• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39 
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
43 #include <asm/cop2.h>
44 #include <asm/cpu.h>
45 #include <asm/cpu-type.h>
46 #include <asm/dsp.h>
47 #include <asm/fpu.h>
48 #include <asm/fpu_emulator.h>
49 #include <asm/idle.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
54 #include <asm/msa.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/siginfo.h>
59 #include <asm/tlbdebug.h>
60 #include <asm/traps.h>
61 #include <asm/uaccess.h>
62 #include <asm/watch.h>
63 #include <asm/mmu_context.h>
64 #include <asm/types.h>
65 #include <asm/stacktrace.h>
66 #include <asm/uasm.h>
67 
68 extern void check_wait(void);
69 extern asmlinkage void rollback_handle_int(void);
70 extern asmlinkage void handle_int(void);
71 extern u32 handle_tlbl[];
72 extern u32 handle_tlbs[];
73 extern u32 handle_tlbm[];
74 extern asmlinkage void handle_adel(void);
75 extern asmlinkage void handle_ades(void);
76 extern asmlinkage void handle_ibe(void);
77 extern asmlinkage void handle_dbe(void);
78 extern asmlinkage void handle_sys(void);
79 extern asmlinkage void handle_bp(void);
80 extern asmlinkage void handle_ri(void);
81 extern asmlinkage void handle_ri_rdhwr_vivt(void);
82 extern asmlinkage void handle_ri_rdhwr(void);
83 extern asmlinkage void handle_cpu(void);
84 extern asmlinkage void handle_ov(void);
85 extern asmlinkage void handle_tr(void);
86 extern asmlinkage void handle_msa_fpe(void);
87 extern asmlinkage void handle_fpe(void);
88 extern asmlinkage void handle_ftlb(void);
89 extern asmlinkage void handle_msa(void);
90 extern asmlinkage void handle_mdmx(void);
91 extern asmlinkage void handle_watch(void);
92 extern asmlinkage void handle_mt(void);
93 extern asmlinkage void handle_dsp(void);
94 extern asmlinkage void handle_mcheck(void);
95 extern asmlinkage void handle_reserved(void);
96 extern void tlb_do_page_fault_0(void);
97 
98 void (*board_be_init)(void);
99 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
100 void (*board_nmi_handler_setup)(void);
101 void (*board_ejtag_handler_setup)(void);
102 void (*board_bind_eic_interrupt)(int irq, int regset);
103 void (*board_ebase_setup)(void);
104 void(*board_cache_error_setup)(void);
105 
show_raw_backtrace(unsigned long reg29)106 static void show_raw_backtrace(unsigned long reg29)
107 {
108 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
109 	unsigned long addr;
110 
111 	printk("Call Trace:");
112 #ifdef CONFIG_KALLSYMS
113 	printk("\n");
114 #endif
115 	while (!kstack_end(sp)) {
116 		unsigned long __user *p =
117 			(unsigned long __user *)(unsigned long)sp++;
118 		if (__get_user(addr, p)) {
119 			printk(" (Bad stack address)");
120 			break;
121 		}
122 		if (__kernel_text_address(addr))
123 			print_ip_sym(addr);
124 	}
125 	printk("\n");
126 }
127 
128 #ifdef CONFIG_KALLSYMS
129 int raw_show_trace;
set_raw_show_trace(char * str)130 static int __init set_raw_show_trace(char *str)
131 {
132 	raw_show_trace = 1;
133 	return 1;
134 }
135 __setup("raw_show_trace", set_raw_show_trace);
136 #endif
137 
show_backtrace(struct task_struct * task,const struct pt_regs * regs)138 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
139 {
140 	unsigned long sp = regs->regs[29];
141 	unsigned long ra = regs->regs[31];
142 	unsigned long pc = regs->cp0_epc;
143 
144 	if (!task)
145 		task = current;
146 
147 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
148 		show_raw_backtrace(sp);
149 		return;
150 	}
151 	printk("Call Trace:\n");
152 	do {
153 		print_ip_sym(pc);
154 		pc = unwind_stack(task, &sp, pc, &ra);
155 	} while (pc);
156 	printk("\n");
157 }
158 
159 /*
160  * This routine abuses get_user()/put_user() to reference pointers
161  * with at least a bit of error checking ...
162  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)163 static void show_stacktrace(struct task_struct *task,
164 	const struct pt_regs *regs)
165 {
166 	const int field = 2 * sizeof(unsigned long);
167 	long stackdata;
168 	int i;
169 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
170 
171 	printk("Stack :");
172 	i = 0;
173 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
174 		if (i && ((i % (64 / field)) == 0))
175 			printk("\n	 ");
176 		if (i > 39) {
177 			printk(" ...");
178 			break;
179 		}
180 
181 		if (__get_user(stackdata, sp++)) {
182 			printk(" (Bad stack address)");
183 			break;
184 		}
185 
186 		printk(" %0*lx", field, stackdata);
187 		i++;
188 	}
189 	printk("\n");
190 	show_backtrace(task, regs);
191 }
192 
show_stack(struct task_struct * task,unsigned long * sp)193 void show_stack(struct task_struct *task, unsigned long *sp)
194 {
195 	struct pt_regs regs;
196 	mm_segment_t old_fs = get_fs();
197 
198 	regs.cp0_status = KSU_KERNEL;
199 	if (sp) {
200 		regs.regs[29] = (unsigned long)sp;
201 		regs.regs[31] = 0;
202 		regs.cp0_epc = 0;
203 	} else {
204 		if (task && task != current) {
205 			regs.regs[29] = task->thread.reg29;
206 			regs.regs[31] = 0;
207 			regs.cp0_epc = task->thread.reg31;
208 #ifdef CONFIG_KGDB_KDB
209 		} else if (atomic_read(&kgdb_active) != -1 &&
210 			   kdb_current_regs) {
211 			memcpy(&regs, kdb_current_regs, sizeof(regs));
212 #endif /* CONFIG_KGDB_KDB */
213 		} else {
214 			prepare_frametrace(&regs);
215 		}
216 	}
217 	/*
218 	 * show_stack() deals exclusively with kernel mode, so be sure to access
219 	 * the stack in the kernel (not user) address space.
220 	 */
221 	set_fs(KERNEL_DS);
222 	show_stacktrace(task, &regs);
223 	set_fs(old_fs);
224 }
225 
show_code(unsigned int __user * pc)226 static void show_code(unsigned int __user *pc)
227 {
228 	long i;
229 	unsigned short __user *pc16 = NULL;
230 
231 	printk("\nCode:");
232 
233 	if ((unsigned long)pc & 1)
234 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
235 	for(i = -3 ; i < 6 ; i++) {
236 		unsigned int insn;
237 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
238 			printk(" (Bad address in epc)\n");
239 			break;
240 		}
241 		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
242 	}
243 }
244 
__show_regs(const struct pt_regs * regs)245 static void __show_regs(const struct pt_regs *regs)
246 {
247 	const int field = 2 * sizeof(unsigned long);
248 	unsigned int cause = regs->cp0_cause;
249 	unsigned int exccode;
250 	int i;
251 
252 	show_regs_print_info(KERN_DEFAULT);
253 
254 	/*
255 	 * Saved main processor registers
256 	 */
257 	for (i = 0; i < 32; ) {
258 		if ((i % 4) == 0)
259 			printk("$%2d   :", i);
260 		if (i == 0)
261 			printk(" %0*lx", field, 0UL);
262 		else if (i == 26 || i == 27)
263 			printk(" %*s", field, "");
264 		else
265 			printk(" %0*lx", field, regs->regs[i]);
266 
267 		i++;
268 		if ((i % 4) == 0)
269 			printk("\n");
270 	}
271 
272 #ifdef CONFIG_CPU_HAS_SMARTMIPS
273 	printk("Acx    : %0*lx\n", field, regs->acx);
274 #endif
275 	printk("Hi    : %0*lx\n", field, regs->hi);
276 	printk("Lo    : %0*lx\n", field, regs->lo);
277 
278 	/*
279 	 * Saved cp0 registers
280 	 */
281 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
282 	       (void *) regs->cp0_epc);
283 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
284 	       (void *) regs->regs[31]);
285 
286 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
287 
288 	if (cpu_has_3kex) {
289 		if (regs->cp0_status & ST0_KUO)
290 			printk("KUo ");
291 		if (regs->cp0_status & ST0_IEO)
292 			printk("IEo ");
293 		if (regs->cp0_status & ST0_KUP)
294 			printk("KUp ");
295 		if (regs->cp0_status & ST0_IEP)
296 			printk("IEp ");
297 		if (regs->cp0_status & ST0_KUC)
298 			printk("KUc ");
299 		if (regs->cp0_status & ST0_IEC)
300 			printk("IEc ");
301 	} else if (cpu_has_4kex) {
302 		if (regs->cp0_status & ST0_KX)
303 			printk("KX ");
304 		if (regs->cp0_status & ST0_SX)
305 			printk("SX ");
306 		if (regs->cp0_status & ST0_UX)
307 			printk("UX ");
308 		switch (regs->cp0_status & ST0_KSU) {
309 		case KSU_USER:
310 			printk("USER ");
311 			break;
312 		case KSU_SUPERVISOR:
313 			printk("SUPERVISOR ");
314 			break;
315 		case KSU_KERNEL:
316 			printk("KERNEL ");
317 			break;
318 		default:
319 			printk("BAD_MODE ");
320 			break;
321 		}
322 		if (regs->cp0_status & ST0_ERL)
323 			printk("ERL ");
324 		if (regs->cp0_status & ST0_EXL)
325 			printk("EXL ");
326 		if (regs->cp0_status & ST0_IE)
327 			printk("IE ");
328 	}
329 	printk("\n");
330 
331 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
332 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
333 
334 	if (1 <= exccode && exccode <= 5)
335 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
336 
337 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
338 	       cpu_name_string());
339 }
340 
341 /*
342  * FIXME: really the generic show_regs should take a const pointer argument.
