• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3  *
4  * Uses a block device as cache for other block devices; optimized for SSDs.
5  * All allocation is done in buckets, which should match the erase block size
6  * of the device.
7  *
8  * Buckets containing cached data are kept on a heap sorted by priority;
9  * bucket priority is increased on cache hit, and periodically all the buckets
10  * on the heap have their priority scaled down. This currently is just used as
11  * an LRU but in the future should allow for more intelligent heuristics.
12  *
13  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14  * counter. Garbage collection is used to remove stale pointers.
15  *
16  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17  * as keys are inserted we only sort the pages that have not yet been written.
18  * When garbage collection is run, we resort the entire node.
19  *
20  * All configuration is done via sysfs; see Documentation/bcache.txt.
21  */
22 
23 #include "bcache.h"
24 #include "btree.h"
25 #include "debug.h"
26 #include "extents.h"
27 
28 #include <linux/slab.h>
29 #include <linux/bitops.h>
30 #include <linux/freezer.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <trace/events/bcache.h>
37 
38 /*
39  * Todo:
40  * register_bcache: Return errors out to userspace correctly
41  *
42  * Writeback: don't undirty key until after a cache flush
43  *
44  * Create an iterator for key pointers
45  *
46  * On btree write error, mark bucket such that it won't be freed from the cache
47  *
48  * Journalling:
49  *   Check for bad keys in replay
50  *   Propagate barriers
51  *   Refcount journal entries in journal_replay
52  *
53  * Garbage collection:
54  *   Finish incremental gc
55  *   Gc should free old UUIDs, data for invalid UUIDs
56  *
57  * Provide a way to list backing device UUIDs we have data cached for, and
58  * probably how long it's been since we've seen them, and a way to invalidate
59  * dirty data for devices that will never be attached again
60  *
61  * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
62  * that based on that and how much dirty data we have we can keep writeback
63  * from being starved
64  *
65  * Add a tracepoint or somesuch to watch for writeback starvation
66  *
67  * When btree depth > 1 and splitting an interior node, we have to make sure
68  * alloc_bucket() cannot fail. This should be true but is not completely
69  * obvious.
70  *
71  * Plugging?
72  *
73  * If data write is less than hard sector size of ssd, round up offset in open
74  * bucket to the next whole sector
75  *
76  * Superblock needs to be fleshed out for multiple cache devices
77  *
78  * Add a sysfs tunable for the number of writeback IOs in flight
79  *
80  * Add a sysfs tunable for the number of open data buckets
81  *
82  * IO tracking: Can we track when one process is doing io on behalf of another?
83  * IO tracking: Don't use just an average, weigh more recent stuff higher
84  *
85  * Test module load/unload
86  */
87 
88 #define MAX_NEED_GC		64
89 #define MAX_SAVE_PRIO		72
90 
91 #define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
92 
93 #define PTR_HASH(c, k)							\
94 	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
95 
96 #define insert_lock(s, b)	((b)->level <= (s)->lock)
97 
98 /*
99  * These macros are for recursing down the btree - they handle the details of
100  * locking and looking up nodes in the cache for you. They're best treated as
101  * mere syntax when reading code that uses them.
102  *
103  * op->lock determines whether we take a read or a write lock at a given depth.
104  * If you've got a read lock and find that you need a write lock (i.e. you're
105  * going to have to split), set op->lock and return -EINTR; btree_root() will
106  * call you again and you'll have the correct lock.
107  */
108 
109 /**
110  * btree - recurse down the btree on a specified key
111  * @fn:		function to call, which will be passed the child node
112  * @key:	key to recurse on
113  * @b:		parent btree node
114  * @op:		pointer to struct btree_op
115  */
116 #define btree(fn, key, b, op, ...)					\
117 ({									\
118 	int _r, l = (b)->level - 1;					\
119 	bool _w = l <= (op)->lock;					\
120 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
121 						  _w, b);		\
122 	if (!IS_ERR(_child)) {						\
123 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
124 		rw_unlock(_w, _child);					\
125 	} else								\
126 		_r = PTR_ERR(_child);					\
127 	_r;								\
128 })
129 
130 /**
131  * btree_root - call a function on the root of the btree
132  * @fn:		function to call, which will be passed the child node
133  * @c:		cache set
134  * @op:		pointer to struct btree_op
135  */
136 #define btree_root(fn, c, op, ...)					\
137 ({									\
138 	int _r = -EINTR;						\
139 	do {								\
140 		struct btree *_b = (c)->root;				\
141 		bool _w = insert_lock(op, _b);				\
142 		rw_lock(_w, _b, _b->level);				\
143 		if (_b == (c)->root &&					\
144 		    _w == insert_lock(op, _b)) {			\
145 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
146 		}							\
147 		rw_unlock(_w, _b);					\
148 		bch_cannibalize_unlock(c);				\
149 		if (_r == -EINTR)					\
150 			schedule();					\
151 	} while (_r == -EINTR);						\
152 									\
153 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
154 	_r;								\
155 })
156 
write_block(struct btree * b)157 static inline struct bset *write_block(struct btree *b)
158 {
159 	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
160 }
161 
bch_btree_init_next(struct btree * b)162 static void bch_btree_init_next(struct btree *b)
163 {
164 	/* If not a leaf node, always sort */
165 	if (b->level && b->keys.nsets)
166 		bch_btree_sort(&b->keys, &b->c->sort);
167 	else
168 		bch_btree_sort_lazy(&b->keys, &b->c->sort);
169 
170 	if (b->written < btree_blocks(b))
171 		bch_bset_init_next(&b->keys, write_block(b),
172 				   bset_magic(&b->c->sb));
173 
174 }
175 
176 /* Btree key manipulation */
177 
bkey_put(struct cache_set * c,struct bkey * k)178 void bkey_put(struct cache_set *c, struct bkey *k)
179 {
180 	unsigned i;
181 
182 	for (i = 0; i < KEY_PTRS(k); i++)
183 		if (ptr_available(c, k, i))
184 			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
185 }
186 
187 /* Btree IO */
188 
btree_csum_set(struct btree * b,struct bset * i)189 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
190 {
191 	uint64_t crc = b->key.ptr[0];
192 	void *data = (void *) i + 8, *end = bset_bkey_last(i);
193 
194 	crc = bch_crc64_update(crc, data, end - data);
195 	return crc ^ 0xffffffffffffffffULL;
196 }
197 
bch_btree_node_read_done(struct btree * b)198 void bch_btree_node_read_done(struct btree *b)
199 {
200 	const char *err = "bad btree header";
201 	struct bset *i = btree_bset_first(b);
202 	struct btree_iter *iter;
203 
204 	iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
205 	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
206 	iter->used = 0;
207 
208 #ifdef CONFIG_BCACHE_DEBUG
209 	iter->b = &b->keys;
210 #endif
211 
212 	if (!i->seq)
213 		goto err;
214 
215 	for (;
216 	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
217 	     i = write_block(b)) {
218 		err = "unsupported bset version";
219 		if (i->version > BCACHE_BSET_VERSION)
220 			goto err;
221 
222 		err = "bad btree header";
223 		if (b->written + set_blocks(i, block_bytes(b->c)) >
224 		    btree_blocks(b))
225 			goto err;
226 
227 		err = "bad magic";
228 		if (i->magic != bset_magic(&b->c->sb))
229 			goto err;
230 
231 		err = "bad checksum";
232 		switch (i->version) {
233 		case 0:
234 			if (i->csum != csum_set(i))
235 				goto err;
236 			break;
237 		case BCACHE_BSET_VERSION:
238 			if (i->csum != btree_csum_set(b, i))
239 				goto err;
240 			break;
241 		}
242 
243 		err = "empty set";
244 		if (i != b->keys.set[0].data && !i->keys)
245 			goto err;
246 
247 		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
248 
249 		b->written += set_blocks(i, block_bytes(b->c));
250 	}
251 
252 	err = "corrupted btree";
253 	for (i = write_block(b);
254 	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
255 	     i = ((void *) i) + block_bytes(b->c))
256 		if (i->seq == b->keys.set[0].data->seq)
257 			goto err;
258 
259 	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
260 
261 	i = b->keys.set[0].data;
262 	err = "short btree key";
263 	if (b->keys.set[0].size &&
264 	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
265 		goto err;
266 
267 	if (b->written < btree_blocks(b))
268 		bch_bset_init_next(&b->keys, write_block(b),
269 				   bset_magic(&b->c->sb));
270 out:
271 	mempool_free(iter, b->c->fill_iter);
272 	return;
273 err:
274 	set_btree_node_io_error(b);
275 	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
276 			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
277 			    bset_block_offset(b, i), i->keys);
278 	goto out;
279 }
280 
btree_node_read_endio(struct bio * bio,int error)281 static void btree_node_read_endio(struct bio *bio, int error)
282 {
283 	struct closure *cl = bio->bi_private;
284 	closure_put(cl);
285 }
286 
bch_btree_node_read(struct btree * b)287 static void bch_btree_node_read(struct btree *b)
288 {
289 	uint64_t start_time = local_clock();
290 	struct closure cl;
291 	struct bio *bio;
292 
293 	trace_bcache_btree_read(b);
294 
295 	closure_init_stack(&cl);
296 
297 	bio = bch_bbio_alloc(b->c);
298 	bio->bi_rw	= REQ_META|READ_SYNC;
299 	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
300 	bio->bi_end_io	= btree_node_read_endio;
301 	bio->bi_private	= &cl;
302 
303 	bch_bio_map(bio, b->keys.set[0].data);
