }
1159 
1160 static struct pernet_operations audit_net_ops __net_initdata = {
1161 	.init = audit_net_init,
1162 	.exit = audit_net_exit,
1163 	.id = &audit_net_id,
1164 	.size = sizeof(struct audit_net),
1165 };
1166 
1167 /* Initialize audit support at boot time. */
audit_init(void)1168 static int __init audit_init(void)
1169 {
1170 	int i;
1171 
1172 	if (audit_initialized == AUDIT_DISABLED)
1173 		return 0;
1174 
1175 	pr_info("initializing netlink subsys (%s)\n",
1176 		audit_default ? "enabled" : "disabled");
1177 	register_pernet_subsys(&audit_net_ops);
1178 
1179 	skb_queue_head_init(&audit_skb_queue);
1180 	skb_queue_head_init(&audit_skb_hold_queue);
1181 	audit_initialized = AUDIT_INITIALIZED;
1182 
1183 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1184 
1185 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1186 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1187 
1188 	return 0;
1189 }
1190 __initcall(audit_init);
1191 
1192 /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
audit_enable(char * str)1193 static int __init audit_enable(char *str)
1194 {
1195 	audit_default = !!simple_strtol(str, NULL, 0);
1196 	if (!audit_default)
1197 		audit_initialized = AUDIT_DISABLED;
1198 	audit_enabled = audit_default;
1199 	audit_ever_enabled = !!audit_enabled;
1200 
1201 	pr_info("%s\n", audit_default ?
1202 		"enabled (after initialization)" : "disabled (until reboot)");
1203 
1204 	return 1;
1205 }
1206 __setup("audit=", audit_enable);
1207 
1208 /* Process kernel command-line parameter at boot time.
1209  * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1210 static int __init audit_backlog_limit_set(char *str)
1211 {
1212 	u32 audit_backlog_limit_arg;
1213 
1214 	pr_info("audit_backlog_limit: ");
1215 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1216 		pr_cont("using default of %u, unable to parse %s\n",
1217 			audit_backlog_limit, str);
1218 		return 1;
1219 	}
1220 
1221 	audit_backlog_limit = audit_backlog_limit_arg;
1222 	pr_cont("%d\n", audit_backlog_limit);
1223 
1224 	return 1;
1225 }
1226 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1227 
audit_buffer_free(struct audit_buffer * ab)1228 static void audit_buffer_free(struct audit_buffer *ab)
1229 {
1230 	unsigned long flags;
1231 
1232 	if (!ab)
1233 		return;
1234 
1235 	if (ab->skb)
1236 		kfree_skb(ab->skb);
1237 
1238 	spin_lock_irqsave(&audit_freelist_lock, flags);
1239 	if (audit_freelist_count > AUDIT_MAXFREE)
1240 		kfree(ab);
1241 	else {
1242 		audit_freelist_count++;
1243 		list_add(&ab->list, &audit_freelist);
1244 	}
1245 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1246 }
1247 
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1248 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1249 						gfp_t gfp_mask, int type)
1250 {
1251 	unsigned long flags;
1252 	struct audit_buffer *ab = NULL;
1253 	struct nlmsghdr *nlh;
1254 
1255 	spin_lock_irqsave(&audit_freelist_lock, flags);
1256 	if (!list_empty(&audit_freelist)) {
1257 		ab = list_entry(audit_freelist.next,
1258 				struct audit_buffer, list);
1259 		list_del(&ab->list);
1260 		--audit_freelist_count;
1261 	}
1262 	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1263 
1264 	if (!ab) {
1265 		ab = kmalloc(sizeof(*ab), gfp_mask);
1266 		if (!ab)
1267 			goto err;
1268 	}
1269 
1270 	ab->ctx = ctx;
1271 	ab->gfp_mask = gfp_mask;
1272 
1273 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1274 	if (!ab->skb)
1275 		goto err;
1276 
1277 	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1278 	if (!nlh)
1279 		goto out_kfree_skb;
1280 
1281 	return ab;
1282 
1283 out_kfree_skb:
1284 	kfree_skb(ab->skb);
1285 	ab->skb = NULL;
1286 err:
1287 	audit_buffer_free(ab);
1288 	return NULL;
1289 }
1290 
1291 /**
1292  * audit_serial - compute a serial number for the audit record
1293  *
1294  * Compute a serial number for the audit record.  Audit records are
1295  * written to user-space as soon as they are generated, so a complete
1296  * audit record may be written in several pieces.  The timestamp of the
1297  * record and this serial number are used by the user-space tools to
1298  * determine which pieces belong to the same audit record.  The
1299  * (timestamp,serial) tuple is unique for each syscall and is live from
1300  * syscall entry to syscall exit.
