1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 "default",
43 "writethrough",
44 "writeback",
45 "writearound",
46 "none",
47 NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
61
bio_split_pool_free(struct bio_split_pool * p)62 static void bio_split_pool_free(struct bio_split_pool *p)
63 {
64 if (p->bio_split_hook)
65 mempool_destroy(p->bio_split_hook);
66
67 if (p->bio_split)
68 bioset_free(p->bio_split);
69 }
70
bio_split_pool_init(struct bio_split_pool * p)71 static int bio_split_pool_init(struct bio_split_pool *p)
72 {
73 p->bio_split = bioset_create(4, 0);
74 if (!p->bio_split)
75 return -ENOMEM;
76
77 p->bio_split_hook = mempool_create_kmalloc_pool(4,
78 sizeof(struct bio_split_hook));
79 if (!p->bio_split_hook)
80 return -ENOMEM;
81
82 return 0;
83 }
84
85 /* Superblock */
86
read_super(struct cache_sb * sb,struct block_device * bdev,struct page ** res)87 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
88 struct page **res)
89 {
90 const char *err;
91 struct cache_sb *s;
92 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
93 unsigned i;
94
95 if (!bh)
96 return "IO error";
97
98 s = (struct cache_sb *) bh->b_data;
99
100 sb->offset = le64_to_cpu(s->offset);
101 sb->version = le64_to_cpu(s->version);
102
103 memcpy(sb->magic, s->magic, 16);
104 memcpy(sb->uuid, s->uuid, 16);
105 memcpy(sb->set_uuid, s->set_uuid, 16);
106 memcpy(sb->label, s->label, SB_LABEL_SIZE);
107
108 sb->flags = le64_to_cpu(s->flags);
109 sb->seq = le64_to_cpu(s->seq);
110 sb->last_mount = le32_to_cpu(s->last_mount);
111 sb->first_bucket = le16_to_cpu(s->first_bucket);
112 sb->keys = le16_to_cpu(s->keys);
113
114 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
115 sb->d[i] = le64_to_cpu(s->d[i]);
116
117 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
118 sb->version, sb->flags, sb->seq, sb->keys);
119
120 err = "Not a bcache superblock";
121 if (sb->offset != SB_SECTOR)
122 goto err;
123
124 if (memcmp(sb->magic, bcache_magic, 16))
125 goto err;
126
127 err = "Too many journal buckets";
128 if (sb->keys > SB_JOURNAL_BUCKETS)
129 goto err;
130
131 err = "Bad checksum";
132 if (s->csum != csum_set(s))
133 goto err;
134
135 err = "Bad UUID";
136 if (bch_is_zero(sb->uuid, 16))
137 goto err;
138
139 sb->block_size = le16_to_cpu(s->block_size);
140
141 err = "Superblock block size smaller than device block size";
142 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
143 goto err;
144
145 switch (sb->version) {
146 case BCACHE_SB_VERSION_BDEV:
147 sb->data_offset = BDEV_DATA_START_DEFAULT;
148 break;
149 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
150 sb->data_offset = le64_to_cpu(s->data_offset);
151
152 err = "Bad data offset";
153 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
154 goto err;
155
156 break;
157 case BCACHE_SB_VERSION_CDEV:
158 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
159 sb->nbuckets = le64_to_cpu(s->nbuckets);
160 sb->block_size = le16_to_cpu(s->block_size);
161 sb->bucket_size = le16_to_cpu(s->bucket_size);
162
163 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
164 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
165
166 err = "Too many buckets";
167 if (sb->nbuckets > LONG_MAX)
168 goto err;
169
170 err = "Not enough buckets";
171 if (sb->nbuckets < 1 << 7)
172 goto err;
173
174 err = "Bad block/bucket size";
175 if (!is_power_of_2(sb->block_size) ||
176 sb->block_size > PAGE_SECTORS ||
177 !is_power_of_2(sb->bucket_size) ||
178 sb->bucket_size < PAGE_SECTORS)
179 goto err;
180
181 err = "Invalid superblock: device too small";
182 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
183 goto err;
184
185 err = "Bad UUID";
186 if (bch_is_zero(sb->set_uuid, 16))
187 goto err;
188
189 err = "Bad cache device number in set";
190 if (!sb->nr_in_set ||
191 sb->nr_in_set <= sb->nr_this_dev ||
192 sb->nr_in_set > MAX_CACHES_PER_SET)
193 goto err;
194
195 err = "Journal buckets not sequential";
196 for (i = 0; i < sb->keys; i++)
197 if (sb->d[i] != sb->first_bucket + i)
198 goto err;
199
200 err = "Too many journal buckets";
201 if (sb->first_bucket + sb->keys > sb->nbuckets)
202 goto err;
203
204 err = "Invalid superblock: first bucket comes before end of super";
205 if (sb->first_bucket * sb->bucket_size < 16)
206 goto err;
207
208 break;
209 default:
210 err = "Unsupported superblock version";
211 goto err;
212 }
213
214 sb->last_mount = get_seconds();
215 err = NULL;
216
217 get_page(bh->b_page);
218 *res = bh->b_page;
219 err:
220 put_bh(bh);
221 return err;
222 }
223
write_bdev_super_endio(struct bio * bio,int error)224 static void write_bdev_super_endio(struct bio *bio, int error)
225 {
226 struct cached_dev *dc = bio->bi_private;
227 /* XXX: error checking */
228
229 closure_put(&dc->sb_write);
230 }
231
__write_super(struct cache_sb * sb,struct bio * bio)232 static void __write_super(struct cache_sb *sb, struct bio *bio)
233 {
234 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
235 unsigned i;
236
237 bio->bi_iter.bi_sector = SB_SECTOR;
238 bio->bi_rw = REQ_SYNC|REQ_META;
239 bio->bi_iter.bi_size = SB_SIZE;
240 bch_bio_map(bio, NULL);
241
242 out->offset = cpu_to_le64(sb->offset);
243 out->version = cpu_to_le64(sb->version);
244
245 memcpy(out->uuid, sb->uuid, 16);
246 memcpy(out->set_uuid, sb->set_uuid, 16);
247 memcpy(out->label, sb->label, SB_LABEL_SIZE);
248
249 out->flags = cpu_to_le64(sb->flags);
250 out->seq = cpu_to_le64(sb->seq);
251
252 out->last_mount = cpu_to_le32(sb->last_mount);
253 out->first_bucket = cpu_to_le16(sb->first_bucket);
254 out->keys = cpu_to_le16(sb->keys);
255
256 for (i = 0; i < sb->keys; i++)
257 out->d[i] = cpu_to_le64(sb->d[i]);
258
259 out->csum = csum_set(out);
260
261 pr_debug("ver %llu, flags %llu, seq %llu",
262 sb->version, sb->flags, sb->seq);
263
264 submit_bio(REQ_WRITE, bio);
265 }
266
bch_write_bdev_super_unlock(struct closure * cl)267 static void bch_write_bdev_super_unlock(struct closure *cl)
268 {
269 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
270
271 up(&dc->sb_write_mutex);
272 }
273
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)274 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
275 {
276 struct closure *cl = &dc->sb_write;
277 struct bio *bio = &dc->sb_bio;
278
279 down(&dc->sb_write_mutex);
280 closure_init(cl, parent);
281
282 bio_reset(bio);
283 bio->bi_bdev = dc->bdev;
284 bio->bi_end_io = write_bdev_super_endio;
285 bio->bi_private = dc;
286
287 closure_get(cl);
