• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 
btrfs_alloc_path(void)45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 	struct btrfs_path *path;
48 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 	return path;
50 }
51 
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
btrfs_set_path_blocking(struct btrfs_path * p)56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 	int i;
59 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 		if (!p->nodes[i] || !p->locks[i])
61 			continue;
62 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 		if (p->locks[i] == BTRFS_READ_LOCK)
64 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 	}
68 }
69 
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
btrfs_clear_path_blocking(struct btrfs_path * p,struct extent_buffer * held,int held_rw)78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 					struct extent_buffer *held, int held_rw)
80 {
81 	int i;
82 
83 	if (held) {
84 		btrfs_set_lock_blocking_rw(held, held_rw);
85 		if (held_rw == BTRFS_WRITE_LOCK)
86 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 		else if (held_rw == BTRFS_READ_LOCK)
88 			held_rw = BTRFS_READ_LOCK_BLOCKING;
89 	}
90 	btrfs_set_path_blocking(p);
91 
92 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 		if (p->nodes[i] && p->locks[i]) {
94 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 				p->locks[i] = BTRFS_WRITE_LOCK;
97 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 				p->locks[i] = BTRFS_READ_LOCK;
99 		}
100 	}
101 
102 	if (held)
103 		btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105 
106 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 	if (!p)
110 		return;
111 	btrfs_release_path(p);
112 	kmem_cache_free(btrfs_path_cachep, p);
113 }
114 
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
btrfs_release_path(struct btrfs_path * p)121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 	int i;
124 
125 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 		p->slots[i] = 0;
127 		if (!p->nodes[i])
128 			continue;
129 		if (p->locks[i]) {
130 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 			p->locks[i] = 0;
132 		}
133 		free_extent_buffer(p->nodes[i]);
134 		p->nodes[i] = NULL;
135 	}
136 }
137 
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
btrfs_root_node(struct btrfs_root * root)148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 	struct extent_buffer *eb;
151 
152 	while (1) {
153 		rcu_read_lock();
154 		eb = rcu_dereference(root->node);
155 
156 		/*
157 		 * RCU really hurts here, we could free up the root node because
158 		 * it was cow'ed but we may not get the new root node yet so do
159 		 * the inc_not_zero dance and if it doesn't work then
160 		 * synchronize_rcu and try again.
161 		 */
162 		if (atomic_inc_not_zero(&eb->refs)) {
163 			rcu_read_unlock();
164 			break;
165 		}
166 		rcu_read_unlock();
167 		synchronize_rcu();
168 	}
169 	return eb;
170 }
171 
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
btrfs_lock_root_node(struct btrfs_root * root)176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 	struct extent_buffer *eb;
179 
180 	while (1) {
181 		eb = btrfs_root_node(root);
182 		btrfs_tree_lock(eb);
183 		if (eb == root->node)
184 			break;
185 		btrfs_tree_unlock(eb);
186 		free_extent_buffer(eb);
187 	}
188 	return eb;
189 }
190 
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
btrfs_read_lock_root_node(struct btrfs_root * root)195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 	struct extent_buffer *eb;
198 
199 	while (1) {
200 		eb = btrfs_root_node(root);
201 		btrfs_tree_read_lock(eb);
202 		if (eb == root->node)
203 			break;
204 		btrfs_tree_read_unlock(eb);
205 		free_extent_buffer(eb);
206 	}
207 	return eb;
208 }
209 
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
add_root_to_dirty_list(struct btrfs_root * root)214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 	spin_lock(&root->fs_info->trans_lock);
217 	if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
218 	    list_empty(&root->dirty_list)) {
219 		list_add(&root->dirty_list,
220 			 &root->fs_info->dirty_cowonly_roots);
221 	}
222 	spin_unlock(&root->fs_info->trans_lock);
223 }
224 
225 /*
226  * used by snapshot creation to make a copy of a root for a tree with
227  * a given objectid.  The buffer with the new root node is returned in
228  * cow_ret, and this func returns zero on success or a negative error code.
229  */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)230 int btrfs_copy_root(struct btrfs_trans_handle *trans,
231 		      struct btrfs_root *root,
232 		      struct extent_buffer *buf,
233 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
234 {
235 	struct extent_buffer *cow;
236 	int ret = 0;
237 	int level;
238 	struct btrfs_disk_key disk_key;
239 
240 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
241 		trans->transid != root->fs_info->running_transaction->transid);
242 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
243 		trans->transid != root->last_trans);
244 
245 	level = btrfs_header_level(buf);
246 	if (level == 0)
247 		btrfs_item_key(buf, &disk_key, 0);
248 	else
249 		btrfs_node_key(buf, &disk_key, 0);
250 
251 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
252 			&disk_key, level, buf->start, 0);
253 	if (IS_ERR(cow))
254 		return PTR_ERR(cow);
255 
256 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
257 	btrfs_set_header_bytenr(cow, cow->start);
258 	btrfs_set_header_generation(cow, trans->transid);
259 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
260 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
261 				     BTRFS_HEADER_FLAG_RELOC);
262 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
263 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
264 	else
265 		btrfs_set_header_owner(cow, new_root_objectid);
266 
267 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
268 			    BTRFS_FSID_SIZE);
269 
270 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
271 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 		ret = btrfs_inc_ref(trans, root, cow, 1);
273 	else
274 		ret = btrfs_inc_ref(trans, root, cow, 0);
275 
276 	if (ret)
277 		return ret;
278 
279 	btrfs_mark_buffer_dirty(cow);
280 	*cow_ret = cow;
281 	return 0;
282 }
283 
284 enum mod_log_op {
285 	MOD_LOG_KEY_REPLACE,
286 	MOD_LOG_KEY_ADD,
287 	MOD_LOG_KEY_REMOVE,
288 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
289 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
290 	MOD_LOG_MOVE_KEYS,
291 	MOD_LOG_ROOT_REPLACE,
292 };
293 
294 struct tree_mod_move {
295 	int dst_slot;
296 	int nr_items;
297 };
298 
299 struct tree_mod_root {
300 	u64 logical;
301 	u8 level;
302 };
303 
304 struct tree_mod_elem {
305 	struct rb_node node;
306 	u64 index;		/* shifted logical */
307 	u64 seq;
308 	enum mod_log_op op;
309 
310 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
311 	int slot;
312 
313 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
314 	u64 generation;
315 
316 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
317 	struct btrfs_disk_key key;
318 	u64 blockptr;
319 
320 	/* this is used for op == MOD_LOG_MOVE_KEYS */
321 	struct tree_mod_move move;
322 
323 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
324 	struct tree_mod_root old_root;
325 };
326 
tree_mod_log_read_lock(struct btrfs_fs_info * fs_info)327 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
328 {
329 	read_lock(&fs_info->tree_mod_log_lock);
330 }
331 
tree_mod_log_read_unlock(struct btrfs_fs_info * fs_info)332 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
333 {
334 	read_unlock(&fs_info->tree_mod_log_lock);
335 }
336 
tree_mod_log_write_lock(struct btrfs_fs_info * fs_info)337 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
338 {
339 	write_lock(&fs_info->tree_mod_log_lock);
340 }
341 
tree_mod_log_write_unlock(struct btrfs_fs_info * fs_info)342 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
343 {
344 	write_unlock(&fs_info->tree_mod_log_lock);
345 }
346 
347 /*
348  * Pull a new tree mod seq number for our operation.
349  */
btrfs_inc_tree_mod_seq(struct btrfs_fs_info * fs_info)350 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
351 {
352 	return atomic64_inc_return(&fs_info->tree_mod_seq);
353 }
354 
355 /*
356  * This adds a new blocker to the tree mod log's blocker list if the @elem
357  * passed does not already have a sequence number set. So when a caller expects
358  * to record tree modifications, it should ensure to set elem->seq to zero
359  * before calling btrfs_get_tree_mod_seq.
360  * Returns a fresh, unused tree log modification sequence number, even if no new
361  * blocker was added.
362  */
btrfs_get_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)363 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
364 			   struct seq_list *elem)
365 {
366 	tree_mod_log_write_lock(fs_info);
367 	spin_lock(&fs_info->tree_mod_seq_lock);
368 	if (!elem->seq) {
369 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
370 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
371 	}
372 	spin_unlock(&fs_info->tree_mod_seq_lock);
373 	tree_mod_log_write_unlock(fs_info);
374 
375 	return elem->seq;
376 }
377 
btrfs_put_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)378 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
379 			    struct seq_list *elem)
380 {
381 	struct rb_root *tm_root;
382 	struct rb_node *node;
383 	struct rb_node *next;
384 	struct seq_list *cur_elem;
385 	struct tree_mod_elem *tm;
386 	u64 min_seq = (u64)-1;
387 	u64 seq_putting = elem->seq;
388 
389 	if (!seq_putting)
390 		return;
391 
392 	spin_lock(&fs_info->tree_mod_seq_lock);
393 	list_del(&elem->list);
394 	elem->seq = 0;
395 
396 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
397 		if (cur_elem->seq < min_seq) {
398 			if (seq_putting > cur_elem->seq) {
399 				/*
400 				 * blocker with lower sequence number exists, we
401 				 * cannot remove anything from the log
402 				 */
403 				spin_unlock(&fs_info->tree_mod_seq_lock);
404 				return;
405 			}
406 			min_seq = cur_elem->seq;
407 		}
408 	}
409 	spin_unlock(&fs_info->tree_mod_seq_lock);
410 
411 	/*
412 	 * anything that's lower than the lowest existing (read: blocked)
413 	 * sequence number can be removed from the tree.
414 	 */
415 	tree_mod_log_write_lock(fs_info);
416 	tm_root = &fs_info->tree_mod_log;
417 	for (node = rb_first(tm_root); node; node = next) {
418 		next = rb_next(node);
419 		tm = container_of(node, struct tree_mod_elem, node);
420 		if (tm->seq > min_seq)
421 			continue;
422 		rb_erase(node, tm_root);
423 		kfree(tm);
424 	}
425 	tree_mod_log_write_unlock(fs_info);
426 }
427 
428 /*
429  * key order of the log:
430  *       index -> sequence
431  *
432  * the index is the shifted logical of the *new* root node for root replace
433  * operations, or the shifted logical of the affected block for all other
434  * operations.
435  *
436  * Note: must be called with write lock (tree_mod_log_write_lock).
437  */
438 static noinline int
__tree_mod_log_insert(struct btrfs_fs_info * fs_info,struct tree_mod_elem * tm)439 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
440 {
441 	struct rb_root *tm_root;
442 	struct rb_node **new;
443 	struct rb_node *parent = NULL;
444 	struct tree_mod_elem *cur;
445 
446 	BUG_ON(!tm);
447 
448 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
449 
450 	tm_root = &fs_info->tree_mod_log;
451 	new = &tm_root->rb_node;
452 	while (*new) {
453 		cur = container_of(*new, struct tree_mod_elem, node);
454 		parent = *new;
455 		if (cur->index < tm->index)
456 			new = &((*new)->rb_left);
457 		else if (cur->index > tm->index)
458 			new = &((*new)->rb_right);
459 		else if (cur->seq < tm->seq)
460 			new = &((*new)->rb_left);
461 		else if (cur->seq > tm->seq)
462 			new = &((*new)->rb_right);
463 		else
464 			return -EEXIST;
465 	}
466 
467 	rb_link_node(&tm->node, parent, new);
468 	rb_insert_color(&tm->node, tm_root);
469 	return 0;
470 }
471 
472 /*
473  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
474  * returns zero with the tree_mod_log_lock acquired. The caller must hold
475  * this until all tree mod log insertions are recorded in the rb tree and then
476  * call tree_mod_log_write_unlock() to release.
477  */
tree_mod_dont_log(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)478 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
479 				    struct extent_buffer *eb) {
480 	smp_mb();
481 	if (list_empty(&(fs_info)->tree_mod_seq_list))
482 		return 1;
483 	if (eb && btrfs_header_level(eb) == 0)
484 		return 1;
485 
486 	tree_mod_log_write_lock(fs_info);
487 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
488 		tree_mod_log_write_unlock(fs_info);
489 		return 1;
490 	}
491 
492 	return 0;
493 }
494 
495 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
tree_mod_need_log(const struct btrfs_fs_info * fs_info,struct extent_buffer * eb)496 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
497 				    struct extent_buffer *eb)
498 {
499 	smp_mb();
500 	if (list_empty(&(fs_info)->tree_mod_seq_list))
501 		return 0;
502 	if (eb && btrfs_header_level(eb) == 0)
503 		return 0;
504 
505 	return 1;
506 }
507 
508 static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)509 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
510 		    enum mod_log_op op, gfp_t flags)
511 {
512 	struct tree_mod_elem *tm;
513 
514 	tm = kzalloc(sizeof(*tm), flags);
515 	if (!tm)
516 		return NULL;
517 
518 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
519 	if (op != MOD_LOG_KEY_ADD) {
520 		btrfs_node_key(eb, &tm->key, slot);
521 		tm->blockptr = btrfs_node_blockptr(eb, slot);
522 	}
523 	tm->op = op;
524 	tm->slot = slot;
525 	tm->generation = btrfs_node_ptr_generation(eb, slot);
526 	RB_CLEAR_NODE(&tm->node);
527 
528 	return tm;
529 }
530 
531 static noinline int
tree_mod_log_insert_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)532 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 			struct extent_buffer *eb, int slot,
534 			enum mod_log_op op, gfp_t flags)
535 {
536 	struct tree_mod_elem *tm;
537 	int ret;
538 
539 	if (!tree_mod_need_log(fs_info, eb))
540 		return 0;
541 
542 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
543 	if (!tm)
544 		return -ENOMEM;
545 
546 	if (tree_mod_dont_log(fs_info, eb)) {
547 		kfree(tm);
548 		return 0;
549 	}
550 
551 	ret = __tree_mod_log_insert(fs_info, tm);
552 	tree_mod_log_write_unlock(fs_info);
553 	if (ret)
554 		kfree(tm);
555 
556 	return ret;
557 }
558 
559 static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items,gfp_t flags)560 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
561 			 struct extent_buffer *eb, int dst_slot, int src_slot,
562 			 int nr_items, gfp_t flags)
563 {
564 	struct tree_mod_elem *tm = NULL;
565 	struct tree_mod_elem **tm_list = NULL;
566 	int ret = 0;
567 	int i;
568 	int locked = 0;
569 
570 	if (!tree_mod_need_log(fs_info, eb))
571 		return 0;
572 
573 	tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
574 	if (!tm_list)
575 		return -ENOMEM;
576 
577 	tm = kzalloc(sizeof(*tm), flags);
578 	if (!tm) {
579 		ret = -ENOMEM;
580 		goto free_tms;
581 	}
582 
583 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
584 	tm->slot = src_slot;
585 	tm->move.dst_slot = dst_slot;
586 	tm->move.nr_items = nr_items;
587 	tm->op = MOD_LOG_MOVE_KEYS;
588 
589 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
590 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
591 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
592 		if (!tm_list[i]) {
593 			ret = -ENOMEM;
594 			goto free_tms;
595 		}
596 	}
597 
598 	if (tree_mod_dont_log(fs_info, eb))
599 		goto free_tms;
600 	locked = 1;
601 
602 	/*
603 	 * When we override something during the move, we log these removals.
604 	 * This can only happen when we move towards the beginning of the
605 	 * buffer, i.e. dst_slot < src_slot.
606 	 */
607 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
608 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
609 		if (ret)
610 			goto free_tms;
611 	}
612 
613 	ret = __tree_mod_log_insert(fs_info, tm);
614 	if (ret)
615 		goto free_tms;
616 	tree_mod_log_write_unlock(fs_info);
617 	kfree(tm_list);
618 
619 	return 0;
620 free_tms:
621 	for (i = 0; i < nr_items; i++) {
622 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
623 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
624 		kfree(tm_list[i]);
625 	}
626 	if (locked)
627 		tree_mod_log_write_unlock(fs_info);
628 	kfree(tm_list);
629 	kfree(tm);
630 
631 	return ret;
632 }
633 
634 static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct tree_mod_elem ** tm_list,int nritems)635 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
636 		       struct tree_mod_elem **tm_list,
637 		       int nritems)
638 {
639 	int i, j;
640 	int ret;
641 
642 	for (i = nritems - 1; i >= 0; i--) {
643 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
644 		if (ret) {
645 			for (j = nritems - 1; j > i; j--)
646 				rb_erase(&tm_list[j]->node,
647 					 &fs_info->tree_mod_log);
648 			return ret;
649 		}
650 	}
651 
652 	return 0;
653 }
654 
655 static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info * fs_info,struct extent_buffer * old_root,struct extent_buffer * new_root,gfp_t flags,int log_removal)656 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
657 			 struct extent_buffer *old_root,
658 			 struct extent_buffer *new_root, gfp_t flags,
659 			 int log_removal)
660 {
661 	struct tree_mod_elem *tm = NULL;
662 	struct tree_mod_elem **tm_list = NULL;
663 	int nritems = 0;
664 	int ret = 0;
665 	int i;
666 
667 	if (!tree_mod_need_log(fs_info, NULL))
668 		return 0;
669 
670 	if (log_removal && btrfs_header_level(old_root) > 0) {
671 		nritems = btrfs_header_nritems(old_root);
672 		tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
673 				  flags);
674 		if (!tm_list) {
675 			ret = -ENOMEM;
676 			goto free_tms;
677 		}
678 		for (i = 0; i < nritems; i++) {
679 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
680 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
681 			if (!tm_list[i]) {
682 				ret = -ENOMEM;
683 				goto free_tms;
684 			}
685 		}
686 	}
687 
688 	tm = kzalloc(sizeof(*tm), flags);
689 	if (!tm) {
690 		ret = -ENOMEM;
691 		goto free_tms;
692 	}
693 
694 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
695 	tm->old_root.logical = old_root->start;
696 	tm->old_root.level = btrfs_header_level(old_root);
697 	tm->generation = btrfs_header_generation(old_root);
698 	tm->op = MOD_LOG_ROOT_REPLACE;
699 
700 	if (tree_mod_dont_log(fs_info, NULL))
701 		goto free_tms;
702 
703 	if (tm_list)
704 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
705 	if (!ret)
706 		ret = __tree_mod_log_insert(fs_info, tm);
707 
708 	tree_mod_log_write_unlock(fs_info);
709 	if (ret)
710 		goto free_tms;
711 	kfree(tm_list);
712 
713 	return ret;
714 
715 free_tms:
716 	if (tm_list) {
717 		for (i = 0; i < nritems; i++)
718 			kfree(tm_list[i]);
719 		kfree(tm_list);
720 	}
721 	kfree(tm);
722 
723 	return ret;
724 }
725 
726 static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq,int smallest)727 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
728 		      int smallest)
729 {
730 	struct rb_root *tm_root;
731 	struct rb_node *node;
732 	struct tree_mod_elem *cur = NULL;
733 	struct tree_mod_elem *found = NULL;
734 	u64 index = start >> PAGE_CACHE_SHIFT;
735 
736 	tree_mod_log_read_lock(fs_info);
737 	tm_root = &fs_info->tree_mod_log;
738 	node = tm_root->rb_node;
739 	while (node) {
740 		cur = container_of(node, struct tree_mod_elem, node);
741 		if (cur->index < index) {
742 			node = node->rb_left;
743 		} else if (cur->index > index) {
744 			node = node->rb_right;
745 		} else if (cur->seq < min_seq) {
746 			node = node->rb_left;
747 		} else if (!smallest) {
748 			/* we want the node with the highest seq */
749 			if (found)
750 				BUG_ON(found->seq > cur->seq);
751 			found = cur;
752 			node = node->rb_left;
753 		} else if (cur->seq > min_seq) {
754 			/* we want the node with the smallest seq */
755 			if (found)
756 				BUG_ON(found->seq < cur->seq);
757 			found = cur;
758 			node = node->rb_right;
759 		} else {
760 			found = cur;
761 			break;
762 		}
763 	}
764 	tree_mod_log_read_unlock(fs_info);
765 
766 	return found;
767 }
768 
769 /*
770  * this returns the element from the log with the smallest time sequence
771  * value that's in the log (the oldest log item). any element with a time
772  * sequence lower than min_seq will be ignored.