1301  *
1302  * NOTE: Another possibility is to store the formatted records off the
1303  * audit context (for those records that have a context), and emit them
1304  * all at syscall exit.  However, this could delay the reporting of
1305  * significant errors until syscall exit (or never, if the system
1306  * halts).
1307  */
audit_serial(void)1308 unsigned int audit_serial(void)
1309 {
1310 	static atomic_t serial = ATOMIC_INIT(0);
1311 
1312 	return atomic_add_return(1, &serial);
1313 }
1314 
audit_get_stamp(struct audit_context * ctx,struct timespec * t,unsigned int * serial)1315 static inline void audit_get_stamp(struct audit_context *ctx,
1316 				   struct timespec *t, unsigned int *serial)
1317 {
1318 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1319 		*t = CURRENT_TIME;
1320 		*serial = audit_serial();
1321 	}
1322 }
1323 
1324 /*
1325  * Wait for auditd to drain the queue a little
1326  */
wait_for_auditd(long sleep_time)1327 static long wait_for_auditd(long sleep_time)
1328 {
1329 	DECLARE_WAITQUEUE(wait, current);
1330 	set_current_state(TASK_UNINTERRUPTIBLE);
1331 	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1332 
1333 	if (audit_backlog_limit &&
1334 	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1335 		sleep_time = schedule_timeout(sleep_time);
1336 
1337 	__set_current_state(TASK_RUNNING);
1338 	remove_wait_queue(&audit_backlog_wait, &wait);
1339 
1340 	return sleep_time;
1341 }
1342 
1343 /**
1344  * audit_log_start - obtain an audit buffer
1345  * @ctx: audit_context (may be NULL)
1346  * @gfp_mask: type of allocation
1347  * @type: audit message type
1348  *
1349  * Returns audit_buffer pointer on success or NULL on error.
1350  *
1351  * Obtain an audit buffer.  This routine does locking to obtain the
1352  * audit buffer, but then no locking is required for calls to
1353  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1354  * syscall, then the syscall is marked as auditable and an audit record
1355  * will be written at syscall exit.  If there is no associated task, then
1356  * task context (ctx) should be NULL.
1357  */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1358 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1359 				     int type)
1360 {
1361 	struct audit_buffer	*ab	= NULL;
1362 	struct timespec		t;
1363 	unsigned int		uninitialized_var(serial);
1364 	int reserve = 5; /* Allow atomic callers to go up to five
1365 			    entries over the normal backlog limit */
1366 	unsigned long timeout_start = jiffies;
1367 
1368 	if (audit_initialized != AUDIT_INITIALIZED)
1369 		return NULL;
1370 
1371 	if (unlikely(audit_filter_type(type)))
1372 		return NULL;
1373 
1374 	if (gfp_mask & __GFP_WAIT) {
1375 		if (audit_pid && audit_pid == current->pid)
1376 			gfp_mask &= ~__GFP_WAIT;
1377 		else
1378 			reserve = 0;
1379 	}
1380 
1381 	while (audit_backlog_limit
1382 	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1383 		if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1384 			long sleep_time;
1385 
1386 			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1387 			if (sleep_time > 0) {
1388 				sleep_time = wait_for_auditd(sleep_time);
1389 				if (sleep_time > 0)
1390 					continue;
1391 			}
1392 		}
1393 		if (audit_rate_check() && printk_ratelimit())
1394 			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1395 				skb_queue_len(&audit_skb_queue),
1396 				audit_backlog_limit);
1397 		audit_log_lost("backlog limit exceeded");
1398 		audit_backlog_wait_time = audit_backlog_wait_overflow;
1399 		wake_up(&audit_backlog_wait);
1400 		return NULL;
1401 	}
1402 
1403 	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1404 
1405 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1406 	if (!ab) {
1407 		audit_log_lost("out of memory in audit_log_start");
1408 		return NULL;
1409 	}
1410 
1411 	audit_get_stamp(ab->ctx, &t, &serial);
1412 
1413 	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1414 			 t.tv_sec, t.tv_nsec/1000000, serial);
1415 	return ab;
1416 }
1417 
1418 /**
1419  * audit_expand - expand skb in the audit buffer
1420  * @ab: audit_buffer
1421  * @extra: space to add at tail of the skb
1422  *
1423  * Returns 0 (no space) on failed expansion, or available space if
1424  * successful.