343  */
show_regs(struct pt_regs * regs)344 void show_regs(struct pt_regs *regs)
345 {
346 	__show_regs((struct pt_regs *)regs);
347 }
348 
show_registers(struct pt_regs * regs)349 void show_registers(struct pt_regs *regs)
350 {
351 	const int field = 2 * sizeof(unsigned long);
352 	mm_segment_t old_fs = get_fs();
353 
354 	__show_regs(regs);
355 	print_modules();
356 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
357 	       current->comm, current->pid, current_thread_info(), current,
358 	      field, current_thread_info()->tp_value);
359 	if (cpu_has_userlocal) {
360 		unsigned long tls;
361 
362 		tls = read_c0_userlocal();
363 		if (tls != current_thread_info()->tp_value)
364 			printk("*HwTLS: %0*lx\n", field, tls);
365 	}
366 
367 	if (!user_mode(regs))
368 		/* Necessary for getting the correct stack content */
369 		set_fs(KERNEL_DS);
370 	show_stacktrace(current, regs);
371 	show_code((unsigned int __user *) regs->cp0_epc);
372 	printk("\n");
373 	set_fs(old_fs);
374 }
375 
regs_to_trapnr(struct pt_regs * regs)376 static int regs_to_trapnr(struct pt_regs *regs)
377 {
378 	return (regs->cp0_cause >> 2) & 0x1f;
379 }
380 
381 static DEFINE_RAW_SPINLOCK(die_lock);
382 
die(const char * str,struct pt_regs * regs)383 void __noreturn die(const char *str, struct pt_regs *regs)
384 {
385 	static int die_counter;
386 	int sig = SIGSEGV;
387 
388 	oops_enter();
389 
390 	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
391 		       SIGSEGV) == NOTIFY_STOP)
392 		sig = 0;
393 
394 	console_verbose();
395 	raw_spin_lock_irq(&die_lock);
396 	bust_spinlocks(1);
397 
398 	printk("%s[#%d]:\n", str, ++die_counter);
399 	show_registers(regs);
400 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
401 	raw_spin_unlock_irq(&die_lock);
402 
403 	oops_exit();
404 
405 	if (in_interrupt())
406 		panic("Fatal exception in interrupt");
407 
408 	if (panic_on_oops) {
409 		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
410 		ssleep(5);
411 		panic("Fatal exception");
412 	}
413 
414 	if (regs && kexec_should_crash(current))
415 		crash_kexec(regs);
416 
417 	do_exit(sig);
418 }
419 
420 extern struct exception_table_entry __start___dbe_table[];
421 extern struct exception_table_entry __stop___dbe_table[];
422 
423 __asm__(
424 "	.section	__dbe_table, \"a\"\n"
425 "	.previous			\n");
426 
427 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)428 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
429 {
430 	const struct exception_table_entry *e;
431 
432 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
433 	if (!e)
434 		e = search_module_dbetables(addr);
435 	return e;
436 }
437 
do_be(struct pt_regs * regs)438 asmlinkage void do_be(struct pt_regs *regs)
439 {
440 	const int field = 2 * sizeof(unsigned long);
441 	const struct exception_table_entry *fixup = NULL;
442 	int data = regs->cp0_cause & 4;
443 	int action = MIPS_BE_FATAL;
444 	enum ctx_state prev_state;
445 
446 	prev_state = exception_enter();
447 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
448 	if (data && !user_mode(regs))
449 		fixup = search_dbe_tables(exception_epc(regs));
450 
451 	if (fixup)
452 		action = MIPS_BE_FIXUP;
453 
454 	if (board_be_handler)
455 		action = board_be_handler(regs, fixup != NULL);
456 
457 	switch (action) {
458 	case MIPS_BE_DISCARD:
459 		goto out;
460 	case MIPS_BE_FIXUP:
461 		if (fixup) {
462 			regs->cp0_epc = fixup->nextinsn;
463 			goto out;
464 		}
465 		break;
466 	default:
467 		break;
468 	}
469 
470 	/*
471 	 * Assume it would be too dangerous to continue ...
472 	 */
473 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
474 	       data ? "Data" : "Instruction",
475 	       field, regs->cp0_epc, field, regs->regs[31]);
476 	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
477 		       SIGBUS) == NOTIFY_STOP)
478 		goto out;
479 
480 	die_if_kernel("Oops", regs);
481 	force_sig(SIGBUS, current);
482 
483 out:
484 	exception_exit(prev_state);
485 }
486 
487 /*
488  * ll/sc, rdhwr, sync emulation
489  */
490 
491 #define OPCODE 0xfc000000
492 #define BASE   0x03e00000
493 #define RT     0x001f0000
494 #define OFFSET 0x0000ffff
495 #define LL     0xc0000000
496 #define SC     0xe0000000
497 #define SPEC0  0x00000000
498 #define SPEC3  0x7c000000
499 #define RD     0x0000f800
500 #define FUNC   0x0000003f
501 #define SYNC   0x0000000f
502 #define RDHWR  0x0000003b
503 
504 /*  microMIPS definitions   */
505 #define MM_POOL32A_FUNC 0xfc00ffff
506 #define MM_RDHWR        0x00006b3c
507 #define MM_RS           0x001f0000
508 #define MM_RT           0x03e00000
509 
510 /*
511  * The ll_bit is cleared by r*_switch.S
512  */
513 
514 unsigned int ll_bit;
515 struct task_struct *ll_task;
516 
simulate_ll(struct pt_regs * regs,unsigned int opcode)517 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
518 {
519 	unsigned long value, __user *vaddr;
520 	long offset;
521 
522 	/*
523 	 * analyse the ll instruction that just caused a ri exception
524 	 * and put the referenced address to addr.
525 	 */
526 
527 	/* sign extend offset */
528 	offset = opcode & OFFSET;
529 	offset <<= 16;
530 	offset >>= 16;
531 
532 	vaddr = (unsigned long __user *)
533 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
534 
535 	if ((unsigned long)vaddr & 3)
536 		return SIGBUS;
537 	if (get_user(value, vaddr))
538 		return SIGSEGV;
539 
540 	preempt_disable();
541 
542 	if (ll_task == NULL || ll_task == current) {
543 		ll_bit = 1;
544 	} else {
545 		ll_bit = 0;
546 	}
547 	ll_task = current;
548 
549 	preempt_enable();
550 
551 	regs->regs[(opcode & RT) >> 16] = value;
552 
553 	return 0;
554 }
555 
simulate_sc(struct pt_regs * regs,unsigned int opcode)556 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
557 {
558 	unsigned long __user *vaddr;
559 	unsigned long reg;
560 	long offset;
561 
562 	/*
563 	 * analyse the sc instruction that just caused a ri exception
564 	 * and put the referenced address to addr.
565 	 */
566 
567 	/* sign extend offset */
568 	offset = opcode & OFFSET;
569 	offset <<= 16;
570 	offset >>= 16;
571 
572 	vaddr = (unsigned long __user *)
573 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
574 	reg = (opcode & RT) >> 16;
575 
576 	if ((unsigned long)vaddr & 3)
577 		return SIGBUS;
578 
579 	preempt_disable();
580 
581 	if (ll_bit == 0 || ll_task != current) {
582 		regs->regs[reg] = 0;
583 		preempt_enable();
584 		return 0;
585 	}
586 
587 	preempt_enable();
588 
589 	if (put_user(regs->regs[reg], vaddr))
590 		return SIGSEGV;
591 
592 	regs->regs[reg] = 1;
593 
594 	return 0;
595 }
596 
597 /*
598  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
599  * opcodes are supposed to result in coprocessor unusable exceptions if
600  * executed on ll/sc-less processors.  That's the theory.  In practice a
601  * few processors such as NEC's VR4100 throw reserved instruction exceptions
602  * instead, so we're doing the emulation thing in both exception handlers.
603  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)604 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
605 {
606 	if ((opcode & OPCODE) == LL) {
607 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
608 				1, regs, 0);
609 		return simulate_ll(regs, opcode);
610 	}
611 	if ((opcode & OPCODE) == SC) {
612 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 				1, regs, 0);
614 		return simulate_sc(regs, opcode);
615 	}
616 
617 	return -1;			/* Must be something else ... */
618 }
619 
620 /*
621  * Simulate trapping 'rdhwr' instructions to provide user accessible
622  * registers not implemented in hardware.