773  */
774 static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)775 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
776 			   u64 min_seq)
777 {
778 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
779 }
780 
781 /*
782  * this returns the element from the log with the largest time sequence
783  * value that's in the log (the most recent log item). any element with
784  * a time sequence lower than min_seq will be ignored.
785  */
786 static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)787 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
788 {
789 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
790 }
791 
792 static noinline int
tree_mod_log_eb_copy(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,int nr_items)793 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
794 		     struct extent_buffer *src, unsigned long dst_offset,
795 		     unsigned long src_offset, int nr_items)
796 {
797 	int ret = 0;
798 	struct tree_mod_elem **tm_list = NULL;
799 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
800 	int i;
801 	int locked = 0;
802 
803 	if (!tree_mod_need_log(fs_info, NULL))
804 		return 0;
805 
806 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
807 		return 0;
808 
809 	tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
810 			  GFP_NOFS);
811 	if (!tm_list)
812 		return -ENOMEM;
813 
814 	tm_list_add = tm_list;
815 	tm_list_rem = tm_list + nr_items;
816 	for (i = 0; i < nr_items; i++) {
817 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
818 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
819 		if (!tm_list_rem[i]) {
820 			ret = -ENOMEM;
821 			goto free_tms;
822 		}
823 
824 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
825 		    MOD_LOG_KEY_ADD, GFP_NOFS);
826 		if (!tm_list_add[i]) {
827 			ret = -ENOMEM;
828 			goto free_tms;
829 		}
830 	}
831 
832 	if (tree_mod_dont_log(fs_info, NULL))
833 		goto free_tms;
834 	locked = 1;
835 
836 	for (i = 0; i < nr_items; i++) {
837 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
838 		if (ret)
839 			goto free_tms;
840 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
841 		if (ret)
842 			goto free_tms;
843 	}
844 
845 	tree_mod_log_write_unlock(fs_info);
846 	kfree(tm_list);
847 
848 	return 0;
849 
850 free_tms:
851 	for (i = 0; i < nr_items * 2; i++) {
852 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
853 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
854 		kfree(tm_list[i]);
855 	}
856 	if (locked)
857 		tree_mod_log_write_unlock(fs_info);
858 	kfree(tm_list);
859 
860 	return ret;
861 }
862 
863 static inline void
tree_mod_log_eb_move(struct btrfs_fs_info * fs_info,struct extent_buffer * dst,int dst_offset,int src_offset,int nr_items)864 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
865 		     int dst_offset, int src_offset, int nr_items)
866 {
867 	int ret;
868 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
869 				       nr_items, GFP_NOFS);
870 	BUG_ON(ret < 0);
871 }
872 
873 static noinline void
tree_mod_log_set_node_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int slot,int atomic)874 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
875 			  struct extent_buffer *eb, int slot, int atomic)
876 {
877 	int ret;
878 
879 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
880 					MOD_LOG_KEY_REPLACE,
881 					atomic ? GFP_ATOMIC : GFP_NOFS);
882 	BUG_ON(ret < 0);
883 }
884 
885 static noinline int
tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)886 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
887 {
888 	struct tree_mod_elem **tm_list = NULL;
889 	int nritems = 0;
890 	int i;
891 	int ret = 0;
892 
893 	if (btrfs_header_level(eb) == 0)
894 		return 0;
895 
896 	if (!tree_mod_need_log(fs_info, NULL))
897 		return 0;
898 
899 	nritems = btrfs_header_nritems(eb);
900 	tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
901 			  GFP_NOFS);
902 	if (!tm_list)
903 		return -ENOMEM;
904 
905 	for (i = 0; i < nritems; i++) {
906 		tm_list[i] = alloc_tree_mod_elem(eb, i,
907 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
908 		if (!tm_list[i]) {
909 			ret = -ENOMEM;
910 			goto free_tms;
911 		}
912 	}
913 
914 	if (tree_mod_dont_log(fs_info, eb))
915 		goto free_tms;
916 
917 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
918 	tree_mod_log_write_unlock(fs_info);
919 	if (ret)
920 		goto free_tms;
921 	kfree(tm_list);
922 
923 	return 0;
924 
925 free_tms:
926 	for (i = 0; i < nritems; i++)
927 		kfree(tm_list[i]);
928 	kfree(tm_list);
929 
930 	return ret;
931 }
932 
933 static noinline void
tree_mod_log_set_root_pointer(struct btrfs_root * root,struct extent_buffer * new_root_node,int log_removal)934 tree_mod_log_set_root_pointer(struct btrfs_root *root,
935 			      struct extent_buffer *new_root_node,
936 			      int log_removal)
937 {
938 	int ret;
939 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
940 				       new_root_node, GFP_NOFS, log_removal);
941 	BUG_ON(ret < 0);
942 }
943 
944 /*
945  * check if the tree block can be shared by multiple trees
946  */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)947 int btrfs_block_can_be_shared(struct btrfs_root *root,
948 			      struct extent_buffer *buf)
949 {
950 	/*
951 	 * Tree blocks not in refernece counted trees and tree roots
952 	 * are never shared. If a block was allocated after the last
953 	 * snapshot and the block was not allocated by tree relocation,
954 	 * we know the block is not shared.
955 	 */
956 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
957 	    buf != root->node && buf != root->commit_root &&
958 	    (btrfs_header_generation(buf) <=
959 	     btrfs_root_last_snapshot(&root->root_item) ||
960 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
961 		return 1;
962 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
963 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
965 		return 1;
966 #endif
967 	return 0;
968 }
969 
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)970 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
971 				       struct btrfs_root *root,
972 				       struct extent_buffer *buf,
973 				       struct extent_buffer *cow,
974 				       int *last_ref)
975 {
976 	u64 refs;
977 	u64 owner;
978 	u64 flags;
979 	u64 new_flags = 0;
980 	int ret;
981 
982 	/*
983 	 * Backrefs update rules:
984 	 *
985 	 * Always use full backrefs for extent pointers in tree block
986 	 * allocated by tree relocation.
987 	 *
988 	 * If a shared tree block is no longer referenced by its owner
989 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
990 	 * use full backrefs for extent pointers in tree block.
991 	 *
992 	 * If a tree block is been relocating
993 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
994 	 * use full backrefs for extent pointers in tree block.
995 	 * The reason for this is some operations (such as drop tree)
996 	 * are only allowed for blocks use full backrefs.
997 	 */
998 
999 	if (btrfs_block_can_be_shared(root, buf)) {
1000 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1001 					       btrfs_header_level(buf), 1,
1002 					       &refs, &flags);
1003 		if (ret)
1004 			return ret;
1005 		if (refs == 0) {
1006 			ret = -EROFS;
1007 			btrfs_std_error(root->fs_info, ret);
1008 			return ret;
1009 		}
1010 	} else {
1011 		refs = 1;
1012 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1013 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1014 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1015 		else
1016 			flags = 0;
1017 	}
1018 
1019 	owner = btrfs_header_owner(buf);
1020 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1021 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1022 
1023 	if (refs > 1) {
1024 		if ((owner == root->root_key.objectid ||
1025 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1026 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1027 			ret = btrfs_inc_ref(trans, root, buf, 1);
1028 			BUG_ON(ret); /* -ENOMEM */
1029 
1030 			if (root->root_key.objectid ==
1031 			    BTRFS_TREE_RELOC_OBJECTID) {
1032 				ret = btrfs_dec_ref(trans, root, buf, 0);
1033 				BUG_ON(ret); /* -ENOMEM */
1034 				ret = btrfs_inc_ref(trans, root, cow, 1);
1035 				BUG_ON(ret); /* -ENOMEM */
1036 			}
1037 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1038 		} else {
1039 
1040 			if (root->root_key.objectid ==
1041 			    BTRFS_TREE_RELOC_OBJECTID)
1042 				ret = btrfs_inc_ref(trans, root, cow, 1);
1043 			else
1044 				ret = btrfs_inc_ref(trans, root, cow, 0);
1045 			BUG_ON(ret); /* -ENOMEM */
1046 		}
1047 		if (new_flags != 0) {
1048 			int level = btrfs_header_level(buf);
1049 
1050 			ret = btrfs_set_disk_extent_flags(trans, root,
1051 							  buf->start,
1052 							  buf->len,
1053 							  new_flags, level, 0);
1054 			if (ret)
1055 				return ret;
1056 		}
1057 	} else {
1058 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1059 			if (root->root_key.objectid ==
1060 			    BTRFS_TREE_RELOC_OBJECTID)
1061 				ret = btrfs_inc_ref(trans, root, cow, 1);
1062 			else
1063 				ret = btrfs_inc_ref(trans, root, cow, 0);
1064 			BUG_ON(ret); /* -ENOMEM */
1065 			ret = btrfs_dec_ref(trans, root, buf, 1);
1066 			BUG_ON(ret); /* -ENOMEM */
1067 		}
1068 		clean_tree_block(trans, root, buf);
1069 		*last_ref = 1;
1070 	}
1071 	return 0;
1072 }
1073 
1074 /*
1075  * does the dirty work in cow of a single block.  The parent block (if
1076  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1077  * dirty and returned locked.  If you modify the block it needs to be marked
1078  * dirty again.
1079  *
1080  * search_start -- an allocation hint for the new block
1081  *
1082  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1083  * bytes the allocator should try to find free next to the block it returns.
1084  * This is just a hint and may be ignored by the allocator.
1085  */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)1086 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1087 			     struct btrfs_root *root,
1088 			     struct extent_buffer *buf,
1089 			     struct extent_buffer *parent, int parent_slot,
1090 			     struct extent_buffer **cow_ret,
1091 			     u64 search_start, u64 empty_size)
1092 {
1093 	struct btrfs_disk_key disk_key;
1094 	struct extent_buffer *cow;
1095 	int level, ret;
1096 	int last_ref = 0;
1097 	int unlock_orig = 0;
1098 	u64 parent_start;
1099 
1100 	if (*cow_ret == buf)
1101 		unlock_orig = 1;
1102 
1103 	btrfs_assert_tree_locked(buf);
1104 
1105 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1106 		trans->transid != root->fs_info->running_transaction->transid);
1107 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1108 		trans->transid != root->last_trans);
1109 
1110 	level = btrfs_header_level(buf);
1111 
1112 	if (level == 0)
1113 		btrfs_item_key(buf, &disk_key, 0);
1114 	else
1115 		btrfs_node_key(buf, &disk_key, 0);
1116 
1117 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1118 		if (parent)
1119 			parent_start = parent->start;
1120 		else
1121 			parent_start = 0;
1122 	} else
1123 		parent_start = 0;
1124 
1125 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1126 			root->root_key.objectid, &disk_key, level,
1127 			search_start, empty_size);
1128 	if (IS_ERR(cow))
1129 		return PTR_ERR(cow);
1130 
1131 	/* cow is set to blocking by btrfs_init_new_buffer */
1132 
1133 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1134 	btrfs_set_header_bytenr(cow, cow->start);
1135 	btrfs_set_header_generation(cow, trans->transid);
1136 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1137 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1138 				     BTRFS_HEADER_FLAG_RELOC);
1139 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1140 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1141 	else
1142 		btrfs_set_header_owner(cow, root->root_key.objectid);
1143 
1144 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1145 			    BTRFS_FSID_SIZE);
1146 
1147 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1148 	if (ret) {
1149 		btrfs_abort_transaction(trans, root, ret);
1150 		return ret;
1151 	}
1152 
1153 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1154 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1155 		if (ret)
1156 			return ret;
1157 	}
1158 
1159 	if (buf == root->node) {
1160 		WARN_ON(parent && parent != buf);
1161 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1162 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1163 			parent_start = buf->start;
1164 		else
1165 			parent_start = 0;
1166 
1167 		extent_buffer_get(cow);
1168 		tree_mod_log_set_root_pointer(root, cow, 1);
1169 		rcu_assign_pointer(root->node, cow);
1170 
1171 		btrfs_free_tree_block(trans, root, buf, parent_start,
1172 				      last_ref);
1173 		free_extent_buffer(buf);
1174 		add_root_to_dirty_list(root);
1175 	} else {
1176 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1177 			parent_start = parent->start;
1178 		else
1179 			parent_start = 0;
1180 
1181 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1182 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1183 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1184 		btrfs_set_node_blockptr(parent, parent_slot,
1185 					cow->start);
1186 		btrfs_set_node_ptr_generation(parent, parent_slot,
1187 					      trans->transid);
1188 		btrfs_mark_buffer_dirty(parent);
1189 		if (last_ref) {
1190 			ret = tree_mod_log_free_eb(root->fs_info, buf);
1191 			if (ret) {
1192 				btrfs_abort_transaction(trans, root, ret);
1193 				return ret;
1194 			}
1195 		}
1196 		btrfs_free_tree_block(trans, root, buf, parent_start,
1197 				      last_ref);
1198 	}
1199 	if (unlock_orig)
1200 		btrfs_tree_unlock(buf);
1201 	free_extent_buffer_stale(buf);
1202 	btrfs_mark_buffer_dirty(cow);
1203 	*cow_ret = cow;
1204 	return 0;
1205 }
1206 
1207 /*
1208  * returns the logical address of the oldest predecessor of the given root.
1209  * entries older than time_seq are ignored.
1210  */
1211 static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info * fs_info,struct extent_buffer * eb_root,u64 time_seq)1212 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1213 			   struct extent_buffer *eb_root, u64 time_seq)
1214 {
1215 	struct tree_mod_elem *tm;
1216 	struct tree_mod_elem *found = NULL;
1217 	u64 root_logical = eb_root->start;
1218 	int looped = 0;
1219 
1220 	if (!time_seq)
1221 		return NULL;
1222 
1223 	/*
1224 	 * the very last operation that's logged for a root is the replacement
1225 	 * operation (if it is replaced at all). this has the index of the *new*
1226 	 * root, making it the very first operation that's logged for this root.
1227 	 */
1228 	while (1) {
1229 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230 						time_seq);
1231 		if (!looped && !tm)
1232 			return NULL;
1233 		/*
1234 		 * if there are no tree operation for the oldest root, we simply
1235 		 * return it. this should only happen if that (old) root is at
1236 		 * level 0.
1237 		 */
1238 		if (!tm)
1239 			break;
1240 
1241 		/*
1242 		 * if there's an operation that's not a root replacement, we
1243 		 * found the oldest version of our root. normally, we'll find a
1244 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245 		 */
1246 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1247 			break;
1248 
1249 		found = tm;
1250 		root_logical = tm->old_root.logical;
1251 		looped = 1;
1252 	}
1253 
1254 	/* if there's no old root to return, return what we found instead */
1255 	if (!found)
1256 		found = tm;
1257 
1258 	return found;
1259 }
1260 
1261 /*
1262  * tm is a pointer to the first operation to rewind within eb. then, all
1263  * previous operations will be rewinded (until we reach something older than
1264  * time_seq).
1265  */
1266 static void
__tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 time_seq,struct tree_mod_elem * first_tm)1267 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268 		      u64 time_seq, struct tree_mod_elem *first_tm)
1269 {
1270 	u32 n;
1271 	struct rb_node *next;
1272 	struct tree_mod_elem *tm = first_tm;
1273 	unsigned long o_dst;
1274 	unsigned long o_src;
1275 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276 
1277 	n = btrfs_header_nritems(eb);
1278 	tree_mod_log_read_lock(fs_info);
1279 	while (tm && tm->seq >= time_seq) {
1280 		/*
1281 		 * all the operations are recorded with the operator used for
1282 		 * the modification. as we're going backwards, we do the
1283 		 * opposite of each operation here.