288 __write_super(&dc->sb, bio);
289
290 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
291 }
292
write_super_endio(struct bio * bio,int error)293 static void write_super_endio(struct bio *bio, int error)
294 {
295 struct cache *ca = bio->bi_private;
296
297 bch_count_io_errors(ca, error, "writing superblock");
298 closure_put(&ca->set->sb_write);
299 }
300
bcache_write_super_unlock(struct closure * cl)301 static void bcache_write_super_unlock(struct closure *cl)
302 {
303 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
304
305 up(&c->sb_write_mutex);
306 }
307
bcache_write_super(struct cache_set * c)308 void bcache_write_super(struct cache_set *c)
309 {
310 struct closure *cl = &c->sb_write;
311 struct cache *ca;
312 unsigned i;
313
314 down(&c->sb_write_mutex);
315 closure_init(cl, &c->cl);
316
317 c->sb.seq++;
318
319 for_each_cache(ca, c, i) {
320 struct bio *bio = &ca->sb_bio;
321
322 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
323 ca->sb.seq = c->sb.seq;
324 ca->sb.last_mount = c->sb.last_mount;
325
326 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
327
328 bio_reset(bio);
329 bio->bi_bdev = ca->bdev;
330 bio->bi_end_io = write_super_endio;
331 bio->bi_private = ca;
332
333 closure_get(cl);
334 __write_super(&ca->sb, bio);
335 }
336
337 closure_return_with_destructor(cl, bcache_write_super_unlock);
338 }
339
340 /* UUID io */
341
uuid_endio(struct bio * bio,int error)342 static void uuid_endio(struct bio *bio, int error)
343 {
344 struct closure *cl = bio->bi_private;
345 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
346
347 cache_set_err_on(error, c, "accessing uuids");
348 bch_bbio_free(bio, c);
349 closure_put(cl);
350 }
351
uuid_io_unlock(struct closure * cl)352 static void uuid_io_unlock(struct closure *cl)
353 {
354 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
355
356 up(&c->uuid_write_mutex);
357 }
358
uuid_io(struct cache_set * c,unsigned long rw,struct bkey * k,struct closure * parent)359 static void uuid_io(struct cache_set *c, unsigned long rw,
360 struct bkey *k, struct closure *parent)
361 {
362 struct closure *cl = &c->uuid_write;
363 struct uuid_entry *u;
364 unsigned i;
365 char buf[80];
366
367 BUG_ON(!parent);
368 down(&c->uuid_write_mutex);
369 closure_init(cl, parent);
370
371 for (i = 0; i < KEY_PTRS(k); i++) {
372 struct bio *bio = bch_bbio_alloc(c);
373
374 bio->bi_rw = REQ_SYNC|REQ_META|rw;
375 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
376
377 bio->bi_end_io = uuid_endio;
378 bio->bi_private = cl;
379 bch_bio_map(bio, c->uuids);
380
381 bch_submit_bbio(bio, c, k, i);
382
383 if (!(rw & WRITE))
384 break;
385 }
386
387 bch_extent_to_text(buf, sizeof(buf), k);
388 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
389
390 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
391 if (!bch_is_zero(u->uuid, 16))
392 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
393 u - c->uuids, u->uuid, u->label,
394 u->first_reg, u->last_reg, u->invalidated);
395
396 closure_return_with_destructor(cl, uuid_io_unlock);
397 }
398
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)399 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
400 {
401 struct bkey *k = &j->uuid_bucket;
402
403 if (__bch_btree_ptr_invalid(c, k))
404 return "bad uuid pointer";
405
406 bkey_copy(&c->uuid_bucket, k);
407 uuid_io(c, READ_SYNC, k, cl);
408
409 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
410 struct uuid_entry_v0 *u0 = (void *) c->uuids;
411 struct uuid_entry *u1 = (void *) c->uuids;
412 int i;
413
414 closure_sync(cl);
415
416 /*
417 * Since the new uuid entry is bigger than the old, we have to
418 * convert starting at the highest memory address and work down
419 * in order to do it in place
420 */
421
422 for (i = c->nr_uuids - 1;
423 i >= 0;
424 --i) {
425 memcpy(u1[i].uuid, u0[i].uuid, 16);
426 memcpy(u1[i].label, u0[i].label, 32);
427
428 u1[i].first_reg = u0[i].first_reg;
429 u1[i].last_reg = u0[i].last_reg;
430 u1[i].invalidated = u0[i].invalidated;
431
432 u1[i].flags = 0;
433 u1[i].sectors = 0;
434 }
435 }
436
437 return NULL;
438 }
439
__uuid_write(struct cache_set * c)440 static int __uuid_write(struct cache_set *c)
441 {
442 BKEY_PADDED(key) k;
443 struct closure cl;
444 closure_init_stack(&cl);
445
446 lockdep_assert_held(&bch_register_lock);
447
448 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
449 return 1;
450
451 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
452 uuid_io(c, REQ_WRITE, &k.key, &cl);
453 closure_sync(&cl);
454
455 bkey_copy(&c->uuid_bucket, &k.key);
456 bkey_put(c, &k.key);
457 return 0;
458 }
459
bch_uuid_write(struct cache_set * c)460 int bch_uuid_write(struct cache_set *c)
461 {
462 int ret = __uuid_write(c);
463
464 if (!ret)
465 bch_journal_meta(c, NULL);
466
467 return ret;
468 }
469
uuid_find(struct cache_set * c,const char * uuid)470 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
471 {
472 struct uuid_entry *u;
473
474 for (u = c->uuids;
475 u < c->uuids + c->nr_uuids; u++)
476 if (!memcmp(u->uuid, uuid, 16))
477 return u;
478
479 return NULL;
480 }
481
uuid_find_empty(struct cache_set * c)482 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
483 {
484 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
485 return uuid_find(c, zero_uuid);
486 }
487
488 /*
489 * Bucket priorities/gens:
490 *
491 * For each bucket, we store on disk its
492 * 8 bit gen
493 * 16 bit priority
494 *
495 * See alloc.c for an explanation of the gen. The priority is used to implement
496 * lru (and in the future other) cache replacement policies; for most purposes
497 * it's just an opaque integer.
498 *
499 * The gens and the priorities don't have a whole lot to do with each other, and
500 * it's actually the gens that must be written out at specific times - it's no
501 * big deal if the priorities don't get written, if we lose them we just reuse
502 * buckets in suboptimal order.
503 *
504 * On disk they're stored in a packed array, and in as many buckets are required
505 * to fit them all. The buckets we use to store them form a list; the journal
506 * header points to the first bucket, the first bucket points to the second
507 * bucket, et cetera.
508 *
509 * This code is used by the allocation code; periodically (whenever it runs out
510 * of buckets to allocate from) the allocation code will invalidate some
511 * buckets, but it can't use those buckets until their new gens are safely on
512 * disk.