623  */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)624 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
625 {
626 	struct thread_info *ti = task_thread_info(current);
627 
628 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
629 			1, regs, 0);
630 	switch (rd) {
631 	case 0:		/* CPU number */
632 		regs->regs[rt] = smp_processor_id();
633 		return 0;
634 	case 1:		/* SYNCI length */
635 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
636 				     current_cpu_data.icache.linesz);
637 		return 0;
638 	case 2:		/* Read count register */
639 		regs->regs[rt] = read_c0_count();
640 		return 0;
641 	case 3:		/* Count register resolution */
642 		switch (current_cpu_type()) {
643 		case CPU_20KC:
644 		case CPU_25KF:
645 			regs->regs[rt] = 1;
646 			break;
647 		default:
648 			regs->regs[rt] = 2;
649 		}
650 		return 0;
651 	case 29:
652 		regs->regs[rt] = ti->tp_value;
653 		return 0;
654 	default:
655 		return -1;
656 	}
657 }
658 
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)659 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
660 {
661 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
662 		int rd = (opcode & RD) >> 11;
663 		int rt = (opcode & RT) >> 16;
664 
665 		simulate_rdhwr(regs, rd, rt);
666 		return 0;
667 	}
668 
669 	/* Not ours.  */
670 	return -1;
671 }
672 
simulate_rdhwr_mm(struct pt_regs * regs,unsigned short opcode)673 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
674 {
675 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
676 		int rd = (opcode & MM_RS) >> 16;
677 		int rt = (opcode & MM_RT) >> 21;
678 		simulate_rdhwr(regs, rd, rt);
679 		return 0;
680 	}
681 
682 	/* Not ours.  */
683 	return -1;
684 }
685 
simulate_sync(struct pt_regs * regs,unsigned int opcode)686 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
687 {
688 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
689 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
690 				1, regs, 0);
691 		return 0;
692 	}
693 
694 	return -1;			/* Must be something else ... */
695 }
696 
do_ov(struct pt_regs * regs)697 asmlinkage void do_ov(struct pt_regs *regs)
698 {
699 	enum ctx_state prev_state;
700 	siginfo_t info = {
701 		.si_signo = SIGFPE,
702 		.si_code = FPE_INTOVF,
703 		.si_addr = (void __user *)regs->cp0_epc,
704 	};
705 
706 	prev_state = exception_enter();
707 	die_if_kernel("Integer overflow", regs);
708 
709 	force_sig_info(SIGFPE, &info, current);
710 	exception_exit(prev_state);
711 }
712 
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)713 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
714 {
715 	struct siginfo si = { 0 };
716 
717 	switch (sig) {
718 	case 0:
719 		return 0;
720 
721 	case SIGFPE:
722 		si.si_addr = fault_addr;
723 		si.si_signo = sig;
724 		/*
725 		 * Inexact can happen together with Overflow or Underflow.
726 		 * Respect the mask to deliver the correct exception.
727 		 */
728 		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
729 			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
730 		if (fcr31 & FPU_CSR_INV_X)
731 			si.si_code = FPE_FLTINV;
732 		else if (fcr31 & FPU_CSR_DIV_X)
733 			si.si_code = FPE_FLTDIV;
734 		else if (fcr31 & FPU_CSR_OVF_X)
735 			si.si_code = FPE_FLTOVF;
736 		else if (fcr31 & FPU_CSR_UDF_X)
737 			si.si_code = FPE_FLTUND;
738 		else if (fcr31 & FPU_CSR_INE_X)
739 			si.si_code = FPE_FLTRES;
740 		else
741 			si.si_code = __SI_FAULT;
742 		force_sig_info(sig, &si, current);
743 		return 1;
744 
745 	case SIGBUS:
746 		si.si_addr = fault_addr;
747 		si.si_signo = sig;
748 		si.si_code = BUS_ADRERR;
749 		force_sig_info(sig, &si, current);
750 		return 1;
751 
752 	case SIGSEGV:
753 		si.si_addr = fault_addr;
754 		si.si_signo = sig;
755 		down_read(&current->mm->mmap_sem);
756 		if (find_vma(current->mm, (unsigned long)fault_addr))
757 			si.si_code = SEGV_ACCERR;
758 		else
759 			si.si_code = SEGV_MAPERR;
760 		up_read(&current->mm->mmap_sem);
761 		force_sig_info(sig, &si, current);
762 		return 1;
763 
764 	default:
765 		force_sig(sig, current);
766 		return 1;
767 	}
768 }
769 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)770 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
771 		       unsigned long old_epc, unsigned long old_ra)
772 {
773 	union mips_instruction inst = { .word = opcode };
774 	void __user *fault_addr;
775 	unsigned long fcr31;
776 	int sig;
777 
778 	/* If it's obviously not an FP instruction, skip it */
779 	switch (inst.i_format.opcode) {
780 	case cop1_op:
781 	case cop1x_op:
782 	case lwc1_op:
783 	case ldc1_op:
784 	case swc1_op:
785 	case sdc1_op:
786 		break;
787 
788 	default:
789 		return -1;
790 	}
791 
792 	/*
793 	 * do_ri skipped over the instruction via compute_return_epc, undo
794 	 * that for the FPU emulator.
795 	 */
796 	regs->cp0_epc = old_epc;
797 	regs->regs[31] = old_ra;
798 
799 	/* Save the FP context to struct thread_struct */
800 	lose_fpu(1);
801 
802 	/* Run the emulator */
803 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
804 				       &fault_addr);
805 	fcr31 = current->thread.fpu.fcr31;
806 
807 	/*
808 	 * We can't allow the emulated instruction to leave any of
809 	 * the cause bits set in $fcr31.
810 	 */
811 	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
812 
813 	/* Restore the hardware register state */
814 	own_fpu(1);
815 
816 	/* Send a signal if required.  */
817 	process_fpemu_return(sig, fault_addr, fcr31);
818 
819 	return 0;
820 }
821 
822 /*
823  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
824  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
826 {
827 	enum ctx_state prev_state;
828 	void __user *fault_addr;
829 	int sig;
830 
831 	prev_state = exception_enter();
832 	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
833 		       SIGFPE) == NOTIFY_STOP)
834 		goto out;
835 
836 	/* Clear FCSR.Cause before enabling interrupts */
837 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
838 	local_irq_enable();
839 
840 	die_if_kernel("FP exception in kernel code", regs);
841 
842 	if (fcr31 & FPU_CSR_UNI_X) {
843 		/*
844 		 * Unimplemented operation exception.  If we've got the full
845 		 * software emulator on-board, let's use it...
846 		 *
847 		 * Force FPU to dump state into task/thread context.  We're
848 		 * moving a lot of data here for what is probably a single
849 		 * instruction, but the alternative is to pre-decode the FP
850 		 * register operands before invoking the emulator, which seems
851 		 * a bit extreme for what should be an infrequent event.
852 		 */
853 		/* Ensure 'resume' not overwrite saved fp context again. */
854 		lose_fpu(1);
855 
856 		/* Run the emulator */
857 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
858 					       &fault_addr);
859 		fcr31 = current->thread.fpu.fcr31;
860 
861 		/*
862 		 * We can't allow the emulated instruction to leave any of
863 		 * the cause bits set in $fcr31.
864 		 */
865 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
866 
867 		/* Restore the hardware register state */
868 		own_fpu(1);	/* Using the FPU again.	 */
869 	} else {
870 		sig = SIGFPE;
871 		fault_addr = (void __user *) regs->cp0_epc;
872 	}
873 
874 	/* Send a signal if required.  */
875 	process_fpemu_return(sig, fault_addr, fcr31);
876 
877 out:
878 	exception_exit(prev_state);
879 }
880 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)881 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
882 	const char *str)
883 {
884 	siginfo_t info = { 0 };
885 	char b[40];
886 
887 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
888 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
889 		return;
890 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
891 
892 	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
893 		       SIGTRAP) == NOTIFY_STOP)
894 		return;
895 
896 	/*
897 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
898 	 * insns, even for trap and break codes that indicate arithmetic
899 	 * failures.  Weird ...
900 	 * But should we continue the brokenness???  --macro
901 	 */
902 	switch (code) {
903 	case BRK_OVERFLOW:
904 	case BRK_DIVZERO:
905 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
906 		die_if_kernel(b, regs);
907 		if (code == BRK_DIVZERO)
908 			info.si_code = FPE_INTDIV;
909 		else
910 			info.si_code = FPE_INTOVF;
911 		info.si_signo = SIGFPE;
912 		info.si_addr = (void __user *) regs->cp0_epc;
913 		force_sig_info(SIGFPE, &info, current);
914 		break;
915 	case BRK_BUG:
916 		die_if_kernel("Kernel bug detected", regs);
917 		force_sig(SIGTRAP, current);
918 		break;
919 	case BRK_MEMU:
920 		/*
921 		 * This breakpoint code is used by the FPU emulator to retake
922 		 * control of the CPU after executing the instruction from the
923 		 * delay slot of an emulated branch.
924 		 *
925 		 * Terminate if exception was recognized as a delay slot return
926 		 * otherwise handle as normal.
927 		 */
928 		if (do_dsemulret(regs))
929 			return;
930 
931 		die_if_kernel("Math emu break/trap", regs);
932 		force_sig(SIGTRAP, current);
933 		break;
934 	default:
935 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
936 		die_if_kernel(b, regs);
937 		if (si_code) {
938 			info.si_signo = SIGTRAP;
939 			info.si_code = si_code;
940 			force_sig_info(SIGTRAP, &info, current);
941 		} else {
942 			force_sig(SIGTRAP, current);
943 		}
944 	}
945 }
946 
do_bp(struct pt_regs * regs)947 asmlinkage void do_bp(struct pt_regs *regs)
948 {
949 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
950 	unsigned int opcode, bcode;
951 	enum ctx_state prev_state;
952 	mm_segment_t seg;
953 
954 	seg = get_fs();
955 	if (!user_mode(regs))
956 		set_fs(KERNEL_DS);
957 
958 	prev_state = exception_enter();
959 	if (get_isa16_mode(regs->cp0_epc)) {
960 		u16 instr[2];
961 
962 		if (__get_user(instr[0], (u16 __user *)epc))
963 			goto out_sigsegv;
964 
965 		if (!cpu_has_mmips) {
966 			/* MIPS16e mode */
967 			bcode = (instr[0] >> 5) & 0x3f;
968 		} else if (mm_insn_16bit(instr[0])) {
969 			/* 16-bit microMIPS BREAK */
970 			bcode = instr[0] & 0xf;
971 		} else {
972 			/* 32-bit microMIPS BREAK */
973 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
974 				goto out_sigsegv;
975 			opcode = (instr[0] << 16) | instr[1];
976 			bcode = (opcode >> 6) & ((1 << 20) - 1);
977 		}
978 	} else {
979 		if (__get_user(opcode, (unsigned int __user *)epc))
980 			goto out_sigsegv;
981 		bcode = (opcode >> 6) & ((1 << 20) - 1);
982 	}
983 
984 	/*
985 	 * There is the ancient bug in the MIPS assemblers that the break
986 	 * code starts left to bit 16 instead to bit 6 in the opcode.