304 
305 	bch_submit_bbio(bio, b->c, &b->key, 0);
306 	closure_sync(&cl);
307 
308 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
309 		set_btree_node_io_error(b);
310 
311 	bch_bbio_free(bio, b->c);
312 
313 	if (btree_node_io_error(b))
314 		goto err;
315 
316 	bch_btree_node_read_done(b);
317 	bch_time_stats_update(&b->c->btree_read_time, start_time);
318 
319 	return;
320 err:
321 	bch_cache_set_error(b->c, "io error reading bucket %zu",
322 			    PTR_BUCKET_NR(b->c, &b->key, 0));
323 }
324 
btree_complete_write(struct btree * b,struct btree_write * w)325 static void btree_complete_write(struct btree *b, struct btree_write *w)
326 {
327 	if (w->prio_blocked &&
328 	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
329 		wake_up_allocators(b->c);
330 
331 	if (w->journal) {
332 		atomic_dec_bug(w->journal);
333 		__closure_wake_up(&b->c->journal.wait);
334 	}
335 
336 	w->prio_blocked	= 0;
337 	w->journal	= NULL;
338 }
339 
btree_node_write_unlock(struct closure * cl)340 static void btree_node_write_unlock(struct closure *cl)
341 {
342 	struct btree *b = container_of(cl, struct btree, io);
343 
344 	up(&b->io_mutex);
345 }
346 
__btree_node_write_done(struct closure * cl)347 static void __btree_node_write_done(struct closure *cl)
348 {
349 	struct btree *b = container_of(cl, struct btree, io);
350 	struct btree_write *w = btree_prev_write(b);
351 
352 	bch_bbio_free(b->bio, b->c);
353 	b->bio = NULL;
354 	btree_complete_write(b, w);
355 
356 	if (btree_node_dirty(b))
357 		schedule_delayed_work(&b->work, 30 * HZ);
358 
359 	closure_return_with_destructor(cl, btree_node_write_unlock);
360 }
361 
btree_node_write_done(struct closure * cl)362 static void btree_node_write_done(struct closure *cl)
363 {
364 	struct btree *b = container_of(cl, struct btree, io);
365 	struct bio_vec *bv;
366 	int n;
367 
368 	bio_for_each_segment_all(bv, b->bio, n)
369 		__free_page(bv->bv_page);
370 
371 	__btree_node_write_done(cl);
372 }
373 
btree_node_write_endio(struct bio * bio,int error)374 static void btree_node_write_endio(struct bio *bio, int error)
375 {
376 	struct closure *cl = bio->bi_private;
377 	struct btree *b = container_of(cl, struct btree, io);
378 
379 	if (error)
380 		set_btree_node_io_error(b);
381 
382 	bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
383 	closure_put(cl);
384 }
385 
do_btree_node_write(struct btree * b)386 static void do_btree_node_write(struct btree *b)
387 {
388 	struct closure *cl = &b->io;
389 	struct bset *i = btree_bset_last(b);
390 	BKEY_PADDED(key) k;
391 
392 	i->version	= BCACHE_BSET_VERSION;
393 	i->csum		= btree_csum_set(b, i);
394 
395 	BUG_ON(b->bio);
396 	b->bio = bch_bbio_alloc(b->c);
397 
398 	b->bio->bi_end_io	= btree_node_write_endio;
399 	b->bio->bi_private	= cl;
400 	b->bio->bi_rw		= REQ_META|WRITE_SYNC|REQ_FUA;
401 	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
402 	bch_bio_map(b->bio, i);
403 
404 	/*
405 	 * If we're appending to a leaf node, we don't technically need FUA -
406 	 * this write just needs to be persisted before the next journal write,
407 	 * which will be marked FLUSH|FUA.
408 	 *
409 	 * Similarly if we're writing a new btree root - the pointer is going to
410 	 * be in the next journal entry.
411 	 *
412 	 * But if we're writing a new btree node (that isn't a root) or
413 	 * appending to a non leaf btree node, we need either FUA or a flush
414 	 * when we write the parent with the new pointer. FUA is cheaper than a
415 	 * flush, and writes appending to leaf nodes aren't blocking anything so
416 	 * just make all btree node writes FUA to keep things sane.
417 	 */
418 
419 	bkey_copy(&k.key, &b->key);
420 	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
421 		       bset_sector_offset(&b->keys, i));
422 
423 	if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
424 		int j;
425 		struct bio_vec *bv;
426 		void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
427 
428 		bio_for_each_segment_all(bv, b->bio, j)
429 			memcpy(page_address(bv->bv_page),
430 			       base + j * PAGE_SIZE, PAGE_SIZE);
431 
432 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
433 
434 		continue_at(cl, btree_node_write_done, NULL);
435 	} else {
436 		b->bio->bi_vcnt = 0;
437 		bch_bio_map(b->bio, i);
438 
439 		bch_submit_bbio(b->bio, b->c, &k.key, 0);
440 
441 		closure_sync(cl);
442 		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
443 	}
444 }
445 
__bch_btree_node_write(struct btree * b,struct closure * parent)446 void __bch_btree_node_write(struct btree *b, struct closure *parent)
447 {
448 	struct bset *i = btree_bset_last(b);
449 
450 	lockdep_assert_held(&b->write_lock);
451 
452 	trace_bcache_btree_write(b);
453 
454 	BUG_ON(current->bio_list);
455 	BUG_ON(b->written >= btree_blocks(b));
456 	BUG_ON(b->written && !i->keys);
457 	BUG_ON(btree_bset_first(b)->seq != i->seq);
458 	bch_check_keys(&b->keys, "writing");
459 
460 	cancel_delayed_work(&b->work);
461 
462 	/* If caller isn't waiting for write, parent refcount is cache set */
463 	down(&b->io_mutex);
464 	closure_init(&b->io, parent ?: &b->c->cl);
465 
466 	clear_bit(BTREE_NODE_dirty,	 &b->flags);
467 	change_bit(BTREE_NODE_write_idx, &b->flags);
468 
469 	do_btree_node_write(b);
470 
471 	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
472 			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
473 
474 	b->written += set_blocks(i, block_bytes(b->c));
475 }
476 
bch_btree_node_write(struct btree * b,struct closure * parent)477 void bch_btree_node_write(struct btree *b, struct closure *parent)
478 {
479 	unsigned nsets = b->keys.nsets;
480 
481 	lockdep_assert_held(&b->lock);
482 
483 	__bch_btree_node_write(b, parent);
484 
485 	/*
486 	 * do verify if there was more than one set initially (i.e. we did a
487 	 * sort) and we sorted down to a single set:
488 	 */
489 	if (nsets && !b->keys.nsets)
490 		bch_btree_verify(b);
491 
492 	bch_btree_init_next(b);
493 }
494 
bch_btree_node_write_sync(struct btree * b)495 static void bch_btree_node_write_sync(struct btree *b)
496 {
497 	struct closure cl;
498 
499 	closure_init_stack(&cl);
500 
501 	mutex_lock(&b->write_lock);
502 	bch_btree_node_write(b, &cl);
503 	mutex_unlock(&b->write_lock);
504 
505 	closure_sync(&cl);
506 }
507 
btree_node_write_work(struct work_struct * w)508 static void btree_node_write_work(struct work_struct *w)
509 {
510 	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
511 
512 	mutex_lock(&b->write_lock);
513 	if (btree_node_dirty(b))
514 		__bch_btree_node_write(b, NULL);
515 	mutex_unlock(&b->write_lock);
516 }
517 
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)518 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
519 {
520 	struct bset *i = btree_bset_last(b);
521 	struct btree_write *w = btree_current_write(b);
522 
523 	lockdep_assert_held(&b->write_lock);
524 
525 	BUG_ON(!b->written);
526 	BUG_ON(!i->keys);
527 
528 	if (!btree_node_dirty(b))
529 		schedule_delayed_work(&b->work, 30 * HZ);
530 
531 	set_btree_node_dirty(b);
532 
533 	if (journal_ref) {
534 		if (w->journal &&
535 		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
536 			atomic_dec_bug(w->journal);
537 			w->journal = NULL;
538 		}
539 
540 		if (!w->journal) {
541 			w->journal = journal_ref;
542 			atomic_inc(w->journal);
543 		}
544 	}
545 
546 	/* Force write if set is too big */
547 	if (set_bytes(i) > PAGE_SIZE - 48 &&
548 	    !current->bio_list)
549 		bch_btree_node_write(b, NULL);
550 }
551 
552 /*
553  * Btree in memory cache - allocation/freeing
554  * mca -> memory cache
555  */
556 
557 #define mca_reserve(c)	(((c->root && c->root->level)		\
558 			  ? c->root->level : 1) * 8 + 16)
559 #define mca_can_free(c)						\
560 	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
561 
mca_data_free(struct btree * b)562 static void mca_data_free(struct btree *b)
563 {
564 	BUG_ON(b->io_mutex.count != 1);
565 
566 	bch_btree_keys_free(&b->keys);
567 
568 	b->c->btree_cache_used--;
569 	list_move(&b->list, &b->c->btree_cache_freed);
570 }
571 
mca_bucket_free(struct btree * b)572 static void mca_bucket_free(struct btree *b)
573 {
574 	BUG_ON(btree_node_dirty(b));
575 
576 	b->key.ptr[0] = 0;
577 	hlist_del_init_rcu(&b->hash);
578 	list_move(&b->list, &b->c->btree_cache_freeable);
579 }
580 
btree_order(struct bkey * k)581 static unsigned btree_order(struct bkey *k)
582 {
583 	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
584 }
585 
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)586 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
587 {
588 	if (!bch_btree_keys_alloc(&b->keys,
589 				  max_t(unsigned,
590 					ilog2(b->c->btree_pages),
591 					btree_order(k)),
592 				  gfp)) {
593 		b->c->btree_cache_used++;
594 		list_move(&b->list, &b->c->btree_cache);
595 	} else {
596 		list_move(&b->list, &b->c->btree_cache_freed);
597 	}
598 }
599 
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)600 static struct btree *mca_bucket_alloc(struct cache_set *c,
601 				      struct bkey *k, gfp_t gfp)
602 {
603 	struct btree *b = kzalloc(sizeof(struct btree), gfp);
604 	if (!b)
605 		return NULL;
606 
607 	init_rwsem(&b->lock);
608 	lockdep_set_novalidate_class(&b->lock);
609 	mutex_init(&b->write_lock);
610 	lockdep_set_novalidate_class(&b->write_lock);
611 	INIT_LIST_HEAD(&b->list);
612 	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
613 	b->c = c;
614 	sema_init(&b->io_mutex, 1);
615 
616 	mca_data_alloc(b, k, gfp);
617 	return b;
618 }
619 
mca_reap(struct btree * b,unsigned min_order,bool flush)620 static int mca_reap(struct btree *b, unsigned min_order, bool flush)