513 */
514
prio_endio(struct bio * bio,int error)515 static void prio_endio(struct bio *bio, int error)
516 {
517 struct cache *ca = bio->bi_private;
518
519 cache_set_err_on(error, ca->set, "accessing priorities");
520 bch_bbio_free(bio, ca->set);
521 closure_put(&ca->prio);
522 }
523
prio_io(struct cache * ca,uint64_t bucket,unsigned long rw)524 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
525 {
526 struct closure *cl = &ca->prio;
527 struct bio *bio = bch_bbio_alloc(ca->set);
528
529 closure_init_stack(cl);
530
531 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
532 bio->bi_bdev = ca->bdev;
533 bio->bi_rw = REQ_SYNC|REQ_META|rw;
534 bio->bi_iter.bi_size = bucket_bytes(ca);
535
536 bio->bi_end_io = prio_endio;
537 bio->bi_private = ca;
538 bch_bio_map(bio, ca->disk_buckets);
539
540 closure_bio_submit(bio, &ca->prio, ca);
541 closure_sync(cl);
542 }
543
bch_prio_write(struct cache * ca)544 void bch_prio_write(struct cache *ca)
545 {
546 int i;
547 struct bucket *b;
548 struct closure cl;
549
550 closure_init_stack(&cl);
551
552 lockdep_assert_held(&ca->set->bucket_lock);
553
554 ca->disk_buckets->seq++;
555
556 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
557 &ca->meta_sectors_written);
558
559 //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
560 // fifo_used(&ca->free_inc), fifo_used(&ca->unused));
561
562 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
563 long bucket;
564 struct prio_set *p = ca->disk_buckets;
565 struct bucket_disk *d = p->data;
566 struct bucket_disk *end = d + prios_per_bucket(ca);
567
568 for (b = ca->buckets + i * prios_per_bucket(ca);
569 b < ca->buckets + ca->sb.nbuckets && d < end;
570 b++, d++) {
571 d->prio = cpu_to_le16(b->prio);
572 d->gen = b->gen;
573 }
574
575 p->next_bucket = ca->prio_buckets[i + 1];
576 p->magic = pset_magic(&ca->sb);
577 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
578
579 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
580 BUG_ON(bucket == -1);
581
582 mutex_unlock(&ca->set->bucket_lock);
583 prio_io(ca, bucket, REQ_WRITE);
584 mutex_lock(&ca->set->bucket_lock);
585
586 ca->prio_buckets[i] = bucket;
587 atomic_dec_bug(&ca->buckets[bucket].pin);
588 }
589
590 mutex_unlock(&ca->set->bucket_lock);
591
592 bch_journal_meta(ca->set, &cl);
593 closure_sync(&cl);
594
595 mutex_lock(&ca->set->bucket_lock);
596
597 /*
598 * Don't want the old priorities to get garbage collected until after we
599 * finish writing the new ones, and they're journalled
600 */
601 for (i = 0; i < prio_buckets(ca); i++) {
602 if (ca->prio_last_buckets[i])
603 __bch_bucket_free(ca,
604 &ca->buckets[ca->prio_last_buckets[i]]);
605
606 ca->prio_last_buckets[i] = ca->prio_buckets[i];
607 }
608 }
609
prio_read(struct cache * ca,uint64_t bucket)610 static void prio_read(struct cache *ca, uint64_t bucket)
611 {
612 struct prio_set *p = ca->disk_buckets;
613 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
614 struct bucket *b;
615 unsigned bucket_nr = 0;
616
617 for (b = ca->buckets;
618 b < ca->buckets + ca->sb.nbuckets;
619 b++, d++) {
620 if (d == end) {
621 ca->prio_buckets[bucket_nr] = bucket;
622 ca->prio_last_buckets[bucket_nr] = bucket;
623 bucket_nr++;
624
625 prio_io(ca, bucket, READ_SYNC);
626
627 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
628 pr_warn("bad csum reading priorities");
629
630 if (p->magic != pset_magic(&ca->sb))
631 pr_warn("bad magic reading priorities");
632
633 bucket = p->next_bucket;
634 d = p->data;
635 }
636
637 b->prio = le16_to_cpu(d->prio);
638 b->gen = b->last_gc = d->gen;
639 }
640 }
641
642 /* Bcache device */
643
open_dev(struct block_device * b,fmode_t mode)644 static int open_dev(struct block_device *b, fmode_t mode)
645 {
646 struct bcache_device *d = b->bd_disk->private_data;
647 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
648 return -ENXIO;
649
650 closure_get(&d->cl);
651 return 0;
652 }
653
release_dev(struct gendisk * b,fmode_t mode)654 static void release_dev(struct gendisk *b, fmode_t mode)
655 {
656 struct bcache_device *d = b->private_data;
657 closure_put(&d->cl);
658 }
659
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)660 static int ioctl_dev(struct block_device *b, fmode_t mode,
661 unsigned int cmd, unsigned long arg)
662 {
663 struct bcache_device *d = b->bd_disk->private_data;
664 return d->ioctl(d, mode, cmd, arg);
665 }
666
667 static const struct block_device_operations bcache_ops = {
668 .open = open_dev,
669 .release = release_dev,
670 .ioctl = ioctl_dev,
671 .owner = THIS_MODULE,
672 };
673
bcache_device_stop(struct bcache_device * d)674 void bcache_device_stop(struct bcache_device *d)
675 {
676 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
677 closure_queue(&d->cl);
678 }
679
bcache_device_unlink(struct bcache_device * d)680 static void bcache_device_unlink(struct bcache_device *d)
681 {
682 lockdep_assert_held(&bch_register_lock);
683
684 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
685 unsigned i;
686 struct cache *ca;
687
688 sysfs_remove_link(&d->c->kobj, d->name);
689 sysfs_remove_link(&d->kobj, "cache");
690
691 for_each_cache(ca, d->c, i)
692 bd_unlink_disk_holder(ca->bdev, d->disk);
693 }
694 }
695
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)696 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
697 const char *name)
698 {
699 unsigned i;
700 struct cache *ca;
701
702 for_each_cache(ca, d->c, i)
703 bd_link_disk_holder(ca->bdev, d->disk);
704
705 snprintf(d->name, BCACHEDEVNAME_SIZE,
706 "%s%u", name, d->id);
707
708 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
709 sysfs_create_link(&c->kobj, &d->kobj, d->name),
710 "Couldn't create device <-> cache set symlinks");
711
712 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
713 }
714
bcache_device_detach(struct bcache_device * d)715 static void bcache_device_detach(struct bcache_device *d)
716 {
717 lockdep_assert_held(&bch_register_lock);
718
719 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
720 struct uuid_entry *u = d->c->uuids + d->id;
721
722 SET_UUID_FLASH_ONLY(u, 0);
723 memcpy(u->uuid, invalid_uuid, 16);
724 u->invalidated = cpu_to_le32(get_seconds());
725 bch_uuid_write(d->c);
726 }
727
728 bcache_device_unlink(d);
729
730 d->c->devices[d->id] = NULL;
731 closure_put(&d->c->caching);
732 d->c = NULL;
733 }
734
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned id)735 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
736 unsigned id)
737 {
738 d->id = id;
739 d->c = c;
740 c->devices[id] = d;
741
742 closure_get(&c->caching);
743 }
744
bcache_device_free(struct bcache_device * d)745 static void bcache_device_free(struct bcache_device *d)
746 {
747 lockdep_assert_held(&bch_register_lock);
748
749 pr_info("%s stopped", d->disk->disk_name);
750
751 if (d->c)
752 bcache_device_detach(d);
753 if (d->disk && d->disk->flags & GENHD_FL_UP)
754 del_gendisk(d->disk);
755 if (d->disk && d->disk->queue)
756 blk_cleanup_queue(d->disk->queue);
757 if (d->disk) {
758 ida_simple_remove(&bcache_minor, d->disk->first_minor);
759 put_disk(d->disk);
760 }
761
762 bio_split_pool_free(&d->bio_split_hook);
763 if (d->bio_split)
764 bioset_free(d->bio_split);
765 if (is_vmalloc_addr(d->full_dirty_stripes))
766 vfree(d->full_dirty_stripes);
767 else
768 kfree(d->full_dirty_stripes);
769 if (is_vmalloc_addr(d->stripe_sectors_dirty))
770 vfree(d->stripe_sectors_dirty);
771 else
772 kfree(d->stripe_sectors_dirty);
773
774 closure_debug_destroy(&d->cl);
775 }
776
bcache_device_init(struct bcache_device * d,unsigned block_size,sector_t sectors)777 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
778 sector_t sectors)
779 {
780 struct request_queue *q;
781 size_t n;
782 int minor;
783
784 if (!d->stripe_size)
785 d->stripe_size = 1 << 31;
786
787 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
788
789 if (!d->nr_stripes ||
790 d->nr_stripes > INT_MAX ||
791 d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