987 	 * Gas is bug-compatible, but not always, grrr...
988 	 * We handle both cases with a simple heuristics.  --macro
989 	 */
990 	if (bcode >= (1 << 10))
991 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
992 
993 	/*
994 	 * notify the kprobe handlers, if instruction is likely to
995 	 * pertain to them.
996 	 */
997 	switch (bcode) {
998 	case BRK_KPROBE_BP:
999 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1000 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
1001 			goto out;
1002 		else
1003 			break;
1004 	case BRK_KPROBE_SSTEPBP:
1005 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1006 			       regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
1007 			goto out;
1008 		else
1009 			break;
1010 	default:
1011 		break;
1012 	}
1013 
1014 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1015 
1016 out:
1017 	set_fs(seg);
1018 	exception_exit(prev_state);
1019 	return;
1020 
1021 out_sigsegv:
1022 	force_sig(SIGSEGV, current);
1023 	goto out;
1024 }
1025 
do_tr(struct pt_regs * regs)1026 asmlinkage void do_tr(struct pt_regs *regs)
1027 {
1028 	u32 opcode, tcode = 0;
1029 	enum ctx_state prev_state;
1030 	u16 instr[2];
1031 	mm_segment_t seg;
1032 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1033 
1034 	seg = get_fs();
1035 	if (!user_mode(regs))
1036 		set_fs(get_ds());
1037 
1038 	prev_state = exception_enter();
1039 	if (get_isa16_mode(regs->cp0_epc)) {
1040 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1041 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1042 			goto out_sigsegv;
1043 		opcode = (instr[0] << 16) | instr[1];
1044 		/* Immediate versions don't provide a code.  */
1045 		if (!(opcode & OPCODE))
1046 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1047 	} else {
1048 		if (__get_user(opcode, (u32 __user *)epc))
1049 			goto out_sigsegv;
1050 		/* Immediate versions don't provide a code.  */
1051 		if (!(opcode & OPCODE))
1052 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1053 	}
1054 
1055 	do_trap_or_bp(regs, tcode, 0, "Trap");
1056 
1057 out:
1058 	set_fs(seg);
1059 	exception_exit(prev_state);
1060 	return;
1061 
1062 out_sigsegv:
1063 	force_sig(SIGSEGV, current);
1064 	goto out;
1065 }
1066 
do_ri(struct pt_regs * regs)1067 asmlinkage void do_ri(struct pt_regs *regs)
1068 {
1069 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1070 	unsigned long old_epc = regs->cp0_epc;
1071 	unsigned long old31 = regs->regs[31];
1072 	enum ctx_state prev_state;
1073 	unsigned int opcode = 0;
1074 	int status = -1;
1075 
1076 	/*
1077 	 * Avoid any kernel code. Just emulate the R2 instruction
1078 	 * as quickly as possible.
1079 	 */
1080 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1081 	    likely(user_mode(regs)) &&
1082 	    likely(get_user(opcode, epc) >= 0)) {
1083 		unsigned long fcr31 = 0;
1084 
1085 		status = mipsr2_decoder(regs, opcode, &fcr31);
1086 		switch (status) {
1087 		case 0:
1088 		case SIGEMT:
1089 			task_thread_info(current)->r2_emul_return = 1;
1090 			return;
1091 		case SIGILL:
1092 			goto no_r2_instr;
1093 		default:
1094 			process_fpemu_return(status,
1095 					     &current->thread.cp0_baduaddr,
1096 					     fcr31);
1097 			task_thread_info(current)->r2_emul_return = 1;
1098 			return;
1099 		}
1100 	}
1101 
1102 no_r2_instr:
1103 
1104 	prev_state = exception_enter();
1105 
1106 	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1107 		       SIGILL) == NOTIFY_STOP)
1108 		goto out;
1109 
1110 	die_if_kernel("Reserved instruction in kernel code", regs);
1111 
1112 	if (unlikely(compute_return_epc(regs) < 0))
1113 		goto out;
1114 
1115 	if (get_isa16_mode(regs->cp0_epc)) {
1116 		unsigned short mmop[2] = { 0 };
1117 
1118 		if (unlikely(get_user(mmop[0], epc) < 0))
1119 			status = SIGSEGV;
1120 		if (unlikely(get_user(mmop[1], epc) < 0))
1121 			status = SIGSEGV;
1122 		opcode = (mmop[0] << 16) | mmop[1];
1123 
1124 		if (status < 0)
1125 			status = simulate_rdhwr_mm(regs, opcode);
1126 	} else {
1127 		if (unlikely(get_user(opcode, epc) < 0))
1128 			status = SIGSEGV;
1129 
1130 		if (!cpu_has_llsc && status < 0)
1131 			status = simulate_llsc(regs, opcode);
1132 
1133 		if (status < 0)
1134 			status = simulate_rdhwr_normal(regs, opcode);
1135 
1136 		if (status < 0)
1137 			status = simulate_sync(regs, opcode);
1138 
1139 		if (status < 0)
1140 			status = simulate_fp(regs, opcode, old_epc, old31);
1141 	}
1142 
1143 	if (status < 0)
1144 		status = SIGILL;
1145 
1146 	if (unlikely(status > 0)) {
1147 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1148 		regs->regs[31] = old31;
1149 		force_sig(status, current);
1150 	}
1151 
1152 out:
1153 	exception_exit(prev_state);
1154 }
1155 
1156 /*
1157  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1158  * emulated more than some threshold number of instructions, force migration to
1159  * a "CPU" that has FP support.
1160  */
mt_ase_fp_affinity(void)1161 static void mt_ase_fp_affinity(void)
1162 {
1163 #ifdef CONFIG_MIPS_MT_FPAFF
1164 	if (mt_fpemul_threshold > 0 &&
1165 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1166 		/*
1167 		 * If there's no FPU present, or if the application has already
1168 		 * restricted the allowed set to exclude any CPUs with FPUs,
1169 		 * we'll skip the procedure.
1170 		 */
1171 		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1172 			cpumask_t tmask;
1173 
1174 			current->thread.user_cpus_allowed
1175 				= current->cpus_allowed;
1176 			cpus_and(tmask, current->cpus_allowed,
1177 				mt_fpu_cpumask);
1178 			set_cpus_allowed_ptr(current, &tmask);
1179 			set_thread_flag(TIF_FPUBOUND);
1180 		}
1181 	}
1182 #endif /* CONFIG_MIPS_MT_FPAFF */
1183 }
1184 
1185 /*
1186  * No lock; only written during early bootup by CPU 0.
1187  */
1188 static RAW_NOTIFIER_HEAD(cu2_chain);
1189 
register_cu2_notifier(struct notifier_block * nb)1190 int __ref register_cu2_notifier(struct notifier_block *nb)
1191 {
1192 	return raw_notifier_chain_register(&cu2_chain, nb);
1193 }
1194 
cu2_notifier_call_chain(unsigned long val,void * v)1195 int cu2_notifier_call_chain(unsigned long val, void *v)
1196 {
1197 	return raw_notifier_call_chain(&cu2_chain, val, v);
1198 }
1199 
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1200 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1201 	void *data)
1202 {
1203 	struct pt_regs *regs = data;
1204 
1205 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1206 			      "instruction", regs);
1207 	force_sig(SIGILL, current);
1208 
1209 	return NOTIFY_OK;
1210 }
1211 
wait_on_fp_mode_switch(atomic_t * p)1212 static int wait_on_fp_mode_switch(atomic_t *p)
1213 {
1214 	/*
1215 	 * The FP mode for this task is currently being switched. That may
1216 	 * involve modifications to the format of this tasks FP context which
1217 	 * make it unsafe to proceed with execution for the moment. Instead,
1218 	 * schedule some other task.
1219 	 */
1220 	schedule();
1221 	return 0;
1222 }
1223 
enable_restore_fp_context(int msa)1224 static int enable_restore_fp_context(int msa)
1225 {
1226 	int err, was_fpu_owner, prior_msa;
1227 
1228 	/*
1229 	 * If an FP mode switch is currently underway, wait for it to
1230 	 * complete before proceeding.
1231 	 */
1232 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1233 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1234 
1235 	if (!used_math()) {
1236 		/* First time FP context user. */
1237 		preempt_disable();
1238 		err = init_fpu();
1239 		if (msa && !err) {
1240 			enable_msa();
1241 			init_msa_upper();
1242 			set_thread_flag(TIF_USEDMSA);
1243 			set_thread_flag(TIF_MSA_CTX_LIVE);
1244 		}
1245 		preempt_enable();
1246 		if (!err)
1247 			set_used_math();
1248 		return err;
1249 	}
1250 
1251 	/*
1252 	 * This task has formerly used the FP context.
