1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18
19 #include <trace/events/bcache.h>
20
21 #define CUTOFF_CACHE_ADD 95
22 #define CUTOFF_CACHE_READA 90
23
24 struct kmem_cache *bch_search_cache;
25
26 static void bch_data_insert_start(struct closure *);
27
cache_mode(struct cached_dev * dc,struct bio * bio)28 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
29 {
30 return BDEV_CACHE_MODE(&dc->sb);
31 }
32
verify(struct cached_dev * dc,struct bio * bio)33 static bool verify(struct cached_dev *dc, struct bio *bio)
34 {
35 return dc->verify;
36 }
37
bio_csum(struct bio * bio,struct bkey * k)38 static void bio_csum(struct bio *bio, struct bkey *k)
39 {
40 struct bio_vec bv;
41 struct bvec_iter iter;
42 uint64_t csum = 0;
43
44 bio_for_each_segment(bv, bio, iter) {
45 void *d = kmap(bv.bv_page) + bv.bv_offset;
46 csum = bch_crc64_update(csum, d, bv.bv_len);
47 kunmap(bv.bv_page);
48 }
49
50 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
51 }
52
53 /* Insert data into cache */
54
bch_data_insert_keys(struct closure * cl)55 static void bch_data_insert_keys(struct closure *cl)
56 {
57 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
58 atomic_t *journal_ref = NULL;
59 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
60 int ret;
61
62 /*
63 * If we're looping, might already be waiting on
64 * another journal write - can't wait on more than one journal write at
65 * a time
66 *
67 * XXX: this looks wrong
68 */
69 #if 0
70 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
71 closure_sync(&s->cl);
72 #endif
73
74 if (!op->replace)
75 journal_ref = bch_journal(op->c, &op->insert_keys,
76 op->flush_journal ? cl : NULL);
77
78 ret = bch_btree_insert(op->c, &op->insert_keys,
79 journal_ref, replace_key);
80 if (ret == -ESRCH) {
81 op->replace_collision = true;
82 } else if (ret) {
83 op->error = -ENOMEM;
84 op->insert_data_done = true;
85 }
86
87 if (journal_ref)
88 atomic_dec_bug(journal_ref);
89
90 if (!op->insert_data_done)
91 continue_at(cl, bch_data_insert_start, op->wq);
92
93 bch_keylist_free(&op->insert_keys);
94 closure_return(cl);
95 }
96
bch_keylist_realloc(struct keylist * l,unsigned u64s,struct cache_set * c)97 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
98 struct cache_set *c)
99 {
100 size_t oldsize = bch_keylist_nkeys(l);
101 size_t newsize = oldsize + u64s;
102
103 /*
104 * The journalling code doesn't handle the case where the keys to insert
105 * is bigger than an empty write: If we just return -ENOMEM here,
106 * bio_insert() and bio_invalidate() will insert the keys created so far
107 * and finish the rest when the keylist is empty.
108 */
109 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
110 return -ENOMEM;
111
112 return __bch_keylist_realloc(l, u64s);
113 }
114
bch_data_invalidate(struct closure * cl)115 static void bch_data_invalidate(struct closure *cl)
116 {
117 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
118 struct bio *bio = op->bio;
119
120 pr_debug("invalidating %i sectors from %llu",
121 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
122
123 while (bio_sectors(bio)) {
124 unsigned sectors = min(bio_sectors(bio),
125 1U << (KEY_SIZE_BITS - 1));
126
127 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
128 goto out;
129
130 bio->bi_iter.bi_sector += sectors;
131 bio->bi_iter.bi_size -= sectors << 9;
132
133 bch_keylist_add(&op->insert_keys,
134 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
135 }
136
137 op->insert_data_done = true;
138 bio_put(bio);
139 out:
140 continue_at(cl, bch_data_insert_keys, op->wq);
141 }
142
bch_data_insert_error(struct closure * cl)143 static void bch_data_insert_error(struct closure *cl)
144 {
145 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
146
147 /*
148 * Our data write just errored, which means we've got a bunch of keys to
149 * insert that point to data that wasn't succesfully written.
150 *
151 * We don't have to insert those keys but we still have to invalidate
152 * that region of the cache - so, if we just strip off all the pointers
153 * from the keys we'll accomplish just that.