1284 		 */
1285 		switch (tm->op) {
1286 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287 			BUG_ON(tm->slot < n);
1288 			/* Fallthrough */
1289 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290 		case MOD_LOG_KEY_REMOVE:
1291 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1292 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293 			btrfs_set_node_ptr_generation(eb, tm->slot,
1294 						      tm->generation);
1295 			n++;
1296 			break;
1297 		case MOD_LOG_KEY_REPLACE:
1298 			BUG_ON(tm->slot >= n);
1299 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1300 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301 			btrfs_set_node_ptr_generation(eb, tm->slot,
1302 						      tm->generation);
1303 			break;
1304 		case MOD_LOG_KEY_ADD:
1305 			/* if a move operation is needed it's in the log */
1306 			n--;
1307 			break;
1308 		case MOD_LOG_MOVE_KEYS:
1309 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311 			memmove_extent_buffer(eb, o_dst, o_src,
1312 					      tm->move.nr_items * p_size);
1313 			break;
1314 		case MOD_LOG_ROOT_REPLACE:
1315 			/*
1316 			 * this operation is special. for roots, this must be
1317 			 * handled explicitly before rewinding.
1318 			 * for non-roots, this operation may exist if the node
1319 			 * was a root: root A -> child B; then A gets empty and
1320 			 * B is promoted to the new root. in the mod log, we'll
1321 			 * have a root-replace operation for B, a tree block
1322 			 * that is no root. we simply ignore that operation.
1323 			 */
1324 			break;
1325 		}
1326 		next = rb_next(&tm->node);
1327 		if (!next)
1328 			break;
1329 		tm = container_of(next, struct tree_mod_elem, node);
1330 		if (tm->index != first_tm->index)
1331 			break;
1332 	}
1333 	tree_mod_log_read_unlock(fs_info);
1334 	btrfs_set_header_nritems(eb, n);
1335 }
1336 
1337 /*
1338  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1339  * is returned. If rewind operations happen, a fresh buffer is returned. The
1340  * returned buffer is always read-locked. If the returned buffer is not the
1341  * input buffer, the lock on the input buffer is released and the input buffer
1342  * is freed (its refcount is decremented).
1343  */
1344 static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * eb,u64 time_seq)1345 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346 		    struct extent_buffer *eb, u64 time_seq)
1347 {
1348 	struct extent_buffer *eb_rewin;
1349 	struct tree_mod_elem *tm;
1350 
1351 	if (!time_seq)
1352 		return eb;
1353 
1354 	if (btrfs_header_level(eb) == 0)
1355 		return eb;
1356 
1357 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358 	if (!tm)
1359 		return eb;
1360 
1361 	btrfs_set_path_blocking(path);
1362 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363 
1364 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365 		BUG_ON(tm->slot != 0);
1366 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1367 						fs_info->tree_root->nodesize);
1368 		if (!eb_rewin) {
1369 			btrfs_tree_read_unlock_blocking(eb);
1370 			free_extent_buffer(eb);
1371 			return NULL;
1372 		}
1373 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1374 		btrfs_set_header_backref_rev(eb_rewin,
1375 					     btrfs_header_backref_rev(eb));
1376 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1377 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1378 	} else {
1379 		eb_rewin = btrfs_clone_extent_buffer(eb);
1380 		if (!eb_rewin) {
1381 			btrfs_tree_read_unlock_blocking(eb);
1382 			free_extent_buffer(eb);
1383 			return NULL;
1384 		}
1385 	}
1386 
1387 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1388 	btrfs_tree_read_unlock_blocking(eb);
1389 	free_extent_buffer(eb);
1390 
1391 	extent_buffer_get(eb_rewin);
1392 	btrfs_tree_read_lock(eb_rewin);
1393 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1394 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1395 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1396 
1397 	return eb_rewin;
1398 }
1399 
1400 /*
1401  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1402  * value. If there are no changes, the current root->root_node is returned. If
1403  * anything changed in between, there's a fresh buffer allocated on which the
1404  * rewind operations are done. In any case, the returned buffer is read locked.
1405  * Returns NULL on error (with no locks held).
1406  */
1407 static inline struct extent_buffer *
get_old_root(struct btrfs_root * root,u64 time_seq)1408 get_old_root(struct btrfs_root *root, u64 time_seq)
1409 {
1410 	struct tree_mod_elem *tm;
1411 	struct extent_buffer *eb = NULL;
1412 	struct extent_buffer *eb_root;
1413 	struct extent_buffer *old;
1414 	struct tree_mod_root *old_root = NULL;
1415 	u64 old_generation = 0;
1416 	u64 logical;
1417 
1418 	eb_root = btrfs_read_lock_root_node(root);
1419 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1420 	if (!tm)
1421 		return eb_root;
1422 
1423 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424 		old_root = &tm->old_root;
1425 		old_generation = tm->generation;
1426 		logical = old_root->logical;
1427 	} else {
1428 		logical = eb_root->start;
1429 	}
1430 
1431 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1432 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433 		btrfs_tree_read_unlock(eb_root);
1434 		free_extent_buffer(eb_root);
1435 		old = read_tree_block(root, logical, 0);
1436 		if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1437 			free_extent_buffer(old);
1438 			btrfs_warn(root->fs_info,
1439 				"failed to read tree block %llu from get_old_root", logical);
1440 		} else {
1441 			eb = btrfs_clone_extent_buffer(old);
1442 			free_extent_buffer(old);
1443 		}
1444 	} else if (old_root) {
1445 		btrfs_tree_read_unlock(eb_root);
1446 		free_extent_buffer(eb_root);
1447 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1448 	} else {
1449 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1450 		eb = btrfs_clone_extent_buffer(eb_root);
1451 		btrfs_tree_read_unlock_blocking(eb_root);
1452 		free_extent_buffer(eb_root);
1453 	}
1454 
1455 	if (!eb)
1456 		return NULL;
1457 	extent_buffer_get(eb);
1458 	btrfs_tree_read_lock(eb);
1459 	if (old_root) {
1460 		btrfs_set_header_bytenr(eb, eb->start);
1461 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1462 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1463 		btrfs_set_header_level(eb, old_root->level);
1464 		btrfs_set_header_generation(eb, old_generation);
1465 	}
1466 	if (tm)
1467 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1468 	else
1469 		WARN_ON(btrfs_header_level(eb) != 0);
1470 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1471 
1472 	return eb;
1473 }
1474 
btrfs_old_root_level(struct btrfs_root * root,u64 time_seq)1475 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1476 {
1477 	struct tree_mod_elem *tm;
1478 	int level;
1479 	struct extent_buffer *eb_root = btrfs_root_node(root);
1480 
1481 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1482 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1483 		level = tm->old_root.level;
1484 	} else {
1485 		level = btrfs_header_level(eb_root);
1486 	}
1487 	free_extent_buffer(eb_root);
1488 
1489 	return level;
1490 }
1491 
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1492 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1493 				   struct btrfs_root *root,
1494 				   struct extent_buffer *buf)
1495 {
1496 	if (btrfs_test_is_dummy_root(root))
1497 		return 0;
1498 
1499 	/* ensure we can see the force_cow */
1500 	smp_rmb();
1501 
1502 	/*
1503 	 * We do not need to cow a block if
1504 	 * 1) this block is not created or changed in this transaction;
1505 	 * 2) this block does not belong to TREE_RELOC tree;
1506 	 * 3) the root is not forced COW.
1507 	 *
1508 	 * What is forced COW:
1509 	 *    when we create snapshot during commiting the transaction,
1510 	 *    after we've finished coping src root, we must COW the shared
1511 	 *    block to ensure the metadata consistency.
1512 	 */
1513 	if (btrfs_header_generation(buf) == trans->transid &&
1514 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1515 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1516 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1517 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1518 		return 0;
1519 	return 1;
1520 }
1521 
1522 /*
1523  * cows a single block, see __btrfs_cow_block for the real work.
1524  * This version of it has extra checks so that a block isn't cow'd more than
1525  * once per transaction, as long as it hasn't been written yet
1526  */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)1527 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1528 		    struct btrfs_root *root, struct extent_buffer *buf,
1529 		    struct extent_buffer *parent, int parent_slot,
1530 		    struct extent_buffer **cow_ret)
1531 {
1532 	u64 search_start;
1533 	int ret;
1534 
1535 	if (trans->transaction != root->fs_info->running_transaction)
1536 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1537 		       trans->transid,
1538 		       root->fs_info->running_transaction->transid);
1539 
1540 	if (trans->transid != root->fs_info->generation)
1541 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1542 		       trans->transid, root->fs_info->generation);
1543 
1544 	if (!should_cow_block(trans, root, buf)) {
1545 		trans->dirty = true;
1546 		*cow_ret = buf;
1547 		return 0;
1548 	}
1549 
1550 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1551 
1552 	if (parent)
1553 		btrfs_set_lock_blocking(parent);
1554 	btrfs_set_lock_blocking(buf);
1555 
1556 	ret = __btrfs_cow_block(trans, root, buf, parent,
1557 				 parent_slot, cow_ret, search_start, 0);
1558 
1559 	trace_btrfs_cow_block(root, buf, *cow_ret);
1560 
1561 	return ret;
1562 }
1563 
1564 /*
1565  * helper function for defrag to decide if two blocks pointed to by a
1566  * node are actually close by
1567  */
close_blocks(u64 blocknr,u64 other,u32 blocksize)1568 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1569 {
1570 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1571 		return 1;
1572 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1573 		return 1;
1574 	return 0;
1575 }
1576 
1577 /*
1578  * compare two keys in a memcmp fashion
1579  */
comp_keys(struct btrfs_disk_key * disk,struct btrfs_key * k2)1580 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1581 {
1582 	struct btrfs_key k1;
1583 
1584 	btrfs_disk_key_to_cpu(&k1, disk);
1585 
1586 	return btrfs_comp_cpu_keys(&k1, k2);
1587 }
1588 
1589 /*
1590  * same as comp_keys only with two btrfs_key's
1591  */
btrfs_comp_cpu_keys(struct btrfs_key * k1,struct btrfs_key * k2)1592 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1593 {
1594 	if (k1->objectid > k2->objectid)
1595 		return 1;
1596 	if (k1->objectid < k2->objectid)
1597 		return -1;
1598 	if (k1->type > k2->type)
1599 		return 1;
1600 	if (k1->type < k2->type)
1601 		return -1;
1602 	if (k1->offset > k2->offset)
1603 		return 1;
1604 	if (k1->offset < k2->offset)
1605 		return -1;
1606 	return 0;
1607 }
1608 
1609 /*
1610  * this is used by the defrag code to go through all the
1611  * leaves pointed to by a node and reallocate them so that
1612  * disk order is close to key order
1613  */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)1614 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1615 		       struct btrfs_root *root, struct extent_buffer *parent,
1616 		       int start_slot, u64 *last_ret,
1617 		       struct btrfs_key *progress)
1618 {
1619 	struct extent_buffer *cur;
1620 	u64 blocknr;
1621 	u64 gen;
1622 	u64 search_start = *last_ret;
1623 	u64 last_block = 0;
1624 	u64 other;
1625 	u32 parent_nritems;
1626 	int end_slot;
1627 	int i;
1628 	int err = 0;
1629 	int parent_level;
1630 	int uptodate;
1631 	u32 blocksize;
1632 	int progress_passed = 0;
1633 	struct btrfs_disk_key disk_key;
1634 
1635 	parent_level = btrfs_header_level(parent);
1636 
1637 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1638 	WARN_ON(trans->transid != root->fs_info->generation);
1639 
1640 	parent_nritems = btrfs_header_nritems(parent);
1641 	blocksize = root->nodesize;
1642 	end_slot = parent_nritems;
1643 
1644 	if (parent_nritems == 1)
1645 		return 0;
1646 
1647 	btrfs_set_lock_blocking(parent);
1648 
1649 	for (i = start_slot; i < end_slot; i++) {
1650 		int close = 1;
1651 
1652 		btrfs_node_key(parent, &disk_key, i);
1653 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1654 			continue;
1655 
1656 		progress_passed = 1;
1657 		blocknr = btrfs_node_blockptr(parent, i);
1658 		gen = btrfs_node_ptr_generation(parent, i);
1659 		if (last_block == 0)
1660 			last_block = blocknr;
1661 
1662 		if (i > 0) {
1663 			other = btrfs_node_blockptr(parent, i - 1);
1664 			close = close_blocks(blocknr, other, blocksize);
1665 		}
1666 		if (!close && i < end_slot - 2) {
1667 			other = btrfs_node_blockptr(parent, i + 1);
1668 			close = close_blocks(blocknr, other, blocksize);
1669 		}
1670 		if (close) {
1671 			last_block = blocknr;
1672 			continue;
1673 		}
1674 
1675 		cur = btrfs_find_tree_block(root, blocknr);
1676 		if (cur)
1677 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1678 		else
1679 			uptodate = 0;
1680 		if (!cur || !uptodate) {
1681 			if (!cur) {
1682 				cur = read_tree_block(root, blocknr, gen);
1683 				if (!cur || !extent_buffer_uptodate(cur)) {
1684 					free_extent_buffer(cur);
1685 					return -EIO;
1686 				}
1687 			} else if (!uptodate) {
1688 				err = btrfs_read_buffer(cur, gen);
1689 				if (err) {
1690 					free_extent_buffer(cur);
1691 					return err;
1692 				}
1693 			}
1694 		}
1695 		if (search_start == 0)
1696 			search_start = last_block;
1697 
1698 		btrfs_tree_lock(cur);
1699 		btrfs_set_lock_blocking(cur);
1700 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1701 					&cur, search_start,
1702 					min(16 * blocksize,
1703 					    (end_slot - i) * blocksize));
1704 		if (err) {
1705 			btrfs_tree_unlock(cur);
1706 			free_extent_buffer(cur);
1707 			break;
1708 		}
1709 		search_start = cur->start;
1710 		last_block = cur->start;
1711 		*last_ret = search_start;
1712 		btrfs_tree_unlock(cur);
1713 		free_extent_buffer(cur);
1714 	}
1715 	return err;
1716 }
1717 
1718 /*
1719  * The leaf data grows from end-to-front in the node.
1720  * this returns the address of the start of the last item,
1721  * which is the stop of the leaf data stack
1722  */
leaf_data_end(struct btrfs_root * root,struct extent_buffer * leaf)1723 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1724 					 struct extent_buffer *leaf)
1725 {
1726 	u32 nr = btrfs_header_nritems(leaf);
1727 	if (nr == 0)
1728 		return BTRFS_LEAF_DATA_SIZE(root);
1729 	return btrfs_item_offset_nr(leaf, nr - 1);
1730 }
1731 
1732 
1733 /*
1734  * search for key in the extent_buffer.  The items start at offset p,
1735  * and they are item_size apart.  There are 'max' items in p.
1736  *
1737  * the slot in the array is returned via slot, and it points to
1738  * the place where you would insert key if it is not found in
1739  * the array.
1740  *
1741  * slot may point to max if the key is bigger than all of the keys
1742  */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,struct btrfs_key * key,int max,int * slot)1743 static noinline int generic_bin_search(struct extent_buffer *eb,
1744 				       unsigned long p,
1745 				       int item_size, struct btrfs_key *key,
1746 				       int max, int *slot)
1747 {
1748 	int low = 0;
1749 	int high = max;
1750 	int mid;
1751 	int ret;
1752 	struct btrfs_disk_key *tmp = NULL;
1753 	struct btrfs_disk_key unaligned;
1754 	unsigned long offset;
1755 	char *kaddr = NULL;
1756 	unsigned long map_start = 0;
1757 	unsigned long map_len = 0;
1758 	int err;
1759 
1760 	while (low < high) {
1761 		mid = (low + high) / 2;
1762 		offset = p + mid * item_size;
1763 
1764 		if (!kaddr || offset < map_start ||
1765 		    (offset + sizeof(struct btrfs_disk_key)) >
1766 		    map_start + map_len) {
1767 
1768 			err = map_private_extent_buffer(eb, offset,
1769 						sizeof(struct btrfs_disk_key),
1770 						&kaddr, &map_start, &map_len);
1771 
1772 			if (!err) {
1773 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1774 							map_start);
1775 			} else {
1776 				read_extent_buffer(eb, &unaligned,
1777 						   offset, sizeof(unaligned));
1778 				tmp = &unaligned;
1779 			}
1780 
1781 		} else {
1782 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1783 							map_start);
1784 		}
1785 		ret = comp_keys(tmp, key);
1786 
1787 		if (ret < 0)
1788 			low = mid + 1;
1789 		else if (ret > 0)
1790 			high = mid;
1791 		else {
1792 			*slot = mid;
1793 			return 0;
1794 		}
1795 	}
1796 	*slot = low;
1797 	return 1;
1798 }
1799 
1800 /*
1801  * simple bin_search frontend that does the right thing for
1802  * leaves vs nodes
1803  */
bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)1804 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1805 		      int level, int *slot)
1806 {
1807 	if (level == 0)
1808 		return generic_bin_search(eb,
1809 					  offsetof(struct btrfs_leaf, items),
1810 					  sizeof(struct btrfs_item),
1811 					  key, btrfs_header_nritems(eb),
1812 					  slot);
1813 	else
1814 		return generic_bin_search(eb,
1815 					  offsetof(struct btrfs_node, ptrs),
1816 					  sizeof(struct btrfs_key_ptr),
1817 					  key, btrfs_header_nritems(eb),
1818 					  slot);
1819 }
1820 
btrfs_bin_search(struct extent_buffer * eb,struct btrfs_key * key,int level,int * slot)1821 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1822 		     int level, int *slot)
1823 {
1824 	return bin_search(eb, key, level, slot);
1825 }
1826 
root_add_used(struct btrfs_root * root,u32 size)1827 static void root_add_used(struct btrfs_root *root, u32 size)
1828 {
1829 	spin_lock(&root->accounting_lock);
1830 	btrfs_set_root_used(&root->root_item,
1831 			    btrfs_root_used(&root->root_item) + size);
1832 	spin_unlock(&root->accounting_lock);
1833 }
1834 
root_sub_used(struct btrfs_root * root,u32 size)1835 static void root_sub_used(struct btrfs_root *root, u32 size)
1836 {
1837 	spin_lock(&root->accounting_lock);
1838 	btrfs_set_root_used(&root->root_item,
1839 			    btrfs_root_used(&root->root_item) - size);
1840 	spin_unlock(&root->accounting_lock);
1841 }
1842 
1843 /* given a node and slot number, this reads the blocks it points to.  The
1844  * extent buffer is returned with a reference taken (but unlocked).