1425  */
audit_expand(struct audit_buffer * ab,int extra)1426 static inline int audit_expand(struct audit_buffer *ab, int extra)
1427 {
1428 	struct sk_buff *skb = ab->skb;
1429 	int oldtail = skb_tailroom(skb);
1430 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1431 	int newtail = skb_tailroom(skb);
1432 
1433 	if (ret < 0) {
1434 		audit_log_lost("out of memory in audit_expand");
1435 		return 0;
1436 	}
1437 
1438 	skb->truesize += newtail - oldtail;
1439 	return newtail;
1440 }
1441 
1442 /*
1443  * Format an audit message into the audit buffer.  If there isn't enough
1444  * room in the audit buffer, more room will be allocated and vsnprint
1445  * will be called a second time.  Currently, we assume that a printk
1446  * can't format message larger than 1024 bytes, so we don't either.
1447  */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1448 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1449 			      va_list args)
1450 {
1451 	int len, avail;
1452 	struct sk_buff *skb;
1453 	va_list args2;
1454 
1455 	if (!ab)
1456 		return;
1457 
1458 	BUG_ON(!ab->skb);
1459 	skb = ab->skb;
1460 	avail = skb_tailroom(skb);
1461 	if (avail == 0) {
1462 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1463 		if (!avail)
1464 			goto out;
1465 	}
1466 	va_copy(args2, args);
1467 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1468 	if (len >= avail) {
1469 		/* The printk buffer is 1024 bytes long, so if we get
1470 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1471 		 * log everything that printk could have logged. */
1472 		avail = audit_expand(ab,
1473 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1474 		if (!avail)
1475 			goto out_va_end;
1476 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1477 	}
1478 	if (len > 0)
1479 		skb_put(skb, len);
1480 out_va_end:
1481 	va_end(args2);
1482 out:
1483 	return;
1484 }
1485 
1486 /**
1487  * audit_log_format - format a message into the audit buffer.
1488  * @ab: audit_buffer
1489  * @fmt: format string
1490  * @...: optional parameters matching @fmt string
1491  *
1492  * All the work is done in audit_log_vformat.
1493  */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1494 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1495 {
1496 	va_list args;
1497 
1498 	if (!ab)
1499 		return;
1500 	va_start(args, fmt);
1501 	audit_log_vformat(ab, fmt, args);
1502 	va_end(args);
1503 }
1504 
1505 /**
1506  * audit_log_hex - convert a buffer to hex and append it to the audit skb
1507  * @ab: the audit_buffer
1508  * @buf: buffer to convert to hex
1509  * @len: length of @buf to be converted
1510  *
1511  * No return value; failure to expand is silently ignored.
1512  *
1513  * This function will take the passed buf and convert it into a string of
1514  * ascii hex digits. The new string is placed onto the skb.
1515  */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1516 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1517 		size_t len)
1518 {
1519 	int i, avail, new_len;
1520 	unsigned char *ptr;
1521 	struct sk_buff *skb;
1522 
1523 	if (!ab)
1524 		return;
1525 
1526 	BUG_ON(!ab->skb);
1527 	skb = ab->skb;
1528 	avail = skb_tailroom(skb);
1529 	new_len = len<<1;
1530 	if (new_len >= avail) {
1531 		/* Round the buffer request up to the next multiple */
1532 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1533 		avail = audit_expand(ab, new_len);
1534 		if (!avail)
1535 			return;
1536 	}
1537 
1538 	ptr = skb_tail_pointer(skb);
1539 	for (i = 0; i < len; i++)
1540 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1541 	*ptr = 0;
1542 	skb_put(skb, len << 1); /* new string is twice the old string */
1543 }
1544 
1545 /*
1546  * Format a string of no more than slen characters into the audit buffer,
1547  * enclosed in quote marks.