154 */
155
156 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
157
158 while (src != op->insert_keys.top) {
159 struct bkey *n = bkey_next(src);
160
161 SET_KEY_PTRS(src, 0);
162 memmove(dst, src, bkey_bytes(src));
163
164 dst = bkey_next(dst);
165 src = n;
166 }
167
168 op->insert_keys.top = dst;
169
170 bch_data_insert_keys(cl);
171 }
172
bch_data_insert_endio(struct bio * bio,int error)173 static void bch_data_insert_endio(struct bio *bio, int error)
174 {
175 struct closure *cl = bio->bi_private;
176 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
177
178 if (error) {
179 /* TODO: We could try to recover from this. */
180 if (op->writeback)
181 op->error = error;
182 else if (!op->replace)
183 set_closure_fn(cl, bch_data_insert_error, op->wq);
184 else
185 set_closure_fn(cl, NULL, NULL);
186 }
187
188 bch_bbio_endio(op->c, bio, error, "writing data to cache");
189 }
190
bch_data_insert_start(struct closure * cl)191 static void bch_data_insert_start(struct closure *cl)
192 {
193 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
194 struct bio *bio = op->bio, *n;
195
196 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
197 set_gc_sectors(op->c);
198 wake_up_gc(op->c);
199 }
200
201 if (op->bypass)
202 return bch_data_invalidate(cl);
203
204 /*
205 * Journal writes are marked REQ_FLUSH; if the original write was a
206 * flush, it'll wait on the journal write.
207 */
208 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
209
210 do {
211 unsigned i;
212 struct bkey *k;
213 struct bio_set *split = op->c->bio_split;
214
215 /* 1 for the device pointer and 1 for the chksum */
216 if (bch_keylist_realloc(&op->insert_keys,
217 3 + (op->csum ? 1 : 0),
218 op->c))
219 continue_at(cl, bch_data_insert_keys, op->wq);
220
221 k = op->insert_keys.top;
222 bkey_init(k);
223 SET_KEY_INODE(k, op->inode);
224 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
225
226 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
227 op->write_point, op->write_prio,
228 op->writeback))
229 goto err;
230
231 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
232
233 n->bi_end_io = bch_data_insert_endio;
234 n->bi_private = cl;
235
236 if (op->writeback) {
237 SET_KEY_DIRTY(k, true);
238
239 for (i = 0; i < KEY_PTRS(k); i++)
240 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
241 GC_MARK_DIRTY);
242 }
243
244 SET_KEY_CSUM(k, op->csum);
245 if (KEY_CSUM(k))
246 bio_csum(n, k);
247
248 trace_bcache_cache_insert(k);
249 bch_keylist_push(&op->insert_keys);
250
251 n->bi_rw |= REQ_WRITE;
252 bch_submit_bbio(n, op->c, k, 0);
253 } while (n != bio);
254
255 op->insert_data_done = true;
256 continue_at(cl, bch_data_insert_keys, op->wq);
257 err:
258 /* bch_alloc_sectors() blocks if s->writeback = true */
259 BUG_ON(op->writeback);
260
261 /*
262 * But if it's not a writeback write we'd rather just bail out if
263 * there aren't any buckets ready to write to - it might take awhile and
264 * we might be starving btree writes for gc or something.
265 */
266
267 if (!op->replace) {
268 /*
269 * Writethrough write: We can't complete the write until we've
270 * updated the index. But we don't want to delay the write while
271 * we wait for buckets to be freed up, so just invalidate the
272 * rest of the write.
273 */
274 op->bypass = true;
275 return bch_data_invalidate(cl);
276 } else {
277 /*
278 * From a cache miss, we can just insert the keys for the data
279 * we have written or bail out if we didn't do anything.
280 */
281 op->insert_data_done = true;
282 bio_put(bio);
283
284 if (!bch_keylist_empty(&op->insert_keys))
285 continue_at(cl, bch_data_insert_keys, op->wq);
286 else
287 closure_return(cl);
288 }
289 }
290
291 /**
292 * bch_data_insert - stick some data in the cache
293 *
294 * This is the starting point for any data to end up in a cache device; it could
295 * be from a normal write, or a writeback write, or a write to a flash only
296 * volume - it's also used by the moving garbage collector to compact data in
297 * mostly empty buckets.
298 *
299 * It first writes the data to the cache, creating a list of keys to be inserted
300 * (if the data had to be fragmented there will be multiple keys); after the
301 * data is written it calls bch_journal, and after the keys have been added to
302 * the next journal write they're inserted into the btree.
303 *
304 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
305 * and op->inode is used for the key inode.
306 *
307 * If s->bypass is true, instead of inserting the data it invalidates the
308 * region of the cache represented by s->cache_bio and op->inode.