1253 	 *
1254 	 * If this thread has no live MSA vector context then we can simply
1255 	 * restore the scalar FP context. If it has live MSA vector context
1256 	 * (that is, it has or may have used MSA since last performing a
1257 	 * function call) then we'll need to restore the vector context. This
1258 	 * applies even if we're currently only executing a scalar FP
1259 	 * instruction. This is because if we were to later execute an MSA
1260 	 * instruction then we'd either have to:
1261 	 *
1262 	 *  - Restore the vector context & clobber any registers modified by
1263 	 *    scalar FP instructions between now & then.
1264 	 *
1265 	 * or
1266 	 *
1267 	 *  - Not restore the vector context & lose the most significant bits
1268 	 *    of all vector registers.
1269 	 *
1270 	 * Neither of those options is acceptable. We cannot restore the least
1271 	 * significant bits of the registers now & only restore the most
1272 	 * significant bits later because the most significant bits of any
1273 	 * vector registers whose aliased FP register is modified now will have
1274 	 * been zeroed. We'd have no way to know that when restoring the vector
1275 	 * context & thus may load an outdated value for the most significant
1276 	 * bits of a vector register.
1277 	 */
1278 	if (!msa && !thread_msa_context_live())
1279 		return own_fpu(1);
1280 
1281 	/*
1282 	 * This task is using or has previously used MSA. Thus we require
1283 	 * that Status.FR == 1.
1284 	 */
1285 	preempt_disable();
1286 	was_fpu_owner = is_fpu_owner();
1287 	err = own_fpu_inatomic(0);
1288 	if (err)
1289 		goto out;
1290 
1291 	enable_msa();
1292 	write_msa_csr(current->thread.fpu.msacsr);
1293 	set_thread_flag(TIF_USEDMSA);
1294 
1295 	/*
1296 	 * If this is the first time that the task is using MSA and it has
1297 	 * previously used scalar FP in this time slice then we already nave
1298 	 * FP context which we shouldn't clobber. We do however need to clear
1299 	 * the upper 64b of each vector register so that this task has no
1300 	 * opportunity to see data left behind by another.
1301 	 */
1302 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1303 	if (!prior_msa && was_fpu_owner) {
1304 		init_msa_upper();
1305 
1306 		goto out;
1307 	}
1308 
1309 	if (!prior_msa) {
1310 		/*
1311 		 * Restore the least significant 64b of each vector register
1312 		 * from the existing scalar FP context.
1313 		 */
1314 		_restore_fp(current);
1315 
1316 		/*
1317 		 * The task has not formerly used MSA, so clear the upper 64b
1318 		 * of each vector register such that it cannot see data left
1319 		 * behind by another task.
1320 		 */
1321 		init_msa_upper();
1322 	} else {
1323 		/* We need to restore the vector context. */
1324 		restore_msa(current);
1325 
1326 		/* Restore the scalar FP control & status register */
1327 		if (!was_fpu_owner)
1328 			write_32bit_cp1_register(CP1_STATUS,
1329 						 current->thread.fpu.fcr31);
1330 	}
1331 
1332 out:
1333 	preempt_enable();
1334 
1335 	return 0;
1336 }
1337 
do_cpu(struct pt_regs * regs)1338 asmlinkage void do_cpu(struct pt_regs *regs)
1339 {
1340 	enum ctx_state prev_state;
1341 	unsigned int __user *epc;
1342 	unsigned long old_epc, old31;
1343 	void __user *fault_addr;
1344 	unsigned int opcode;
1345 	unsigned long fcr31;
1346 	unsigned int cpid;
1347 	int status, err;
1348 	unsigned long __maybe_unused flags;
1349 	int sig;
1350 
1351 	prev_state = exception_enter();
1352 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1353 
1354 	if (cpid != 2)
1355 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1356 
1357 	switch (cpid) {
1358 	case 0:
1359 		epc = (unsigned int __user *)exception_epc(regs);
1360 		old_epc = regs->cp0_epc;
1361 		old31 = regs->regs[31];
1362 		opcode = 0;
1363 		status = -1;
1364 
1365 		if (unlikely(compute_return_epc(regs) < 0))
1366 			break;
1367 
1368 		if (get_isa16_mode(regs->cp0_epc)) {
1369 			unsigned short mmop[2] = { 0 };
1370 
1371 			if (unlikely(get_user(mmop[0], epc) < 0))
1372 				status = SIGSEGV;
1373 			if (unlikely(get_user(mmop[1], epc) < 0))
1374 				status = SIGSEGV;
1375 			opcode = (mmop[0] << 16) | mmop[1];
1376 
1377 			if (status < 0)
1378 				status = simulate_rdhwr_mm(regs, opcode);
1379 		} else {
1380 			if (unlikely(get_user(opcode, epc) < 0))
1381 				status = SIGSEGV;
1382 
1383 			if (!cpu_has_llsc && status < 0)
1384 				status = simulate_llsc(regs, opcode);
1385 
1386 			if (status < 0)
1387 				status = simulate_rdhwr_normal(regs, opcode);
1388 		}
1389 
1390 		if (status < 0)
1391 			status = SIGILL;
1392 
1393 		if (unlikely(status > 0)) {
1394 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1395 			regs->regs[31] = old31;
1396 			force_sig(status, current);
1397 		}
1398 
1399 		break;
1400 
1401 	case 3:
1402 		/*
1403 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1404 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1405 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1406 		 * up the space has been reused for COP1X instructions, that
1407 		 * are enabled by the CP0.Status.CU1 bit and consequently
1408 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1409 		 * exceptions.  Some FPU-less processors that implement one
1410 		 * of these ISAs however use this code erroneously for COP1X
1411 		 * instructions.  Therefore we redirect this trap to the FP
1412 		 * emulator too.
1413 		 */
1414 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1415 			force_sig(SIGILL, current);
1416 			break;
1417 		}
1418 		/* Fall through.  */
1419 
1420 	case 1:
1421 		err = enable_restore_fp_context(0);
1422 
1423 		if (raw_cpu_has_fpu && !err)
1424 			break;
1425 
1426 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1427 					       &fault_addr);
1428 		fcr31 = current->thread.fpu.fcr31;
1429 
1430 		/*
1431 		 * We can't allow the emulated instruction to leave
1432 		 * any of the cause bits set in $fcr31.
1433 		 */
1434 		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1435 
1436 		/* Send a signal if required.  */
1437 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1438 			mt_ase_fp_affinity();
1439 
1440 		break;
1441 
1442 	case 2:
1443 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1444 		break;
1445 	}
1446 
1447 	exception_exit(prev_state);
1448 }
1449 
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1450 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1451 {
1452 	enum ctx_state prev_state;
1453 
1454 	prev_state = exception_enter();
1455 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1456 		       regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1457 		goto out;
1458 
1459 	/* Clear MSACSR.Cause before enabling interrupts */
1460 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1461 	local_irq_enable();
1462 
1463 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1464 	force_sig(SIGFPE, current);
1465 out:
1466 	exception_exit(prev_state);
1467 }
1468 
do_msa(struct pt_regs * regs)1469 asmlinkage void do_msa(struct pt_regs *regs)
1470 {
1471 	enum ctx_state prev_state;
1472 	int err;
1473 
1474 	prev_state = exception_enter();
1475 
1476 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1477 		force_sig(SIGILL, current);
1478 		goto out;
1479 	}
1480 
1481 	die_if_kernel("do_msa invoked from kernel context!", regs);
1482 
1483 	err = enable_restore_fp_context(1);
1484 	if (err)
1485 		force_sig(SIGILL, current);
1486 out:
1487 	exception_exit(prev_state);
1488 }
1489 
do_mdmx(struct pt_regs * regs)1490 asmlinkage void do_mdmx(struct pt_regs *regs)
1491 {
1492 	enum ctx_state prev_state;
1493 
1494 	prev_state = exception_enter();
1495 	force_sig(SIGILL, current);
1496 	exception_exit(prev_state);
1497 }
1498 
1499 /*
1500  * Called with interrupts disabled.
1501  */
do_watch(struct pt_regs * regs)1502 asmlinkage void do_watch(struct pt_regs *regs)
1503 {
1504 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1505 	enum ctx_state prev_state;
1506 	u32 cause;
1507 
1508 	prev_state = exception_enter();
1509 	/*
1510 	 * Clear WP (bit 22) bit of cause register so we don't loop
1511 	 * forever.
1512 	 */
1513 	cause = read_c0_cause();
1514 	cause &= ~(1 << 22);
1515 	write_c0_cause(cause);
1516 
1517 	/*
1518 	 * If the current thread has the watch registers loaded, save
1519 	 * their values and send SIGTRAP.  Otherwise another thread
1520 	 * left the registers set, clear them and continue.