792 pr_err("nr_stripes too large");
793 return -ENOMEM;
794 }
795
796 n = d->nr_stripes * sizeof(atomic_t);
797 d->stripe_sectors_dirty = n < PAGE_SIZE << 6
798 ? kzalloc(n, GFP_KERNEL)
799 : vzalloc(n);
800 if (!d->stripe_sectors_dirty)
801 return -ENOMEM;
802
803 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
804 d->full_dirty_stripes = n < PAGE_SIZE << 6
805 ? kzalloc(n, GFP_KERNEL)
806 : vzalloc(n);
807 if (!d->full_dirty_stripes)
808 return -ENOMEM;
809
810 minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
811 if (minor < 0)
812 return minor;
813
814 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
815 bio_split_pool_init(&d->bio_split_hook) ||
816 !(d->disk = alloc_disk(1))) {
817 ida_simple_remove(&bcache_minor, minor);
818 return -ENOMEM;
819 }
820
821 set_capacity(d->disk, sectors);
822 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
823
824 d->disk->major = bcache_major;
825 d->disk->first_minor = minor;
826 d->disk->fops = &bcache_ops;
827 d->disk->private_data = d;
828
829 q = blk_alloc_queue(GFP_KERNEL);
830 if (!q)
831 return -ENOMEM;
832
833 blk_queue_make_request(q, NULL);
834 d->disk->queue = q;
835 q->queuedata = d;
836 q->backing_dev_info.congested_data = d;
837 q->limits.max_hw_sectors = UINT_MAX;
838 q->limits.max_sectors = UINT_MAX;
839 q->limits.max_segment_size = UINT_MAX;
840 q->limits.max_segments = BIO_MAX_PAGES;
841 q->limits.max_discard_sectors = UINT_MAX;
842 q->limits.discard_granularity = 512;
843 q->limits.io_min = block_size;
844 q->limits.logical_block_size = block_size;
845 q->limits.physical_block_size = block_size;
846 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
847 clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
848 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
849
850 blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
851
852 return 0;
853 }
854
855 /* Cached device */
856
calc_cached_dev_sectors(struct cache_set * c)857 static void calc_cached_dev_sectors(struct cache_set *c)
858 {
859 uint64_t sectors = 0;
860 struct cached_dev *dc;
861
862 list_for_each_entry(dc, &c->cached_devs, list)
863 sectors += bdev_sectors(dc->bdev);
864
865 c->cached_dev_sectors = sectors;
866 }
867
bch_cached_dev_run(struct cached_dev * dc)868 void bch_cached_dev_run(struct cached_dev *dc)
869 {
870 struct bcache_device *d = &dc->disk;
871 char buf[SB_LABEL_SIZE + 1];
872 char *env[] = {
873 "DRIVER=bcache",
874 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
875 NULL,
876 NULL,
877 };
878
879 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
880 buf[SB_LABEL_SIZE] = '\0';
881 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
882
883 if (atomic_xchg(&dc->running, 1)) {
884 kfree(env[1]);
885 kfree(env[2]);
886 return;
887 }
888
889 if (!d->c &&
890 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
891 struct closure cl;
892 closure_init_stack(&cl);
893
894 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
895 bch_write_bdev_super(dc, &cl);
896 closure_sync(&cl);
897 }
898
899 add_disk(d->disk);
900 bd_link_disk_holder(dc->bdev, dc->disk.disk);
901 /* won't show up in the uevent file, use udevadm monitor -e instead
902 * only class / kset properties are persistent */
903 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
904 kfree(env[1]);
905 kfree(env[2]);
906
907 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
908 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
909 pr_debug("error creating sysfs link");
910 }
911
cached_dev_detach_finish(struct work_struct * w)912 static void cached_dev_detach_finish(struct work_struct *w)
913 {
914 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
915 char buf[BDEVNAME_SIZE];
916 struct closure cl;
917 closure_init_stack(&cl);
918
919 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
920 BUG_ON(atomic_read(&dc->count));
921
922 mutex_lock(&bch_register_lock);
923
924 memset(&dc->sb.set_uuid, 0, 16);
925 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
926
927 bch_write_bdev_super(dc, &cl);
928 closure_sync(&cl);
929
930 bcache_device_detach(&dc->disk);
931 list_move(&dc->list, &uncached_devices);
932
933 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
934 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
935
936 mutex_unlock(&bch_register_lock);
937
938 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
939
940 /* Drop ref we took in cached_dev_detach() */
941 closure_put(&dc->disk.cl);
942 }
943
bch_cached_dev_detach(struct cached_dev * dc)944 void bch_cached_dev_detach(struct cached_dev *dc)
945 {
946 lockdep_assert_held(&bch_register_lock);
947
948 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
949 return;
950
951 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
952 return;
953
954 /*
955 * Block the device from being closed and freed until we're finished
956 * detaching
957 */
958 closure_get(&dc->disk.cl);
959
960 bch_writeback_queue(dc);
961 cached_dev_put(dc);
962 }
963
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c)964 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
965 {
966 uint32_t rtime = cpu_to_le32(get_seconds());
967 struct uuid_entry *u;
968 char buf[BDEVNAME_SIZE];
969
970 bdevname(dc->bdev, buf);
971
972 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
973 return -ENOENT;
974
975 if (dc->disk.c) {
976 pr_err("Can't attach %s: already attached", buf);
977 return -EINVAL;
978 }
979
980 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
981 pr_err("Can't attach %s: shutting down", buf);
982 return -EINVAL;
983 }
984
985 if (dc->sb.block_size < c->sb.block_size) {
986 /* Will die */
987 pr_err("Couldn't attach %s: block size less than set's block size",
988 buf);
989 return -EINVAL;
990 }
991
992 u = uuid_find(c, dc->sb.uuid);
993
994 if (u &&
995 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
996 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
997 memcpy(u->uuid, invalid_uuid, 16);
998 u->invalidated = cpu_to_le32(get_seconds());
999 u = NULL;
1000 }
1001
1002 if (!u) {
1003 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1004 pr_err("Couldn't find uuid for %s in set", buf);
1005 return -ENOENT;
1006 }
1007
1008 u = uuid_find_empty(c);
1009 if (!u) {
1010 pr_err("Not caching %s, no room for UUID", buf);
1011 return -EINVAL;
1012 }
1013 }
1014
1015 /* Deadlocks since we're called via sysfs...
1016 sysfs_remove_file(&dc->kobj, &sysfs_attach);
1017 */
1018
1019 if (bch_is_zero(u->uuid, 16)) {
1020 struct closure cl;
1021 closure_init_stack(&cl);
1022
1023 memcpy(u->uuid, dc->sb.uuid, 16);
1024 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1025 u->first_reg = u->last_reg = rtime;
1026 bch_uuid_write(c);
1027
1028 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1029 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1030
1031 bch_write_bdev_super(dc, &cl);
1032 closure_sync(&cl);
1033 } else {
1034 u->last_reg = rtime;
1035 bch_uuid_write(c);
1036 }
1037
1038 bcache_device_attach(&dc->disk, c, u - c->uuids);
1039 list_move(&dc->list, &c->cached_devs);
1040 calc_cached_dev_sectors(c);
1041
1042 smp_wmb();
1043 /*
1044 * dc->c must be set before dc->count != 0 - paired with the mb in
1045 * cached_dev_get()
1046 */
1047 atomic_set(&dc->count, 1);
1048
1049 /* Block writeback thread, but spawn it */
1050 down_write(&dc->writeback_lock);
1051 if (bch_cached_dev_writeback_start(dc)) {
1052 up_write(&dc->writeback_lock);
1053 return -ENOMEM;
1054 }
1055
1056 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1057 bch_sectors_dirty_init(&dc->disk);
1058 atomic_set(&dc->has_dirty, 1);
1059 atomic_inc(&dc->count);
1060 bch_writeback_queue(dc);
1061 }
1062
1063 bch_cached_dev_run(dc);
1064 bcache_device_link(&dc->disk, c, "bdev");
1065
1066 /* Allow the writeback thread to proceed */
1067 up_write(&dc->writeback_lock);
1068
1069 pr_info("Caching %s as %s on set %pU",
1070 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1071 dc->disk.c->sb.set_uuid);
1072 return 0;