309 */
bch_data_insert(struct closure * cl)310 void bch_data_insert(struct closure *cl)
311 {
312 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
313
314 trace_bcache_write(op->c, op->inode, op->bio,
315 op->writeback, op->bypass);
316
317 bch_keylist_init(&op->insert_keys);
318 bio_get(op->bio);
319 bch_data_insert_start(cl);
320 }
321
322 /* Congested? */
323
bch_get_congested(struct cache_set * c)324 unsigned bch_get_congested(struct cache_set *c)
325 {
326 int i;
327 long rand;
328
329 if (!c->congested_read_threshold_us &&
330 !c->congested_write_threshold_us)
331 return 0;
332
333 i = (local_clock_us() - c->congested_last_us) / 1024;
334 if (i < 0)
335 return 0;
336
337 i += atomic_read(&c->congested);
338 if (i >= 0)
339 return 0;
340
341 i += CONGESTED_MAX;
342
343 if (i > 0)
344 i = fract_exp_two(i, 6);
345
346 rand = get_random_int();
347 i -= bitmap_weight(&rand, BITS_PER_LONG);
348
349 return i > 0 ? i : 1;
350 }
351
add_sequential(struct task_struct * t)352 static void add_sequential(struct task_struct *t)
353 {
354 ewma_add(t->sequential_io_avg,
355 t->sequential_io, 8, 0);
356
357 t->sequential_io = 0;
358 }
359
iohash(struct cached_dev * dc,uint64_t k)360 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
361 {
362 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
363 }
364
check_should_bypass(struct cached_dev * dc,struct bio * bio)365 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
366 {
367 struct cache_set *c = dc->disk.c;
368 unsigned mode = cache_mode(dc, bio);
369 unsigned sectors, congested = bch_get_congested(c);
370 struct task_struct *task = current;
371 struct io *i;
372
373 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
374 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
375 (bio->bi_rw & REQ_DISCARD))
376 goto skip;
377
378 if (mode == CACHE_MODE_NONE ||
379 (mode == CACHE_MODE_WRITEAROUND &&
380 (bio->bi_rw & REQ_WRITE)))
381 goto skip;
382
383 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
384 bio_sectors(bio) & (c->sb.block_size - 1)) {
385 pr_debug("skipping unaligned io");
386 goto skip;
387 }
388
389 if (bypass_torture_test(dc)) {
390 if ((get_random_int() & 3) == 3)
391 goto skip;
392 else
393 goto rescale;
394 }
395
396 if (!congested && !dc->sequential_cutoff)
397 goto rescale;
398
399 if (!congested &&
400 mode == CACHE_MODE_WRITEBACK &&
401 (bio->bi_rw & REQ_WRITE) &&
402 (bio->bi_rw & REQ_SYNC))
403 goto rescale;
404
405 spin_lock(&dc->io_lock);
406
407 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
408 if (i->last == bio->bi_iter.bi_sector &&
409 time_before(jiffies, i->jiffies))
410 goto found;
411
412 i = list_first_entry(&dc->io_lru, struct io, lru);
413
414 add_sequential(task);
415 i->sequential = 0;
416 found:
417 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
418 i->sequential += bio->bi_iter.bi_size;
419
420 i->last = bio_end_sector(bio);
421 i->jiffies = jiffies + msecs_to_jiffies(5000);
422 task->sequential_io = i->sequential;
423
424 hlist_del(&i->hash);
425 hlist_add_head(&i->hash, iohash(dc, i->last));
426 list_move_tail(&i->lru, &dc->io_lru);
427
428 spin_unlock(&dc->io_lock);
429
430 sectors = max(task->sequential_io,
431 task->sequential_io_avg) >> 9;
432
433 if (dc->sequential_cutoff &&
434 sectors >= dc->sequential_cutoff >> 9) {
435 trace_bcache_bypass_sequential(bio);
436 goto skip;
437 }
438
439 if (congested && sectors >= congested) {
440 trace_bcache_bypass_congested(bio);
441 goto skip;
442 }
443
444 rescale:
445 bch_rescale_priorities(c, bio_sectors(bio));
446 return false;
447 skip:
448 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
449 return true;
450 }
451
452 /* Cache lookup */
453
454 struct search {
455 /* Stack frame for bio_complete */
456 struct closure cl;
457
458 struct bbio bio;
459 struct bio *orig_bio;
460 struct bio *cache_miss;
461 struct bcache_device *d;
462
463 unsigned insert_bio_sectors;
464 unsigned recoverable:1;
465 unsigned write:1;
466 unsigned read_dirty_data:1;
467 unsigned cache_missed:1;
468
469 unsigned long start_time;
470
471 struct btree_op op;
472 struct data_insert_op iop;
473 };
474
bch_cache_read_endio(struct bio * bio,int error)475 static void bch_cache_read_endio(struct bio *bio, int error)
476 {
477 struct bbio *b = container_of(bio, struct bbio, bio);
478 struct closure *cl = bio->bi_private;
479 struct search *s = container_of(cl, struct search, cl);
480
481 /*
482 * If the bucket was reused while our bio was in flight, we might have
483 * read the wrong data. Set s->error but not error so it doesn't get
484 * counted against the cache device, but we'll still reread the data
485 * from the backing device.