621 {
622 	struct closure cl;
623 
624 	closure_init_stack(&cl);
625 	lockdep_assert_held(&b->c->bucket_lock);
626 
627 	if (!down_write_trylock(&b->lock))
628 		return -ENOMEM;
629 
630 	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
631 
632 	if (b->keys.page_order < min_order)
633 		goto out_unlock;
634 
635 	if (!flush) {
636 		if (btree_node_dirty(b))
637 			goto out_unlock;
638 
639 		if (down_trylock(&b->io_mutex))
640 			goto out_unlock;
641 		up(&b->io_mutex);
642 	}
643 
644 	mutex_lock(&b->write_lock);
645 	if (btree_node_dirty(b))
646 		__bch_btree_node_write(b, &cl);
647 	mutex_unlock(&b->write_lock);
648 
649 	closure_sync(&cl);
650 
651 	/* wait for any in flight btree write */
652 	down(&b->io_mutex);
653 	up(&b->io_mutex);
654 
655 	return 0;
656 out_unlock:
657 	rw_unlock(true, b);
658 	return -ENOMEM;
659 }
660 
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)661 static unsigned long bch_mca_scan(struct shrinker *shrink,
662 				  struct shrink_control *sc)
663 {
664 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
665 	struct btree *b, *t;
666 	unsigned long i, nr = sc->nr_to_scan;
667 	unsigned long freed = 0;
668 
669 	if (c->shrinker_disabled)
670 		return SHRINK_STOP;
671 
672 	if (c->btree_cache_alloc_lock)
673 		return SHRINK_STOP;
674 
675 	/* Return -1 if we can't do anything right now */
676 	if (sc->gfp_mask & __GFP_IO)
677 		mutex_lock(&c->bucket_lock);
678 	else if (!mutex_trylock(&c->bucket_lock))
679 		return -1;
680 
681 	/*
682 	 * It's _really_ critical that we don't free too many btree nodes - we
683 	 * have to always leave ourselves a reserve. The reserve is how we
684 	 * guarantee that allocating memory for a new btree node can always
685 	 * succeed, so that inserting keys into the btree can always succeed and
686 	 * IO can always make forward progress:
687 	 */
688 	nr /= c->btree_pages;
689 	nr = min_t(unsigned long, nr, mca_can_free(c));
690 
691 	i = 0;
692 	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
693 		if (freed >= nr)
694 			break;
695 
696 		if (++i > 3 &&
697 		    !mca_reap(b, 0, false)) {
698 			mca_data_free(b);
699 			rw_unlock(true, b);
700 			freed++;
701 		}
702 	}
703 
704 	for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
705 		if (list_empty(&c->btree_cache))
706 			goto out;
707 
708 		b = list_first_entry(&c->btree_cache, struct btree, list);
709 		list_rotate_left(&c->btree_cache);
710 
711 		if (!b->accessed &&
712 		    !mca_reap(b, 0, false)) {
713 			mca_bucket_free(b);
714 			mca_data_free(b);
715 			rw_unlock(true, b);
716 			freed++;
717 		} else
718 			b->accessed = 0;
719 	}
720 out:
721 	mutex_unlock(&c->bucket_lock);
722 	return freed;
723 }
724 
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)725 static unsigned long bch_mca_count(struct shrinker *shrink,
726 				   struct shrink_control *sc)
727 {
728 	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
729 
730 	if (c->shrinker_disabled)
731 		return 0;
732 
733 	if (c->btree_cache_alloc_lock)
734 		return 0;
735 
736 	return mca_can_free(c) * c->btree_pages;
737 }
738 
bch_btree_cache_free(struct cache_set * c)739 void bch_btree_cache_free(struct cache_set *c)
740 {
741 	struct btree *b;
742 	struct closure cl;
743 	closure_init_stack(&cl);
744 
745 	if (c->shrink.list.next)
746 		unregister_shrinker(&c->shrink);
747 
748 	mutex_lock(&c->bucket_lock);
749 
750 #ifdef CONFIG_BCACHE_DEBUG
751 	if (c->verify_data)
752 		list_move(&c->verify_data->list, &c->btree_cache);
753 
754 	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
755 #endif
756 
757 	list_splice(&c->btree_cache_freeable,
758 		    &c->btree_cache);
759 
760 	while (!list_empty(&c->btree_cache)) {
761 		b = list_first_entry(&c->btree_cache, struct btree, list);
762 
763 		if (btree_node_dirty(b))
764 			btree_complete_write(b, btree_current_write(b));
765 		clear_bit(BTREE_NODE_dirty, &b->flags);
766 
767 		mca_data_free(b);
768 	}
769 
770 	while (!list_empty(&c->btree_cache_freed)) {
771 		b = list_first_entry(&c->btree_cache_freed,
772 				     struct btree, list);
773 		list_del(&b->list);
774 		cancel_delayed_work_sync(&b->work);
775 		kfree(b);
776 	}
777 
778 	mutex_unlock(&c->bucket_lock);
779 }
780 
bch_btree_cache_alloc(struct cache_set * c)781 int bch_btree_cache_alloc(struct cache_set *c)
782 {
783 	unsigned i;
784 
785 	for (i = 0; i < mca_reserve(c); i++)
786 		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
787 			return -ENOMEM;
788 
789 	list_splice_init(&c->btree_cache,
790 			 &c->btree_cache_freeable);
791 
792 #ifdef CONFIG_BCACHE_DEBUG
793 	mutex_init(&c->verify_lock);
794 
795 	c->verify_ondisk = (void *)
796 		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
797 
798 	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
799 
800 	if (c->verify_data &&
801 	    c->verify_data->keys.set->data)
802 		list_del_init(&c->verify_data->list);
803 	else
804 		c->verify_data = NULL;
805 #endif
806 
807 	c->shrink.count_objects = bch_mca_count;
808 	c->shrink.scan_objects = bch_mca_scan;
809 	c->shrink.seeks = 4;
810 	c->shrink.batch = c->btree_pages * 2;
811 
812 	if (register_shrinker(&c->shrink))
813 		pr_warn("bcache: %s: could not register shrinker",
814 				__func__);
815 
816 	return 0;
817 }
818 
819 /* Btree in memory cache - hash table */
820 
mca_hash(struct cache_set * c,struct bkey * k)821 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
822 {
823 	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
824 }
825 
mca_find(struct cache_set * c,struct bkey * k)826 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
827 {
828 	struct btree *b;
829 
830 	rcu_read_lock();
831 	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
832 		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
833 			goto out;
834 	b = NULL;
835 out:
836 	rcu_read_unlock();
837 	return b;
838 }
839 
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)840 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
841 {
842 	struct task_struct *old;
843 
844 	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
845 	if (old && old != current) {
846 		if (op)
847 			prepare_to_wait(&c->btree_cache_wait, &op->wait,
848 					TASK_UNINTERRUPTIBLE);
849 		return -EINTR;
850 	}
851 
852 	return 0;
853 }
854 
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)855 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
856 				     struct bkey *k)
857 {
858 	struct btree *b;
859 
860 	trace_bcache_btree_cache_cannibalize(c);
861 
862 	if (mca_cannibalize_lock(c, op))
863 		return ERR_PTR(-EINTR);
864 
865 	list_for_each_entry_reverse(b, &c->btree_cache, list)
866 		if (!mca_reap(b, btree_order(k), false))
867 			return b;
868 
869 	list_for_each_entry_reverse(b, &c->btree_cache, list)
870 		if (!mca_reap(b, btree_order(k), true))
871 			return b;
872 
873 	WARN(1, "btree cache cannibalize failed\n");
874 	return ERR_PTR(-ENOMEM);
875 }
876 
877 /*
878  * We can only have one thread cannibalizing other cached btree nodes at a time,
879  * or we'll deadlock. We use an open coded mutex to ensure that, which a
880  * cannibalize_bucket() will take. This means every time we unlock the root of
881  * the btree, we need to release this lock if we have it held.
882  */
bch_cannibalize_unlock(struct cache_set * c)883 static void bch_cannibalize_unlock(struct cache_set *c)
884 {
885 	if (c->btree_cache_alloc_lock == current) {
886 		c->btree_cache_alloc_lock = NULL;
887 		wake_up(&c->btree_cache_wait);
888 	}
889 }
890 
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)891 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
892 			       struct bkey *k, int level)
893 {
894 	struct btree *b;
895 
896 	BUG_ON(current->bio_list);
897 
898 	lockdep_assert_held(&c->bucket_lock);
899 
900 	if (mca_find(c, k))
901 		return NULL;
902 
903 	/* btree_free() doesn't free memory; it sticks the node on the end of
904 	 * the list. Check if there's any freed nodes there:
905 	 */
906 	list_for_each_entry(b, &c->btree_cache_freeable, list)
907 		if (!mca_reap(b, btree_order(k), false))
908 			goto out;
909 
910 	/* We never free struct btree itself, just the memory that holds the on
911 	 * disk node. Check the freed list before allocating a new one:
912 	 */
913 	list_for_each_entry(b, &c->btree_cache_freed, list)
914 		if (!mca_reap(b, 0, false)) {
915 			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
916 			if (!b->keys.set[0].data)
917 				goto err;
918 			else
919 				goto out;
920 		}
921 
922 	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
923 	if (!b)
924 		goto err;
925 
926 	BUG_ON(!down_write_trylock(&b->lock));
927 	if (!b->keys.set->data)
928 		goto err;
929 out:
930 	BUG_ON(b->io_mutex.count != 1);
931 
932 	bkey_copy(&b->key, k);
933 	list_move(&b->list, &c->btree_cache);
934 	hlist_del_init_rcu(&b->hash);
935 	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
936 
937 	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
938 	b->parent	= (void *) ~0UL;
939 	b->flags	= 0;
940 	b->written	= 0;
941 	b->level	= level;
942 
943 	if (!b->level)
944 		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
945 				    &b->c->expensive_debug_checks);
946 	else
947 		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
948 				    &b->c->expensive_debug_checks);
949 
950 	return b;
951 err:
952 	if (b)
953 		rw_unlock(true, b);
954 
955 	b = mca_cannibalize(c, op, k);
956 	if (!IS_ERR(b))
957 		goto out;
958 
959 	return b;
960 }
961 
962 /**
963  * bch_btree_node_get - find a btree node in the cache and lock it, reading it
964  * in from disk if necessary.