1548  */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)1549 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1550 			size_t slen)
1551 {
1552 	int avail, new_len;
1553 	unsigned char *ptr;
1554 	struct sk_buff *skb;
1555 
1556 	if (!ab)
1557 		return;
1558 
1559 	BUG_ON(!ab->skb);
1560 	skb = ab->skb;
1561 	avail = skb_tailroom(skb);
1562 	new_len = slen + 3;	/* enclosing quotes + null terminator */
1563 	if (new_len > avail) {
1564 		avail = audit_expand(ab, new_len);
1565 		if (!avail)
1566 			return;
1567 	}
1568 	ptr = skb_tail_pointer(skb);
1569 	*ptr++ = '"';
1570 	memcpy(ptr, string, slen);
1571 	ptr += slen;
1572 	*ptr++ = '"';
1573 	*ptr = 0;
1574 	skb_put(skb, slen + 2);	/* don't include null terminator */
1575 }
1576 
1577 /**
1578  * audit_string_contains_control - does a string need to be logged in hex
1579  * @string: string to be checked
1580  * @len: max length of the string to check
1581  */
audit_string_contains_control(const char * string,size_t len)1582 int audit_string_contains_control(const char *string, size_t len)
1583 {
1584 	const unsigned char *p;
1585 	for (p = string; p < (const unsigned char *)string + len; p++) {
1586 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1587 			return 1;
1588 	}
1589 	return 0;
1590 }
1591 
1592 /**
1593  * audit_log_n_untrustedstring - log a string that may contain random characters
1594  * @ab: audit_buffer
1595  * @len: length of string (not including trailing null)
1596  * @string: string to be logged
1597  *
1598  * This code will escape a string that is passed to it if the string
1599  * contains a control character, unprintable character, double quote mark,
1600  * or a space. Unescaped strings will start and end with a double quote mark.
1601  * Strings that are escaped are printed in hex (2 digits per char).
1602  *
1603  * The caller specifies the number of characters in the string to log, which may
1604  * or may not be the entire string.
1605  */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)1606 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1607 				 size_t len)
1608 {
1609 	if (audit_string_contains_control(string, len))
1610 		audit_log_n_hex(ab, string, len);
1611 	else
1612 		audit_log_n_string(ab, string, len);
1613 }
1614 
1615 /**
1616  * audit_log_untrustedstring - log a string that may contain random characters
1617  * @ab: audit_buffer
1618  * @string: string to be logged
1619  *
1620  * Same as audit_log_n_untrustedstring(), except that strlen is used to
1621  * determine string length.
1622  */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)1623 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1624 {
1625 	audit_log_n_untrustedstring(ab, string, strlen(string));
1626 }
1627 
1628 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)1629 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1630 		      const struct path *path)
1631 {
1632 	char *p, *pathname;
1633 
1634 	if (prefix)
1635 		audit_log_format(ab, "%s", prefix);
1636 
1637 	/* We will allow 11 spaces for ' (deleted)' to be appended */
1638 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1639 	if (!pathname) {
1640 		audit_log_string(ab, "<no_memory>");
1641 		return;
1642 	}
1643 	p = d_path(path, pathname, PATH_MAX+11);
1644 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1645 		/* FIXME: can we save some information here? */
1646 		audit_log_string(ab, "<too_long>");
1647 	} else
1648 		audit_log_untrustedstring(ab, p);
1649 	kfree(pathname);
1650 }
1651 
audit_log_session_info(struct audit_buffer * ab)1652 void audit_log_session_info(struct audit_buffer *ab)
1653 {
1654 	unsigned int sessionid = audit_get_sessionid(current);
1655 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1656 
1657 	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1658 }
1659 
audit_log_key(struct audit_buffer * ab,char * key)1660 void audit_log_key(struct audit_buffer *ab, char *key)
1661 {
1662 	audit_log_format(ab, " key=");
1663 	if (key)
1664 		audit_log_untrustedstring(ab, key);
1665 	else
1666 		audit_log_format(ab, "(null)");
1667 }
1668 
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1669 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1670 {
1671 	int i;
1672 
1673 	audit_log_format(ab, " %s=", prefix);
1674 	CAP_FOR_EACH_U32(i) {