486 */
487
488 if (error)
489 s->iop.error = error;
490 else if (!KEY_DIRTY(&b->key) &&
491 ptr_stale(s->iop.c, &b->key, 0)) {
492 atomic_long_inc(&s->iop.c->cache_read_races);
493 s->iop.error = -EINTR;
494 }
495
496 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
497 }
498
499 /*
500 * Read from a single key, handling the initial cache miss if the key starts in
501 * the middle of the bio
502 */
cache_lookup_fn(struct btree_op * op,struct btree * b,struct bkey * k)503 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
504 {
505 struct search *s = container_of(op, struct search, op);
506 struct bio *n, *bio = &s->bio.bio;
507 struct bkey *bio_key;
508 unsigned ptr;
509
510 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
511 return MAP_CONTINUE;
512
513 if (KEY_INODE(k) != s->iop.inode ||
514 KEY_START(k) > bio->bi_iter.bi_sector) {
515 unsigned bio_sectors = bio_sectors(bio);
516 unsigned sectors = KEY_INODE(k) == s->iop.inode
517 ? min_t(uint64_t, INT_MAX,
518 KEY_START(k) - bio->bi_iter.bi_sector)
519 : INT_MAX;
520
521 int ret = s->d->cache_miss(b, s, bio, sectors);
522 if (ret != MAP_CONTINUE)
523 return ret;
524
525 /* if this was a complete miss we shouldn't get here */
526 BUG_ON(bio_sectors <= sectors);
527 }
528
529 if (!KEY_SIZE(k))
530 return MAP_CONTINUE;
531
532 /* XXX: figure out best pointer - for multiple cache devices */
533 ptr = 0;
534
535 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
536
537 if (KEY_DIRTY(k))
538 s->read_dirty_data = true;
539
540 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
541 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
542 GFP_NOIO, s->d->bio_split);
543
544 bio_key = &container_of(n, struct bbio, bio)->key;
545 bch_bkey_copy_single_ptr(bio_key, k, ptr);
546
547 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
548 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
549
550 n->bi_end_io = bch_cache_read_endio;
551 n->bi_private = &s->cl;
552
553 /*
554 * The bucket we're reading from might be reused while our bio
555 * is in flight, and we could then end up reading the wrong
556 * data.
557 *
558 * We guard against this by checking (in cache_read_endio()) if
559 * the pointer is stale again; if so, we treat it as an error
560 * and reread from the backing device (but we don't pass that
561 * error up anywhere).