1073 }
1074
bch_cached_dev_release(struct kobject * kobj)1075 void bch_cached_dev_release(struct kobject *kobj)
1076 {
1077 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1078 disk.kobj);
1079 kfree(dc);
1080 module_put(THIS_MODULE);
1081 }
1082
cached_dev_free(struct closure * cl)1083 static void cached_dev_free(struct closure *cl)
1084 {
1085 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1086
1087 cancel_delayed_work_sync(&dc->writeback_rate_update);
1088 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1089 kthread_stop(dc->writeback_thread);
1090 if (dc->writeback_write_wq)
1091 destroy_workqueue(dc->writeback_write_wq);
1092
1093 mutex_lock(&bch_register_lock);
1094
1095 if (atomic_read(&dc->running))
1096 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1097 bcache_device_free(&dc->disk);
1098 list_del(&dc->list);
1099
1100 mutex_unlock(&bch_register_lock);
1101
1102 if (!IS_ERR_OR_NULL(dc->bdev))
1103 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1104
1105 wake_up(&unregister_wait);
1106
1107 kobject_put(&dc->disk.kobj);
1108 }
1109
cached_dev_flush(struct closure * cl)1110 static void cached_dev_flush(struct closure *cl)
1111 {
1112 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1113 struct bcache_device *d = &dc->disk;
1114
1115 mutex_lock(&bch_register_lock);
1116 bcache_device_unlink(d);
1117 mutex_unlock(&bch_register_lock);
1118
1119 bch_cache_accounting_destroy(&dc->accounting);
1120 kobject_del(&d->kobj);
1121
1122 continue_at(cl, cached_dev_free, system_wq);
1123 }
1124
cached_dev_init(struct cached_dev * dc,unsigned block_size)1125 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1126 {
1127 int ret;
1128 struct io *io;
1129 struct request_queue *q = bdev_get_queue(dc->bdev);
1130
1131 __module_get(THIS_MODULE);
1132 INIT_LIST_HEAD(&dc->list);
1133 closure_init(&dc->disk.cl, NULL);
1134 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1135 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1136 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1137 sema_init(&dc->sb_write_mutex, 1);
1138 INIT_LIST_HEAD(&dc->io_lru);
1139 spin_lock_init(&dc->io_lock);
1140 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1141
1142 dc->sequential_cutoff = 4 << 20;
1143
1144 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1145 list_add(&io->lru, &dc->io_lru);
1146 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1147 }
1148
1149 dc->disk.stripe_size = q->limits.io_opt >> 9;
1150
1151 if (dc->disk.stripe_size)
1152 dc->partial_stripes_expensive =
1153 q->limits.raid_partial_stripes_expensive;
1154
1155 ret = bcache_device_init(&dc->disk, block_size,
1156 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1157 if (ret)
1158 return ret;
1159
1160 set_capacity(dc->disk.disk,
1161 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1162
1163 dc->disk.disk->queue->backing_dev_info.ra_pages =
1164 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1165 q->backing_dev_info.ra_pages);
1166
1167 bch_cached_dev_request_init(dc);
1168 bch_cached_dev_writeback_init(dc);
1169 return 0;
1170 }
1171
1172 /* Cached device - bcache superblock */
1173
register_bdev(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cached_dev * dc)1174 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1175 struct block_device *bdev,
1176 struct cached_dev *dc)
1177 {
1178 char name[BDEVNAME_SIZE];
1179 const char *err = "cannot allocate memory";
1180 struct cache_set *c;
1181
1182 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1183 dc->bdev = bdev;
1184 dc->bdev->bd_holder = dc;
1185
1186 bio_init(&dc->sb_bio);
1187 dc->sb_bio.bi_max_vecs = 1;
1188 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1189 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1190 get_page(sb_page);
1191
1192 if (cached_dev_init(dc, sb->block_size << 9))
1193 goto err;
1194
1195 err = "error creating kobject";
1196 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1197 "bcache"))
1198 goto err;
1199 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1200 goto err;
1201
1202 pr_info("registered backing device %s", bdevname(bdev, name));
1203
1204 list_add(&dc->list, &uncached_devices);
1205 list_for_each_entry(c, &bch_cache_sets, list)
1206 bch_cached_dev_attach(dc, c);
1207
1208 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1209 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1210 bch_cached_dev_run(dc);
1211
1212 return;
1213 err:
1214 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1215 bcache_device_stop(&dc->disk);
1216 }
1217
1218 /* Flash only volumes */
1219
bch_flash_dev_release(struct kobject * kobj)1220 void bch_flash_dev_release(struct kobject *kobj)
1221 {
1222 struct bcache_device *d = container_of(kobj, struct bcache_device,
1223 kobj);
1224 kfree(d);
1225 }
1226
flash_dev_free(struct closure * cl)1227 static void flash_dev_free(struct closure *cl)
1228 {
1229 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1230 mutex_lock(&bch_register_lock);
1231 bcache_device_free(d);
1232 mutex_unlock(&bch_register_lock);
1233 kobject_put(&d->kobj);
1234 }
1235
flash_dev_flush(struct closure * cl)1236 static void flash_dev_flush(struct closure *cl)
1237 {
1238 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1239
1240 mutex_lock(&bch_register_lock);
1241 bcache_device_unlink(d);
1242 mutex_unlock(&bch_register_lock);
1243 kobject_del(&d->kobj);
1244 continue_at(cl, flash_dev_free, system_wq);
1245 }
1246
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1247 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1248 {
1249 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1250 GFP_KERNEL);
1251 if (!d)
1252 return -ENOMEM;
1253
1254 closure_init(&d->cl, NULL);
1255 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1256
1257 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1258
1259 if (bcache_device_init(d, block_bytes(c), u->sectors))
1260 goto err;
1261
1262 bcache_device_attach(d, c, u - c->uuids);
1263 bch_sectors_dirty_init(d);
1264 bch_flash_dev_request_init(d);
1265 add_disk(d->disk);
1266
1267 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1268 goto err;
1269
1270 bcache_device_link(d, c, "volume");
1271
1272 return 0;
1273 err:
1274 kobject_put(&d->kobj);
1275 return -ENOMEM;
1276 }
1277
flash_devs_run(struct cache_set * c)1278 static int flash_devs_run(struct cache_set *c)
1279 {
1280 int ret = 0;
1281 struct uuid_entry *u;
1282
1283 for (u = c->uuids;
1284 u < c->uuids + c->nr_uuids && !ret;
1285 u++)
1286 if (UUID_FLASH_ONLY(u))
1287 ret = flash_dev_run(c, u);
1288
1289 return ret;
1290 }
1291
bch_flash_dev_create(struct cache_set * c,uint64_t size)1292 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1293 {
1294 struct uuid_entry *u;
1295
1296 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1297 return -EINTR;
1298
1299 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1300 return -EPERM;
1301
1302 u = uuid_find_empty(c);
1303 if (!u) {
1304 pr_err("Can't create volume, no room for UUID");
1305 return -EINVAL;
1306 }
1307
1308 get_random_bytes(u->uuid, 16);
1309 memset(u->label, 0, 32);
1310 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1311
1312 SET_UUID_FLASH_ONLY(u, 1);
1313 u->sectors = size >> 9;
1314
1315 bch_uuid_write(c);
1316
1317 return flash_dev_run(c, u);
1318 }
1319
1320 /* Cache set */
1321
1322 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1323 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1324 {
1325 va_list args;
1326
1327 if (c->on_error != ON_ERROR_PANIC &&
1328 test_bit(CACHE_SET_STOPPING, &c->flags))
1329 return false;
1330
1331 /* XXX: we can be called from atomic context
1332 acquire_console_sem();
1333 */
1334
1335 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1336
1337 va_start(args, fmt);
1338 vprintk(fmt, args);
1339 va_end(args);
1340
1341 printk(", disabling caching\n");
1342
1343 if (c->on_error == ON_ERROR_PANIC)
1344 panic("panic forced after error\n");