965  *
966  * If IO is necessary and running under generic_make_request, returns -EAGAIN.
967  *
968  * The btree node will have either a read or a write lock held, depending on
969  * level and op->lock.
970  */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)971 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
972 				 struct bkey *k, int level, bool write,
973 				 struct btree *parent)
974 {
975 	int i = 0;
976 	struct btree *b;
977 
978 	BUG_ON(level < 0);
979 retry:
980 	b = mca_find(c, k);
981 
982 	if (!b) {
983 		if (current->bio_list)
984 			return ERR_PTR(-EAGAIN);
985 
986 		mutex_lock(&c->bucket_lock);
987 		b = mca_alloc(c, op, k, level);
988 		mutex_unlock(&c->bucket_lock);
989 
990 		if (!b)
991 			goto retry;
992 		if (IS_ERR(b))
993 			return b;
994 
995 		bch_btree_node_read(b);
996 
997 		if (!write)
998 			downgrade_write(&b->lock);
999 	} else {
1000 		rw_lock(write, b, level);
1001 		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1002 			rw_unlock(write, b);
1003 			goto retry;
1004 		}
1005 		BUG_ON(b->level != level);
1006 	}
1007 
1008 	b->parent = parent;
1009 	b->accessed = 1;
1010 
1011 	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1012 		prefetch(b->keys.set[i].tree);
1013 		prefetch(b->keys.set[i].data);
1014 	}
1015 
1016 	for (; i <= b->keys.nsets; i++)
1017 		prefetch(b->keys.set[i].data);
1018 
1019 	if (btree_node_io_error(b)) {
1020 		rw_unlock(write, b);
1021 		return ERR_PTR(-EIO);
1022 	}
1023 
1024 	BUG_ON(!b->written);
1025 
1026 	return b;
1027 }
1028 
btree_node_prefetch(struct btree * parent,struct bkey * k)1029 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1030 {
1031 	struct btree *b;
1032 
1033 	mutex_lock(&parent->c->bucket_lock);
1034 	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1035 	mutex_unlock(&parent->c->bucket_lock);
1036 
1037 	if (!IS_ERR_OR_NULL(b)) {
1038 		b->parent = parent;
1039 		bch_btree_node_read(b);
1040 		rw_unlock(true, b);
1041 	}
1042 }
1043 
1044 /* Btree alloc */
1045 
btree_node_free(struct btree * b)1046 static void btree_node_free(struct btree *b)
1047 {
1048 	trace_bcache_btree_node_free(b);
1049 
1050 	BUG_ON(b == b->c->root);
1051 
1052 	mutex_lock(&b->write_lock);
1053 
1054 	if (btree_node_dirty(b))
1055 		btree_complete_write(b, btree_current_write(b));
1056 	clear_bit(BTREE_NODE_dirty, &b->flags);
1057 
1058 	mutex_unlock(&b->write_lock);
1059 
1060 	cancel_delayed_work(&b->work);
1061 
1062 	mutex_lock(&b->c->bucket_lock);
1063 	bch_bucket_free(b->c, &b->key);
1064 	mca_bucket_free(b);
1065 	mutex_unlock(&b->c->bucket_lock);
1066 }
1067 
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1068 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1069 				     int level, bool wait,
1070 				     struct btree *parent)
1071 {
1072 	BKEY_PADDED(key) k;
1073 	struct btree *b = ERR_PTR(-EAGAIN);
1074 
1075 	mutex_lock(&c->bucket_lock);
1076 retry:
1077 	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1078 		goto err;
1079 
1080 	bkey_put(c, &k.key);
1081 	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1082 
1083 	b = mca_alloc(c, op, &k.key, level);
1084 	if (IS_ERR(b))
1085 		goto err_free;
1086 
1087 	if (!b) {
1088 		cache_bug(c,
1089 			"Tried to allocate bucket that was in btree cache");
1090 		goto retry;
1091 	}
1092 
1093 	b->accessed = 1;
1094 	b->parent = parent;
1095 	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1096 
1097 	mutex_unlock(&c->bucket_lock);
1098 
1099 	trace_bcache_btree_node_alloc(b);
1100 	return b;
1101 err_free:
1102 	bch_bucket_free(c, &k.key);
1103 err:
1104 	mutex_unlock(&c->bucket_lock);
1105 
1106 	trace_bcache_btree_node_alloc_fail(c);
1107 	return b;
1108 }
1109 
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1110 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1111 					  struct btree_op *op, int level,
1112 					  struct btree *parent)
1113 {
1114 	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1115 }
1116 
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1117 static struct btree *btree_node_alloc_replacement(struct btree *b,
1118 						  struct btree_op *op)
1119 {
1120 	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1121 	if (!IS_ERR_OR_NULL(n)) {
1122 		mutex_lock(&n->write_lock);
1123 		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1124 		bkey_copy_key(&n->key, &b->key);
1125 		mutex_unlock(&n->write_lock);
1126 	}
1127 
1128 	return n;
1129 }
1130 
make_btree_freeing_key(struct btree * b,struct bkey * k)1131 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1132 {
1133 	unsigned i;
1134 
1135 	mutex_lock(&b->c->bucket_lock);
1136 
1137 	atomic_inc(&b->c->prio_blocked);
1138 
1139 	bkey_copy(k, &b->key);
1140 	bkey_copy_key(k, &ZERO_KEY);
1141 
1142 	for (i = 0; i < KEY_PTRS(k); i++)
1143 		SET_PTR_GEN(k, i,
1144 			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1145 					PTR_BUCKET(b->c, &b->key, i)));
1146 
1147 	mutex_unlock(&b->c->bucket_lock);
1148 }
1149 
btree_check_reserve(struct btree * b,struct btree_op * op)1150 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1151 {
1152 	struct cache_set *c = b->c;
1153 	struct cache *ca;
1154 	unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1155 
1156 	mutex_lock(&c->bucket_lock);
1157 
1158 	for_each_cache(ca, c, i)
1159 		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1160 			if (op)
1161 				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1162 						TASK_UNINTERRUPTIBLE);
1163 			mutex_unlock(&c->bucket_lock);
1164 			return -EINTR;
1165 		}
1166 
1167 	mutex_unlock(&c->bucket_lock);
1168 
1169 	return mca_cannibalize_lock(b->c, op);
1170 }
1171 
1172 /* Garbage collection */
1173 
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1174 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1175 				    struct bkey *k)
1176 {
1177 	uint8_t stale = 0;
1178 	unsigned i;
1179 	struct bucket *g;
1180 
1181 	/*
1182 	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1183 	 * freed, but since ptr_bad() returns true we'll never actually use them
1184 	 * for anything and thus we don't want mark their pointers here
1185 	 */
1186 	if (!bkey_cmp(k, &ZERO_KEY))
1187 		return stale;
1188 
1189 	for (i = 0; i < KEY_PTRS(k); i++) {
1190 		if (!ptr_available(c, k, i))
1191 			continue;
1192 
1193 		g = PTR_BUCKET(c, k, i);
1194 
1195 		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1196 			g->last_gc = PTR_GEN(k, i);
1197 
1198 		if (ptr_stale(c, k, i)) {
1199 			stale = max(stale, ptr_stale(c, k, i));
1200 			continue;
1201 		}
1202 
1203 		cache_bug_on(GC_MARK(g) &&
1204 			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1205 			     c, "inconsistent ptrs: mark = %llu, level = %i",
1206 			     GC_MARK(g), level);
1207 
1208 		if (level)
1209 			SET_GC_MARK(g, GC_MARK_METADATA);
1210 		else if (KEY_DIRTY(k))
1211 			SET_GC_MARK(g, GC_MARK_DIRTY);
1212 		else if (!GC_MARK(g))
1213 			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1214 
1215 		/* guard against overflow */
1216 		SET_GC_SECTORS_USED(g, min_t(unsigned,
1217 					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1218 					     MAX_GC_SECTORS_USED));
1219 
1220 		BUG_ON(!GC_SECTORS_USED(g));
1221 	}
1222 
1223 	return stale;
1224 }
1225 
1226 #define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1227 
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1228 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1229 {
1230 	unsigned i;
1231 
1232 	for (i = 0; i < KEY_PTRS(k); i++)
1233 		if (ptr_available(c, k, i) &&
1234 		    !ptr_stale(c, k, i)) {
1235 			struct bucket *b = PTR_BUCKET(c, k, i);
1236 
1237 			b->gen = PTR_GEN(k, i);
1238 
1239 			if (level && bkey_cmp(k, &ZERO_KEY))
1240 				b->prio = BTREE_PRIO;
1241 			else if (!level && b->prio == BTREE_PRIO)
1242 				b->prio = INITIAL_PRIO;
1243 		}
1244 
1245 	__bch_btree_mark_key(c, level, k);
1246 }
1247 
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1248 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1249 {
1250 	uint8_t stale = 0;
1251 	unsigned keys = 0, good_keys = 0;
1252 	struct bkey *k;
1253 	struct btree_iter iter;
1254 	struct bset_tree *t;
1255 
1256 	gc->nodes++;
1257 
1258 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1259 		stale = max(stale, btree_mark_key(b, k));
1260 		keys++;
1261 
1262 		if (bch_ptr_bad(&b->keys, k))