1675 		audit_log_format(ab, "%08x",
1676 				 cap->cap[CAP_LAST_U32 - i]);
1677 	}
1678 }
1679 
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1680 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1681 {
1682 	kernel_cap_t *perm = &name->fcap.permitted;
1683 	kernel_cap_t *inh = &name->fcap.inheritable;
1684 	int log = 0;
1685 
1686 	if (!cap_isclear(*perm)) {
1687 		audit_log_cap(ab, "cap_fp", perm);
1688 		log = 1;
1689 	}
1690 	if (!cap_isclear(*inh)) {
1691 		audit_log_cap(ab, "cap_fi", inh);
1692 		log = 1;
1693 	}
1694 
1695 	if (log)
1696 		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1697 				 name->fcap.fE, name->fcap_ver);
1698 }
1699 
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1700 static inline int audit_copy_fcaps(struct audit_names *name,
1701 				   const struct dentry *dentry)
1702 {
1703 	struct cpu_vfs_cap_data caps;
1704 	int rc;
1705 
1706 	if (!dentry)
1707 		return 0;
1708 
1709 	rc = get_vfs_caps_from_disk(dentry, &caps);
1710 	if (rc)
1711 		return rc;
1712 
1713 	name->fcap.permitted = caps.permitted;
1714 	name->fcap.inheritable = caps.inheritable;
1715 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1716 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1717 				VFS_CAP_REVISION_SHIFT;
1718 
1719 	return 0;
1720 }
1721 
1722 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,const struct inode * inode)1723 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1724 		      const struct inode *inode)
1725 {
1726 	name->ino   = inode->i_ino;
1727 	name->dev   = inode->i_sb->s_dev;
1728 	name->mode  = inode->i_mode;
1729 	name->uid   = inode->i_uid;
1730 	name->gid   = inode->i_gid;
1731 	name->rdev  = inode->i_rdev;
1732 	security_inode_getsecid(inode, &name->osid);
1733 	audit_copy_fcaps(name, dentry);
1734 }
1735 
1736 /**
1737  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1738  * @context: audit_context for the task
1739  * @n: audit_names structure with reportable details
1740  * @path: optional path to report instead of audit_names->name
1741  * @record_num: record number to report when handling a list of names
1742  * @call_panic: optional pointer to int that will be updated if secid fails
1743  */
audit_log_name(struct audit_context * context,struct audit_names * n,struct path * path,int record_num,int * call_panic)1744 void audit_log_name(struct audit_context *context, struct audit_names *n,
1745 		    struct path *path, int record_num, int *call_panic)
1746 {
1747 	struct audit_buffer *ab;
1748 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1749 	if (!ab)
1750 		return;
1751 
1752 	audit_log_format(ab, "item=%d", record_num);
1753 
1754 	if (path)
1755 		audit_log_d_path(ab, " name=", path);
1756 	else if (n->name) {
1757 		switch (n->name_len) {
1758 		case AUDIT_NAME_FULL:
1759 			/* log the full path */
1760 			audit_log_format(ab, " name=");
1761 			audit_log_untrustedstring(ab, n->name->name);
1762 			break;
1763 		case 0:
1764 			/* name was specified as a relative path and the
1765 			 * directory component is the cwd */
1766 			audit_log_d_path(ab, " name=", &context->pwd);
1767 			break;
1768 		default:
1769 			/* log the name's directory component */
1770 			audit_log_format(ab, " name=");
1771 			audit_log_n_untrustedstring(ab, n->name->name,
1772 						    n->name_len);
1773 		}
1774 	} else
1775 		audit_log_format(ab, " name=(null)");
1776 
1777 	if (n->ino != (unsigned long)-1) {
1778 		audit_log_format(ab, " inode=%lu"
1779 				 " dev=%02x:%02x mode=%#ho"
1780 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1781 				 n->ino,
1782 				 MAJOR(n->dev),
1783 				 MINOR(n->dev),
1784 				 n->mode,
1785 				 from_kuid(&init_user_ns, n->uid),
1786 				 from_kgid(&init_user_ns, n->gid),
1787 				 MAJOR(n->rdev),
1788 				 MINOR(n->rdev));
1789 	}
1790 	if (n->osid != 0) {
1791 		char *ctx = NULL;
1792 		u32 len;
1793 		if (security_secid_to_secctx(
1794 			n->osid, &ctx, &len)) {
1795 			audit_log_format(ab, " osid=%u", n->osid);
1796 			if (call_panic)
1797 				*call_panic = 2;
1798 		} else {
1799 			audit_log_format(ab, " obj=%s", ctx);
1800 			security_release_secctx(ctx, len);
1801 		}
1802 	}
1803 
1804 	/* log the audit_names record type */
1805 	audit_log_format(ab, " nametype=");
1806 	switch(n->type) {
1807 	case AUDIT_TYPE_NORMAL:
1808 		audit_log_format(ab, "NORMAL");
1809 		break;
1810 	case AUDIT_TYPE_PARENT:
1811 		audit_log_format(ab, "PARENT");
1812 		break;
1813 	case AUDIT_TYPE_CHILD_DELETE:
1814 		audit_log_format(ab, "DELETE");
1815 		break;
1816 	case AUDIT_TYPE_CHILD_CREATE:
1817 		audit_log_format(ab, "CREATE");
1818 		break;
1819 	default:
1820 		audit_log_format(ab, "UNKNOWN");
1821 		break;
1822 	}
1823 
1824 	audit_log_fcaps(ab, n);
1825 	audit_log_end(ab);
1826 }
1827 
audit_log_task_context(struct audit_buffer * ab)1828 int audit_log_task_context(struct audit_buffer *ab)
1829 {
1830 	char *ctx = NULL;
1831 	unsigned len;
1832 	int error;
1833 	u32 sid;
1834 
1835 	security_task_getsecid(current, &sid);
1836 	if (!sid)
1837 		return 0;
1838 
1839 	error = security_secid_to_secctx(sid, &ctx, &len);
1840 	if (error) {
1841 		if (error != -EINVAL)
1842 			goto error_path;
1843 		return 0;
1844 	}
1845 
1846 	audit_log_format(ab, " subj=%s", ctx);
1847 	security_release_secctx(ctx, len);
1848 	return 0;
1849 
1850 error_path:
1851 	audit_panic("error in audit_log_task_context");
1852 	return error;
1853 }
1854 EXPORT_SYMBOL(audit_log_task_context);
1855 
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)1856 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1857 {
1858 	const struct cred *cred;
1859 	char comm[sizeof(tsk->comm)];
1860 	struct mm_struct *mm = tsk->mm;
1861 	char *tty;
1862 
1863 	if (!ab)
1864 		return;
1865 
1866 	/* tsk == current */
1867 	cred = current_cred();
1868 
1869 	spin_lock_irq(&tsk->sighand->siglock);
1870 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1871 		tty = tsk->signal->tty->name;
1872 	else
1873 		tty = "(none)";
1874 	spin_unlock_irq(&tsk->sighand->siglock);
1875 
1876 	audit_log_format(ab,
1877 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1878 			 " euid=%u suid=%u fsuid=%u"
1879 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1880 			 task_ppid_nr(tsk),
1881 			 task_tgid_nr(tsk),
1882 			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1883 			 from_kuid(&init_user_ns, cred->uid),
1884 			 from_kgid(&init_user_ns, cred->gid),
1885 			 from_kuid(&init_user_ns, cred->euid),
1886 			 from_kuid(&init_user_ns, cred->suid),
1887 			 from_kuid(&init_user_ns, cred->fsuid),
1888 			 from_kgid(&init_user_ns, cred->egid),
1889 			 from_kgid(&init_user_ns, cred->sgid),
1890 			 from_kgid(&init_user_ns, cred->fsgid),
1891 			 tty, audit_get_sessionid(tsk));
1892 
1893 	audit_log_format(ab, " comm=");
1894 	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1895 
1896 	if (mm) {
1897 		down_read(&mm->mmap_sem);
1898 		if (mm->exe_file)
1899 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1900 		up_read(&mm->mmap_sem);
1901 	} else
1902 		audit_log_format(ab, " exe=(null)");
1903 	audit_log_task_context(ab);
1904 }
1905 EXPORT_SYMBOL(audit_log_task_info);
1906 
1907 /**
1908  * audit_log_link_denied - report a link restriction denial
1909  * @operation: specific link opreation
1910  * @link: the path that triggered the restriction
1911  */
audit_log_link_denied(const char * operation,struct path * link)1912 void audit_log_link_denied(const char *operation, struct path *link)
1913 {
1914 	struct audit_buffer *ab;
1915 	struct audit_names *name;
1916 
1917 	name = kzalloc(sizeof(*name), GFP_NOFS);
1918 	if (!name)
1919 		return;
1920 
1921 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1922 	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1923 			     AUDIT_ANOM_LINK);
1924 	if (!ab)
1925 		goto out;
1926 	audit_log_format(ab, "op=%s", operation);
1927 	audit_log_task_info(ab, current);
1928 	audit_log_format(ab, " res=0");
1929 	audit_log_end(ab);
1930 
1931 	/* Generate AUDIT_PATH record with object. */
1932 	name->type = AUDIT_TYPE_NORMAL;
1933 	audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1934 	audit_log_name(current->audit_context, name, link, 0, NULL);
1935 out:
1936 	kfree(name);
1937 }
1938 
1939 /**
1940  * audit_log_end - end one audit record
1941  * @ab: the audit_buffer
1942  *
1943  * netlink_unicast() cannot be called inside an irq context because it blocks
1944  * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1945  * on a queue and a tasklet is scheduled to remove them from the queue outside
1946  * the irq context.  May be called in any context.