1845  * NULL is returned on error.
1846  */
read_node_slot(struct btrfs_root * root,struct extent_buffer * parent,int slot)1847 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1848 				   struct extent_buffer *parent, int slot)
1849 {
1850 	int level = btrfs_header_level(parent);
1851 	struct extent_buffer *eb;
1852 
1853 	if (slot < 0)
1854 		return NULL;
1855 	if (slot >= btrfs_header_nritems(parent))
1856 		return NULL;
1857 
1858 	BUG_ON(level == 0);
1859 
1860 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1861 			     btrfs_node_ptr_generation(parent, slot));
1862 	if (eb && !extent_buffer_uptodate(eb)) {
1863 		free_extent_buffer(eb);
1864 		eb = NULL;
1865 	}
1866 
1867 	return eb;
1868 }
1869 
1870 /*
1871  * node level balancing, used to make sure nodes are in proper order for
1872  * item deletion.  We balance from the top down, so we have to make sure
1873  * that a deletion won't leave an node completely empty later on.
1874  */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1875 static noinline int balance_level(struct btrfs_trans_handle *trans,
1876 			 struct btrfs_root *root,
1877 			 struct btrfs_path *path, int level)
1878 {
1879 	struct extent_buffer *right = NULL;
1880 	struct extent_buffer *mid;
1881 	struct extent_buffer *left = NULL;
1882 	struct extent_buffer *parent = NULL;
1883 	int ret = 0;
1884 	int wret;
1885 	int pslot;
1886 	int orig_slot = path->slots[level];
1887 	u64 orig_ptr;
1888 
1889 	if (level == 0)
1890 		return 0;
1891 
1892 	mid = path->nodes[level];
1893 
1894 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1895 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1896 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1897 
1898 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1899 
1900 	if (level < BTRFS_MAX_LEVEL - 1) {
1901 		parent = path->nodes[level + 1];
1902 		pslot = path->slots[level + 1];
1903 	}
1904 
1905 	/*
1906 	 * deal with the case where there is only one pointer in the root
1907 	 * by promoting the node below to a root
1908 	 */
1909 	if (!parent) {
1910 		struct extent_buffer *child;
1911 
1912 		if (btrfs_header_nritems(mid) != 1)
1913 			return 0;
1914 
1915 		/* promote the child to a root */
1916 		child = read_node_slot(root, mid, 0);
1917 		if (!child) {
1918 			ret = -EROFS;
1919 			btrfs_std_error(root->fs_info, ret);
1920 			goto enospc;
1921 		}
1922 
1923 		btrfs_tree_lock(child);
1924 		btrfs_set_lock_blocking(child);
1925 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1926 		if (ret) {
1927 			btrfs_tree_unlock(child);
1928 			free_extent_buffer(child);
1929 			goto enospc;
1930 		}
1931 
1932 		tree_mod_log_set_root_pointer(root, child, 1);
1933 		rcu_assign_pointer(root->node, child);
1934 
1935 		add_root_to_dirty_list(root);
1936 		btrfs_tree_unlock(child);
1937 
1938 		path->locks[level] = 0;
1939 		path->nodes[level] = NULL;
1940 		clean_tree_block(trans, root, mid);
1941 		btrfs_tree_unlock(mid);
1942 		/* once for the path */
1943 		free_extent_buffer(mid);
1944 
1945 		root_sub_used(root, mid->len);
1946 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1947 		/* once for the root ptr */
1948 		free_extent_buffer_stale(mid);
1949 		return 0;
1950 	}
1951 	if (btrfs_header_nritems(mid) >
1952 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1953 		return 0;
1954 
1955 	left = read_node_slot(root, parent, pslot - 1);
1956 	if (left) {
1957 		btrfs_tree_lock(left);
1958 		btrfs_set_lock_blocking(left);
1959 		wret = btrfs_cow_block(trans, root, left,
1960 				       parent, pslot - 1, &left);
1961 		if (wret) {
1962 			ret = wret;
1963 			goto enospc;
1964 		}
1965 	}
1966 	right = read_node_slot(root, parent, pslot + 1);
1967 	if (right) {
1968 		btrfs_tree_lock(right);
1969 		btrfs_set_lock_blocking(right);
1970 		wret = btrfs_cow_block(trans, root, right,
1971 				       parent, pslot + 1, &right);
1972 		if (wret) {
1973 			ret = wret;
1974 			goto enospc;
1975 		}
1976 	}
1977 
1978 	/* first, try to make some room in the middle buffer */
1979 	if (left) {
1980 		orig_slot += btrfs_header_nritems(left);
1981 		wret = push_node_left(trans, root, left, mid, 1);
1982 		if (wret < 0)
1983 			ret = wret;
1984 	}
1985 
1986 	/*
1987 	 * then try to empty the right most buffer into the middle
1988 	 */
1989 	if (right) {
1990 		wret = push_node_left(trans, root, mid, right, 1);
1991 		if (wret < 0 && wret != -ENOSPC)
1992 			ret = wret;
1993 		if (btrfs_header_nritems(right) == 0) {
1994 			clean_tree_block(trans, root, right);
1995 			btrfs_tree_unlock(right);
1996 			del_ptr(root, path, level + 1, pslot + 1);
1997 			root_sub_used(root, right->len);
1998 			btrfs_free_tree_block(trans, root, right, 0, 1);
1999 			free_extent_buffer_stale(right);
2000 			right = NULL;
2001 		} else {
2002 			struct btrfs_disk_key right_key;
2003 			btrfs_node_key(right, &right_key, 0);
2004 			tree_mod_log_set_node_key(root->fs_info, parent,
2005 						  pslot + 1, 0);
2006 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2007 			btrfs_mark_buffer_dirty(parent);
2008 		}
2009 	}
2010 	if (btrfs_header_nritems(mid) == 1) {
2011 		/*
2012 		 * we're not allowed to leave a node with one item in the
2013 		 * tree during a delete.  A deletion from lower in the tree
2014 		 * could try to delete the only pointer in this node.
2015 		 * So, pull some keys from the left.
2016 		 * There has to be a left pointer at this point because
2017 		 * otherwise we would have pulled some pointers from the
2018 		 * right
2019 		 */
2020 		if (!left) {
2021 			ret = -EROFS;
2022 			btrfs_std_error(root->fs_info, ret);
2023 			goto enospc;
2024 		}
2025 		wret = balance_node_right(trans, root, mid, left);
2026 		if (wret < 0) {
2027 			ret = wret;
2028 			goto enospc;
2029 		}
2030 		if (wret == 1) {
2031 			wret = push_node_left(trans, root, left, mid, 1);
2032 			if (wret < 0)
2033 				ret = wret;
2034 		}
2035 		BUG_ON(wret == 1);
2036 	}
2037 	if (btrfs_header_nritems(mid) == 0) {
2038 		clean_tree_block(trans, root, mid);
2039 		btrfs_tree_unlock(mid);
2040 		del_ptr(root, path, level + 1, pslot);
2041 		root_sub_used(root, mid->len);
2042 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2043 		free_extent_buffer_stale(mid);
2044 		mid = NULL;
2045 	} else {
2046 		/* update the parent key to reflect our changes */
2047 		struct btrfs_disk_key mid_key;
2048 		btrfs_node_key(mid, &mid_key, 0);
2049 		tree_mod_log_set_node_key(root->fs_info, parent,
2050 					  pslot, 0);
2051 		btrfs_set_node_key(parent, &mid_key, pslot);
2052 		btrfs_mark_buffer_dirty(parent);
2053 	}
2054 
2055 	/* update the path */
2056 	if (left) {
2057 		if (btrfs_header_nritems(left) > orig_slot) {
2058 			extent_buffer_get(left);
2059 			/* left was locked after cow */
2060 			path->nodes[level] = left;
2061 			path->slots[level + 1] -= 1;
2062 			path->slots[level] = orig_slot;
2063 			if (mid) {
2064 				btrfs_tree_unlock(mid);
2065 				free_extent_buffer(mid);
2066 			}
2067 		} else {
2068 			orig_slot -= btrfs_header_nritems(left);
2069 			path->slots[level] = orig_slot;
2070 		}
2071 	}
2072 	/* double check we haven't messed things up */
2073 	if (orig_ptr !=
2074 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2075 		BUG();
2076 enospc:
2077 	if (right) {
2078 		btrfs_tree_unlock(right);
2079 		free_extent_buffer(right);
2080 	}
2081 	if (left) {
2082 		if (path->nodes[level] != left)
2083 			btrfs_tree_unlock(left);
2084 		free_extent_buffer(left);
2085 	}
2086 	return ret;
2087 }
2088 
2089 /* Node balancing for insertion.  Here we only split or push nodes around
2090  * when they are completely full.  This is also done top down, so we
2091  * have to be pessimistic.
2092  */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2094 					  struct btrfs_root *root,
2095 					  struct btrfs_path *path, int level)
2096 {
2097 	struct extent_buffer *right = NULL;
2098 	struct extent_buffer *mid;
2099 	struct extent_buffer *left = NULL;
2100 	struct extent_buffer *parent = NULL;
2101 	int ret = 0;
2102 	int wret;
2103 	int pslot;
2104 	int orig_slot = path->slots[level];
2105 
2106 	if (level == 0)
2107 		return 1;
2108 
2109 	mid = path->nodes[level];
2110 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2111 
2112 	if (level < BTRFS_MAX_LEVEL - 1) {
2113 		parent = path->nodes[level + 1];
2114 		pslot = path->slots[level + 1];
2115 	}
2116 
2117 	if (!parent)
2118 		return 1;
2119 
2120 	left = read_node_slot(root, parent, pslot - 1);
2121 
2122 	/* first, try to make some room in the middle buffer */
2123 	if (left) {
2124 		u32 left_nr;
2125 
2126 		btrfs_tree_lock(left);
2127 		btrfs_set_lock_blocking(left);
2128 
2129 		left_nr = btrfs_header_nritems(left);
2130 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2131 			wret = 1;
2132 		} else {
2133 			ret = btrfs_cow_block(trans, root, left, parent,
2134 					      pslot - 1, &left);
2135 			if (ret)
2136 				wret = 1;
2137 			else {
2138 				wret = push_node_left(trans, root,
2139 						      left, mid, 0);
2140 			}
2141 		}
2142 		if (wret < 0)
2143 			ret = wret;
2144 		if (wret == 0) {
2145 			struct btrfs_disk_key disk_key;
2146 			orig_slot += left_nr;
2147 			btrfs_node_key(mid, &disk_key, 0);
2148 			tree_mod_log_set_node_key(root->fs_info, parent,
2149 						  pslot, 0);
2150 			btrfs_set_node_key(parent, &disk_key, pslot);
2151 			btrfs_mark_buffer_dirty(parent);
2152 			if (btrfs_header_nritems(left) > orig_slot) {
2153 				path->nodes[level] = left;
2154 				path->slots[level + 1] -= 1;
2155 				path->slots[level] = orig_slot;
2156 				btrfs_tree_unlock(mid);
2157 				free_extent_buffer(mid);
2158 			} else {
2159 				orig_slot -=
2160 					btrfs_header_nritems(left);
2161 				path->slots[level] = orig_slot;
2162 				btrfs_tree_unlock(left);
2163 				free_extent_buffer(left);
2164 			}
2165 			return 0;
2166 		}
2167 		btrfs_tree_unlock(left);
2168 		free_extent_buffer(left);
2169 	}
2170 	right = read_node_slot(root, parent, pslot + 1);
2171 
2172 	/*
2173 	 * then try to empty the right most buffer into the middle
2174 	 */
2175 	if (right) {
2176 		u32 right_nr;
2177 
2178 		btrfs_tree_lock(right);
2179 		btrfs_set_lock_blocking(right);
2180 
2181 		right_nr = btrfs_header_nritems(right);
2182 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2183 			wret = 1;
2184 		} else {
2185 			ret = btrfs_cow_block(trans, root, right,
2186 					      parent, pslot + 1,
2187 					      &right);
2188 			if (ret)
2189 				wret = 1;
2190 			else {
2191 				wret = balance_node_right(trans, root,
2192 							  right, mid);
2193 			}
2194 		}
2195 		if (wret < 0)
2196 			ret = wret;
2197 		if (wret == 0) {
2198 			struct btrfs_disk_key disk_key;
2199 
2200 			btrfs_node_key(right, &disk_key, 0);
2201 			tree_mod_log_set_node_key(root->fs_info, parent,
2202 						  pslot + 1, 0);
2203 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2204 			btrfs_mark_buffer_dirty(parent);
2205 
2206 			if (btrfs_header_nritems(mid) <= orig_slot) {
2207 				path->nodes[level] = right;
2208 				path->slots[level + 1] += 1;
2209 				path->slots[level] = orig_slot -
2210 					btrfs_header_nritems(mid);
2211 				btrfs_tree_unlock(mid);
2212 				free_extent_buffer(mid);
2213 			} else {
2214 				btrfs_tree_unlock(right);
2215 				free_extent_buffer(right);
2216 			}
2217 			return 0;
2218 		}
2219 		btrfs_tree_unlock(right);
2220 		free_extent_buffer(right);
2221 	}
2222 	return 1;
2223 }
2224 
2225 /*
2226  * readahead one full node of leaves, finding things that are close
2227  * to the block in 'slot', and triggering ra on them.
2228  */
reada_for_search(struct btrfs_root * root,struct btrfs_path * path,int level,int slot,u64 objectid)2229 static void reada_for_search(struct btrfs_root *root,
2230 			     struct btrfs_path *path,
2231 			     int level, int slot, u64 objectid)
2232 {
2233 	struct extent_buffer *node;
2234 	struct btrfs_disk_key disk_key;
2235 	u32 nritems;
2236 	u64 search;
2237 	u64 target;
2238 	u64 nread = 0;
2239 	u64 gen;
2240 	int direction = path->reada;
2241 	struct extent_buffer *eb;
2242 	u32 nr;
2243 	u32 blocksize;
2244 	u32 nscan = 0;
2245 
2246 	if (level != 1)
2247 		return;
2248 
2249 	if (!path->nodes[level])
2250 		return;
2251 
2252 	node = path->nodes[level];
2253 
2254 	search = btrfs_node_blockptr(node, slot);
2255 	blocksize = root->nodesize;
2256 	eb = btrfs_find_tree_block(root, search);
2257 	if (eb) {
2258 		free_extent_buffer(eb);
2259 		return;
2260 	}
2261 
2262 	target = search;
2263 
2264 	nritems = btrfs_header_nritems(node);
2265 	nr = slot;
2266 
2267 	while (1) {
2268 		if (direction < 0) {
2269 			if (nr == 0)
2270 				break;
2271 			nr--;
2272 		} else if (direction > 0) {
2273 			nr++;
2274 			if (nr >= nritems)
2275 				break;
2276 		}
2277 		if (path->reada < 0 && objectid) {
2278 			btrfs_node_key(node, &disk_key, nr);
2279 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2280 				break;
2281 		}
2282 		search = btrfs_node_blockptr(node, nr);
2283 		if ((search <= target && target - search <= 65536) ||
2284 		    (search > target && search - target <= 65536)) {
2285 			gen = btrfs_node_ptr_generation(node, nr);
2286 			readahead_tree_block(root, search, blocksize);
2287 			nread += blocksize;
2288 		}
2289 		nscan++;
2290 		if ((nread > 65536 || nscan > 32))
2291 			break;
2292 	}
2293 }
2294 
reada_for_balance(struct btrfs_root * root,struct btrfs_path * path,int level)2295 static noinline void reada_for_balance(struct btrfs_root *root,
2296 				       struct btrfs_path *path, int level)
2297 {
2298 	int slot;
2299 	int nritems;
2300 	struct extent_buffer *parent;
2301 	struct extent_buffer *eb;
2302 	u64 gen;
2303 	u64 block1 = 0;
2304 	u64 block2 = 0;
2305 	int blocksize;
2306 
2307 	parent = path->nodes[level + 1];
2308 	if (!parent)
2309 		return;
2310 
2311 	nritems = btrfs_header_nritems(parent);
2312 	slot = path->slots[level + 1];
2313 	blocksize = root->nodesize;
2314 
2315 	if (slot > 0) {
2316 		block1 = btrfs_node_blockptr(parent, slot - 1);
2317 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2318 		eb = btrfs_find_tree_block(root, block1);
2319 		/*
2320 		 * if we get -eagain from btrfs_buffer_uptodate, we
2321 		 * don't want to return eagain here.  That will loop
2322 		 * forever
2323 		 */
2324 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2325 			block1 = 0;
2326 		free_extent_buffer(eb);
2327 	}
2328 	if (slot + 1 < nritems) {
2329 		block2 = btrfs_node_blockptr(parent, slot + 1);
2330 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2331 		eb = btrfs_find_tree_block(root, block2);
2332 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2333 			block2 = 0;
2334 		free_extent_buffer(eb);
2335 	}
2336 
2337 	if (block1)
2338 		readahead_tree_block(root, block1, blocksize);
2339 	if (block2)
2340 		readahead_tree_block(root, block2, blocksize);
2341 }
2342 
2343 
2344 /*
2345  * when we walk down the tree, it is usually safe to unlock the higher layers
2346  * in the tree.  The exceptions are when our path goes through slot 0, because
2347  * operations on the tree might require changing key pointers higher up in the
2348  * tree.
2349  *
2350  * callers might also have set path->keep_locks, which tells this code to keep
2351  * the lock if the path points to the last slot in the block.  This is part of
2352  * walking through the tree, and selecting the next slot in the higher block.