1345
1346 bch_cache_set_unregister(c);
1347 return true;
1348 }
1349
bch_cache_set_release(struct kobject * kobj)1350 void bch_cache_set_release(struct kobject *kobj)
1351 {
1352 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1353 kfree(c);
1354 module_put(THIS_MODULE);
1355 }
1356
cache_set_free(struct closure * cl)1357 static void cache_set_free(struct closure *cl)
1358 {
1359 struct cache_set *c = container_of(cl, struct cache_set, cl);
1360 struct cache *ca;
1361 unsigned i;
1362
1363 if (!IS_ERR_OR_NULL(c->debug))
1364 debugfs_remove(c->debug);
1365
1366 bch_open_buckets_free(c);
1367 bch_btree_cache_free(c);
1368 bch_journal_free(c);
1369
1370 for_each_cache(ca, c, i)
1371 if (ca) {
1372 ca->set = NULL;
1373 c->cache[ca->sb.nr_this_dev] = NULL;
1374 kobject_put(&ca->kobj);
1375 }
1376
1377 bch_bset_sort_state_free(&c->sort);
1378 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1379
1380 if (c->moving_gc_wq)
1381 destroy_workqueue(c->moving_gc_wq);
1382 if (c->bio_split)
1383 bioset_free(c->bio_split);
1384 if (c->fill_iter)
1385 mempool_destroy(c->fill_iter);
1386 if (c->bio_meta)
1387 mempool_destroy(c->bio_meta);
1388 if (c->search)
1389 mempool_destroy(c->search);
1390 kfree(c->devices);
1391
1392 mutex_lock(&bch_register_lock);
1393 list_del(&c->list);
1394 mutex_unlock(&bch_register_lock);
1395
1396 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1397 wake_up(&unregister_wait);
1398
1399 closure_debug_destroy(&c->cl);
1400 kobject_put(&c->kobj);
1401 }
1402
cache_set_flush(struct closure * cl)1403 static void cache_set_flush(struct closure *cl)
1404 {
1405 struct cache_set *c = container_of(cl, struct cache_set, caching);
1406 struct cache *ca;
1407 struct btree *b;
1408 unsigned i;
1409
1410 if (!c)
1411 closure_return(cl);
1412
1413 bch_cache_accounting_destroy(&c->accounting);
1414
1415 kobject_put(&c->internal);
1416 kobject_del(&c->kobj);
1417
1418 if (c->gc_thread)
1419 kthread_stop(c->gc_thread);
1420
1421 if (!IS_ERR_OR_NULL(c->root))
1422 list_add(&c->root->list, &c->btree_cache);
1423
1424 /* Should skip this if we're unregistering because of an error */
1425 list_for_each_entry(b, &c->btree_cache, list) {
1426 mutex_lock(&b->write_lock);
1427 if (btree_node_dirty(b))
1428 __bch_btree_node_write(b, NULL);
1429 mutex_unlock(&b->write_lock);
1430 }
1431
1432 for_each_cache(ca, c, i)
1433 if (ca->alloc_thread)
1434 kthread_stop(ca->alloc_thread);
1435
1436 if (c->journal.cur) {
1437 cancel_delayed_work_sync(&c->journal.work);
1438 /* flush last journal entry if needed */
1439 c->journal.work.work.func(&c->journal.work.work);
1440 }
1441
1442 closure_return(cl);
1443 }
1444
__cache_set_unregister(struct closure * cl)1445 static void __cache_set_unregister(struct closure *cl)
1446 {
1447 struct cache_set *c = container_of(cl, struct cache_set, caching);
1448 struct cached_dev *dc;
1449 size_t i;
1450
1451 mutex_lock(&bch_register_lock);
1452
1453 for (i = 0; i < c->nr_uuids; i++)
1454 if (c->devices[i]) {
1455 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1456 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1457 dc = container_of(c->devices[i],
1458 struct cached_dev, disk);
1459 bch_cached_dev_detach(dc);
1460 } else {
1461 bcache_device_stop(c->devices[i]);
1462 }
1463 }
1464
1465 mutex_unlock(&bch_register_lock);
1466
1467 continue_at(cl, cache_set_flush, system_wq);
1468 }
1469
bch_cache_set_stop(struct cache_set * c)1470 void bch_cache_set_stop(struct cache_set *c)
1471 {
1472 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1473 closure_queue(&c->caching);
1474 }
1475
bch_cache_set_unregister(struct cache_set * c)1476 void bch_cache_set_unregister(struct cache_set *c)
1477 {
1478 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1479 bch_cache_set_stop(c);
1480 }
1481
1482 #define alloc_bucket_pages(gfp, c) \
1483 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1484
bch_cache_set_alloc(struct cache_sb * sb)1485 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1486 {
1487 int iter_size;
1488 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1489 if (!c)
1490 return NULL;
1491
1492 __module_get(THIS_MODULE);
1493 closure_init(&c->cl, NULL);
1494 set_closure_fn(&c->cl, cache_set_free, system_wq);
1495
1496 closure_init(&c->caching, &c->cl);
1497 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1498
1499 /* Maybe create continue_at_noreturn() and use it here? */
1500 closure_set_stopped(&c->cl);
1501 closure_put(&c->cl);
1502
1503 kobject_init(&c->kobj, &bch_cache_set_ktype);
1504 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1505
1506 bch_cache_accounting_init(&c->accounting, &c->cl);
1507
1508 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1509 c->sb.block_size = sb->block_size;
1510 c->sb.bucket_size = sb->bucket_size;
1511 c->sb.nr_in_set = sb->nr_in_set;
1512 c->sb.last_mount = sb->last_mount;
1513 c->bucket_bits = ilog2(sb->bucket_size);
1514 c->block_bits = ilog2(sb->block_size);
1515 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1516
1517 c->btree_pages = bucket_pages(c);
1518 if (c->btree_pages > BTREE_MAX_PAGES)
1519 c->btree_pages = max_t(int, c->btree_pages / 4,
1520 BTREE_MAX_PAGES);
1521
1522 sema_init(&c->sb_write_mutex, 1);
1523 mutex_init(&c->bucket_lock);
1524 init_waitqueue_head(&c->btree_cache_wait);
1525 init_waitqueue_head(&c->bucket_wait);
1526 sema_init(&c->uuid_write_mutex, 1);
1527
1528 spin_lock_init(&c->btree_gc_time.lock);
1529 spin_lock_init(&c->btree_split_time.lock);
1530 spin_lock_init(&c->btree_read_time.lock);
1531
1532 bch_moving_init_cache_set(c);
1533
1534 INIT_LIST_HEAD(&c->list);
1535 INIT_LIST_HEAD(&c->cached_devs);
1536 INIT_LIST_HEAD(&c->btree_cache);
1537 INIT_LIST_HEAD(&c->btree_cache_freeable);
1538 INIT_LIST_HEAD(&c->btree_cache_freed);
1539 INIT_LIST_HEAD(&c->data_buckets);
1540
1541 c->search = mempool_create_slab_pool(32, bch_search_cache);
1542 if (!c->search)
1543 goto err;
1544
1545 iter_size = (sb->bucket_size / sb->block_size + 1) *
1546 sizeof(struct btree_iter_set);
1547
1548 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1549 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1550 sizeof(struct bbio) + sizeof(struct bio_vec) *
1551 bucket_pages(c))) ||
1552 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1553 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1554 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1555 !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1556 bch_journal_alloc(c) ||
1557 bch_btree_cache_alloc(c) ||
1558 bch_open_buckets_alloc(c) ||
1559 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1560 goto err;
1561
1562 c->congested_read_threshold_us = 2000;
1563 c->congested_write_threshold_us = 20000;
1564 c->error_limit = 8 << IO_ERROR_SHIFT;
1565
1566 return c;
1567 err:
1568 bch_cache_set_unregister(c);
1569 return NULL;
1570 }
1571
run_cache_set(struct cache_set * c)1572 static void run_cache_set(struct cache_set *c)
1573 {
1574 const char *err = "cannot allocate memory";
1575 struct cached_dev *dc, *t;
1576 struct cache *ca;
1577 struct closure cl;
1578 unsigned i;
1579
1580 closure_init_stack(&cl);
1581
1582 for_each_cache(ca, c, i)
1583 c->nbuckets += ca->sb.nbuckets;
1584
1585 if (CACHE_SYNC(&c->sb)) {
1586 LIST_HEAD(journal);
1587 struct bkey *k;
1588 struct jset *j;
1589
1590 err = "cannot allocate memory for journal";
1591 if (bch_journal_read(c, &journal))
1592 goto err;
1593
1594 pr_debug("btree_journal_read() done");
1595
1596 err = "no journal entries found";
1597 if (list_empty(&journal))
1598 goto err;
1599
1600 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1601
1602 err = "IO error reading priorities";
1603 for_each_cache(ca, c, i)
1604 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1605
1606 /*
1607 * If prio_read() fails it'll call cache_set_error and we'll
1608 * tear everything down right away, but if we perhaps checked
1609 * sooner we could avoid journal replay.