1521 	 */
1522 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1523 		mips_read_watch_registers();
1524 		local_irq_enable();
1525 		force_sig_info(SIGTRAP, &info, current);
1526 	} else {
1527 		mips_clear_watch_registers();
1528 		local_irq_enable();
1529 	}
1530 	exception_exit(prev_state);
1531 }
1532 
do_mcheck(struct pt_regs * regs)1533 asmlinkage void do_mcheck(struct pt_regs *regs)
1534 {
1535 	const int field = 2 * sizeof(unsigned long);
1536 	int multi_match = regs->cp0_status & ST0_TS;
1537 	enum ctx_state prev_state;
1538 	mm_segment_t old_fs = get_fs();
1539 
1540 	prev_state = exception_enter();
1541 	show_regs(regs);
1542 
1543 	if (multi_match) {
1544 		pr_err("Index	: %0x\n", read_c0_index());
1545 		pr_err("Pagemask: %0x\n", read_c0_pagemask());
1546 		pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1547 		pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1548 		pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1549 		pr_err("Wired   : %0x\n", read_c0_wired());
1550 		pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1551 		if (cpu_has_htw) {
1552 			pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1553 			pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1554 			pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1555 		}
1556 		pr_err("\n");
1557 		dump_tlb_all();
1558 	}
1559 
1560 	if (!user_mode(regs))
1561 		set_fs(KERNEL_DS);
1562 
1563 	show_code((unsigned int __user *) regs->cp0_epc);
1564 
1565 	set_fs(old_fs);
1566 
1567 	/*
1568 	 * Some chips may have other causes of machine check (e.g. SB1
1569 	 * graduation timer)
1570 	 */
1571 	panic("Caught Machine Check exception - %scaused by multiple "
1572 	      "matching entries in the TLB.",
1573 	      (multi_match) ? "" : "not ");
1574 }
1575 
do_mt(struct pt_regs * regs)1576 asmlinkage void do_mt(struct pt_regs *regs)
1577 {
1578 	int subcode;
1579 
1580 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1581 			>> VPECONTROL_EXCPT_SHIFT;
1582 	switch (subcode) {
1583 	case 0:
1584 		printk(KERN_DEBUG "Thread Underflow\n");
1585 		break;
1586 	case 1:
1587 		printk(KERN_DEBUG "Thread Overflow\n");
1588 		break;
1589 	case 2:
1590 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1591 		break;
1592 	case 3:
1593 		printk(KERN_DEBUG "Gating Storage Exception\n");
1594 		break;
1595 	case 4:
1596 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1597 		break;
1598 	case 5:
1599 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1600 		break;
1601 	default:
1602 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1603 			subcode);
1604 		break;
1605 	}
1606 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1607 
1608 	force_sig(SIGILL, current);
1609 }
1610 
1611 
do_dsp(struct pt_regs * regs)1612 asmlinkage void do_dsp(struct pt_regs *regs)
1613 {
1614 	if (cpu_has_dsp)
1615 		panic("Unexpected DSP exception");
1616 
1617 	force_sig(SIGILL, current);
1618 }
1619 
do_reserved(struct pt_regs * regs)1620 asmlinkage void do_reserved(struct pt_regs *regs)
1621 {
1622 	/*
1623 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1624 	 * caused by a new unknown cpu type or after another deadly
1625 	 * hard/software error.
1626 	 */
1627 	show_regs(regs);
1628 	panic("Caught reserved exception %ld - should not happen.",
1629 	      (regs->cp0_cause & 0x7f) >> 2);
1630 }
1631 
1632 static int __initdata l1parity = 1;
nol1parity(char * s)1633 static int __init nol1parity(char *s)
1634 {
1635 	l1parity = 0;
1636 	return 1;
1637 }
1638 __setup("nol1par", nol1parity);
1639 static int __initdata l2parity = 1;
nol2parity(char * s)1640 static int __init nol2parity(char *s)
1641 {
1642 	l2parity = 0;
1643 	return 1;
1644 }
1645 __setup("nol2par", nol2parity);
1646 
1647 /*
1648  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1649  * it different ways.
1650  */
parity_protection_init(void)1651 static inline void parity_protection_init(void)
1652 {
1653 	switch (current_cpu_type()) {
1654 	case CPU_24K:
1655 	case CPU_34K:
1656 	case CPU_74K:
1657 	case CPU_1004K:
1658 	case CPU_1074K:
1659 	case CPU_INTERAPTIV:
1660 	case CPU_PROAPTIV:
1661 	case CPU_P5600:
1662 	case CPU_QEMU_GENERIC:
1663 		{
1664 #define ERRCTL_PE	0x80000000
1665 #define ERRCTL_L2P	0x00800000
1666 			unsigned long errctl;
1667 			unsigned int l1parity_present, l2parity_present;
1668 
1669 			errctl = read_c0_ecc();
1670 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1671 
1672 			/* probe L1 parity support */
1673 			write_c0_ecc(errctl | ERRCTL_PE);
1674 			back_to_back_c0_hazard();
1675 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1676 
1677 			/* probe L2 parity support */
1678 			write_c0_ecc(errctl|ERRCTL_L2P);
1679 			back_to_back_c0_hazard();
1680 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1681 
1682 			if (l1parity_present && l2parity_present) {
1683 				if (l1parity)
1684 					errctl |= ERRCTL_PE;
1685 				if (l1parity ^ l2parity)
1686 					errctl |= ERRCTL_L2P;
1687 			} else if (l1parity_present) {
1688 				if (l1parity)
1689 					errctl |= ERRCTL_PE;
1690 			} else if (l2parity_present) {
1691 				if (l2parity)
1692 					errctl |= ERRCTL_L2P;
1693 			} else {
1694 				/* No parity available */
1695 			}
1696 
1697 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1698 
1699 			write_c0_ecc(errctl);
1700 			back_to_back_c0_hazard();
1701 			errctl = read_c0_ecc();
1702 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1703 
1704 			if (l1parity_present)
1705 				printk(KERN_INFO "Cache parity protection %sabled\n",
1706 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1707 
1708 			if (l2parity_present) {
1709 				if (l1parity_present && l1parity)
1710 					errctl ^= ERRCTL_L2P;
1711 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1712 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1713 			}
1714 		}
1715 		break;
1716 
1717 	case CPU_5KC:
1718 	case CPU_5KE:
1719 	case CPU_LOONGSON1:
1720 		write_c0_ecc(0x80000000);
1721 		back_to_back_c0_hazard();
1722 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1723 		printk(KERN_INFO "Cache parity protection %sabled\n",
1724 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1725 		break;
1726 	case CPU_20KC:
1727 	case CPU_25KF:
1728 		/* Clear the DE bit (bit 16) in the c0_status register. */
1729 		printk(KERN_INFO "Enable cache parity protection for "
1730 		       "MIPS 20KC/25KF CPUs.\n");
1731 		clear_c0_status(ST0_DE);
1732 		break;
1733 	default:
1734 		break;
1735 	}
1736 }
1737 
cache_parity_error(void)1738 asmlinkage void cache_parity_error(void)
1739 {
1740 	const int field = 2 * sizeof(unsigned long);
1741 	unsigned int reg_val;
1742 
1743 	/* For the moment, report the problem and hang. */
1744 	printk("Cache error exception:\n");
1745 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1746 	reg_val = read_c0_cacheerr();
1747 	printk("c0_cacheerr == %08x\n", reg_val);
1748 
1749 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1750 	       reg_val & (1<<30) ? "secondary" : "primary",
1751 	       reg_val & (1<<31) ? "data" : "insn");
1752 	if ((cpu_has_mips_r2_r6) &&
1753 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1754 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1755 			reg_val & (1<<29) ? "ED " : "",
1756 			reg_val & (1<<28) ? "ET " : "",
1757 			reg_val & (1<<27) ? "ES " : "",
1758 			reg_val & (1<<26) ? "EE " : "",
1759 			reg_val & (1<<25) ? "EB " : "",
1760 			reg_val & (1<<24) ? "EI " : "",
1761 			reg_val & (1<<23) ? "E1 " : "",
1762 			reg_val & (1<<22) ? "E0 " : "");
1763 	} else {
1764 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1765 			reg_val & (1<<29) ? "ED " : "",
1766 			reg_val & (1<<28) ? "ET " : "",
1767 			reg_val & (1<<26) ? "EE " : "",
1768 			reg_val & (1<<25) ? "EB " : "",
1769 			reg_val & (1<<24) ? "EI " : "",
1770 			reg_val & (1<<23) ? "E1 " : "",
1771 			reg_val & (1<<22) ? "E0 " : "");
1772 	}
1773 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1774 
1775 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1776 	if (reg_val & (1<<22))
1777 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1778 
1779 	if (reg_val & (1<<23))
1780 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1781 #endif
1782 
1783 	panic("Can't handle the cache error!");
1784 }
1785 
do_ftlb(void)1786 asmlinkage void do_ftlb(void)
1787 {
1788 	const int field = 2 * sizeof(unsigned long);
1789 	unsigned int reg_val;
1790 
1791 	/* For the moment, report the problem and hang. */
1792 	if ((cpu_has_mips_r2_r6) &&
1793 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1794 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1795 		       read_c0_ecc());
1796 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1797 		reg_val = read_c0_cacheerr();
1798 		pr_err("c0_cacheerr == %08x\n", reg_val);
1799 
1800 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1801 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1802 		} else {
1803 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1804 			       reg_val & (1<<30) ? "secondary" : "primary",
1805 			       reg_val & (1<<31) ? "data" : "insn");
1806 		}
1807 	} else {
1808 		pr_err("FTLB error exception\n");
1809 	}
1810 	/* Just print the cacheerr bits for now */
1811 	cache_parity_error();
1812 }
1813 
1814 /*
1815  * SDBBP EJTAG debug exception handler.
1816  * We skip the instruction and return to the next instruction.
1817  */
ejtag_exception_handler(struct pt_regs * regs)1818 void ejtag_exception_handler(struct pt_regs *regs)
1819 {
1820 	const int field = 2 * sizeof(unsigned long);
1821 	unsigned long depc, old_epc, old_ra;
1822 	unsigned int debug;
1823 
1824 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1825 	depc = read_c0_depc();
1826 	debug = read_c0_debug();
1827 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1828 	if (debug & 0x80000000) {
1829 		/*
1830 		 * In branch delay slot.