2353  *
2354  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2355  * if lowest_unlock is 1, level 0 won't be unlocked
2356  */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)2357 static noinline void unlock_up(struct btrfs_path *path, int level,
2358 			       int lowest_unlock, int min_write_lock_level,
2359 			       int *write_lock_level)
2360 {
2361 	int i;
2362 	int skip_level = level;
2363 	int no_skips = 0;
2364 	struct extent_buffer *t;
2365 
2366 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2367 		if (!path->nodes[i])
2368 			break;
2369 		if (!path->locks[i])
2370 			break;
2371 		if (!no_skips && path->slots[i] == 0) {
2372 			skip_level = i + 1;
2373 			continue;
2374 		}
2375 		if (!no_skips && path->keep_locks) {
2376 			u32 nritems;
2377 			t = path->nodes[i];
2378 			nritems = btrfs_header_nritems(t);
2379 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2380 				skip_level = i + 1;
2381 				continue;
2382 			}
2383 		}
2384 		if (skip_level < i && i >= lowest_unlock)
2385 			no_skips = 1;
2386 
2387 		t = path->nodes[i];
2388 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2389 			btrfs_tree_unlock_rw(t, path->locks[i]);
2390 			path->locks[i] = 0;
2391 			if (write_lock_level &&
2392 			    i > min_write_lock_level &&
2393 			    i <= *write_lock_level) {
2394 				*write_lock_level = i - 1;
2395 			}
2396 		}
2397 	}
2398 }
2399 
2400 /*
2401  * This releases any locks held in the path starting at level and
2402  * going all the way up to the root.
2403  *
2404  * btrfs_search_slot will keep the lock held on higher nodes in a few
2405  * corner cases, such as COW of the block at slot zero in the node.  This
2406  * ignores those rules, and it should only be called when there are no
2407  * more updates to be done higher up in the tree.
2408  */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)2409 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2410 {
2411 	int i;
2412 
2413 	if (path->keep_locks)
2414 		return;
2415 
2416 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2417 		if (!path->nodes[i])
2418 			continue;
2419 		if (!path->locks[i])
2420 			continue;
2421 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2422 		path->locks[i] = 0;
2423 	}
2424 }
2425 
2426 /*
2427  * helper function for btrfs_search_slot.  The goal is to find a block
2428  * in cache without setting the path to blocking.  If we find the block
2429  * we return zero and the path is unchanged.
2430  *
2431  * If we can't find the block, we set the path blocking and do some
2432  * reada.  -EAGAIN is returned and the search must be repeated.
2433  */
2434 static int
read_block_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,struct btrfs_key * key,u64 time_seq)2435 read_block_for_search(struct btrfs_trans_handle *trans,
2436 		       struct btrfs_root *root, struct btrfs_path *p,
2437 		       struct extent_buffer **eb_ret, int level, int slot,
2438 		       struct btrfs_key *key, u64 time_seq)
2439 {
2440 	u64 blocknr;
2441 	u64 gen;
2442 	struct extent_buffer *b = *eb_ret;
2443 	struct extent_buffer *tmp;
2444 	int ret;
2445 
2446 	blocknr = btrfs_node_blockptr(b, slot);
2447 	gen = btrfs_node_ptr_generation(b, slot);
2448 
2449 	tmp = btrfs_find_tree_block(root, blocknr);
2450 	if (tmp) {
2451 		/* first we do an atomic uptodate check */
2452 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2453 			*eb_ret = tmp;
2454 			return 0;
2455 		}
2456 
2457 		/* the pages were up to date, but we failed
2458 		 * the generation number check.  Do a full
2459 		 * read for the generation number that is correct.
2460 		 * We must do this without dropping locks so
2461 		 * we can trust our generation number
2462 		 */
2463 		btrfs_set_path_blocking(p);
2464 
2465 		/* now we're allowed to do a blocking uptodate check */
2466 		ret = btrfs_read_buffer(tmp, gen);
2467 		if (!ret) {
2468 			*eb_ret = tmp;
2469 			return 0;
2470 		}
2471 		free_extent_buffer(tmp);
2472 		btrfs_release_path(p);
2473 		return -EIO;
2474 	}
2475 
2476 	/*
2477 	 * reduce lock contention at high levels
2478 	 * of the btree by dropping locks before
2479 	 * we read.  Don't release the lock on the current
2480 	 * level because we need to walk this node to figure
2481 	 * out which blocks to read.
2482 	 */
2483 	btrfs_unlock_up_safe(p, level + 1);
2484 	btrfs_set_path_blocking(p);
2485 
2486 	free_extent_buffer(tmp);
2487 	if (p->reada)
2488 		reada_for_search(root, p, level, slot, key->objectid);
2489 
2490 	btrfs_release_path(p);
2491 
2492 	ret = -EAGAIN;
2493 	tmp = read_tree_block(root, blocknr, 0);
2494 	if (tmp) {
2495 		/*
2496 		 * If the read above didn't mark this buffer up to date,
2497 		 * it will never end up being up to date.  Set ret to EIO now
2498 		 * and give up so that our caller doesn't loop forever
2499 		 * on our EAGAINs.
2500 		 */
2501 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2502 			ret = -EIO;
2503 		free_extent_buffer(tmp);
2504 	}
2505 	return ret;
2506 }
2507 
2508 /*
2509  * helper function for btrfs_search_slot.  This does all of the checks
2510  * for node-level blocks and does any balancing required based on
2511  * the ins_len.
2512  *
2513  * If no extra work was required, zero is returned.  If we had to
2514  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2515  * start over
2516  */
2517 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)2518 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2519 		       struct btrfs_root *root, struct btrfs_path *p,
2520 		       struct extent_buffer *b, int level, int ins_len,
2521 		       int *write_lock_level)
2522 {
2523 	int ret;
2524 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2525 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2526 		int sret;
2527 
2528 		if (*write_lock_level < level + 1) {
2529 			*write_lock_level = level + 1;
2530 			btrfs_release_path(p);
2531 			goto again;
2532 		}
2533 
2534 		btrfs_set_path_blocking(p);
2535 		reada_for_balance(root, p, level);
2536 		sret = split_node(trans, root, p, level);
2537 		btrfs_clear_path_blocking(p, NULL, 0);
2538 
2539 		BUG_ON(sret > 0);
2540 		if (sret) {
2541 			ret = sret;
2542 			goto done;
2543 		}
2544 		b = p->nodes[level];
2545 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2546 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2547 		int sret;
2548 
2549 		if (*write_lock_level < level + 1) {
2550 			*write_lock_level = level + 1;
2551 			btrfs_release_path(p);
2552 			goto again;
2553 		}
2554 
2555 		btrfs_set_path_blocking(p);
2556 		reada_for_balance(root, p, level);
2557 		sret = balance_level(trans, root, p, level);
2558 		btrfs_clear_path_blocking(p, NULL, 0);
2559 
2560 		if (sret) {
2561 			ret = sret;
2562 			goto done;
2563 		}
2564 		b = p->nodes[level];
2565 		if (!b) {
2566 			btrfs_release_path(p);
2567 			goto again;
2568 		}
2569 		BUG_ON(btrfs_header_nritems(b) == 1);
2570 	}
2571 	return 0;
2572 
2573 again:
2574 	ret = -EAGAIN;
2575 done:
2576 	return ret;
2577 }
2578 
key_search_validate(struct extent_buffer * b,struct btrfs_key * key,int level)2579 static void key_search_validate(struct extent_buffer *b,
2580 				struct btrfs_key *key,
2581 				int level)
2582 {
2583 #ifdef CONFIG_BTRFS_ASSERT
2584 	struct btrfs_disk_key disk_key;
2585 
2586 	btrfs_cpu_key_to_disk(&disk_key, key);
2587 
2588 	if (level == 0)
2589 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2590 		    offsetof(struct btrfs_leaf, items[0].key),
2591 		    sizeof(disk_key)));
2592 	else
2593 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2594 		    offsetof(struct btrfs_node, ptrs[0].key),
2595 		    sizeof(disk_key)));
2596 #endif
2597 }
2598 
key_search(struct extent_buffer * b,struct btrfs_key * key,int level,int * prev_cmp,int * slot)2599 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2600 		      int level, int *prev_cmp, int *slot)
2601 {
2602 	if (*prev_cmp != 0) {
2603 		*prev_cmp = bin_search(b, key, level, slot);
2604 		return *prev_cmp;
2605 	}
2606 
2607 	key_search_validate(b, key, level);
2608 	*slot = 0;
2609 
2610 	return 0;
2611 }
2612 
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)2613 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2614 		u64 iobjectid, u64 ioff, u8 key_type,
2615 		struct btrfs_key *found_key)
2616 {
2617 	int ret;
2618 	struct btrfs_key key;
2619 	struct extent_buffer *eb;
2620 
2621 	ASSERT(path);
2622 
2623 	key.type = key_type;
2624 	key.objectid = iobjectid;
2625 	key.offset = ioff;
2626 
2627 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2628 	if ((ret < 0) || (found_key == NULL))
2629 		return ret;
2630 
2631 	eb = path->nodes[0];
2632 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2633 		ret = btrfs_next_leaf(fs_root, path);
2634 		if (ret)
2635 			return ret;
2636 		eb = path->nodes[0];
2637 	}
2638 
2639 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2640 	if (found_key->type != key.type ||
2641 			found_key->objectid != key.objectid)
2642 		return 1;
2643 
2644 	return 0;
2645 }
2646 
2647 /*
2648  * look for key in the tree.  path is filled in with nodes along the way
2649  * if key is found, we return zero and you can find the item in the leaf
2650  * level of the path (level 0)
2651  *
2652  * If the key isn't found, the path points to the slot where it should
2653  * be inserted, and 1 is returned.  If there are other errors during the
2654  * search a negative error number is returned.
2655  *
2656  * if ins_len > 0, nodes and leaves will be split as we walk down the
2657  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2658  * possible)
2659  */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2660 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2661 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2662 		      ins_len, int cow)
2663 {
2664 	struct extent_buffer *b;
2665 	int slot;
2666 	int ret;
2667 	int err;
2668 	int level;
2669 	int lowest_unlock = 1;
2670 	int root_lock;
2671 	/* everything at write_lock_level or lower must be write locked */
2672 	int write_lock_level = 0;
2673 	u8 lowest_level = 0;
2674 	int min_write_lock_level;
2675 	int prev_cmp;
2676 
2677 	lowest_level = p->lowest_level;
2678 	WARN_ON(lowest_level && ins_len > 0);
2679 	WARN_ON(p->nodes[0] != NULL);
2680 	BUG_ON(!cow && ins_len);
2681 
2682 	if (ins_len < 0) {
2683 		lowest_unlock = 2;
2684 
2685 		/* when we are removing items, we might have to go up to level
2686 		 * two as we update tree pointers  Make sure we keep write
2687 		 * for those levels as well
2688 		 */
2689 		write_lock_level = 2;
2690 	} else if (ins_len > 0) {
2691 		/*
2692 		 * for inserting items, make sure we have a write lock on
2693 		 * level 1 so we can update keys
2694 		 */
2695 		write_lock_level = 1;
2696 	}
2697 
2698 	if (!cow)
2699 		write_lock_level = -1;
2700 
2701 	if (cow && (p->keep_locks || p->lowest_level))
2702 		write_lock_level = BTRFS_MAX_LEVEL;
2703 
2704 	min_write_lock_level = write_lock_level;
2705 
2706 again:
2707 	prev_cmp = -1;
2708 	/*
2709 	 * we try very hard to do read locks on the root
2710 	 */
2711 	root_lock = BTRFS_READ_LOCK;
2712 	level = 0;
2713 	if (p->search_commit_root) {
2714 		/*
2715 		 * the commit roots are read only
2716 		 * so we always do read locks
2717 		 */
2718 		if (p->need_commit_sem)
2719 			down_read(&root->fs_info->commit_root_sem);
2720 		b = root->commit_root;
2721 		extent_buffer_get(b);
2722 		level = btrfs_header_level(b);
2723 		if (p->need_commit_sem)
2724 			up_read(&root->fs_info->commit_root_sem);
2725 		if (!p->skip_locking)
2726 			btrfs_tree_read_lock(b);
2727 	} else {
2728 		if (p->skip_locking) {
2729 			b = btrfs_root_node(root);
2730 			level = btrfs_header_level(b);
2731 		} else {
2732 			/* we don't know the level of the root node
2733 			 * until we actually have it read locked
2734 			 */
2735 			b = btrfs_read_lock_root_node(root);
2736 			level = btrfs_header_level(b);
2737 			if (level <= write_lock_level) {
2738 				/* whoops, must trade for write lock */
2739 				btrfs_tree_read_unlock(b);
2740 				free_extent_buffer(b);
2741 				b = btrfs_lock_root_node(root);
2742 				root_lock = BTRFS_WRITE_LOCK;
2743 
2744 				/* the level might have changed, check again */
2745 				level = btrfs_header_level(b);
2746 			}
2747 		}
2748 	}
2749 	p->nodes[level] = b;
2750 	if (!p->skip_locking)
2751 		p->locks[level] = root_lock;
2752 
2753 	while (b) {
2754 		level = btrfs_header_level(b);
2755 
2756 		/*
2757 		 * setup the path here so we can release it under lock
2758 		 * contention with the cow code
2759 		 */
2760 		if (cow) {
2761 			/*
2762 			 * if we don't really need to cow this block
2763 			 * then we don't want to set the path blocking,
2764 			 * so we test it here
2765 			 */
2766 			if (!should_cow_block(trans, root, b)) {
2767 				trans->dirty = true;
2768 				goto cow_done;
2769 			}
2770 
2771 			/*
2772 			 * must have write locks on this node and the
2773 			 * parent
2774 			 */
2775 			if (level > write_lock_level ||
2776 			    (level + 1 > write_lock_level &&
2777 			    level + 1 < BTRFS_MAX_LEVEL &&
2778 			    p->nodes[level + 1])) {
2779 				write_lock_level = level + 1;
2780 				btrfs_release_path(p);
2781 				goto again;
2782 			}
2783 
2784 			btrfs_set_path_blocking(p);
2785 			err = btrfs_cow_block(trans, root, b,
2786 					      p->nodes[level + 1],
2787 					      p->slots[level + 1], &b);
2788 			if (err) {
2789 				ret = err;
2790 				goto done;
2791 			}
2792 		}
2793 cow_done:
2794 		p->nodes[level] = b;
2795 		btrfs_clear_path_blocking(p, NULL, 0);
2796 
2797 		/*
2798 		 * we have a lock on b and as long as we aren't changing
2799 		 * the tree, there is no way to for the items in b to change.
2800 		 * It is safe to drop the lock on our parent before we
2801 		 * go through the expensive btree search on b.
2802 		 *
2803 		 * If we're inserting or deleting (ins_len != 0), then we might
2804 		 * be changing slot zero, which may require changing the parent.
2805 		 * So, we can't drop the lock until after we know which slot
2806 		 * we're operating on.
2807 		 */
2808 		if (!ins_len && !p->keep_locks) {
2809 			int u = level + 1;
2810 
2811 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2812 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2813 				p->locks[u] = 0;
2814 			}
2815 		}
2816 
2817 		ret = key_search(b, key, level, &prev_cmp, &slot);
2818 
2819 		if (level != 0) {
2820 			int dec = 0;
2821 			if (ret && slot > 0) {
2822 				dec = 1;
2823 				slot -= 1;
2824 			}
2825 			p->slots[level] = slot;
2826 			err = setup_nodes_for_search(trans, root, p, b, level,
2827 					     ins_len, &write_lock_level);
2828 			if (err == -EAGAIN)
2829 				goto again;
2830 			if (err) {
2831 				ret = err;
2832 				goto done;
2833 			}
2834 			b = p->nodes[level];
2835 			slot = p->slots[level];
2836 
2837 			/*
2838 			 * slot 0 is special, if we change the key
2839 			 * we have to update the parent pointer
2840 			 * which means we must have a write lock
2841 			 * on the parent
2842 			 */
2843 			if (slot == 0 && ins_len &&
2844 			    write_lock_level < level + 1) {
2845 				write_lock_level = level + 1;
2846 				btrfs_release_path(p);
2847 				goto again;
2848 			}
2849 
2850 			unlock_up(p, level, lowest_unlock,
2851 				  min_write_lock_level, &write_lock_level);
2852 
2853 			if (level == lowest_level) {
2854 				if (dec)
2855 					p->slots[level]++;
2856 				goto done;
2857 			}
2858 
2859 			err = read_block_for_search(trans, root, p,
2860 						    &b, level, slot, key, 0);
2861 			if (err == -EAGAIN)
2862 				goto again;
2863 			if (err) {
2864 				ret = err;
2865 				goto done;
2866 			}
2867 
2868 			if (!p->skip_locking) {
2869 				level = btrfs_header_level(b);
2870 				if (level <= write_lock_level) {
2871 					err = btrfs_try_tree_write_lock(b);
2872 					if (!err) {
2873 						btrfs_set_path_blocking(p);
2874 						btrfs_tree_lock(b);
2875 						btrfs_clear_path_blocking(p, b,
2876 								  BTRFS_WRITE_LOCK);
2877 					}
2878 					p->locks[level] = BTRFS_WRITE_LOCK;
2879 				} else {
2880 					err = btrfs_tree_read_lock_atomic(b);
2881 					if (!err) {
2882 						btrfs_set_path_blocking(p);
2883 						btrfs_tree_read_lock(b);
2884 						btrfs_clear_path_blocking(p, b,
2885 								  BTRFS_READ_LOCK);
2886 					}
2887 					p->locks[level] = BTRFS_READ_LOCK;
2888 				}
2889 				p->nodes[level] = b;
2890 			}
2891 		} else {
2892 			p->slots[level] = slot;
2893 			if (ins_len > 0 &&
2894 			    btrfs_leaf_free_space(root, b) < ins_len) {
2895 				if (write_lock_level < 1) {
2896 					write_lock_level = 1;
2897 					btrfs_release_path(p);
2898 					goto again;
2899 				}
2900 
2901 				btrfs_set_path_blocking(p);
2902 				err = split_leaf(trans, root, key,
2903 						 p, ins_len, ret == 0);
2904 				btrfs_clear_path_blocking(p, NULL, 0);
2905 
2906 				BUG_ON(err > 0);
2907 				if (err) {
2908 					ret = err;
2909 					goto done;
2910 				}
2911 			}
2912 			if (!p->search_for_split)
2913 				unlock_up(p, level, lowest_unlock,
2914 					  min_write_lock_level, &write_lock_level);
2915 			goto done;
2916 		}
2917 	}
2918 	ret = 1;
2919 done:
2920 	/*
2921 	 * we don't really know what they plan on doing with the path
2922 	 * from here on, so for now just mark it as blocking
2923 	 */
2924 	if (!p->leave_spinning)
2925 		btrfs_set_path_blocking(p);
2926 	if (ret < 0 && !p->skip_release_on_error)
2927 		btrfs_release_path(p);
2928 	return ret;
2929 }
2930 
2931 /*
2932  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2933  * current state of the tree together with the operations recorded in the tree
2934  * modification log to search for the key in a previous version of this tree, as
2935  * denoted by the time_seq parameter.