562 */
563
564 __bch_submit_bbio(n, b->c);
565 return n == bio ? MAP_DONE : MAP_CONTINUE;
566 }
567
cache_lookup(struct closure * cl)568 static void cache_lookup(struct closure *cl)
569 {
570 struct search *s = container_of(cl, struct search, iop.cl);
571 struct bio *bio = &s->bio.bio;
572 int ret;
573
574 bch_btree_op_init(&s->op, -1);
575
576 ret = bch_btree_map_keys(&s->op, s->iop.c,
577 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
578 cache_lookup_fn, MAP_END_KEY);
579 if (ret == -EAGAIN)
580 continue_at(cl, cache_lookup, bcache_wq);
581
582 closure_return(cl);
583 }
584
585 /* Common code for the make_request functions */
586
request_endio(struct bio * bio,int error)587 static void request_endio(struct bio *bio, int error)
588 {
589 struct closure *cl = bio->bi_private;
590
591 if (error) {
592 struct search *s = container_of(cl, struct search, cl);
593 s->iop.error = error;
594 /* Only cache read errors are recoverable */
595 s->recoverable = false;
596 }
597
598 bio_put(bio);
599 closure_put(cl);
600 }
601
bio_complete(struct search * s)602 static void bio_complete(struct search *s)
603 {
604 if (s->orig_bio) {
605 int cpu, rw = bio_data_dir(s->orig_bio);
606 unsigned long duration = jiffies - s->start_time;
607
608 cpu = part_stat_lock();
609 part_round_stats(cpu, &s->d->disk->part0);
610 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
611 part_stat_unlock();
612
613 trace_bcache_request_end(s->d, s->orig_bio);
614 bio_endio(s->orig_bio, s->iop.error);
615 s->orig_bio = NULL;
616 }
617 }
618
do_bio_hook(struct search * s,struct bio * orig_bio)619 static void do_bio_hook(struct search *s, struct bio *orig_bio)
620 {
621 struct bio *bio = &s->bio.bio;
622
623 bio_init(bio);
624 __bio_clone_fast(bio, orig_bio);
625 bio->bi_end_io = request_endio;
626 bio->bi_private = &s->cl;
627
628 atomic_set(&bio->bi_cnt, 3);
629 }
630
search_free(struct closure * cl)631 static void search_free(struct closure *cl)
632 {
633 struct search *s = container_of(cl, struct search, cl);
634 bio_complete(s);
635
636 if (s->iop.bio)
637 bio_put(s->iop.bio);
638
639 closure_debug_destroy(cl);
640 mempool_free(s, s->d->c->search);
641 }
642
search_alloc(struct bio * bio,struct bcache_device * d)643 static inline struct search *search_alloc(struct bio *bio,
644 struct bcache_device *d)
645 {
646 struct search *s;
647
648 s = mempool_alloc(d->c->search, GFP_NOIO);
649
650 closure_init(&s->cl, NULL);
651 do_bio_hook(s, bio);
652
653 s->orig_bio = bio;
654 s->cache_miss = NULL;
655 s->cache_missed = 0;
656 s->d = d;
657 s->recoverable = 1;
658 s->write = (bio->bi_rw & REQ_WRITE) != 0;
659 s->read_dirty_data = 0;
660 s->start_time = jiffies;
661
662 s->iop.c = d->c;
663 s->iop.bio = NULL;
664 s->iop.inode = d->id;
665 s->iop.write_point = hash_long((unsigned long) current, 16);
666 s->iop.write_prio = 0;
667 s->iop.error = 0;
668 s->iop.flags = 0;
669 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
670 s->iop.wq = bcache_wq;
671
672 return s;
673 }
674
675 /* Cached devices */
676
cached_dev_bio_complete(struct closure * cl)677 static void cached_dev_bio_complete(struct closure *cl)
678 {
679 struct search *s = container_of(cl, struct search, cl);
680 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
681
682 search_free(cl);
683 cached_dev_put(dc);
684 }
685
686 /* Process reads */
687
cached_dev_cache_miss_done(struct closure * cl)688 static void cached_dev_cache_miss_done(struct closure *cl)
689 {
690 struct search *s = container_of(cl, struct search, cl);
691
692 if (s->iop.replace_collision)
693 bch_mark_cache_miss_collision(s->iop.c, s->d);
694
695 if (s->iop.bio) {
696 int i;
697 struct bio_vec *bv;
698
699 bio_for_each_segment_all(bv, s->iop.bio, i)
700 __free_page(bv->bv_page);
701 }
702
703 cached_dev_bio_complete(cl);
704 }
705
cached_dev_read_error(struct closure * cl)706 static void cached_dev_read_error(struct closure *cl)
707 {
708 struct search *s = container_of(cl, struct search, cl);
709 struct bio *bio = &s->bio.bio;
710
711 /*
712 * If read request hit dirty data (s->read_dirty_data is true),
713 * then recovery a failed read request from cached device may
714 * get a stale data back. So read failure recovery is only
715 * permitted when read request hit clean data in cache device,
716 * or when cache read race happened.
717 */
718 if (s->recoverable && !s->read_dirty_data) {
719 /* Retry from the backing device: */
720 trace_bcache_read_retry(s->orig_bio);
721
722 s->iop.error = 0;
723 do_bio_hook(s, s->orig_bio);
724
725 /* XXX: invalidate cache */
726
727 closure_bio_submit(bio, cl, s->d);
728 }
729
730 continue_at(cl, cached_dev_cache_miss_done, NULL);
731 }
732
cached_dev_read_done(struct closure * cl)733 static void cached_dev_read_done(struct closure *cl)
734 {
735 struct search *s = container_of(cl, struct search, cl);
736 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
737
738 /*
739 * We had a cache miss; cache_bio now contains data ready to be inserted
740 * into the cache.