1263 			continue;
1264 
1265 		gc->key_bytes += bkey_u64s(k);
1266 		gc->nkeys++;
1267 		good_keys++;
1268 
1269 		gc->data += KEY_SIZE(k);
1270 	}
1271 
1272 	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1273 		btree_bug_on(t->size &&
1274 			     bset_written(&b->keys, t) &&
1275 			     bkey_cmp(&b->key, &t->end) < 0,
1276 			     b, "found short btree key in gc");
1277 
1278 	if (b->c->gc_always_rewrite)
1279 		return true;
1280 
1281 	if (stale > 10)
1282 		return true;
1283 
1284 	if ((keys - good_keys) * 2 > keys)
1285 		return true;
1286 
1287 	return false;
1288 }
1289 
1290 #define GC_MERGE_NODES	4U
1291 
1292 struct gc_merge_info {
1293 	struct btree	*b;
1294 	unsigned	keys;
1295 };
1296 
1297 static int bch_btree_insert_node(struct btree *, struct btree_op *,
1298 				 struct keylist *, atomic_t *, struct bkey *);
1299 
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1300 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1301 			     struct gc_stat *gc, struct gc_merge_info *r)
1302 {
1303 	unsigned i, nodes = 0, keys = 0, blocks;
1304 	struct btree *new_nodes[GC_MERGE_NODES];
1305 	struct keylist keylist;
1306 	struct closure cl;
1307 	struct bkey *k;
1308 
1309 	bch_keylist_init(&keylist);
1310 
1311 	if (btree_check_reserve(b, NULL))
1312 		return 0;
1313 
1314 	memset(new_nodes, 0, sizeof(new_nodes));
1315 	closure_init_stack(&cl);
1316 
1317 	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1318 		keys += r[nodes++].keys;
1319 
1320 	blocks = btree_default_blocks(b->c) * 2 / 3;
1321 
1322 	if (nodes < 2 ||
1323 	    __set_blocks(b->keys.set[0].data, keys,
1324 			 block_bytes(b->c)) > blocks * (nodes - 1))
1325 		return 0;
1326 
1327 	for (i = 0; i < nodes; i++) {
1328 		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1329 		if (IS_ERR_OR_NULL(new_nodes[i]))
1330 			goto out_nocoalesce;
1331 	}
1332 
1333 	/*
1334 	 * We have to check the reserve here, after we've allocated our new
1335 	 * nodes, to make sure the insert below will succeed - we also check
1336 	 * before as an optimization to potentially avoid a bunch of expensive
1337 	 * allocs/sorts
1338 	 */
1339 	if (btree_check_reserve(b, NULL))
1340 		goto out_nocoalesce;
1341 
1342 	for (i = 0; i < nodes; i++)
1343 		mutex_lock(&new_nodes[i]->write_lock);
1344 
1345 	for (i = nodes - 1; i > 0; --i) {
1346 		struct bset *n1 = btree_bset_first(new_nodes[i]);
1347 		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1348 		struct bkey *k, *last = NULL;
1349 
1350 		keys = 0;
1351 
1352 		if (i > 1) {
1353 			for (k = n2->start;
1354 			     k < bset_bkey_last(n2);
1355 			     k = bkey_next(k)) {
1356 				if (__set_blocks(n1, n1->keys + keys +
1357 						 bkey_u64s(k),
1358 						 block_bytes(b->c)) > blocks)
1359 					break;
1360 
1361 				last = k;
1362 				keys += bkey_u64s(k);
1363 			}
1364 		} else {
1365 			/*
1366 			 * Last node we're not getting rid of - we're getting
1367 			 * rid of the node at r[0]. Have to try and fit all of
1368 			 * the remaining keys into this node; we can't ensure
1369 			 * they will always fit due to rounding and variable
1370 			 * length keys (shouldn't be possible in practice,
1371 			 * though)
1372 			 */
1373 			if (__set_blocks(n1, n1->keys + n2->keys,
1374 					 block_bytes(b->c)) >
1375 			    btree_blocks(new_nodes[i]))
1376 				goto out_nocoalesce;
1377 
1378 			keys = n2->keys;
1379 			/* Take the key of the node we're getting rid of */
1380 			last = &r->b->key;
1381 		}
1382 
1383 		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1384 		       btree_blocks(new_nodes[i]));
1385 
1386 		if (last)
1387 			bkey_copy_key(&new_nodes[i]->key, last);
1388 
1389 		memcpy(bset_bkey_last(n1),
1390 		       n2->start,
1391 		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1392 
1393 		n1->keys += keys;
1394 		r[i].keys = n1->keys;
1395 
1396 		memmove(n2->start,
1397 			bset_bkey_idx(n2, keys),
1398 			(void *) bset_bkey_last(n2) -
1399 			(void *) bset_bkey_idx(n2, keys));
1400 
1401 		n2->keys -= keys;
1402 
1403 		if (__bch_keylist_realloc(&keylist,
1404 					  bkey_u64s(&new_nodes[i]->key)))
1405 			goto out_nocoalesce;
1406 
1407 		bch_btree_node_write(new_nodes[i], &cl);
1408 		bch_keylist_add(&keylist, &new_nodes[i]->key);
1409 	}
1410 
1411 	for (i = 0; i < nodes; i++)
1412 		mutex_unlock(&new_nodes[i]->write_lock);
1413 
1414 	closure_sync(&cl);
1415 
1416 	/* We emptied out this node */
1417 	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1418 	btree_node_free(new_nodes[0]);
1419 	rw_unlock(true, new_nodes[0]);
1420 	new_nodes[0] = NULL;
1421 
1422 	for (i = 0; i < nodes; i++) {
1423 		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1424 			goto out_nocoalesce;
1425 
1426 		make_btree_freeing_key(r[i].b, keylist.top);
1427 		bch_keylist_push(&keylist);
1428 	}
1429 
1430 	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1431 	BUG_ON(!bch_keylist_empty(&keylist));
1432 
1433 	for (i = 0; i < nodes; i++) {
1434 		btree_node_free(r[i].b);
1435 		rw_unlock(true, r[i].b);
1436 
1437 		r[i].b = new_nodes[i];
1438 	}
1439 
1440 	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1441 	r[nodes - 1].b = ERR_PTR(-EINTR);
1442 
1443 	trace_bcache_btree_gc_coalesce(nodes);
1444 	gc->nodes--;
1445 
1446 	bch_keylist_free(&keylist);
1447 
1448 	/* Invalidated our iterator */
1449 	return -EINTR;
1450 
1451 out_nocoalesce:
1452 	closure_sync(&cl);
1453 	bch_keylist_free(&keylist);
1454 
1455 	while ((k = bch_keylist_pop(&keylist)))
1456 		if (!bkey_cmp(k, &ZERO_KEY))
1457 			atomic_dec(&b->c->prio_blocked);
1458 
1459 	for (i = 0; i < nodes; i++)
1460 		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1461 			btree_node_free(new_nodes[i]);
1462 			rw_unlock(true, new_nodes[i]);
1463 		}
1464 	return 0;
1465 }
1466 
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1467 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1468 				 struct btree *replace)
1469 {
1470 	struct keylist keys;
1471 	struct btree *n;
1472 
1473 	if (btree_check_reserve(b, NULL))
1474 		return 0;
1475 
1476 	n = btree_node_alloc_replacement(replace, NULL);
1477 
1478 	/* recheck reserve after allocating replacement node */
1479 	if (btree_check_reserve(b, NULL)) {
1480 		btree_node_free(n);
1481 		rw_unlock(true, n);
1482 		return 0;
1483 	}
1484 
1485 	bch_btree_node_write_sync(n);
1486 
1487 	bch_keylist_init(&keys);
1488 	bch_keylist_add(&keys, &n->key);
1489 
1490 	make_btree_freeing_key(replace, keys.top);
1491 	bch_keylist_push(&keys);
1492 
1493 	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1494 	BUG_ON(!bch_keylist_empty(&keys));
1495 
1496 	btree_node_free(replace);
1497 	rw_unlock(true, n);
1498 
1499 	/* Invalidated our iterator */
1500 	return -EINTR;
1501 }
1502 
btree_gc_count_keys(struct btree * b)1503 static unsigned btree_gc_count_keys(struct btree *b)
1504 {
1505 	struct bkey *k;
1506 	struct btree_iter iter;
1507 	unsigned ret = 0;
1508 
1509 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1510 		ret += bkey_u64s(k);
1511 
1512 	return ret;
1513 }
1514 
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1515 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1516 			    struct closure *writes, struct gc_stat *gc)
1517 {
1518 	int ret = 0;
1519 	bool should_rewrite;
1520 	struct bkey *k;
1521 	struct btree_iter iter;
1522 	struct gc_merge_info r[GC_MERGE_NODES];
1523 	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1524 
1525 	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1526 
1527 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1528 		i->b = ERR_PTR(-EINTR);
1529 
1530 	while (1) {
1531 		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1532 		if (k) {
1533 			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1534 						  true, b);
1535 			if (IS_ERR(r->b)) {
1536 				ret = PTR_ERR(r->b);
1537 				break;
1538 			}
1539 
1540 			r->keys = btree_gc_count_keys(r->b);
1541 
1542 			ret = btree_gc_coalesce(b, op, gc, r);
1543 			if (ret)
1544 				break;
1545 		}
1546 
1547 		if (!last->b)
1548 			break;
1549 
1550 		if (!IS_ERR(last->b)) {
1551 			should_rewrite = btree_gc_mark_node(last->b, gc);
1552 			if (should_rewrite) {
1553 				ret = btree_gc_rewrite_node(b, op, last->b);
1554 				if (ret)
1555 					break;
1556 			}
1557 
1558 			if (last->b->level) {