1947  */
audit_log_end(struct audit_buffer * ab)1948 void audit_log_end(struct audit_buffer *ab)
1949 {
1950 	if (!ab)
1951 		return;
1952 	if (!audit_rate_check()) {
1953 		audit_log_lost("rate limit exceeded");
1954 	} else {
1955 		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1956 
1957 		nlh->nlmsg_len = ab->skb->len;
1958 		kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1959 
1960 		/*
1961 		 * The original kaudit unicast socket sends up messages with
1962 		 * nlmsg_len set to the payload length rather than the entire
1963 		 * message length.  This breaks the standard set by netlink.
1964 		 * The existing auditd daemon assumes this breakage.  Fixing
1965 		 * this would require co-ordinating a change in the established
1966 		 * protocol between the kaudit kernel subsystem and the auditd
1967 		 * userspace code.
1968 		 */
1969 		nlh->nlmsg_len -= NLMSG_HDRLEN;
1970 
1971 		if (audit_pid) {
1972 			skb_queue_tail(&audit_skb_queue, ab->skb);
1973 			wake_up_interruptible(&kauditd_wait);
1974 		} else {
1975 			audit_printk_skb(ab->skb);
1976 		}
1977 		ab->skb = NULL;
1978 	}
1979 	audit_buffer_free(ab);
1980 }
1981 
1982 /**
1983  * audit_log - Log an audit record
1984  * @ctx: audit context
1985  * @gfp_mask: type of allocation
1986  * @type: audit message type
1987  * @fmt: format string to use
1988  * @...: variable parameters matching the format string
1989  *
1990  * This is a convenience function that calls audit_log_start,
1991  * audit_log_vformat, and audit_log_end.  It may be called
1992  * in any context.
1993  */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)1994 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1995 	       const char *fmt, ...)
1996 {
1997 	struct audit_buffer *ab;
1998 	va_list args;
1999 
2000 	ab = audit_log_start(ctx, gfp_mask, type);
2001 	if (ab) {
2002 		va_start(args, fmt);
2003 		audit_log_vformat(ab, fmt, args);
2004 		va_end(args);
2005 		audit_log_end(ab);
2006 	}
2007 }
2008 
2009 #ifdef CONFIG_SECURITY
2010 /**
2011  * audit_log_secctx - Converts and logs SELinux context
2012  * @ab: audit_buffer
2013  * @secid: security number
2014  *
2015  * This is a helper function that calls security_secid_to_secctx to convert
2016  * secid to secctx and then adds the (converted) SELinux context to the audit
2017  * log by calling audit_log_format, thus also preventing leak of internal secid
2018  * to userspace. If secid cannot be converted audit_panic is called.
2019  */
audit_log_secctx(struct audit_buffer * ab,u32 secid)2020 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2021 {
2022 	u32 len;
2023 	char *secctx;
2024 
2025 	if (security_secid_to_secctx(secid, &secctx, &len)) {
2026 		audit_panic("Cannot convert secid to context");
2027 	} else {
2028 		audit_log_format(ab, " obj=%s", secctx);
2029 		security_release_secctx(secctx, len);
2030 	}
2031 }
2032 EXPORT_SYMBOL(audit_log_secctx);
2033 #endif
2034 
2035 EXPORT_SYMBOL(audit_log_start);
2036 EXPORT_SYMBOL(audit_log_end);
2037 EXPORT_SYMBOL(audit_log_format);
2038 EXPORT_SYMBOL(audit_log);
2039