1831 		 * We cheat a little bit here and use EPC to calculate the
1832 		 * debug return address (DEPC). EPC is restored after the
1833 		 * calculation.
1834 		 */
1835 		old_epc = regs->cp0_epc;
1836 		old_ra = regs->regs[31];
1837 		regs->cp0_epc = depc;
1838 		compute_return_epc(regs);
1839 		depc = regs->cp0_epc;
1840 		regs->cp0_epc = old_epc;
1841 		regs->regs[31] = old_ra;
1842 	} else
1843 		depc += 4;
1844 	write_c0_depc(depc);
1845 
1846 #if 0
1847 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1848 	write_c0_debug(debug | 0x100);
1849 #endif
1850 }
1851 
1852 /*
1853  * NMI exception handler.
1854  * No lock; only written during early bootup by CPU 0.
1855  */
1856 static RAW_NOTIFIER_HEAD(nmi_chain);
1857 
register_nmi_notifier(struct notifier_block * nb)1858 int register_nmi_notifier(struct notifier_block *nb)
1859 {
1860 	return raw_notifier_chain_register(&nmi_chain, nb);
1861 }
1862 
nmi_exception_handler(struct pt_regs * regs)1863 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1864 {
1865 	char str[100];
1866 
1867 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1868 	bust_spinlocks(1);
1869 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1870 		 smp_processor_id(), regs->cp0_epc);
1871 	regs->cp0_epc = read_c0_errorepc();
1872 	die(str, regs);
1873 }
1874 
1875 #define VECTORSPACING 0x100	/* for EI/VI mode */
1876 
1877 unsigned long ebase;
1878 unsigned long exception_handlers[32];
1879 unsigned long vi_handlers[64];
1880 
set_except_vector(int n,void * addr)1881 void __init *set_except_vector(int n, void *addr)
1882 {
1883 	unsigned long handler = (unsigned long) addr;
1884 	unsigned long old_handler;
1885 
1886 #ifdef CONFIG_CPU_MICROMIPS
1887 	/*
1888 	 * Only the TLB handlers are cache aligned with an even
1889 	 * address. All other handlers are on an odd address and
1890 	 * require no modification. Otherwise, MIPS32 mode will
1891 	 * be entered when handling any TLB exceptions. That
1892 	 * would be bad...since we must stay in microMIPS mode.
1893 	 */
1894 	if (!(handler & 0x1))
1895 		handler |= 1;
1896 #endif
1897 	old_handler = xchg(&exception_handlers[n], handler);
1898 
1899 	if (n == 0 && cpu_has_divec) {
1900 #ifdef CONFIG_CPU_MICROMIPS
1901 		unsigned long jump_mask = ~((1 << 27) - 1);
1902 #else
1903 		unsigned long jump_mask = ~((1 << 28) - 1);
1904 #endif
1905 		u32 *buf = (u32 *)(ebase + 0x200);
1906 		unsigned int k0 = 26;
1907 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1908 			uasm_i_j(&buf, handler & ~jump_mask);
1909 			uasm_i_nop(&buf);
1910 		} else {
1911 			UASM_i_LA(&buf, k0, handler);
1912 			uasm_i_jr(&buf, k0);
1913 			uasm_i_nop(&buf);
1914 		}
1915 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1916 	}
1917 	return (void *)old_handler;
1918 }
1919 
do_default_vi(void)1920 static void do_default_vi(void)
1921 {
1922 	show_regs(get_irq_regs());
1923 	panic("Caught unexpected vectored interrupt.");
1924 }
1925 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1926 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1927 {
1928 	unsigned long handler;
1929 	unsigned long old_handler = vi_handlers[n];
1930 	int srssets = current_cpu_data.srsets;
1931 	u16 *h;
1932 	unsigned char *b;
1933 
1934 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1935 
1936 	if (addr == NULL) {
1937 		handler = (unsigned long) do_default_vi;
1938 		srs = 0;
1939 	} else
1940 		handler = (unsigned long) addr;
1941 	vi_handlers[n] = handler;
1942 
1943 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1944 
1945 	if (srs >= srssets)
1946 		panic("Shadow register set %d not supported", srs);
1947 
1948 	if (cpu_has_veic) {
1949 		if (board_bind_eic_interrupt)
1950 			board_bind_eic_interrupt(n, srs);
1951 	} else if (cpu_has_vint) {
1952 		/* SRSMap is only defined if shadow sets are implemented */
1953 		if (srssets > 1)
1954 			change_c0_srsmap(0xf << n*4, srs << n*4);
1955 	}
1956 
1957 	if (srs == 0) {
1958 		/*
1959 		 * If no shadow set is selected then use the default handler
1960 		 * that does normal register saving and standard interrupt exit
1961 		 */
1962 		extern char except_vec_vi, except_vec_vi_lui;
1963 		extern char except_vec_vi_ori, except_vec_vi_end;
1964 		extern char rollback_except_vec_vi;
1965 		char *vec_start = using_rollback_handler() ?
1966 			&rollback_except_vec_vi : &except_vec_vi;
1967 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1968 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1969 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1970 #else
1971 		const int lui_offset = &except_vec_vi_lui - vec_start;
1972 		const int ori_offset = &except_vec_vi_ori - vec_start;
1973 #endif
1974 		const int handler_len = &except_vec_vi_end - vec_start;
1975 
1976 		if (handler_len > VECTORSPACING) {
1977 			/*
1978 			 * Sigh... panicing won't help as the console
1979 			 * is probably not configured :(
1980 			 */
1981 			panic("VECTORSPACING too small");
1982 		}
1983 
1984 		set_handler(((unsigned long)b - ebase), vec_start,
1985 #ifdef CONFIG_CPU_MICROMIPS
1986 				(handler_len - 1));
1987 #else
1988 				handler_len);
1989 #endif
1990 		h = (u16 *)(b + lui_offset);
1991 		*h = (handler >> 16) & 0xffff;
1992 		h = (u16 *)(b + ori_offset);
1993 		*h = (handler & 0xffff);
1994 		local_flush_icache_range((unsigned long)b,
1995 					 (unsigned long)(b+handler_len));
1996 	}
1997 	else {
1998 		/*
1999 		 * In other cases jump directly to the interrupt handler. It
2000 		 * is the handler's responsibility to save registers if required
2001 		 * (eg hi/lo) and return from the exception using "eret".
2002 		 */
2003 		u32 insn;
2004 
2005 		h = (u16 *)b;
2006 		/* j handler */
2007 #ifdef CONFIG_CPU_MICROMIPS
2008 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2009 #else
2010 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2011 #endif
2012 		h[0] = (insn >> 16) & 0xffff;
2013 		h[1] = insn & 0xffff;
2014 		h[2] = 0;
2015 		h[3] = 0;
2016 		local_flush_icache_range((unsigned long)b,
2017 					 (unsigned long)(b+8));
2018 	}
2019 
2020 	return (void *)old_handler;
2021 }
2022 
set_vi_handler(int n,vi_handler_t addr)2023 void *set_vi_handler(int n, vi_handler_t addr)
2024 {
2025 	return set_vi_srs_handler(n, addr, 0);
2026 }
2027 
2028 extern void tlb_init(void);
2029 
2030 /*
2031  * Timer interrupt
2032  */
2033 int cp0_compare_irq;
2034 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2035 int cp0_compare_irq_shift;
2036 
2037 /*
2038  * Performance counter IRQ or -1 if shared with timer
2039  */
2040 int cp0_perfcount_irq;
2041 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2042 
2043 static int noulri;
2044 
ulri_disable(char * s)2045 static int __init ulri_disable(char *s)
2046 {
2047 	pr_info("Disabling ulri\n");
2048 	noulri = 1;
2049 
2050 	return 1;
2051 }
2052 __setup("noulri", ulri_disable);
2053 
2054 /* configure STATUS register */
configure_status(void)2055 static void configure_status(void)
2056 {
2057 	/*
2058 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2059 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2060 	 * flag that some firmware may have left set and the TS bit (for
2061 	 * IP27).  Set XX for ISA IV code to work.