1559 				ret = btree_gc_recurse(last->b, op, writes, gc);
1560 				if (ret)
1561 					break;
1562 			}
1563 
1564 			bkey_copy_key(&b->c->gc_done, &last->b->key);
1565 
1566 			/*
1567 			 * Must flush leaf nodes before gc ends, since replace
1568 			 * operations aren't journalled
1569 			 */
1570 			mutex_lock(&last->b->write_lock);
1571 			if (btree_node_dirty(last->b))
1572 				bch_btree_node_write(last->b, writes);
1573 			mutex_unlock(&last->b->write_lock);
1574 			rw_unlock(true, last->b);
1575 		}
1576 
1577 		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1578 		r->b = NULL;
1579 
1580 		if (need_resched()) {
1581 			ret = -EAGAIN;
1582 			break;
1583 		}
1584 	}
1585 
1586 	for (i = r; i < r + ARRAY_SIZE(r); i++)
1587 		if (!IS_ERR_OR_NULL(i->b)) {
1588 			mutex_lock(&i->b->write_lock);
1589 			if (btree_node_dirty(i->b))
1590 				bch_btree_node_write(i->b, writes);
1591 			mutex_unlock(&i->b->write_lock);
1592 			rw_unlock(true, i->b);
1593 		}
1594 
1595 	return ret;
1596 }
1597 
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1598 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1599 			     struct closure *writes, struct gc_stat *gc)
1600 {
1601 	struct btree *n = NULL;
1602 	int ret = 0;
1603 	bool should_rewrite;
1604 
1605 	should_rewrite = btree_gc_mark_node(b, gc);
1606 	if (should_rewrite) {
1607 		n = btree_node_alloc_replacement(b, NULL);
1608 
1609 		if (!IS_ERR_OR_NULL(n)) {
1610 			bch_btree_node_write_sync(n);
1611 
1612 			bch_btree_set_root(n);
1613 			btree_node_free(b);
1614 			rw_unlock(true, n);
1615 
1616 			return -EINTR;
1617 		}
1618 	}
1619 
1620 	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1621 
1622 	if (b->level) {
1623 		ret = btree_gc_recurse(b, op, writes, gc);
1624 		if (ret)
1625 			return ret;
1626 	}
1627 
1628 	bkey_copy_key(&b->c->gc_done, &b->key);
1629 
1630 	return ret;
1631 }
1632 
btree_gc_start(struct cache_set * c)1633 static void btree_gc_start(struct cache_set *c)
1634 {
1635 	struct cache *ca;
1636 	struct bucket *b;
1637 	unsigned i;
1638 
1639 	if (!c->gc_mark_valid)
1640 		return;
1641 
1642 	mutex_lock(&c->bucket_lock);
1643 
1644 	c->gc_mark_valid = 0;
1645 	c->gc_done = ZERO_KEY;
1646 
1647 	for_each_cache(ca, c, i)
1648 		for_each_bucket(b, ca) {
1649 			b->last_gc = b->gen;
1650 			if (!atomic_read(&b->pin)) {
1651 				SET_GC_MARK(b, 0);
1652 				SET_GC_SECTORS_USED(b, 0);
1653 			}
1654 		}
1655 
1656 	mutex_unlock(&c->bucket_lock);
1657 }
1658 
bch_btree_gc_finish(struct cache_set * c)1659 static size_t bch_btree_gc_finish(struct cache_set *c)
1660 {
1661 	size_t available = 0;
1662 	struct bucket *b;
1663 	struct cache *ca;
1664 	unsigned i;
1665 
1666 	mutex_lock(&c->bucket_lock);
1667 
1668 	set_gc_sectors(c);
1669 	c->gc_mark_valid = 1;
1670 	c->need_gc	= 0;
1671 
1672 	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1673 		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1674 			    GC_MARK_METADATA);
1675 
1676 	/* don't reclaim buckets to which writeback keys point */
1677 	rcu_read_lock();
1678 	for (i = 0; i < c->nr_uuids; i++) {
1679 		struct bcache_device *d = c->devices[i];
1680 		struct cached_dev *dc;
1681 		struct keybuf_key *w, *n;
1682 		unsigned j;
1683 
1684 		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1685 			continue;
1686 		dc = container_of(d, struct cached_dev, disk);
1687 
1688 		spin_lock(&dc->writeback_keys.lock);
1689 		rbtree_postorder_for_each_entry_safe(w, n,
1690 					&dc->writeback_keys.keys, node)
1691 			for (j = 0; j < KEY_PTRS(&w->key); j++)
1692 				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1693 					    GC_MARK_DIRTY);
1694 		spin_unlock(&dc->writeback_keys.lock);
1695 	}
1696 	rcu_read_unlock();
1697 
1698 	for_each_cache(ca, c, i) {
1699 		uint64_t *i;
1700 
1701 		ca->invalidate_needs_gc = 0;
1702 
1703 		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1704 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1705 
1706 		for (i = ca->prio_buckets;
1707 		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1708 			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1709 
1710 		for_each_bucket(b, ca) {
1711 			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1712 
1713 			if (atomic_read(&b->pin))
1714 				continue;
1715 
1716 			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1717 
1718 			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1719 				available++;
1720 		}
1721 	}
1722 
1723 	mutex_unlock(&c->bucket_lock);
1724 	return available;
1725 }
1726 
bch_btree_gc(struct cache_set * c)1727 static void bch_btree_gc(struct cache_set *c)
1728 {
1729 	int ret;
1730 	unsigned long available;
1731 	struct gc_stat stats;
1732 	struct closure writes;
1733 	struct btree_op op;
1734 	uint64_t start_time = local_clock();
1735 
1736 	trace_bcache_gc_start(c);
1737 
1738 	memset(&stats, 0, sizeof(struct gc_stat));
1739 	closure_init_stack(&writes);
1740 	bch_btree_op_init(&op, SHRT_MAX);
1741 
1742 	btree_gc_start(c);
1743 
1744 	do {
1745 		ret = btree_root(gc_root, c, &op, &writes, &stats);
1746 		closure_sync(&writes);
1747 		cond_resched();
1748 
1749 		if (ret && ret != -EAGAIN)
1750 			pr_warn("gc failed!");
1751 	} while (ret);
1752 
1753 	available = bch_btree_gc_finish(c);
1754 	wake_up_allocators(c);
1755 
1756 	bch_time_stats_update(&c->btree_gc_time, start_time);
1757 
1758 	stats.key_bytes *= sizeof(uint64_t);
1759 	stats.data	<<= 9;
1760 	stats.in_use	= (c->nbuckets - available) * 100 / c->nbuckets;
1761 	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1762 
1763 	trace_bcache_gc_end(c);
1764 
1765 	bch_moving_gc(c);
1766 }
1767 
bch_gc_thread(void * arg)1768 static int bch_gc_thread(void *arg)
1769 {
1770 	struct cache_set *c = arg;
1771 	struct cache *ca;
1772 	unsigned i;
1773 
1774 	while (1) {
1775 again:
1776 		bch_btree_gc(c);
1777 
1778 		set_current_state(TASK_INTERRUPTIBLE);
1779 		if (kthread_should_stop())
1780 			break;
1781 
1782 		mutex_lock(&c->bucket_lock);
1783 
1784 		for_each_cache(ca, c, i)
1785 			if (ca->invalidate_needs_gc) {
1786 				mutex_unlock(&c->bucket_lock);
1787 				set_current_state(TASK_RUNNING);
1788 				goto again;
1789 			}
1790 
1791 		mutex_unlock(&c->bucket_lock);
1792 
1793 		try_to_freeze();
1794 		schedule();
1795 	}
1796 
1797 	return 0;
1798 }
1799 
bch_gc_thread_start(struct cache_set * c)1800 int bch_gc_thread_start(struct cache_set *c)
1801 {
1802 	c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
1803 	if (IS_ERR(c->gc_thread))
1804 		return PTR_ERR(c->gc_thread);
1805 
1806 	set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
1807 	return 0;
1808 }
1809 
1810 /* Initial partial gc */
1811 
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1812 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1813 {
1814 	int ret = 0;
1815 	struct bkey *k, *p = NULL;
1816 	struct btree_iter iter;
1817 
1818 	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1819 		bch_initial_mark_key(b->c, b->level, k);
1820 
1821 	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1822 
1823 	if (b->level) {
1824 		bch_btree_iter_init(&b->keys, &iter, NULL);
1825 
1826 		do {
1827 			k = bch_btree_iter_next_filter(&iter, &b->keys,
1828 						       bch_ptr_bad);
1829 			if (k)
1830 				btree_node_prefetch(b, k);
1831 
1832 			if (p)
1833 				ret = btree(check_recurse, p, b, op);
1834 
1835 			p = k;
1836 		} while (p && !ret);
1837 	}
1838 
1839 	return ret;
1840 }
1841 
bch_btree_check(struct cache_set * c)1842 int bch_btree_check(struct cache_set *c)
1843 {
1844 	struct btree_op op;
1845 
1846 	bch_btree_op_init(&op, SHRT_MAX);
1847 
1848 	return btree_root(check_recurse, c, &op);
1849 }
1850 
bch_initial_gc_finish(struct cache_set * c)1851 void bch_initial_gc_finish(struct cache_set *c)
1852 {
1853 	struct cache *ca;
1854 	struct bucket *b;
1855 	unsigned i;
1856 
1857 	bch_btree_gc_finish(c);
1858 
1859 	mutex_lock(&c->bucket_lock);
1860 
1861 	/*
1862 	 * We need to put some unused buckets directly on the prio freelist in
1863 	 * order to get the allocator thread started - it needs freed buckets in
1864 	 * order to rewrite the prios and gens, and it needs to rewrite prios
1865 	 * and gens in order to free buckets.
1866 	 *
1867 	 * This is only safe for buckets that have no live data in them, which
1868 	 * there should always be some of.