2936  *
2937  * Naturally, there is no support for insert, delete or cow operations.
2938  *
2939  * The resulting path and return value will be set up as if we called
2940  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2941  */
btrfs_search_old_slot(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)2942 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2943 			  struct btrfs_path *p, u64 time_seq)
2944 {
2945 	struct extent_buffer *b;
2946 	int slot;
2947 	int ret;
2948 	int err;
2949 	int level;
2950 	int lowest_unlock = 1;
2951 	u8 lowest_level = 0;
2952 	int prev_cmp = -1;
2953 
2954 	lowest_level = p->lowest_level;
2955 	WARN_ON(p->nodes[0] != NULL);
2956 
2957 	if (p->search_commit_root) {
2958 		BUG_ON(time_seq);
2959 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2960 	}
2961 
2962 again:
2963 	b = get_old_root(root, time_seq);
2964 	level = btrfs_header_level(b);
2965 	p->locks[level] = BTRFS_READ_LOCK;
2966 
2967 	while (b) {
2968 		level = btrfs_header_level(b);
2969 		p->nodes[level] = b;
2970 		btrfs_clear_path_blocking(p, NULL, 0);
2971 
2972 		/*
2973 		 * we have a lock on b and as long as we aren't changing
2974 		 * the tree, there is no way to for the items in b to change.
2975 		 * It is safe to drop the lock on our parent before we
2976 		 * go through the expensive btree search on b.
2977 		 */
2978 		btrfs_unlock_up_safe(p, level + 1);
2979 
2980 		/*
2981 		 * Since we can unwind eb's we want to do a real search every
2982 		 * time.
2983 		 */
2984 		prev_cmp = -1;
2985 		ret = key_search(b, key, level, &prev_cmp, &slot);
2986 
2987 		if (level != 0) {
2988 			int dec = 0;
2989 			if (ret && slot > 0) {
2990 				dec = 1;
2991 				slot -= 1;
2992 			}
2993 			p->slots[level] = slot;
2994 			unlock_up(p, level, lowest_unlock, 0, NULL);
2995 
2996 			if (level == lowest_level) {
2997 				if (dec)
2998 					p->slots[level]++;
2999 				goto done;
3000 			}
3001 
3002 			err = read_block_for_search(NULL, root, p, &b, level,
3003 						    slot, key, time_seq);
3004 			if (err == -EAGAIN)
3005 				goto again;
3006 			if (err) {
3007 				ret = err;
3008 				goto done;
3009 			}
3010 
3011 			level = btrfs_header_level(b);
3012 			err = btrfs_tree_read_lock_atomic(b);
3013 			if (!err) {
3014 				btrfs_set_path_blocking(p);
3015 				btrfs_tree_read_lock(b);
3016 				btrfs_clear_path_blocking(p, b,
3017 							  BTRFS_READ_LOCK);
3018 			}
3019 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3020 			if (!b) {
3021 				ret = -ENOMEM;
3022 				goto done;
3023 			}
3024 			p->locks[level] = BTRFS_READ_LOCK;
3025 			p->nodes[level] = b;
3026 		} else {
3027 			p->slots[level] = slot;
3028 			unlock_up(p, level, lowest_unlock, 0, NULL);
3029 			goto done;
3030 		}
3031 	}
3032 	ret = 1;
3033 done:
3034 	if (!p->leave_spinning)
3035 		btrfs_set_path_blocking(p);
3036 	if (ret < 0)
3037 		btrfs_release_path(p);
3038 
3039 	return ret;
3040 }
3041 
3042 /*
3043  * helper to use instead of search slot if no exact match is needed but
3044  * instead the next or previous item should be returned.
3045  * When find_higher is true, the next higher item is returned, the next lower
3046  * otherwise.
3047  * When return_any and find_higher are both true, and no higher item is found,
3048  * return the next lower instead.
3049  * When return_any is true and find_higher is false, and no lower item is found,
3050  * return the next higher instead.
3051  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3052  * < 0 on error
3053  */
btrfs_search_slot_for_read(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)3054 int btrfs_search_slot_for_read(struct btrfs_root *root,
3055 			       struct btrfs_key *key, struct btrfs_path *p,
3056 			       int find_higher, int return_any)
3057 {
3058 	int ret;
3059 	struct extent_buffer *leaf;
3060 
3061 again:
3062 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3063 	if (ret <= 0)
3064 		return ret;
3065 	/*
3066 	 * a return value of 1 means the path is at the position where the
3067 	 * item should be inserted. Normally this is the next bigger item,
3068 	 * but in case the previous item is the last in a leaf, path points
3069 	 * to the first free slot in the previous leaf, i.e. at an invalid
3070 	 * item.
3071 	 */
3072 	leaf = p->nodes[0];
3073 
3074 	if (find_higher) {
3075 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3076 			ret = btrfs_next_leaf(root, p);
3077 			if (ret <= 0)
3078 				return ret;
3079 			if (!return_any)
3080 				return 1;
3081 			/*
3082 			 * no higher item found, return the next
3083 			 * lower instead
3084 			 */
3085 			return_any = 0;
3086 			find_higher = 0;
3087 			btrfs_release_path(p);
3088 			goto again;
3089 		}
3090 	} else {
3091 		if (p->slots[0] == 0) {
3092 			ret = btrfs_prev_leaf(root, p);
3093 			if (ret < 0)
3094 				return ret;
3095 			if (!ret) {
3096 				leaf = p->nodes[0];
3097 				if (p->slots[0] == btrfs_header_nritems(leaf))
3098 					p->slots[0]--;
3099 				return 0;
3100 			}
3101 			if (!return_any)
3102 				return 1;
3103 			/*
3104 			 * no lower item found, return the next
3105 			 * higher instead
3106 			 */
3107 			return_any = 0;
3108 			find_higher = 1;
3109 			btrfs_release_path(p);
3110 			goto again;
3111 		} else {
3112 			--p->slots[0];
3113 		}
3114 	}
3115 	return 0;
3116 }
3117 
3118 /*
3119  * adjust the pointers going up the tree, starting at level
3120  * making sure the right key of each node is points to 'key'.
3121  * This is used after shifting pointers to the left, so it stops
3122  * fixing up pointers when a given leaf/node is not in slot 0 of the
3123  * higher levels
3124  *
3125  */
fixup_low_keys(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,int level)3126 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3127 			   struct btrfs_disk_key *key, int level)
3128 {
3129 	int i;
3130 	struct extent_buffer *t;
3131 
3132 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3133 		int tslot = path->slots[i];
3134 		if (!path->nodes[i])
3135 			break;
3136 		t = path->nodes[i];
3137 		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3138 		btrfs_set_node_key(t, key, tslot);
3139 		btrfs_mark_buffer_dirty(path->nodes[i]);
3140 		if (tslot != 0)
3141 			break;
3142 	}
3143 }
3144 
3145 /*
3146  * update item key.
3147  *
3148  * This function isn't completely safe. It's the caller's responsibility
3149  * that the new key won't break the order
3150  */
btrfs_set_item_key_safe(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)3151 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3152 			     struct btrfs_key *new_key)
3153 {
3154 	struct btrfs_disk_key disk_key;
3155 	struct extent_buffer *eb;
3156 	int slot;
3157 
3158 	eb = path->nodes[0];
3159 	slot = path->slots[0];
3160 	if (slot > 0) {
3161 		btrfs_item_key(eb, &disk_key, slot - 1);
3162 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3163 	}
3164 	if (slot < btrfs_header_nritems(eb) - 1) {
3165 		btrfs_item_key(eb, &disk_key, slot + 1);
3166 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3167 	}
3168 
3169 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3170 	btrfs_set_item_key(eb, &disk_key, slot);
3171 	btrfs_mark_buffer_dirty(eb);
3172 	if (slot == 0)
3173 		fixup_low_keys(root, path, &disk_key, 1);
3174 }
3175 
3176 /*
3177  * try to push data from one node into the next node left in the
3178  * tree.
3179  *
3180  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3181  * error, and > 0 if there was no room in the left hand block.
3182  */
push_node_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src,int empty)3183 static int push_node_left(struct btrfs_trans_handle *trans,
3184 			  struct btrfs_root *root, struct extent_buffer *dst,
3185 			  struct extent_buffer *src, int empty)
3186 {
3187 	int push_items = 0;
3188 	int src_nritems;
3189 	int dst_nritems;
3190 	int ret = 0;
3191 
3192 	src_nritems = btrfs_header_nritems(src);
3193 	dst_nritems = btrfs_header_nritems(dst);
3194 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3195 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3196 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3197 
3198 	if (!empty && src_nritems <= 8)
3199 		return 1;
3200 
3201 	if (push_items <= 0)
3202 		return 1;
3203 
3204 	if (empty) {
3205 		push_items = min(src_nritems, push_items);
3206 		if (push_items < src_nritems) {
3207 			/* leave at least 8 pointers in the node if
3208 			 * we aren't going to empty it
3209 			 */
3210 			if (src_nritems - push_items < 8) {
3211 				if (push_items <= 8)
3212 					return 1;
3213 				push_items -= 8;
3214 			}
3215 		}
3216 	} else
3217 		push_items = min(src_nritems - 8, push_items);
3218 
3219 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3220 				   push_items);
3221 	if (ret) {
3222 		btrfs_abort_transaction(trans, root, ret);
3223 		return ret;
3224 	}
3225 	copy_extent_buffer(dst, src,
3226 			   btrfs_node_key_ptr_offset(dst_nritems),
3227 			   btrfs_node_key_ptr_offset(0),
3228 			   push_items * sizeof(struct btrfs_key_ptr));
3229 
3230 	if (push_items < src_nritems) {
3231 		/*
3232 		 * don't call tree_mod_log_eb_move here, key removal was already
3233 		 * fully logged by tree_mod_log_eb_copy above.
3234 		 */
3235 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3236 				      btrfs_node_key_ptr_offset(push_items),
3237 				      (src_nritems - push_items) *
3238 				      sizeof(struct btrfs_key_ptr));
3239 	}
3240 	btrfs_set_header_nritems(src, src_nritems - push_items);
3241 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3242 	btrfs_mark_buffer_dirty(src);
3243 	btrfs_mark_buffer_dirty(dst);
3244 
3245 	return ret;
3246 }
3247 
3248 /*
3249  * try to push data from one node into the next node right in the
3250  * tree.
3251  *
3252  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3253  * error, and > 0 if there was no room in the right hand block.
3254  *
3255  * this will  only push up to 1/2 the contents of the left node over
3256  */
balance_node_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * dst,struct extent_buffer * src)3257 static int balance_node_right(struct btrfs_trans_handle *trans,
3258 			      struct btrfs_root *root,
3259 			      struct extent_buffer *dst,
3260 			      struct extent_buffer *src)
3261 {
3262 	int push_items = 0;
3263 	int max_push;
3264 	int src_nritems;
3265 	int dst_nritems;
3266 	int ret = 0;
3267 
3268 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3269 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3270 
3271 	src_nritems = btrfs_header_nritems(src);
3272 	dst_nritems = btrfs_header_nritems(dst);
3273 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3274 	if (push_items <= 0)
3275 		return 1;
3276 
3277 	if (src_nritems < 4)
3278 		return 1;
3279 
3280 	max_push = src_nritems / 2 + 1;
3281 	/* don't try to empty the node */
3282 	if (max_push >= src_nritems)
3283 		return 1;
3284 
3285 	if (max_push < push_items)
3286 		push_items = max_push;
3287 
3288 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3289 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3290 				      btrfs_node_key_ptr_offset(0),
3291 				      (dst_nritems) *
3292 				      sizeof(struct btrfs_key_ptr));
3293 
3294 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3295 				   src_nritems - push_items, push_items);
3296 	if (ret) {
3297 		btrfs_abort_transaction(trans, root, ret);
3298 		return ret;
3299 	}
3300 	copy_extent_buffer(dst, src,
3301 			   btrfs_node_key_ptr_offset(0),
3302 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3303 			   push_items * sizeof(struct btrfs_key_ptr));
3304 
3305 	btrfs_set_header_nritems(src, src_nritems - push_items);
3306 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3307 
3308 	btrfs_mark_buffer_dirty(src);
3309 	btrfs_mark_buffer_dirty(dst);
3310 
3311 	return ret;
3312 }
3313 
3314 /*
3315  * helper function to insert a new root level in the tree.
3316  * A new node is allocated, and a single item is inserted to
3317  * point to the existing root
3318  *
3319  * returns zero on success or < 0 on failure.
3320  */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3321 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3322 			   struct btrfs_root *root,
3323 			   struct btrfs_path *path, int level)
3324 {
3325 	u64 lower_gen;
3326 	struct extent_buffer *lower;
3327 	struct extent_buffer *c;
3328 	struct extent_buffer *old;
3329 	struct btrfs_disk_key lower_key;
3330 
3331 	BUG_ON(path->nodes[level]);
3332 	BUG_ON(path->nodes[level-1] != root->node);
3333 
3334 	lower = path->nodes[level-1];
3335 	if (level == 1)
3336 		btrfs_item_key(lower, &lower_key, 0);
3337 	else
3338 		btrfs_node_key(lower, &lower_key, 0);
3339 
3340 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3341 				   &lower_key, level, root->node->start, 0);
3342 	if (IS_ERR(c))
3343 		return PTR_ERR(c);
3344 
3345 	root_add_used(root, root->nodesize);
3346 
3347 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3348 	btrfs_set_header_nritems(c, 1);
3349 	btrfs_set_header_level(c, level);
3350 	btrfs_set_header_bytenr(c, c->start);
3351 	btrfs_set_header_generation(c, trans->transid);
3352 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3353 	btrfs_set_header_owner(c, root->root_key.objectid);
3354 
3355 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3356 			    BTRFS_FSID_SIZE);
3357 
3358 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3359 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3360 
3361 	btrfs_set_node_key(c, &lower_key, 0);
3362 	btrfs_set_node_blockptr(c, 0, lower->start);
3363 	lower_gen = btrfs_header_generation(lower);
3364 	WARN_ON(lower_gen != trans->transid);
3365 
3366 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3367 
3368 	btrfs_mark_buffer_dirty(c);
3369 
3370 	old = root->node;
3371 	tree_mod_log_set_root_pointer(root, c, 0);
3372 	rcu_assign_pointer(root->node, c);
3373 
3374 	/* the super has an extra ref to root->node */
3375 	free_extent_buffer(old);
3376 
3377 	add_root_to_dirty_list(root);
3378 	extent_buffer_get(c);
3379 	path->nodes[level] = c;
3380 	path->locks[level] = BTRFS_WRITE_LOCK;
3381 	path->slots[level] = 0;
3382 	return 0;
3383 }
3384 
3385 /*
3386  * worker function to insert a single pointer in a node.
3387  * the node should have enough room for the pointer already
3388  *
3389  * slot and level indicate where you want the key to go, and
3390  * blocknr is the block the key points to.
3391  */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3392 static void insert_ptr(struct btrfs_trans_handle *trans,
3393 		       struct btrfs_root *root, struct btrfs_path *path,
3394 		       struct btrfs_disk_key *key, u64 bytenr,
3395 		       int slot, int level)
3396 {
3397 	struct extent_buffer *lower;
3398 	int nritems;
3399 	int ret;
3400 
3401 	BUG_ON(!path->nodes[level]);
3402 	btrfs_assert_tree_locked(path->nodes[level]);
3403 	lower = path->nodes[level];
3404 	nritems = btrfs_header_nritems(lower);
3405 	BUG_ON(slot > nritems);
3406 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3407 	if (slot != nritems) {
3408 		if (level)
3409 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3410 					     slot, nritems - slot);
3411 		memmove_extent_buffer(lower,
3412 			      btrfs_node_key_ptr_offset(slot + 1),
3413 			      btrfs_node_key_ptr_offset(slot),
3414 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3415 	}
3416 	if (level) {
3417 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3418 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3419 		BUG_ON(ret < 0);
3420 	}
3421 	btrfs_set_node_key(lower, key, slot);
3422 	btrfs_set_node_blockptr(lower, slot, bytenr);
3423 	WARN_ON(trans->transid == 0);
3424 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3425 	btrfs_set_header_nritems(lower, nritems + 1);
3426 	btrfs_mark_buffer_dirty(lower);
3427 }
3428 
3429 /*
3430  * split the node at the specified level in path in two.
3431  * The path is corrected to point to the appropriate node after the split
3432  *
3433  * Before splitting this tries to make some room in the node by pushing
3434  * left and right, if either one works, it returns right away.
3435  *
3436  * returns 0 on success and < 0 on failure
3437  */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3438 static noinline int split_node(struct btrfs_trans_handle *trans,
3439 			       struct btrfs_root *root,
3440 			       struct btrfs_path *path, int level)
3441 {
3442 	struct extent_buffer *c;
3443 	struct extent_buffer *split;
3444 	struct btrfs_disk_key disk_key;
3445 	int mid;
3446 	int ret;
3447 	u32 c_nritems;
3448 
3449 	c = path->nodes[level];
3450 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3451 	if (c == root->node) {
3452 		/*
3453 		 * trying to split the root, lets make a new one
3454 		 *
3455 		 * tree mod log: We don't log_removal old root in
3456 		 * insert_new_root, because that root buffer will be kept as a
3457 		 * normal node. We are going to log removal of half of the
3458 		 * elements below with tree_mod_log_eb_copy. We're holding a
3459 		 * tree lock on the buffer, which is why we cannot race with
3460 		 * other tree_mod_log users.