741 *
742 * First, we copy the data we just read from cache_bio's bounce buffers
743 * to the buffers the original bio pointed to:
744 */
745
746 if (s->iop.bio) {
747 bio_reset(s->iop.bio);
748 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
749 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
750 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
751 bch_bio_map(s->iop.bio, NULL);
752
753 bio_copy_data(s->cache_miss, s->iop.bio);
754
755 bio_put(s->cache_miss);
756 s->cache_miss = NULL;
757 }
758
759 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
760 bch_data_verify(dc, s->orig_bio);
761
762 bio_complete(s);
763
764 if (s->iop.bio &&
765 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
766 BUG_ON(!s->iop.replace);
767 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
768 }
769
770 continue_at(cl, cached_dev_cache_miss_done, NULL);
771 }
772
cached_dev_read_done_bh(struct closure * cl)773 static void cached_dev_read_done_bh(struct closure *cl)
774 {
775 struct search *s = container_of(cl, struct search, cl);
776 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
777
778 bch_mark_cache_accounting(s->iop.c, s->d,
779 !s->cache_missed, s->iop.bypass);
780 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
781
782 if (s->iop.error)
783 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
784 else if (s->iop.bio || verify(dc, &s->bio.bio))
785 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
786 else
787 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
788 }
789
cached_dev_cache_miss(struct btree * b,struct search * s,struct bio * bio,unsigned sectors)790 static int cached_dev_cache_miss(struct btree *b, struct search *s,
791 struct bio *bio, unsigned sectors)
792 {
793 int ret = MAP_CONTINUE;
794 unsigned reada = 0;
795 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
796 struct bio *miss, *cache_bio;
797
798 s->cache_missed = 1;
799
800 if (s->cache_miss || s->iop.bypass) {
801 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
802 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
803 goto out_submit;
804 }
805
806 if (!(bio->bi_rw & REQ_RAHEAD) &&
807 !(bio->bi_rw & REQ_META) &&
808 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
809 reada = min_t(sector_t, dc->readahead >> 9,
810 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
811
812 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
813
814 s->iop.replace_key = KEY(s->iop.inode,
815 bio->bi_iter.bi_sector + s->insert_bio_sectors,
816 s->insert_bio_sectors);
817
818 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
819 if (ret)
820 return ret;
821
822 s->iop.replace = true;
823
824 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
825
826 /* btree_search_recurse()'s btree iterator is no good anymore */
827 ret = miss == bio ? MAP_DONE : -EINTR;
828
829 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
830 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
831 dc->disk.bio_split);
832 if (!cache_bio)
833 goto out_submit;
834
835 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
836 cache_bio->bi_bdev = miss->bi_bdev;
837 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
838
839 cache_bio->bi_end_io = request_endio;
840 cache_bio->bi_private = &s->cl;
841
842 bch_bio_map(cache_bio, NULL);
843 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
844 goto out_put;
845
846 if (reada)
847 bch_mark_cache_readahead(s->iop.c, s->d);
848
849 s->cache_miss = miss;
850 s->iop.bio = cache_bio;
851 bio_get(cache_bio);
852 closure_bio_submit(cache_bio, &s->cl, s->d);
853
854 return ret;
855 out_put:
856 bio_put(cache_bio);
857 out_submit:
858 miss->bi_end_io = request_endio;
859 miss->bi_private = &s->cl;
860 closure_bio_submit(miss, &s->cl, s->d);
861 return ret;
862 }
863
cached_dev_read(struct cached_dev * dc,struct search * s)864 static void cached_dev_read(struct cached_dev *dc, struct search *s)
865 {
866 struct closure *cl = &s->cl;
867
868 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
869 continue_at(cl, cached_dev_read_done_bh, NULL);
870 }
871
872 /* Process writes */
873
cached_dev_write_complete(struct closure * cl)874 static void cached_dev_write_complete(struct closure *cl)
875 {
876 struct search *s = container_of(cl, struct search, cl);
877 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
878
879 up_read_non_owner(&dc->writeback_lock);
880 cached_dev_bio_complete(cl);
881 }
882
cached_dev_write(struct cached_dev * dc,struct search * s)883 static void cached_dev_write(struct cached_dev *dc, struct search *s)
884 {
885 struct closure *cl = &s->cl;
886 struct bio *bio = &s->bio.bio;
887 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
888 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
889
890 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
891
892 down_read_non_owner(&dc->writeback_lock);
893 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
894 /*
895 * We overlap with some dirty data undergoing background
896 * writeback, force this write to writeback
897 */
898 s->iop.bypass = false;
899 s->iop.writeback = true;
900 }
901
902 /*
903 * Discards aren't _required_ to do anything, so skipping if
904 * check_overlapping returned true is ok
905 *
906 * But check_overlapping drops dirty keys for which io hasn't started,
907 * so we still want to call it.