1610 */
1611
1612 k = &j->btree_root;
1613
1614 err = "bad btree root";
1615 if (__bch_btree_ptr_invalid(c, k))
1616 goto err;
1617
1618 err = "error reading btree root";
1619 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1620 if (IS_ERR_OR_NULL(c->root))
1621 goto err;
1622
1623 list_del_init(&c->root->list);
1624 rw_unlock(true, c->root);
1625
1626 err = uuid_read(c, j, &cl);
1627 if (err)
1628 goto err;
1629
1630 err = "error in recovery";
1631 if (bch_btree_check(c))
1632 goto err;
1633
1634 bch_journal_mark(c, &journal);
1635 bch_initial_gc_finish(c);
1636 pr_debug("btree_check() done");
1637
1638 /*
1639 * bcache_journal_next() can't happen sooner, or
1640 * btree_gc_finish() will give spurious errors about last_gc >
1641 * gc_gen - this is a hack but oh well.
1642 */
1643 bch_journal_next(&c->journal);
1644
1645 err = "error starting allocator thread";
1646 for_each_cache(ca, c, i)
1647 if (bch_cache_allocator_start(ca))
1648 goto err;
1649
1650 /*
1651 * First place it's safe to allocate: btree_check() and
1652 * btree_gc_finish() have to run before we have buckets to
1653 * allocate, and bch_bucket_alloc_set() might cause a journal
1654 * entry to be written so bcache_journal_next() has to be called
1655 * first.
1656 *
1657 * If the uuids were in the old format we have to rewrite them
1658 * before the next journal entry is written:
1659 */
1660 if (j->version < BCACHE_JSET_VERSION_UUID)
1661 __uuid_write(c);
1662
1663 bch_journal_replay(c, &journal);
1664 } else {
1665 pr_notice("invalidating existing data");
1666
1667 for_each_cache(ca, c, i) {
1668 unsigned j;
1669
1670 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1671 2, SB_JOURNAL_BUCKETS);
1672
1673 for (j = 0; j < ca->sb.keys; j++)
1674 ca->sb.d[j] = ca->sb.first_bucket + j;
1675 }
1676
1677 bch_initial_gc_finish(c);
1678
1679 err = "error starting allocator thread";
1680 for_each_cache(ca, c, i)
1681 if (bch_cache_allocator_start(ca))
1682 goto err;
1683
1684 mutex_lock(&c->bucket_lock);
1685 for_each_cache(ca, c, i)
1686 bch_prio_write(ca);
1687 mutex_unlock(&c->bucket_lock);
1688
1689 err = "cannot allocate new UUID bucket";
1690 if (__uuid_write(c))
1691 goto err;
1692
1693 err = "cannot allocate new btree root";
1694 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1695 if (IS_ERR_OR_NULL(c->root))
1696 goto err;
1697
1698 mutex_lock(&c->root->write_lock);
1699 bkey_copy_key(&c->root->key, &MAX_KEY);
1700 bch_btree_node_write(c->root, &cl);
1701 mutex_unlock(&c->root->write_lock);
1702
1703 bch_btree_set_root(c->root);
1704 rw_unlock(true, c->root);
1705
1706 /*
1707 * We don't want to write the first journal entry until
1708 * everything is set up - fortunately journal entries won't be
1709 * written until the SET_CACHE_SYNC() here:
1710 */
1711 SET_CACHE_SYNC(&c->sb, true);
1712
1713 bch_journal_next(&c->journal);
1714 bch_journal_meta(c, &cl);
1715 }
1716
1717 err = "error starting gc thread";
1718 if (bch_gc_thread_start(c))
1719 goto err;
1720
1721 closure_sync(&cl);
1722 c->sb.last_mount = get_seconds();
1723 bcache_write_super(c);
1724
1725 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1726 bch_cached_dev_attach(dc, c);
1727
1728 flash_devs_run(c);
1729
1730 set_bit(CACHE_SET_RUNNING, &c->flags);
1731 return;
1732 err:
1733 closure_sync(&cl);
1734 /* XXX: test this, it's broken */
1735 bch_cache_set_error(c, "%s", err);
1736 }
1737
can_attach_cache(struct cache * ca,struct cache_set * c)1738 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1739 {
1740 return ca->sb.block_size == c->sb.block_size &&
1741 ca->sb.bucket_size == c->sb.bucket_size &&
1742 ca->sb.nr_in_set == c->sb.nr_in_set;
1743 }
1744
register_cache_set(struct cache * ca)1745 static const char *register_cache_set(struct cache *ca)
1746 {
1747 char buf[12];
1748 const char *err = "cannot allocate memory";
1749 struct cache_set *c;
1750
1751 list_for_each_entry(c, &bch_cache_sets, list)
1752 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1753 if (c->cache[ca->sb.nr_this_dev])
1754 return "duplicate cache set member";
1755
1756 if (!can_attach_cache(ca, c))
1757 return "cache sb does not match set";
1758
1759 if (!CACHE_SYNC(&ca->sb))
1760 SET_CACHE_SYNC(&c->sb, false);
1761
1762 goto found;
1763 }
1764
1765 c = bch_cache_set_alloc(&ca->sb);
1766 if (!c)
1767 return err;
1768
1769 err = "error creating kobject";
1770 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1771 kobject_add(&c->internal, &c->kobj, "internal"))
1772 goto err;
1773
1774 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1775 goto err;
1776
1777 bch_debug_init_cache_set(c);
1778
1779 list_add(&c->list, &bch_cache_sets);
1780 found:
1781 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1782 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1783 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1784 goto err;
1785
1786 if (ca->sb.seq > c->sb.seq) {
1787 c->sb.version = ca->sb.version;
1788 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1789 c->sb.flags = ca->sb.flags;
1790 c->sb.seq = ca->sb.seq;
1791 pr_debug("set version = %llu", c->sb.version);
1792 }
1793
1794 kobject_get(&ca->kobj);
1795 ca->set = c;
1796 ca->set->cache[ca->sb.nr_this_dev] = ca;
1797 c->cache_by_alloc[c->caches_loaded++] = ca;
1798
1799 if (c->caches_loaded == c->sb.nr_in_set)
1800 run_cache_set(c);
1801
1802 return NULL;
1803 err:
1804 bch_cache_set_unregister(c);
1805 return err;
1806 }
1807
1808 /* Cache device */
1809
bch_cache_release(struct kobject * kobj)1810 void bch_cache_release(struct kobject *kobj)
1811 {
1812 struct cache *ca = container_of(kobj, struct cache, kobj);
1813 unsigned i;
1814
1815 if (ca->set) {
1816 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1817 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1818 }
1819
1820 bio_split_pool_free(&ca->bio_split_hook);
1821
1822 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1823 kfree(ca->prio_buckets);
1824 vfree(ca->buckets);
1825
1826 free_heap(&ca->heap);
1827 free_fifo(&ca->free_inc);
1828
1829 for (i = 0; i < RESERVE_NR; i++)
1830 free_fifo(&ca->free[i]);
1831
1832 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1833 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1834
1835 if (!IS_ERR_OR_NULL(ca->bdev))
1836 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1837
1838 kfree(ca);
1839 module_put(THIS_MODULE);
1840 }
1841
cache_alloc(struct cache_sb * sb,struct cache * ca)1842 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1843 {
1844 size_t free;
1845 struct bucket *b;
1846
1847 __module_get(THIS_MODULE);
1848 kobject_init(&ca->kobj, &bch_cache_ktype);
1849
1850 bio_init(&ca->journal.bio);
1851 ca->journal.bio.bi_max_vecs = 8;
1852 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1853
1854 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1855
1856 if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1857 !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1858 !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1859 !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1860 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1861 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1862 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1863 ca->sb.nbuckets)) ||
1864 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1865 2, GFP_KERNEL)) ||
1866 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)) ||
1867 bio_split_pool_init(&ca->bio_split_hook))
1868 return -ENOMEM;
1869
1870 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1871
1872 for_each_bucket(b, ca)
1873 atomic_set(&b->pin, 0);
1874
1875 return 0;
1876 }
1877