3461 		 */
3462 		ret = insert_new_root(trans, root, path, level + 1);
3463 		if (ret)
3464 			return ret;
3465 	} else {
3466 		ret = push_nodes_for_insert(trans, root, path, level);
3467 		c = path->nodes[level];
3468 		if (!ret && btrfs_header_nritems(c) <
3469 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3470 			return 0;
3471 		if (ret < 0)
3472 			return ret;
3473 	}
3474 
3475 	c_nritems = btrfs_header_nritems(c);
3476 	mid = (c_nritems + 1) / 2;
3477 	btrfs_node_key(c, &disk_key, mid);
3478 
3479 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3480 			&disk_key, level, c->start, 0);
3481 	if (IS_ERR(split))
3482 		return PTR_ERR(split);
3483 
3484 	root_add_used(root, root->nodesize);
3485 
3486 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3487 	btrfs_set_header_level(split, btrfs_header_level(c));
3488 	btrfs_set_header_bytenr(split, split->start);
3489 	btrfs_set_header_generation(split, trans->transid);
3490 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3491 	btrfs_set_header_owner(split, root->root_key.objectid);
3492 	write_extent_buffer(split, root->fs_info->fsid,
3493 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3494 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3495 			    btrfs_header_chunk_tree_uuid(split),
3496 			    BTRFS_UUID_SIZE);
3497 
3498 	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3499 				   mid, c_nritems - mid);
3500 	if (ret) {
3501 		btrfs_abort_transaction(trans, root, ret);
3502 		return ret;
3503 	}
3504 	copy_extent_buffer(split, c,
3505 			   btrfs_node_key_ptr_offset(0),
3506 			   btrfs_node_key_ptr_offset(mid),
3507 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3508 	btrfs_set_header_nritems(split, c_nritems - mid);
3509 	btrfs_set_header_nritems(c, mid);
3510 	ret = 0;
3511 
3512 	btrfs_mark_buffer_dirty(c);
3513 	btrfs_mark_buffer_dirty(split);
3514 
3515 	insert_ptr(trans, root, path, &disk_key, split->start,
3516 		   path->slots[level + 1] + 1, level + 1);
3517 
3518 	if (path->slots[level] >= mid) {
3519 		path->slots[level] -= mid;
3520 		btrfs_tree_unlock(c);
3521 		free_extent_buffer(c);
3522 		path->nodes[level] = split;
3523 		path->slots[level + 1] += 1;
3524 	} else {
3525 		btrfs_tree_unlock(split);
3526 		free_extent_buffer(split);
3527 	}
3528 	return ret;
3529 }
3530 
3531 /*
3532  * how many bytes are required to store the items in a leaf.  start
3533  * and nr indicate which items in the leaf to check.  This totals up the
3534  * space used both by the item structs and the item data
3535  */
leaf_space_used(struct extent_buffer * l,int start,int nr)3536 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3537 {
3538 	struct btrfs_item *start_item;
3539 	struct btrfs_item *end_item;
3540 	struct btrfs_map_token token;
3541 	int data_len;
3542 	int nritems = btrfs_header_nritems(l);
3543 	int end = min(nritems, start + nr) - 1;
3544 
3545 	if (!nr)
3546 		return 0;
3547 	btrfs_init_map_token(&token);
3548 	start_item = btrfs_item_nr(start);
3549 	end_item = btrfs_item_nr(end);
3550 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3551 		btrfs_token_item_size(l, start_item, &token);
3552 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3553 	data_len += sizeof(struct btrfs_item) * nr;
3554 	WARN_ON(data_len < 0);
3555 	return data_len;
3556 }
3557 
3558 /*
3559  * The space between the end of the leaf items and
3560  * the start of the leaf data.  IOW, how much room
3561  * the leaf has left for both items and data
3562  */
btrfs_leaf_free_space(struct btrfs_root * root,struct extent_buffer * leaf)3563 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3564 				   struct extent_buffer *leaf)
3565 {
3566 	int nritems = btrfs_header_nritems(leaf);
3567 	int ret;
3568 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3569 	if (ret < 0) {
3570 		btrfs_crit(root->fs_info,
3571 			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3572 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3573 		       leaf_space_used(leaf, 0, nritems), nritems);
3574 	}
3575 	return ret;
3576 }
3577 
3578 /*
3579  * min slot controls the lowest index we're willing to push to the
3580  * right.  We'll push up to and including min_slot, but no lower
3581  */
__push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3582 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3583 				      struct btrfs_root *root,
3584 				      struct btrfs_path *path,
3585 				      int data_size, int empty,
3586 				      struct extent_buffer *right,
3587 				      int free_space, u32 left_nritems,
3588 				      u32 min_slot)
3589 {
3590 	struct extent_buffer *left = path->nodes[0];
3591 	struct extent_buffer *upper = path->nodes[1];
3592 	struct btrfs_map_token token;
3593 	struct btrfs_disk_key disk_key;
3594 	int slot;
3595 	u32 i;
3596 	int push_space = 0;
3597 	int push_items = 0;
3598 	struct btrfs_item *item;
3599 	u32 nr;
3600 	u32 right_nritems;
3601 	u32 data_end;
3602 	u32 this_item_size;
3603 
3604 	btrfs_init_map_token(&token);
3605 
3606 	if (empty)
3607 		nr = 0;
3608 	else
3609 		nr = max_t(u32, 1, min_slot);
3610 
3611 	if (path->slots[0] >= left_nritems)
3612 		push_space += data_size;
3613 
3614 	slot = path->slots[1];
3615 	i = left_nritems - 1;
3616 	while (i >= nr) {
3617 		item = btrfs_item_nr(i);
3618 
3619 		if (!empty && push_items > 0) {
3620 			if (path->slots[0] > i)
3621 				break;
3622 			if (path->slots[0] == i) {
3623 				int space = btrfs_leaf_free_space(root, left);
3624 				if (space + push_space * 2 > free_space)
3625 					break;
3626 			}
3627 		}
3628 
3629 		if (path->slots[0] == i)
3630 			push_space += data_size;
3631 
3632 		this_item_size = btrfs_item_size(left, item);
3633 		if (this_item_size + sizeof(*item) + push_space > free_space)
3634 			break;
3635 
3636 		push_items++;
3637 		push_space += this_item_size + sizeof(*item);
3638 		if (i == 0)
3639 			break;
3640 		i--;
3641 	}
3642 
3643 	if (push_items == 0)
3644 		goto out_unlock;
3645 
3646 	WARN_ON(!empty && push_items == left_nritems);
3647 
3648 	/* push left to right */
3649 	right_nritems = btrfs_header_nritems(right);
3650 
3651 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3652 	push_space -= leaf_data_end(root, left);
3653 
3654 	/* make room in the right data area */
3655 	data_end = leaf_data_end(root, right);
3656 	memmove_extent_buffer(right,
3657 			      btrfs_leaf_data(right) + data_end - push_space,
3658 			      btrfs_leaf_data(right) + data_end,
3659 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3660 
3661 	/* copy from the left data area */
3662 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3663 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3664 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3665 		     push_space);
3666 
3667 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3668 			      btrfs_item_nr_offset(0),
3669 			      right_nritems * sizeof(struct btrfs_item));
3670 
3671 	/* copy the items from left to right */
3672 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3673 		   btrfs_item_nr_offset(left_nritems - push_items),
3674 		   push_items * sizeof(struct btrfs_item));
3675 
3676 	/* update the item pointers */
3677 	right_nritems += push_items;
3678 	btrfs_set_header_nritems(right, right_nritems);
3679 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3680 	for (i = 0; i < right_nritems; i++) {
3681 		item = btrfs_item_nr(i);
3682 		push_space -= btrfs_token_item_size(right, item, &token);
3683 		btrfs_set_token_item_offset(right, item, push_space, &token);
3684 	}
3685 
3686 	left_nritems -= push_items;
3687 	btrfs_set_header_nritems(left, left_nritems);
3688 
3689 	if (left_nritems)
3690 		btrfs_mark_buffer_dirty(left);
3691 	else
3692 		clean_tree_block(trans, root, left);
3693 
3694 	btrfs_mark_buffer_dirty(right);
3695 
3696 	btrfs_item_key(right, &disk_key, 0);
3697 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3698 	btrfs_mark_buffer_dirty(upper);
3699 
3700 	/* then fixup the leaf pointer in the path */
3701 	if (path->slots[0] >= left_nritems) {
3702 		path->slots[0] -= left_nritems;
3703 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3704 			clean_tree_block(trans, root, path->nodes[0]);
3705 		btrfs_tree_unlock(path->nodes[0]);
3706 		free_extent_buffer(path->nodes[0]);
3707 		path->nodes[0] = right;
3708 		path->slots[1] += 1;
3709 	} else {
3710 		btrfs_tree_unlock(right);
3711 		free_extent_buffer(right);
3712 	}
3713 	return 0;
3714 
3715 out_unlock:
3716 	btrfs_tree_unlock(right);
3717 	free_extent_buffer(right);
3718 	return 1;
3719 }
3720 
3721 /*
3722  * push some data in the path leaf to the right, trying to free up at
3723  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3724  *
3725  * returns 1 if the push failed because the other node didn't have enough
3726  * room, 0 if everything worked out and < 0 if there were major errors.
3727  *
3728  * this will push starting from min_slot to the end of the leaf.  It won't
3729  * push any slot lower than min_slot
3730  */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3731 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3732 			   *root, struct btrfs_path *path,
3733 			   int min_data_size, int data_size,
3734 			   int empty, u32 min_slot)
3735 {
3736 	struct extent_buffer *left = path->nodes[0];
3737 	struct extent_buffer *right;
3738 	struct extent_buffer *upper;
3739 	int slot;
3740 	int free_space;
3741 	u32 left_nritems;
3742 	int ret;
3743 
3744 	if (!path->nodes[1])
3745 		return 1;
3746 
3747 	slot = path->slots[1];
3748 	upper = path->nodes[1];
3749 	if (slot >= btrfs_header_nritems(upper) - 1)
3750 		return 1;
3751 
3752 	btrfs_assert_tree_locked(path->nodes[1]);
3753 
3754 	right = read_node_slot(root, upper, slot + 1);
3755 	if (right == NULL)
3756 		return 1;
3757 
3758 	btrfs_tree_lock(right);
3759 	btrfs_set_lock_blocking(right);
3760 
3761 	free_space = btrfs_leaf_free_space(root, right);
3762 	if (free_space < data_size)
3763 		goto out_unlock;
3764 
3765 	/* cow and double check */
3766 	ret = btrfs_cow_block(trans, root, right, upper,
3767 			      slot + 1, &right);
3768 	if (ret)
3769 		goto out_unlock;
3770 
3771 	free_space = btrfs_leaf_free_space(root, right);
3772 	if (free_space < data_size)
3773 		goto out_unlock;
3774 
3775 	left_nritems = btrfs_header_nritems(left);
3776 	if (left_nritems == 0)
3777 		goto out_unlock;
3778 
3779 	if (path->slots[0] == left_nritems && !empty) {
3780 		/* Key greater than all keys in the leaf, right neighbor has
3781 		 * enough room for it and we're not emptying our leaf to delete
3782 		 * it, therefore use right neighbor to insert the new item and
3783 		 * no need to touch/dirty our left leaft. */
3784 		btrfs_tree_unlock(left);
3785 		free_extent_buffer(left);
3786 		path->nodes[0] = right;
3787 		path->slots[0] = 0;
3788 		path->slots[1]++;
3789 		return 0;
3790 	}
3791 
3792 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3793 				right, free_space, left_nritems, min_slot);
3794 out_unlock:
3795 	btrfs_tree_unlock(right);
3796 	free_extent_buffer(right);
3797 	return 1;
3798 }
3799 
3800 /*
3801  * push some data in the path leaf to the left, trying to free up at
3802  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3803  *
3804  * max_slot can put a limit on how far into the leaf we'll push items.  The
3805  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3806  * items
3807  */
__push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3808 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3809 				     struct btrfs_root *root,
3810 				     struct btrfs_path *path, int data_size,
3811 				     int empty, struct extent_buffer *left,
3812 				     int free_space, u32 right_nritems,
3813 				     u32 max_slot)
3814 {
3815 	struct btrfs_disk_key disk_key;
3816 	struct extent_buffer *right = path->nodes[0];
3817 	int i;
3818 	int push_space = 0;
3819 	int push_items = 0;
3820 	struct btrfs_item *item;
3821 	u32 old_left_nritems;
3822 	u32 nr;
3823 	int ret = 0;
3824 	u32 this_item_size;
3825 	u32 old_left_item_size;
3826 	struct btrfs_map_token token;
3827 
3828 	btrfs_init_map_token(&token);
3829 
3830 	if (empty)
3831 		nr = min(right_nritems, max_slot);
3832 	else
3833 		nr = min(right_nritems - 1, max_slot);
3834 
3835 	for (i = 0; i < nr; i++) {
3836 		item = btrfs_item_nr(i);
3837 
3838 		if (!empty && push_items > 0) {
3839 			if (path->slots[0] < i)
3840 				break;
3841 			if (path->slots[0] == i) {
3842 				int space = btrfs_leaf_free_space(root, right);
3843 				if (space + push_space * 2 > free_space)
3844 					break;
3845 			}
3846 		}
3847 
3848 		if (path->slots[0] == i)
3849 			push_space += data_size;
3850 
3851 		this_item_size = btrfs_item_size(right, item);
3852 		if (this_item_size + sizeof(*item) + push_space > free_space)
3853 			break;
3854 
3855 		push_items++;
3856 		push_space += this_item_size + sizeof(*item);
3857 	}
3858 
3859 	if (push_items == 0) {
3860 		ret = 1;
3861 		goto out;
3862 	}
3863 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3864 
3865 	/* push data from right to left */
3866 	copy_extent_buffer(left, right,
3867 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3868 			   btrfs_item_nr_offset(0),
3869 			   push_items * sizeof(struct btrfs_item));
3870 
3871 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3872 		     btrfs_item_offset_nr(right, push_items - 1);
3873 
3874 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3875 		     leaf_data_end(root, left) - push_space,
3876 		     btrfs_leaf_data(right) +
3877 		     btrfs_item_offset_nr(right, push_items - 1),
3878 		     push_space);
3879 	old_left_nritems = btrfs_header_nritems(left);
3880 	BUG_ON(old_left_nritems <= 0);
3881 
3882 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3883 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3884 		u32 ioff;
3885 
3886 		item = btrfs_item_nr(i);
3887 
3888 		ioff = btrfs_token_item_offset(left, item, &token);
3889 		btrfs_set_token_item_offset(left, item,
3890 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3891 		      &token);
3892 	}
3893 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3894 
3895 	/* fixup right node */
3896 	if (push_items > right_nritems)
3897 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3898 		       right_nritems);
3899 
3900 	if (push_items < right_nritems) {
3901 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3902 						  leaf_data_end(root, right);
3903 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3904 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3905 				      btrfs_leaf_data(right) +
3906 				      leaf_data_end(root, right), push_space);
3907 
3908 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3909 			      btrfs_item_nr_offset(push_items),
3910 			     (btrfs_header_nritems(right) - push_items) *
3911 			     sizeof(struct btrfs_item));
3912 	}
3913 	right_nritems -= push_items;
3914 	btrfs_set_header_nritems(right, right_nritems);
3915 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3916 	for (i = 0; i < right_nritems; i++) {
3917 		item = btrfs_item_nr(i);
3918 
3919 		push_space = push_space - btrfs_token_item_size(right,
3920 								item, &token);
3921 		btrfs_set_token_item_offset(right, item, push_space, &token);
3922 	}
3923 
3924 	btrfs_mark_buffer_dirty(left);
3925 	if (right_nritems)
3926 		btrfs_mark_buffer_dirty(right);
3927 	else
3928 		clean_tree_block(trans, root, right);
3929 
3930 	btrfs_item_key(right, &disk_key, 0);
3931 	fixup_low_keys(root, path, &disk_key, 1);
3932 
3933 	/* then fixup the leaf pointer in the path */
3934 	if (path->slots[0] < push_items) {
3935 		path->slots[0] += old_left_nritems;
3936 		btrfs_tree_unlock(path->nodes[0]);
3937 		free_extent_buffer(path->nodes[0]);
3938 		path->nodes[0] = left;
3939 		path->slots[1] -= 1;
3940 	} else {
3941 		btrfs_tree_unlock(left);
3942 		free_extent_buffer(left);
3943 		path->slots[0] -= push_items;
3944 	}
3945 	BUG_ON(path->slots[0] < 0);
3946 	return ret;
3947 out:
3948 	btrfs_tree_unlock(left);
3949 	free_extent_buffer(left);
3950 	return ret;
3951 }
3952 
3953 /*
3954  * push some data in the path leaf to the left, trying to free up at
3955  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3956  *
3957  * max_slot can put a limit on how far into the leaf we'll push items.  The
3958  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3959  * items
3960  */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)3961 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3962 			  *root, struct btrfs_path *path, int min_data_size,
3963 			  int data_size, int empty, u32 max_slot)
3964 {
3965 	struct extent_buffer *right = path->nodes[0];
3966 	struct extent_buffer *left;
3967 	int slot;
3968 	int free_space;
3969 	u32 right_nritems;
3970 	int ret = 0;
3971 
3972 	slot = path->slots[1];
3973 	if (slot == 0)
3974 		return 1;
3975 	if (!path->nodes[1])
3976 		return 1;
3977 
3978 	right_nritems = btrfs_header_nritems(right);
3979 	if (right_nritems == 0)
3980 		return 1;
3981 
3982 	btrfs_assert_tree_locked(path->nodes[1]);
3983 
3984 	left = read_node_slot(root, path->nodes[1], slot - 1);
3985 	if (left == NULL)
3986 		return 1;
3987 
3988 	btrfs_tree_lock(left);
3989 	btrfs_set_lock_blocking(left);
3990 
3991 	free_space = btrfs_leaf_free_space(root, left);
3992 	if (free_space < data_size) {
3993 		ret = 1;
3994 		goto out;
3995 	}
3996 
3997 	/* cow and double check */
3998 	ret = btrfs_cow_block(trans, root, left,
3999 			      path->nodes[1], slot - 1, &left);
4000 	if (ret) {
4001 		/* we hit -ENOSPC, but it isn't fatal here */
4002 		if (ret == -ENOSPC)
4003 			ret = 1;
4004 		goto out;
4005 	}
4006 
4007 	free_space = btrfs_leaf_free_space(root, left);
4008 	if (free_space < data_size) {
4009 		ret = 1;
4010 		goto out;
4011 	}
4012 
4013 	return __push_leaf_left(trans, root, path, min_data_size,
4014 			       empty, left, free_space, right_nritems,
4015 			       max_slot);
4016 out:
4017 	btrfs_tree_unlock(left);
4018 	free_extent_buffer(left);
4019 	return ret;
4020 }
4021 
4022 /*
4023  * split the path's leaf in two, making sure there is at least data_size
4024  * available for the resulting leaf level of the path.