908 */
909 if (bio->bi_rw & REQ_DISCARD)
910 s->iop.bypass = true;
911
912 if (should_writeback(dc, s->orig_bio,
913 cache_mode(dc, bio),
914 s->iop.bypass)) {
915 s->iop.bypass = false;
916 s->iop.writeback = true;
917 }
918
919 if (s->iop.bypass) {
920 s->iop.bio = s->orig_bio;
921 bio_get(s->iop.bio);
922
923 if (!(bio->bi_rw & REQ_DISCARD) ||
924 blk_queue_discard(bdev_get_queue(dc->bdev)))
925 closure_bio_submit(bio, cl, s->d);
926 } else if (s->iop.writeback) {
927 bch_writeback_add(dc);
928 s->iop.bio = bio;
929
930 if (bio->bi_rw & REQ_FLUSH) {
931 /* Also need to send a flush to the backing device */
932 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
933 dc->disk.bio_split);
934
935 flush->bi_rw = WRITE_FLUSH;
936 flush->bi_bdev = bio->bi_bdev;
937 flush->bi_end_io = request_endio;
938 flush->bi_private = cl;
939
940 closure_bio_submit(flush, cl, s->d);
941 }
942 } else {
943 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
944
945 closure_bio_submit(bio, cl, s->d);
946 }
947
948 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
949 continue_at(cl, cached_dev_write_complete, NULL);
950 }
951
cached_dev_nodata(struct closure * cl)952 static void cached_dev_nodata(struct closure *cl)
953 {
954 struct search *s = container_of(cl, struct search, cl);
955 struct bio *bio = &s->bio.bio;
956
957 if (s->iop.flush_journal)
958 bch_journal_meta(s->iop.c, cl);
959
960 /* If it's a flush, we send the flush to the backing device too */
961 closure_bio_submit(bio, cl, s->d);
962
963 continue_at(cl, cached_dev_bio_complete, NULL);
964 }
965
966 /* Cached devices - read & write stuff */
967
cached_dev_make_request(struct request_queue * q,struct bio * bio)968 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
969 {
970 struct search *s;
971 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
972 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
973 int cpu, rw = bio_data_dir(bio);
974
975 cpu = part_stat_lock();
976 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
977 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
978 part_stat_unlock();
979
980 bio->bi_bdev = dc->bdev;
981 bio->bi_iter.bi_sector += dc->sb.data_offset;
982
983 if (cached_dev_get(dc)) {
984 s = search_alloc(bio, d);
985 trace_bcache_request_start(s->d, bio);
986
987 if (!bio->bi_iter.bi_size) {
988 /*
989 * can't call bch_journal_meta from under
990 * generic_make_request
991 */
992 continue_at_nobarrier(&s->cl,
993 cached_dev_nodata,
994 bcache_wq);
995 } else {
996 s->iop.bypass = check_should_bypass(dc, bio);
997
998 if (rw)
999 cached_dev_write(dc, s);
1000 else
1001 cached_dev_read(dc, s);
1002 }
1003 } else {
1004 if ((bio->bi_rw & REQ_DISCARD) &&
1005 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1006 bio_endio(bio, 0);
1007 else
1008 bch_generic_make_request(bio, &d->bio_split_hook);
1009 }
1010 }
1011
cached_dev_ioctl(struct bcache_device * d,fmode_t mode,unsigned int cmd,unsigned long arg)1012 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1013 unsigned int cmd, unsigned long arg)
1014 {
1015 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1016 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1017 }
1018
cached_dev_congested(void * data,int bits)1019 static int cached_dev_congested(void *data, int bits)
1020 {
1021 struct bcache_device *d = data;
1022 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1023 struct request_queue *q = bdev_get_queue(dc->bdev);
1024 int ret = 0;
1025
1026 if (bdi_congested(&q->backing_dev_info, bits))
1027 return 1;
1028
1029 if (cached_dev_get(dc)) {
1030 unsigned i;
1031 struct cache *ca;
1032
1033 for_each_cache(ca, d->c, i) {
1034 q = bdev_get_queue(ca->bdev);
1035 ret |= bdi_congested(&q->backing_dev_info, bits);
1036 }
1037
1038 cached_dev_put(dc);
1039 }
1040
1041 return ret;
1042 }
1043