1869 	 */
1870 	for_each_cache(ca, c, i) {
1871 		for_each_bucket(b, ca) {
1872 			if (fifo_full(&ca->free[RESERVE_PRIO]))
1873 				break;
1874 
1875 			if (bch_can_invalidate_bucket(ca, b) &&
1876 			    !GC_MARK(b)) {
1877 				__bch_invalidate_one_bucket(ca, b);
1878 				fifo_push(&ca->free[RESERVE_PRIO],
1879 					  b - ca->buckets);
1880 			}
1881 		}
1882 	}
1883 
1884 	mutex_unlock(&c->bucket_lock);
1885 }
1886 
1887 /* Btree insertion */
1888 
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)1889 static bool btree_insert_key(struct btree *b, struct bkey *k,
1890 			     struct bkey *replace_key)
1891 {
1892 	unsigned status;
1893 
1894 	BUG_ON(bkey_cmp(k, &b->key) > 0);
1895 
1896 	status = bch_btree_insert_key(&b->keys, k, replace_key);
1897 	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1898 		bch_check_keys(&b->keys, "%u for %s", status,
1899 			       replace_key ? "replace" : "insert");
1900 
1901 		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1902 					      status);
1903 		return true;
1904 	} else
1905 		return false;
1906 }
1907 
insert_u64s_remaining(struct btree * b)1908 static size_t insert_u64s_remaining(struct btree *b)
1909 {
1910 	long ret = bch_btree_keys_u64s_remaining(&b->keys);
1911 
1912 	/*
1913 	 * Might land in the middle of an existing extent and have to split it
1914 	 */
1915 	if (b->keys.ops->is_extents)
1916 		ret -= KEY_MAX_U64S;
1917 
1918 	return max(ret, 0L);
1919 }
1920 
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)1921 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1922 				  struct keylist *insert_keys,
1923 				  struct bkey *replace_key)
1924 {
1925 	bool ret = false;
1926 	int oldsize = bch_count_data(&b->keys);
1927 
1928 	while (!bch_keylist_empty(insert_keys)) {
1929 		struct bkey *k = insert_keys->keys;
1930 
1931 		if (bkey_u64s(k) > insert_u64s_remaining(b))
1932 			break;
1933 
1934 		if (bkey_cmp(k, &b->key) <= 0) {
1935 			if (!b->level)
1936 				bkey_put(b->c, k);
1937 
1938 			ret |= btree_insert_key(b, k, replace_key);
1939 			bch_keylist_pop_front(insert_keys);
1940 		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1941 			BKEY_PADDED(key) temp;
1942 			bkey_copy(&temp.key, insert_keys->keys);
1943 
1944 			bch_cut_back(&b->key, &temp.key);
1945 			bch_cut_front(&b->key, insert_keys->keys);
1946 
1947 			ret |= btree_insert_key(b, &temp.key, replace_key);
1948 			break;
1949 		} else {
1950 			break;
1951 		}
1952 	}
1953 
1954 	if (!ret)
1955 		op->insert_collision = true;
1956 
1957 	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1958 
1959 	BUG_ON(bch_count_data(&b->keys) < oldsize);
1960 	return ret;
1961 }
1962 
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)1963 static int btree_split(struct btree *b, struct btree_op *op,
1964 		       struct keylist *insert_keys,
1965 		       struct bkey *replace_key)
1966 {
1967 	bool split;
1968 	struct btree *n1, *n2 = NULL, *n3 = NULL;
1969 	uint64_t start_time = local_clock();
1970 	struct closure cl;
1971 	struct keylist parent_keys;
1972 
1973 	closure_init_stack(&cl);
1974 	bch_keylist_init(&parent_keys);
1975 
1976 	if (btree_check_reserve(b, op)) {
1977 		if (!b->level)
1978 			return -EINTR;
1979 		else
1980 			WARN(1, "insufficient reserve for split\n");
1981 	}
1982 
1983 	n1 = btree_node_alloc_replacement(b, op);
1984 	if (IS_ERR(n1))
1985 		goto err;
1986 
1987 	split = set_blocks(btree_bset_first(n1),
1988 			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
1989 
1990 	if (split) {
1991 		unsigned keys = 0;
1992 
1993 		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
1994 
1995 		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1996 		if (IS_ERR(n2))
1997 			goto err_free1;
1998 
1999 		if (!b->parent) {
2000 			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2001 			if (IS_ERR(n3))
2002 				goto err_free2;
2003 		}
2004 
2005 		mutex_lock(&n1->write_lock);
2006 		mutex_lock(&n2->write_lock);
2007 
2008 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2009 
2010 		/*
2011 		 * Has to be a linear search because we don't have an auxiliary
2012 		 * search tree yet
2013 		 */
2014 
2015 		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2016 			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2017 							keys));
2018 
2019 		bkey_copy_key(&n1->key,
2020 			      bset_bkey_idx(btree_bset_first(n1), keys));
2021 		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2022 
2023 		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2024 		btree_bset_first(n1)->keys = keys;
2025 
2026 		memcpy(btree_bset_first(n2)->start,
2027 		       bset_bkey_last(btree_bset_first(n1)),
2028 		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2029 
2030 		bkey_copy_key(&n2->key, &b->key);
2031 
2032 		bch_keylist_add(&parent_keys, &n2->key);
2033 		bch_btree_node_write(n2, &cl);
2034 		mutex_unlock(&n2->write_lock);
2035 		rw_unlock(true, n2);
2036 	} else {
2037 		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2038 
2039 		mutex_lock(&n1->write_lock);
2040 		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2041 	}
2042 
2043 	bch_keylist_add(&parent_keys, &n1->key);
2044 	bch_btree_node_write(n1, &cl);
2045 	mutex_unlock(&n1->write_lock);
2046 
2047 	if (n3) {
2048 		/* Depth increases, make a new root */
2049 		mutex_lock(&n3->write_lock);
2050 		bkey_copy_key(&n3->key, &MAX_KEY);
2051 		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2052 		bch_btree_node_write(n3, &cl);
2053 		mutex_unlock(&n3->write_lock);
2054 
2055 		closure_sync(&cl);
2056 		bch_btree_set_root(n3);
2057 		rw_unlock(true, n3);
2058 	} else if (!b->parent) {
2059 		/* Root filled up but didn't need to be split */
2060 		closure_sync(&cl);
2061 		bch_btree_set_root(n1);
2062 	} else {
2063 		/* Split a non root node */
2064 		closure_sync(&cl);
2065 		make_btree_freeing_key(b, parent_keys.top);
2066 		bch_keylist_push(&parent_keys);
2067 
2068 		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2069 		BUG_ON(!bch_keylist_empty(&parent_keys));
2070 	}
2071 
2072 	btree_node_free(b);
2073 	rw_unlock(true, n1);
2074 
2075 	bch_time_stats_update(&b->c->btree_split_time, start_time);
2076 
2077 	return 0;
2078 err_free2:
2079 	bkey_put(b->c, &n2->key);
2080 	btree_node_free(n2);
2081 	rw_unlock(true, n2);
2082 err_free1:
2083 	bkey_put(b->c, &n1->key);
2084 	btree_node_free(n1);
2085 	rw_unlock(true, n1);
2086 err:
2087 	WARN(1, "bcache: btree split failed (level %u)", b->level);
2088 
2089 	if (n3 == ERR_PTR(-EAGAIN) ||
2090 	    n2 == ERR_PTR(-EAGAIN) ||
2091 	    n1 == ERR_PTR(-EAGAIN))
2092 		return -EAGAIN;
2093 
2094 	return -ENOMEM;
2095 }
2096 
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2097 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2098 				 struct keylist *insert_keys,
2099 				 atomic_t *journal_ref,
2100 				 struct bkey *replace_key)
2101 {
2102 	struct closure cl;
2103 
2104 	BUG_ON(b->level && replace_key);
2105 
2106 	closure_init_stack(&cl);
2107 
2108 	mutex_lock(&b->write_lock);
2109 
2110 	if (write_block(b) != btree_bset_last(b) &&
2111 	    b->keys.last_set_unwritten)
2112 		bch_btree_init_next(b); /* just wrote a set */
2113 
2114 	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2115 		mutex_unlock(&b->write_lock);
2116 		goto split;
2117 	}
2118 
2119 	BUG_ON(write_block(b) != btree_bset_last(b));
2120 
2121 	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2122 		if (!b->level)
2123 			bch_btree_leaf_dirty(b, journal_ref);
2124 		else
2125 			bch_btree_node_write(b, &cl);
2126 	}
2127 
2128 	mutex_unlock(&b->write_lock);
2129 
2130 	/* wait for btree node write if necessary, after unlock */
2131 	closure_sync(&cl);
2132 
2133 	return 0;
2134 split:
2135 	if (current->bio_list) {
2136 		op->lock = b->c->root->level + 1;
2137 		return -EAGAIN;
2138 	} else if (op->lock <= b->c->root->level) {
2139 		op->lock = b->c->root->level + 1;
2140 		return -EINTR;
2141 	} else {
2142 		/* Invalidated all iterators */
2143 		int ret = btree_split(b, op, insert_keys, replace_key);
2144 
2145 		if (bch_keylist_empty(insert_keys))
2146 			return 0;
2147 		else if (!ret)
2148 			return -EINTR;
2149 		return ret;
2150 	}
2151 }
2152 
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2153 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2154 			       struct bkey *check_key)
2155 {
2156 	int ret = -EINTR;
2157 	uint64_t btree_ptr = b->key.ptr[0];
2158 	unsigned long seq = b->seq;
2159 	struct keylist insert;
2160 	bool upgrade = op->lock == -1;
2161 
2162 	bch_keylist_init(&insert);
2163 
2164 	if (upgrade) {
2165 		rw_unlock(false, b);
2166 		rw_lock(true, b, b->level);
2167 
2168 		if (b->key.ptr[0] != btree_ptr ||
2169                    b->seq != seq + 1) {
2170                        op->lock = b->level;
2171 			goto out;
2172                }
2173 	}
2174 
2175 	SET_KEY_PTRS(check_key, 1);
2176 	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2177 
2178 	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2179 
2180 	bch_keylist_add(&insert, check_key);
2181 
2182 	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2183 
2184 	BUG_ON(!ret && !bch_keylist_empty(&insert));
2185 out:
2186 	if (upgrade)
2187 		downgrade_write(&b->lock);
2188 	return ret;
2189 }
2190 
2191 struct btree_insert_op {
2192 	struct btree_op	op;
2193 	struct keylist	*keys;
2194 	atomic_t	*journal_ref;
2195 	struct bkey	*replace_key;