2062 	 */
2063 	unsigned int status_set = ST0_CU0;
2064 #ifdef CONFIG_64BIT
2065 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2066 #endif
2067 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2068 		status_set |= ST0_XX;
2069 	if (cpu_has_dsp)
2070 		status_set |= ST0_MX;
2071 
2072 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2073 			 status_set);
2074 }
2075 
2076 /* configure HWRENA register */
configure_hwrena(void)2077 static void configure_hwrena(void)
2078 {
2079 	unsigned int hwrena = cpu_hwrena_impl_bits;
2080 
2081 	if (cpu_has_mips_r2_r6)
2082 		hwrena |= 0x0000000f;
2083 
2084 	if (!noulri && cpu_has_userlocal)
2085 		hwrena |= (1 << 29);
2086 
2087 	if (hwrena)
2088 		write_c0_hwrena(hwrena);
2089 }
2090 
configure_exception_vector(void)2091 static void configure_exception_vector(void)
2092 {
2093 	if (cpu_has_veic || cpu_has_vint) {
2094 		unsigned long sr = set_c0_status(ST0_BEV);
2095 		write_c0_ebase(ebase);
2096 		write_c0_status(sr);
2097 		/* Setting vector spacing enables EI/VI mode  */
2098 		change_c0_intctl(0x3e0, VECTORSPACING);
2099 	}
2100 	if (cpu_has_divec) {
2101 		if (cpu_has_mipsmt) {
2102 			unsigned int vpflags = dvpe();
2103 			set_c0_cause(CAUSEF_IV);
2104 			evpe(vpflags);
2105 		} else
2106 			set_c0_cause(CAUSEF_IV);
2107 	}
2108 }
2109 
per_cpu_trap_init(bool is_boot_cpu)2110 void per_cpu_trap_init(bool is_boot_cpu)
2111 {
2112 	unsigned int cpu = smp_processor_id();
2113 
2114 	configure_status();
2115 	configure_hwrena();
2116 
2117 	configure_exception_vector();
2118 
2119 	/*
2120 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2121 	 *
2122 	 *  o read IntCtl.IPTI to determine the timer interrupt
2123 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2124 	 */
2125 	if (cpu_has_mips_r2_r6) {
2126 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2127 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2128 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2129 		if (cp0_perfcount_irq == cp0_compare_irq)
2130 			cp0_perfcount_irq = -1;
2131 	} else {
2132 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2133 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2134 		cp0_perfcount_irq = -1;
2135 	}
2136 
2137 	if (!cpu_data[cpu].asid_cache)
2138 		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2139 
2140 	atomic_inc(&init_mm.mm_count);
2141 	current->active_mm = &init_mm;
2142 	BUG_ON(current->mm);
2143 	enter_lazy_tlb(&init_mm, current);
2144 
2145 	/* Boot CPU's cache setup in setup_arch(). */
2146 	if (!is_boot_cpu)
2147 		cpu_cache_init();
2148 	tlb_init();
2149 	TLBMISS_HANDLER_SETUP();
2150 }
2151 
2152 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)2153 void set_handler(unsigned long offset, void *addr, unsigned long size)
2154 {
2155 #ifdef CONFIG_CPU_MICROMIPS
2156 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2157 #else
2158 	memcpy((void *)(ebase + offset), addr, size);
2159 #endif
2160 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2161 }
2162 
2163 static char panic_null_cerr[] =
2164 	"Trying to set NULL cache error exception handler";
2165 
2166 /*
2167  * Install uncached CPU exception handler.
2168  * This is suitable only for the cache error exception which is the only
2169  * exception handler that is being run uncached.
2170  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2171 void set_uncached_handler(unsigned long offset, void *addr,
2172 	unsigned long size)
2173 {
2174 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2175 
2176 	if (!addr)
2177 		panic(panic_null_cerr);
2178 
2179 	memcpy((void *)(uncached_ebase + offset), addr, size);
2180 }
2181 
2182 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2183 static int __init set_rdhwr_noopt(char *str)
2184 {
2185 	rdhwr_noopt = 1;
2186 	return 1;
2187 }
2188 
2189 __setup("rdhwr_noopt", set_rdhwr_noopt);
2190 
trap_init(void)2191 void __init trap_init(void)
2192 {
2193 	extern char except_vec3_generic;
2194 	extern char except_vec4;
2195 	extern char except_vec3_r4000;
2196 	unsigned long i;
2197 
2198 	check_wait();
2199 
2200 	if (cpu_has_veic || cpu_has_vint) {
2201 		unsigned long size = 0x200 + VECTORSPACING*64;
2202 		ebase = (unsigned long)
2203 			__alloc_bootmem(size, 1 << fls(size), 0);
2204 	} else {
2205 #ifdef CONFIG_KVM_GUEST
2206 #define KVM_GUEST_KSEG0     0x40000000
2207         ebase = KVM_GUEST_KSEG0;
2208 #else
2209         ebase = CKSEG0;
2210 #endif
2211 		if (cpu_has_mips_r2_r6)
2212 			ebase += (read_c0_ebase() & 0x3ffff000);
2213 	}
2214 
2215 	if (cpu_has_mmips) {
2216 		unsigned int config3 = read_c0_config3();
2217 
2218 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2219 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2220 		else
2221 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2222 	}
2223 
2224 	if (board_ebase_setup)
2225 		board_ebase_setup();
2226 	per_cpu_trap_init(true);
2227 
2228 	/*
2229 	 * Copy the generic exception handlers to their final destination.
2230 	 * This will be overriden later as suitable for a particular
2231 	 * configuration.
2232 	 */
2233 	set_handler(0x180, &except_vec3_generic, 0x80);
2234 
2235 	/*
2236 	 * Setup default vectors
2237 	 */
2238 	for (i = 0; i <= 31; i++)
2239 		set_except_vector(i, handle_reserved);
2240 
2241 	/*
2242 	 * Copy the EJTAG debug exception vector handler code to it's final
2243 	 * destination.
2244 	 */
2245 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2246 		board_ejtag_handler_setup();
2247 
2248 	/*
2249 	 * Only some CPUs have the watch exceptions.
2250 	 */
2251 	if (cpu_has_watch)
2252 		set_except_vector(23, handle_watch);
2253 
2254 	/*
2255 	 * Initialise interrupt handlers
2256 	 */
2257 	if (cpu_has_veic || cpu_has_vint) {
2258 		int nvec = cpu_has_veic ? 64 : 8;
2259 		for (i = 0; i < nvec; i++)
2260 			set_vi_handler(i, NULL);
2261 	}
2262 	else if (cpu_has_divec)
2263 		set_handler(0x200, &except_vec4, 0x8);
2264 
2265 	/*
2266 	 * Some CPUs can enable/disable for cache parity detection, but does
2267 	 * it different ways.
2268 	 */
2269 	parity_protection_init();
2270 
2271 	/*
2272 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2273 	 * by external hardware.  Therefore these two exceptions
2274 	 * may have board specific handlers.
2275 	 */
2276 	if (board_be_init)
2277 		board_be_init();
2278 
2279 	set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2280 						      : handle_int);
2281 	set_except_vector(1, handle_tlbm);
2282 	set_except_vector(2, handle_tlbl);
2283 	set_except_vector(3, handle_tlbs);
2284 
2285 	set_except_vector(4, handle_adel);
2286 	set_except_vector(5, handle_ades);
2287 
2288 	set_except_vector(6, handle_ibe);
2289 	set_except_vector(7, handle_dbe);
2290 
2291 	set_except_vector(8, handle_sys);
2292 	set_except_vector(9, handle_bp);
2293 	set_except_vector(10, rdhwr_noopt ? handle_ri :
2294 			  (cpu_has_vtag_icache ?
2295 			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2296 	set_except_vector(11, handle_cpu);
2297 	set_except_vector(12, handle_ov);
2298 	set_except_vector(13, handle_tr);
2299 	set_except_vector(14, handle_msa_fpe);
2300 
2301 	if (current_cpu_type() == CPU_R6000 ||
2302 	    current_cpu_type() == CPU_R6000A) {
2303 		/*
2304 		 * The R6000 is the only R-series CPU that features a machine
2305 		 * check exception (similar to the R4000 cache error) and
2306 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2307 		 * written yet.	 Well, anyway there is no R6000 machine on the
2308 		 * current list of targets for Linux/MIPS.
2309 		 * (Duh, crap, there is someone with a triple R6k machine)
2310 		 */
2311 		//set_except_vector(14, handle_mc);
2312 		//set_except_vector(15, handle_ndc);
2313 	}
2314 
2315 
2316 	if (board_nmi_handler_setup)
2317 		board_nmi_handler_setup();
2318 
2319 	if (cpu_has_fpu && !cpu_has_nofpuex)
2320 		set_except_vector(15, handle_fpe);
2321 
2322 	set_except_vector(16, handle_ftlb);
2323 
2324 	if (cpu_has_rixiex) {
2325 		set_except_vector(19, tlb_do_page_fault_0);
2326 		set_except_vector(20, tlb_do_page_fault_0);
2327 	}
2328 
2329 	set_except_vector(21, handle_msa);
2330 	set_except_vector(22, handle_mdmx);
2331 
2332 	if (cpu_has_mcheck)
2333 		set_except_vector(24, handle_mcheck);
2334 
2335 	if (cpu_has_mipsmt)
2336 		set_except_vector(25, handle_mt);
2337 
2338 	set_except_vector(26, handle_dsp);
2339 
2340 	if (board_cache_error_setup)
2341 		board_cache_error_setup();
2342 
2343 	if (cpu_has_vce)
2344 		/* Special exception: R4[04]00 uses also the divec space. */
2345 		set_handler(0x180, &except_vec3_r4000, 0x100);
2346 	else if (cpu_has_4kex)
2347 		set_handler(0x180, &except_vec3_generic, 0x80);
2348 	else
2349 		set_handler(0x080, &except_vec3_generic, 0x80);
2350 
2351 	local_flush_icache_range(ebase, ebase + 0x400);
2352 
2353 	sort_extable(__start___dbe_table, __stop___dbe_table);
2354 
2355 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2356 }
2357 
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2358 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2359 			    void *v)
2360 {
2361 	switch (cmd) {
2362 	case CPU_PM_ENTER_FAILED:
2363 	case CPU_PM_EXIT:
2364 		configure_status();
2365 		configure_hwrena();
2366 		configure_exception_vector();
2367 
2368 		/* Restore register with CPU number for TLB handlers */
2369 		TLBMISS_HANDLER_RESTORE();
2370 
2371 		break;
2372 	}
2373 
2374 	return NOTIFY_OK;
2375 }
2376 
2377 static struct notifier_block trap_pm_notifier_block = {
2378 	.notifier_call = trap_pm_notifier,
2379 };
2380 
trap_pm_init(void)2381 static int __init trap_pm_init(void)
2382 {
2383 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2384 }
2385 arch_initcall(trap_pm_init);
2386