bch_cached_dev_request_init(struct cached_dev * dc)1044 void bch_cached_dev_request_init(struct cached_dev *dc)
1045 {
1046 struct gendisk *g = dc->disk.disk;
1047
1048 g->queue->make_request_fn = cached_dev_make_request;
1049 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1050 dc->disk.cache_miss = cached_dev_cache_miss;
1051 dc->disk.ioctl = cached_dev_ioctl;
1052 }
1053
1054 /* Flash backed devices */
1055
flash_dev_cache_miss(struct btree * b,struct search * s,struct bio * bio,unsigned sectors)1056 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1057 struct bio *bio, unsigned sectors)
1058 {
1059 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1060
1061 swap(bio->bi_iter.bi_size, bytes);
1062 zero_fill_bio(bio);
1063 swap(bio->bi_iter.bi_size, bytes);
1064
1065 bio_advance(bio, bytes);
1066
1067 if (!bio->bi_iter.bi_size)
1068 return MAP_DONE;
1069
1070 return MAP_CONTINUE;
1071 }
1072
flash_dev_nodata(struct closure * cl)1073 static void flash_dev_nodata(struct closure *cl)
1074 {
1075 struct search *s = container_of(cl, struct search, cl);
1076
1077 if (s->iop.flush_journal)
1078 bch_journal_meta(s->iop.c, cl);
1079
1080 continue_at(cl, search_free, NULL);
1081 }
1082
flash_dev_make_request(struct request_queue * q,struct bio * bio)1083 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1084 {
1085 struct search *s;
1086 struct closure *cl;
1087 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1088 int cpu, rw = bio_data_dir(bio);
1089
1090 cpu = part_stat_lock();
1091 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1092 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1093 part_stat_unlock();
1094
1095 s = search_alloc(bio, d);
1096 cl = &s->cl;
1097 bio = &s->bio.bio;
1098
1099 trace_bcache_request_start(s->d, bio);
1100
1101 if (!bio->bi_iter.bi_size) {
1102 /*
1103 * can't call bch_journal_meta from under
1104 * generic_make_request
1105 */
1106 continue_at_nobarrier(&s->cl,
1107 flash_dev_nodata,
1108 bcache_wq);
1109 } else if (rw) {
1110 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1111 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1112 &KEY(d->id, bio_end_sector(bio), 0));
1113
1114 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1115 s->iop.writeback = true;
1116 s->iop.bio = bio;
1117
1118 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1119 } else {
1120 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1121 }
1122
1123 continue_at(cl, search_free, NULL);
1124 }
1125
flash_dev_ioctl(struct bcache_device * d,fmode_t mode,unsigned int cmd,unsigned long arg)1126 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1127 unsigned int cmd, unsigned long arg)
1128 {
1129 return -ENOTTY;
1130 }
1131
flash_dev_congested(void * data,int bits)1132 static int flash_dev_congested(void *data, int bits)
1133 {
1134 struct bcache_device *d = data;
1135 struct request_queue *q;
1136 struct cache *ca;
1137 unsigned i;
1138 int ret = 0;
1139
1140 for_each_cache(ca, d->c, i) {
1141 q = bdev_get_queue(ca->bdev);
1142 ret |= bdi_congested(&q->backing_dev_info, bits);
1143 }
1144
1145 return ret;
1146 }
1147
bch_flash_dev_request_init(struct bcache_device * d)1148 void bch_flash_dev_request_init(struct bcache_device *d)
1149 {
1150 struct gendisk *g = d->disk;
1151
1152 g->queue->make_request_fn = flash_dev_make_request;
1153 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1154 d->cache_miss = flash_dev_cache_miss;
1155 d->ioctl = flash_dev_ioctl;
1156 }
1157
bch_request_exit(void)1158 void bch_request_exit(void)
1159 {
1160 if (bch_search_cache)
1161 kmem_cache_destroy(bch_search_cache);
1162 }
1163
bch_request_init(void)1164 int __init bch_request_init(void)
1165 {
1166 bch_search_cache = KMEM_CACHE(search, 0);
1167 if (!bch_search_cache)
1168 return -ENOMEM;
1169
1170 return 0;
1171 }
1172