2196 };
2197 
btree_insert_fn(struct btree_op * b_op,struct btree * b)2198 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2199 {
2200 	struct btree_insert_op *op = container_of(b_op,
2201 					struct btree_insert_op, op);
2202 
2203 	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2204 					op->journal_ref, op->replace_key);
2205 	if (ret && !bch_keylist_empty(op->keys))
2206 		return ret;
2207 	else
2208 		return MAP_DONE;
2209 }
2210 
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2211 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2212 		     atomic_t *journal_ref, struct bkey *replace_key)
2213 {
2214 	struct btree_insert_op op;
2215 	int ret = 0;
2216 
2217 	BUG_ON(current->bio_list);
2218 	BUG_ON(bch_keylist_empty(keys));
2219 
2220 	bch_btree_op_init(&op.op, 0);
2221 	op.keys		= keys;
2222 	op.journal_ref	= journal_ref;
2223 	op.replace_key	= replace_key;
2224 
2225 	while (!ret && !bch_keylist_empty(keys)) {
2226 		op.op.lock = 0;
2227 		ret = bch_btree_map_leaf_nodes(&op.op, c,
2228 					       &START_KEY(keys->keys),
2229 					       btree_insert_fn);
2230 	}
2231 
2232 	if (ret) {
2233 		struct bkey *k;
2234 
2235 		pr_err("error %i", ret);
2236 
2237 		while ((k = bch_keylist_pop(keys)))
2238 			bkey_put(c, k);
2239 	} else if (op.op.insert_collision)
2240 		ret = -ESRCH;
2241 
2242 	return ret;
2243 }
2244 
bch_btree_set_root(struct btree * b)2245 void bch_btree_set_root(struct btree *b)
2246 {
2247 	unsigned i;
2248 	struct closure cl;
2249 
2250 	closure_init_stack(&cl);
2251 
2252 	trace_bcache_btree_set_root(b);
2253 
2254 	BUG_ON(!b->written);
2255 
2256 	for (i = 0; i < KEY_PTRS(&b->key); i++)
2257 		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2258 
2259 	mutex_lock(&b->c->bucket_lock);
2260 	list_del_init(&b->list);
2261 	mutex_unlock(&b->c->bucket_lock);
2262 
2263 	b->c->root = b;
2264 
2265 	bch_journal_meta(b->c, &cl);
2266 	closure_sync(&cl);
2267 }
2268 
2269 /* Map across nodes or keys */
2270 
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2271 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2272 				       struct bkey *from,
2273 				       btree_map_nodes_fn *fn, int flags)
2274 {
2275 	int ret = MAP_CONTINUE;
2276 
2277 	if (b->level) {
2278 		struct bkey *k;
2279 		struct btree_iter iter;
2280 
2281 		bch_btree_iter_init(&b->keys, &iter, from);
2282 
2283 		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2284 						       bch_ptr_bad))) {
2285 			ret = btree(map_nodes_recurse, k, b,
2286 				    op, from, fn, flags);
2287 			from = NULL;
2288 
2289 			if (ret != MAP_CONTINUE)
2290 				return ret;
2291 		}
2292 	}
2293 
2294 	if (!b->level || flags == MAP_ALL_NODES)
2295 		ret = fn(op, b);
2296 
2297 	return ret;
2298 }
2299 
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2300 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2301 			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2302 {
2303 	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2304 }
2305 
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2306 static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2307 				      struct bkey *from, btree_map_keys_fn *fn,
2308 				      int flags)
2309 {
2310 	int ret = MAP_CONTINUE;
2311 	struct bkey *k;
2312 	struct btree_iter iter;
2313 
2314 	bch_btree_iter_init(&b->keys, &iter, from);
2315 
2316 	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2317 		ret = !b->level
2318 			? fn(op, b, k)
2319 			: btree(map_keys_recurse, k, b, op, from, fn, flags);
2320 		from = NULL;
2321 
2322 		if (ret != MAP_CONTINUE)
2323 			return ret;
2324 	}
2325 
2326 	if (!b->level && (flags & MAP_END_KEY))
2327 		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2328 				     KEY_OFFSET(&b->key), 0));
2329 
2330 	return ret;
2331 }
2332 
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2333 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2334 		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2335 {
2336 	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2337 }
2338 
2339 /* Keybuf code */
2340 
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2341 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2342 {
2343 	/* Overlapping keys compare equal */
2344 	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2345 		return -1;
2346 	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2347 		return 1;
2348 	return 0;
2349 }
2350 
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2351 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2352 					    struct keybuf_key *r)
2353 {
2354 	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2355 }
2356 
2357 struct refill {
2358 	struct btree_op	op;
2359 	unsigned	nr_found;
2360 	struct keybuf	*buf;
2361 	struct bkey	*end;
2362 	keybuf_pred_fn	*pred;
2363 };
2364 
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2365 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2366 			    struct bkey *k)
2367 {
2368 	struct refill *refill = container_of(op, struct refill, op);
2369 	struct keybuf *buf = refill->buf;
2370 	int ret = MAP_CONTINUE;
2371 
2372 	if (bkey_cmp(k, refill->end) >= 0) {
2373 		ret = MAP_DONE;
2374 		goto out;
2375 	}
2376 
2377 	if (!KEY_SIZE(k)) /* end key */
2378 		goto out;
2379 
2380 	if (refill->pred(buf, k)) {
2381 		struct keybuf_key *w;
2382 
2383 		spin_lock(&buf->lock);
2384 
2385 		w = array_alloc(&buf->freelist);
2386 		if (!w) {
2387 			spin_unlock(&buf->lock);
2388 			return MAP_DONE;
2389 		}
2390 
2391 		w->private = NULL;
2392 		bkey_copy(&w->key, k);
2393 
2394 		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2395 			array_free(&buf->freelist, w);
2396 		else
2397 			refill->nr_found++;
2398 
2399 		if (array_freelist_empty(&buf->freelist))
2400 			ret = MAP_DONE;
2401 
2402 		spin_unlock(&buf->lock);
2403 	}
2404 out:
2405 	buf->last_scanned = *k;
2406 	return ret;
2407 }
2408 
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2409 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2410 		       struct bkey *end, keybuf_pred_fn *pred)
2411 {
2412 	struct bkey start = buf->last_scanned;
2413 	struct refill refill;
2414 
2415 	cond_resched();
2416 
2417 	bch_btree_op_init(&refill.op, -1);
2418 	refill.nr_found	= 0;
2419 	refill.buf	= buf;
2420 	refill.end	= end;
2421 	refill.pred	= pred;
2422 
2423 	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2424 			   refill_keybuf_fn, MAP_END_KEY);
2425 
2426 	trace_bcache_keyscan(refill.nr_found,
2427 			     KEY_INODE(&start), KEY_OFFSET(&start),
2428 			     KEY_INODE(&buf->last_scanned),
2429 			     KEY_OFFSET(&buf->last_scanned));
2430 
2431 	spin_lock(&buf->lock);
2432 
2433 	if (!RB_EMPTY_ROOT(&buf->keys)) {
2434 		struct keybuf_key *w;
2435 		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2436 		buf->start	= START_KEY(&w->key);
2437 
2438 		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2439 		buf->end	= w->key;
2440 	} else {
2441 		buf->start	= MAX_KEY;
2442 		buf->end	= MAX_KEY;
2443 	}
2444 
2445 	spin_unlock(&buf->lock);
2446 }
2447 
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2448 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2449 {
2450 	rb_erase(&w->node, &buf->keys);
2451 	array_free(&buf->freelist, w);
2452 }
2453 
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2454 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2455 {
2456 	spin_lock(&buf->lock);
2457 	__bch_keybuf_del(buf, w);
2458 	spin_unlock(&buf->lock);
2459 }
2460 
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2461 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2462 				  struct bkey *end)
2463 {
2464 	bool ret = false;
2465 	struct keybuf_key *p, *w, s;
2466 	s.key = *start;
2467 
2468 	if (bkey_cmp(end, &buf->start) <= 0 ||
2469 	    bkey_cmp(start, &buf->end) >= 0)
2470 		return false;
2471 
2472 	spin_lock(&buf->lock);
2473 	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2474 
2475 	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2476 		p = w;
2477 		w = RB_NEXT(w, node);
2478 
2479 		if (p->private)
2480 			ret = true;
2481 		else
2482 			__bch_keybuf_del(buf, p);
2483 	}
2484 
2485 	spin_unlock(&buf->lock);
2486 	return ret;
2487 }
2488 
bch_keybuf_next(struct keybuf * buf)2489 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2490 {
2491 	struct keybuf_key *w;
2492 	spin_lock(&buf->lock);
2493 
2494 	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2495 
2496 	while (w && w->private)
2497 		w = RB_NEXT(w, node);
2498 
2499 	if (w)
2500 		w->private = ERR_PTR(-EINTR);
2501 
2502 	spin_unlock(&buf->lock);
2503 	return w;
2504 }
2505 
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2506 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2507 					  struct keybuf *buf,
2508 					  struct bkey *end,
2509 					  keybuf_pred_fn *pred)
2510 {
2511 	struct keybuf_key *ret;
2512 
2513 	while (1) {
2514 		ret = bch_keybuf_next(buf);
2515 		if (ret)
2516 			break;
2517 
2518 		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2519 			pr_debug("scan finished");
2520 			break;
2521 		}
2522 
2523 		bch_refill_keybuf(c, buf, end, pred);
2524 	}
2525 
2526 	return ret;
2527 }
2528 
bch_keybuf_init(struct keybuf * buf)2529 void bch_keybuf_init(struct keybuf *buf)
2530 {
2531 	buf->last_scanned	= MAX_KEY;
2532 	buf->keys		= RB_ROOT;
2533 
2534 	spin_lock_init(&buf->lock);
2535 	array_allocator_init(&buf->freelist);
2536 }
2537