register_cache(struct cache_sb * sb,struct page * sb_page,struct block_device * bdev,struct cache * ca)1878 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1879 struct block_device *bdev, struct cache *ca)
1880 {
1881 char name[BDEVNAME_SIZE];
1882 const char *err = NULL; /* must be set for any error case */
1883 int ret = 0;
1884
1885 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1886 ca->bdev = bdev;
1887 ca->bdev->bd_holder = ca;
1888
1889 bio_init(&ca->sb_bio);
1890 ca->sb_bio.bi_max_vecs = 1;
1891 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1892 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1893 get_page(sb_page);
1894
1895 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1896 ca->discard = CACHE_DISCARD(&ca->sb);
1897
1898 ret = cache_alloc(sb, ca);
1899 if (ret != 0) {
1900 if (ret == -ENOMEM)
1901 err = "cache_alloc(): -ENOMEM";
1902 else
1903 err = "cache_alloc(): unknown error";
1904 goto err;
1905 }
1906
1907 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1908 err = "error calling kobject_add";
1909 ret = -ENOMEM;
1910 goto out;
1911 }
1912
1913 mutex_lock(&bch_register_lock);
1914 err = register_cache_set(ca);
1915 mutex_unlock(&bch_register_lock);
1916
1917 if (err) {
1918 ret = -ENODEV;
1919 goto out;
1920 }
1921
1922 pr_info("registered cache device %s", bdevname(bdev, name));
1923
1924 out:
1925 kobject_put(&ca->kobj);
1926
1927 err:
1928 if (err)
1929 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1930
1931 return ret;
1932 }
1933
1934 /* Global interfaces/init */
1935
1936 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1937 const char *, size_t);
1938
1939 kobj_attribute_write(register, register_bcache);
1940 kobj_attribute_write(register_quiet, register_bcache);
1941
bch_is_open_backing(struct block_device * bdev)1942 static bool bch_is_open_backing(struct block_device *bdev) {
1943 struct cache_set *c, *tc;
1944 struct cached_dev *dc, *t;
1945
1946 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1947 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1948 if (dc->bdev == bdev)
1949 return true;
1950 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1951 if (dc->bdev == bdev)
1952 return true;
1953 return false;
1954 }
1955
bch_is_open_cache(struct block_device * bdev)1956 static bool bch_is_open_cache(struct block_device *bdev) {
1957 struct cache_set *c, *tc;
1958 struct cache *ca;
1959 unsigned i;
1960
1961 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1962 for_each_cache(ca, c, i)
1963 if (ca->bdev == bdev)
1964 return true;
1965 return false;
1966 }
1967
bch_is_open(struct block_device * bdev)1968 static bool bch_is_open(struct block_device *bdev) {
1969 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1970 }
1971
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)1972 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1973 const char *buffer, size_t size)
1974 {
1975 ssize_t ret = size;
1976 const char *err = "cannot allocate memory";
1977 char *path = NULL;
1978 struct cache_sb *sb = NULL;
1979 struct block_device *bdev = NULL;
1980 struct page *sb_page = NULL;
1981
1982 if (!try_module_get(THIS_MODULE))
1983 return -EBUSY;
1984
1985 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1986 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1987 goto err;
1988
1989 err = "failed to open device";
1990 bdev = blkdev_get_by_path(strim(path),
1991 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1992 sb);
1993 if (IS_ERR(bdev)) {
1994 if (bdev == ERR_PTR(-EBUSY)) {
1995 bdev = lookup_bdev(strim(path));
1996 mutex_lock(&bch_register_lock);
1997 if (!IS_ERR(bdev) && bch_is_open(bdev))
1998 err = "device already registered";
1999 else
2000 err = "device busy";
2001 mutex_unlock(&bch_register_lock);
2002 if (!IS_ERR(bdev))
2003 bdput(bdev);
2004 if (attr == &ksysfs_register_quiet)
2005 goto out;
2006 }
2007 goto err;
2008 }
2009
2010 err = "failed to set blocksize";
2011 if (set_blocksize(bdev, 4096))
2012 goto err_close;
2013
2014 err = read_super(sb, bdev, &sb_page);
2015 if (err)
2016 goto err_close;
2017
2018 if (SB_IS_BDEV(sb)) {
2019 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2020 if (!dc)
2021 goto err_close;
2022
2023 mutex_lock(&bch_register_lock);
2024 register_bdev(sb, sb_page, bdev, dc);
2025 mutex_unlock(&bch_register_lock);
2026 } else {
2027 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2028 if (!ca)
2029 goto err_close;
2030
2031 if (register_cache(sb, sb_page, bdev, ca) != 0)
2032 goto err_close;
2033 }
2034 out:
2035 if (sb_page)
2036 put_page(sb_page);
2037 kfree(sb);
2038 kfree(path);
2039 module_put(THIS_MODULE);
2040 return ret;
2041
2042 err_close:
2043 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2044 err:
2045 pr_info("error opening %s: %s", path, err);
2046 ret = -EINVAL;
2047 goto out;
2048 }
2049
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2050 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2051 {
2052 if (code == SYS_DOWN ||
2053 code == SYS_HALT ||
2054 code == SYS_POWER_OFF) {
2055 DEFINE_WAIT(wait);
2056 unsigned long start = jiffies;
2057 bool stopped = false;
2058
2059 struct cache_set *c, *tc;
2060 struct cached_dev *dc, *tdc;
2061
2062 mutex_lock(&bch_register_lock);
2063
2064 if (list_empty(&bch_cache_sets) &&
2065 list_empty(&uncached_devices))
2066 goto out;
2067
2068 pr_info("Stopping all devices:");
2069
2070 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2071 bch_cache_set_stop(c);
2072
2073 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2074 bcache_device_stop(&dc->disk);
2075
2076 /* What's a condition variable? */
2077 while (1) {
2078 long timeout = start + 2 * HZ - jiffies;
2079
2080 stopped = list_empty(&bch_cache_sets) &&
2081 list_empty(&uncached_devices);
2082
2083 if (timeout < 0 || stopped)
2084 break;
2085
2086 prepare_to_wait(&unregister_wait, &wait,
2087 TASK_UNINTERRUPTIBLE);
2088
2089 mutex_unlock(&bch_register_lock);
2090 schedule_timeout(timeout);
2091 mutex_lock(&bch_register_lock);
2092 }
2093
2094 finish_wait(&unregister_wait, &wait);
2095
2096 if (stopped)
2097 pr_info("All devices stopped");
2098 else
2099 pr_notice("Timeout waiting for devices to be closed");
2100 out:
2101 mutex_unlock(&bch_register_lock);
2102 }
2103
2104 return NOTIFY_DONE;
2105 }
2106
2107 static struct notifier_block reboot = {
2108 .notifier_call = bcache_reboot,
2109 .priority = INT_MAX, /* before any real devices */
2110 };
2111
bcache_exit(void)2112 static void bcache_exit(void)
2113 {
2114 bch_debug_exit();
2115 bch_request_exit();
2116 if (bcache_kobj)
2117 kobject_put(bcache_kobj);
2118 if (bcache_wq)
2119 destroy_workqueue(bcache_wq);
2120 if (bcache_major)
2121 unregister_blkdev(bcache_major, "bcache");
2122 unregister_reboot_notifier(&reboot);
2123 mutex_destroy(&bch_register_lock);
2124 }
2125
bcache_init(void)2126 static int __init bcache_init(void)
2127 {
2128 static const struct attribute *files[] = {
2129 &ksysfs_register.attr,
2130 &ksysfs_register_quiet.attr,
2131 NULL
2132 };
2133
2134 mutex_init(&bch_register_lock);
2135 init_waitqueue_head(&unregister_wait);
2136 register_reboot_notifier(&reboot);
2137 closure_debug_init();
2138
2139 bcache_major = register_blkdev(0, "bcache");
2140 if (bcache_major < 0) {
2141 unregister_reboot_notifier(&reboot);
2142 mutex_destroy(&bch_register_lock);
2143 return bcache_major;
2144 }
2145
2146 if (!(bcache_wq = create_workqueue("bcache")) ||
2147 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2148 bch_request_init() ||
2149 bch_debug_init(bcache_kobj) ||
2150 sysfs_create_files(bcache_kobj, files))
2151 goto err;
2152
2153 return 0;
2154 err:
2155 bcache_exit();
2156 return -ENOMEM;
2157 }
2158
2159 module_exit(bcache_exit);
2160 module_init(bcache_init);
2161