4025  */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)4026 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4027 				    struct btrfs_root *root,
4028 				    struct btrfs_path *path,
4029 				    struct extent_buffer *l,
4030 				    struct extent_buffer *right,
4031 				    int slot, int mid, int nritems)
4032 {
4033 	int data_copy_size;
4034 	int rt_data_off;
4035 	int i;
4036 	struct btrfs_disk_key disk_key;
4037 	struct btrfs_map_token token;
4038 
4039 	btrfs_init_map_token(&token);
4040 
4041 	nritems = nritems - mid;
4042 	btrfs_set_header_nritems(right, nritems);
4043 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4044 
4045 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4046 			   btrfs_item_nr_offset(mid),
4047 			   nritems * sizeof(struct btrfs_item));
4048 
4049 	copy_extent_buffer(right, l,
4050 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4051 		     data_copy_size, btrfs_leaf_data(l) +
4052 		     leaf_data_end(root, l), data_copy_size);
4053 
4054 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4055 		      btrfs_item_end_nr(l, mid);
4056 
4057 	for (i = 0; i < nritems; i++) {
4058 		struct btrfs_item *item = btrfs_item_nr(i);
4059 		u32 ioff;
4060 
4061 		ioff = btrfs_token_item_offset(right, item, &token);
4062 		btrfs_set_token_item_offset(right, item,
4063 					    ioff + rt_data_off, &token);
4064 	}
4065 
4066 	btrfs_set_header_nritems(l, mid);
4067 	btrfs_item_key(right, &disk_key, 0);
4068 	insert_ptr(trans, root, path, &disk_key, right->start,
4069 		   path->slots[1] + 1, 1);
4070 
4071 	btrfs_mark_buffer_dirty(right);
4072 	btrfs_mark_buffer_dirty(l);
4073 	BUG_ON(path->slots[0] != slot);
4074 
4075 	if (mid <= slot) {
4076 		btrfs_tree_unlock(path->nodes[0]);
4077 		free_extent_buffer(path->nodes[0]);
4078 		path->nodes[0] = right;
4079 		path->slots[0] -= mid;
4080 		path->slots[1] += 1;
4081 	} else {
4082 		btrfs_tree_unlock(right);
4083 		free_extent_buffer(right);
4084 	}
4085 
4086 	BUG_ON(path->slots[0] < 0);
4087 }
4088 
4089 /*
4090  * double splits happen when we need to insert a big item in the middle
4091  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4092  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4093  *          A                 B                 C
4094  *
4095  * We avoid this by trying to push the items on either side of our target
4096  * into the adjacent leaves.  If all goes well we can avoid the double split
4097  * completely.
4098  */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)4099 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4100 					  struct btrfs_root *root,
4101 					  struct btrfs_path *path,
4102 					  int data_size)
4103 {
4104 	int ret;
4105 	int progress = 0;
4106 	int slot;
4107 	u32 nritems;
4108 	int space_needed = data_size;
4109 
4110 	slot = path->slots[0];
4111 	if (slot < btrfs_header_nritems(path->nodes[0]))
4112 		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4113 
4114 	/*
4115 	 * try to push all the items after our slot into the
4116 	 * right leaf
4117 	 */
4118 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4119 	if (ret < 0)
4120 		return ret;
4121 
4122 	if (ret == 0)
4123 		progress++;
4124 
4125 	nritems = btrfs_header_nritems(path->nodes[0]);
4126 	/*
4127 	 * our goal is to get our slot at the start or end of a leaf.  If
4128 	 * we've done so we're done
4129 	 */
4130 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4131 		return 0;
4132 
4133 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4134 		return 0;
4135 
4136 	/* try to push all the items before our slot into the next leaf */
4137 	slot = path->slots[0];
4138 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4139 	if (ret < 0)
4140 		return ret;
4141 
4142 	if (ret == 0)
4143 		progress++;
4144 
4145 	if (progress)
4146 		return 0;
4147 	return 1;
4148 }
4149 
4150 /*
4151  * split the path's leaf in two, making sure there is at least data_size
4152  * available for the resulting leaf level of the path.
4153  *
4154  * returns 0 if all went well and < 0 on failure.
4155  */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)4156 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4157 			       struct btrfs_root *root,
4158 			       struct btrfs_key *ins_key,
4159 			       struct btrfs_path *path, int data_size,
4160 			       int extend)
4161 {
4162 	struct btrfs_disk_key disk_key;
4163 	struct extent_buffer *l;
4164 	u32 nritems;
4165 	int mid;
4166 	int slot;
4167 	struct extent_buffer *right;
4168 	int ret = 0;
4169 	int wret;
4170 	int split;
4171 	int num_doubles = 0;
4172 	int tried_avoid_double = 0;
4173 
4174 	l = path->nodes[0];
4175 	slot = path->slots[0];
4176 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4177 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4178 		return -EOVERFLOW;
4179 
4180 	/* first try to make some room by pushing left and right */
4181 	if (data_size && path->nodes[1]) {
4182 		int space_needed = data_size;
4183 
4184 		if (slot < btrfs_header_nritems(l))
4185 			space_needed -= btrfs_leaf_free_space(root, l);
4186 
4187 		wret = push_leaf_right(trans, root, path, space_needed,
4188 				       space_needed, 0, 0);
4189 		if (wret < 0)
4190 			return wret;
4191 		if (wret) {
4192 			wret = push_leaf_left(trans, root, path, space_needed,
4193 					      space_needed, 0, (u32)-1);
4194 			if (wret < 0)
4195 				return wret;
4196 		}
4197 		l = path->nodes[0];
4198 
4199 		/* did the pushes work? */
4200 		if (btrfs_leaf_free_space(root, l) >= data_size)
4201 			return 0;
4202 	}
4203 
4204 	if (!path->nodes[1]) {
4205 		ret = insert_new_root(trans, root, path, 1);
4206 		if (ret)
4207 			return ret;
4208 	}
4209 again:
4210 	split = 1;
4211 	l = path->nodes[0];
4212 	slot = path->slots[0];
4213 	nritems = btrfs_header_nritems(l);
4214 	mid = (nritems + 1) / 2;
4215 
4216 	if (mid <= slot) {
4217 		if (nritems == 1 ||
4218 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4219 			BTRFS_LEAF_DATA_SIZE(root)) {
4220 			if (slot >= nritems) {
4221 				split = 0;
4222 			} else {
4223 				mid = slot;
4224 				if (mid != nritems &&
4225 				    leaf_space_used(l, mid, nritems - mid) +
4226 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4227 					if (data_size && !tried_avoid_double)
4228 						goto push_for_double;
4229 					split = 2;
4230 				}
4231 			}
4232 		}
4233 	} else {
4234 		if (leaf_space_used(l, 0, mid) + data_size >
4235 			BTRFS_LEAF_DATA_SIZE(root)) {
4236 			if (!extend && data_size && slot == 0) {
4237 				split = 0;
4238 			} else if ((extend || !data_size) && slot == 0) {
4239 				mid = 1;
4240 			} else {
4241 				mid = slot;
4242 				if (mid != nritems &&
4243 				    leaf_space_used(l, mid, nritems - mid) +
4244 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4245 					if (data_size && !tried_avoid_double)
4246 						goto push_for_double;
4247 					split = 2;
4248 				}
4249 			}
4250 		}
4251 	}
4252 
4253 	if (split == 0)
4254 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4255 	else
4256 		btrfs_item_key(l, &disk_key, mid);
4257 
4258 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4259 			&disk_key, 0, l->start, 0);
4260 	if (IS_ERR(right))
4261 		return PTR_ERR(right);
4262 
4263 	root_add_used(root, root->nodesize);
4264 
4265 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4266 	btrfs_set_header_bytenr(right, right->start);
4267 	btrfs_set_header_generation(right, trans->transid);
4268 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4269 	btrfs_set_header_owner(right, root->root_key.objectid);
4270 	btrfs_set_header_level(right, 0);
4271 	write_extent_buffer(right, root->fs_info->fsid,
4272 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4273 
4274 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4275 			    btrfs_header_chunk_tree_uuid(right),
4276 			    BTRFS_UUID_SIZE);
4277 
4278 	if (split == 0) {
4279 		if (mid <= slot) {
4280 			btrfs_set_header_nritems(right, 0);
4281 			insert_ptr(trans, root, path, &disk_key, right->start,
4282 				   path->slots[1] + 1, 1);
4283 			btrfs_tree_unlock(path->nodes[0]);
4284 			free_extent_buffer(path->nodes[0]);
4285 			path->nodes[0] = right;
4286 			path->slots[0] = 0;
4287 			path->slots[1] += 1;
4288 		} else {
4289 			btrfs_set_header_nritems(right, 0);
4290 			insert_ptr(trans, root, path, &disk_key, right->start,
4291 					  path->slots[1], 1);
4292 			btrfs_tree_unlock(path->nodes[0]);
4293 			free_extent_buffer(path->nodes[0]);
4294 			path->nodes[0] = right;
4295 			path->slots[0] = 0;
4296 			if (path->slots[1] == 0)
4297 				fixup_low_keys(root, path, &disk_key, 1);
4298 		}
4299 		btrfs_mark_buffer_dirty(right);
4300 		return ret;
4301 	}
4302 
4303 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4304 
4305 	if (split == 2) {
4306 		BUG_ON(num_doubles != 0);
4307 		num_doubles++;
4308 		goto again;
4309 	}
4310 
4311 	return 0;
4312 
4313 push_for_double:
4314 	push_for_double_split(trans, root, path, data_size);
4315 	tried_avoid_double = 1;
4316 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4317 		return 0;
4318 	goto again;
4319 }
4320 
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4321 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4322 					 struct btrfs_root *root,
4323 					 struct btrfs_path *path, int ins_len)
4324 {
4325 	struct btrfs_key key;
4326 	struct extent_buffer *leaf;
4327 	struct btrfs_file_extent_item *fi;
4328 	u64 extent_len = 0;
4329 	u32 item_size;
4330 	int ret;
4331 
4332 	leaf = path->nodes[0];
4333 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4334 
4335 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4336 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4337 
4338 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4339 		return 0;
4340 
4341 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4342 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4343 		fi = btrfs_item_ptr(leaf, path->slots[0],
4344 				    struct btrfs_file_extent_item);
4345 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4346 	}
4347 	btrfs_release_path(path);
4348 
4349 	path->keep_locks = 1;
4350 	path->search_for_split = 1;
4351 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4352 	path->search_for_split = 0;
4353 	if (ret < 0)
4354 		goto err;
4355 
4356 	ret = -EAGAIN;
4357 	leaf = path->nodes[0];
4358 	/* if our item isn't there or got smaller, return now */
4359 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4360 		goto err;
4361 
4362 	/* the leaf has  changed, it now has room.  return now */
4363 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4364 		goto err;
4365 
4366 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4367 		fi = btrfs_item_ptr(leaf, path->slots[0],
4368 				    struct btrfs_file_extent_item);
4369 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4370 			goto err;
4371 	}
4372 
4373 	btrfs_set_path_blocking(path);
4374 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4375 	if (ret)
4376 		goto err;
4377 
4378 	path->keep_locks = 0;
4379 	btrfs_unlock_up_safe(path, 1);
4380 	return 0;
4381 err:
4382 	path->keep_locks = 0;
4383 	return ret;
4384 }
4385 
split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)4386 static noinline int split_item(struct btrfs_trans_handle *trans,
4387 			       struct btrfs_root *root,
4388 			       struct btrfs_path *path,
4389 			       struct btrfs_key *new_key,
4390 			       unsigned long split_offset)
4391 {
4392 	struct extent_buffer *leaf;
4393 	struct btrfs_item *item;
4394 	struct btrfs_item *new_item;
4395 	int slot;
4396 	char *buf;
4397 	u32 nritems;
4398 	u32 item_size;
4399 	u32 orig_offset;
4400 	struct btrfs_disk_key disk_key;
4401 
4402 	leaf = path->nodes[0];
4403 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4404 
4405 	btrfs_set_path_blocking(path);
4406 
4407 	item = btrfs_item_nr(path->slots[0]);
4408 	orig_offset = btrfs_item_offset(leaf, item);
4409 	item_size = btrfs_item_size(leaf, item);
4410 
4411 	buf = kmalloc(item_size, GFP_NOFS);
4412 	if (!buf)
4413 		return -ENOMEM;
4414 
4415 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4416 			    path->slots[0]), item_size);
4417 
4418 	slot = path->slots[0] + 1;
4419 	nritems = btrfs_header_nritems(leaf);
4420 	if (slot != nritems) {
4421 		/* shift the items */
4422 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4423 				btrfs_item_nr_offset(slot),
4424 				(nritems - slot) * sizeof(struct btrfs_item));
4425 	}
4426 
4427 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4428 	btrfs_set_item_key(leaf, &disk_key, slot);
4429 
4430 	new_item = btrfs_item_nr(slot);
4431 
4432 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4433 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4434 
4435 	btrfs_set_item_offset(leaf, item,
4436 			      orig_offset + item_size - split_offset);
4437 	btrfs_set_item_size(leaf, item, split_offset);
4438 
4439 	btrfs_set_header_nritems(leaf, nritems + 1);
4440 
4441 	/* write the data for the start of the original item */
4442 	write_extent_buffer(leaf, buf,
4443 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4444 			    split_offset);
4445 
4446 	/* write the data for the new item */
4447 	write_extent_buffer(leaf, buf + split_offset,
4448 			    btrfs_item_ptr_offset(leaf, slot),
4449 			    item_size - split_offset);
4450 	btrfs_mark_buffer_dirty(leaf);
4451 
4452 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4453 	kfree(buf);
4454 	return 0;
4455 }
4456 
4457 /*
4458  * This function splits a single item into two items,
4459  * giving 'new_key' to the new item and splitting the
4460  * old one at split_offset (from the start of the item).
4461  *
4462  * The path may be released by this operation.  After
4463  * the split, the path is pointing to the old item.  The
4464  * new item is going to be in the same node as the old one.
4465  *
4466  * Note, the item being split must be smaller enough to live alone on
4467  * a tree block with room for one extra struct btrfs_item
4468  *
4469  * This allows us to split the item in place, keeping a lock on the
4470  * leaf the entire time.
4471  */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key,unsigned long split_offset)4472 int btrfs_split_item(struct btrfs_trans_handle *trans,
4473 		     struct btrfs_root *root,
4474 		     struct btrfs_path *path,
4475 		     struct btrfs_key *new_key,
4476 		     unsigned long split_offset)
4477 {
4478 	int ret;
4479 	ret = setup_leaf_for_split(trans, root, path,
4480 				   sizeof(struct btrfs_item));
4481 	if (ret)
4482 		return ret;
4483 
4484 	ret = split_item(trans, root, path, new_key, split_offset);
4485 	return ret;
4486 }
4487 
4488 /*
4489  * This function duplicate a item, giving 'new_key' to the new item.
4490  * It guarantees both items live in the same tree leaf and the new item
4491  * is contiguous with the original item.
4492  *
4493  * This allows us to split file extent in place, keeping a lock on the
4494  * leaf the entire time.
4495  */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * new_key)4496 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4497 			 struct btrfs_root *root,
4498 			 struct btrfs_path *path,
4499 			 struct btrfs_key *new_key)
4500 {
4501 	struct extent_buffer *leaf;
4502 	int ret;
4503 	u32 item_size;
4504 
4505 	leaf = path->nodes[0];
4506 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4507 	ret = setup_leaf_for_split(trans, root, path,
4508 				   item_size + sizeof(struct btrfs_item));
4509 	if (ret)
4510 		return ret;
4511 
4512 	path->slots[0]++;
4513 	setup_items_for_insert(root, path, new_key, &item_size,
4514 			       item_size, item_size +
4515 			       sizeof(struct btrfs_item), 1);
4516 	leaf = path->nodes[0];
4517 	memcpy_extent_buffer(leaf,
4518 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4519 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4520 			     item_size);
4521 	return 0;
4522 }
4523 
4524 /*
4525  * make the item pointed to by the path smaller.  new_size indicates
4526  * how small to make it, and from_end tells us if we just chop bytes
4527  * off the end of the item or if we shift the item to chop bytes off
4528  * the front.
4529  */
btrfs_truncate_item(struct btrfs_root * root,struct btrfs_path * path,u32 new_size,int from_end)4530 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4531 			 u32 new_size, int from_end)
4532 {
4533 	int slot;
4534 	struct extent_buffer *leaf;
4535 	struct btrfs_item *item;
4536 	u32 nritems;
4537 	unsigned int data_end;
4538 	unsigned int old_data_start;
4539 	unsigned int old_size;
4540 	unsigned int size_diff;
4541 	int i;
4542 	struct btrfs_map_token token;
4543 
4544 	btrfs_init_map_token(&token);
4545 
4546 	leaf = path->nodes[0];
4547 	slot = path->slots[0];
4548 
4549 	old_size = btrfs_item_size_nr(leaf, slot);
4550 	if (old_size == new_size)
4551 		return;
4552 
4553 	nritems = btrfs_header_nritems(leaf);
4554 	data_end = leaf_data_end(root, leaf);
4555 
4556 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4557 
4558 	size_diff = old_size - new_size;
4559 
4560 	BUG_ON(slot < 0);
4561 	BUG_ON(slot >= nritems);
4562 
4563 	/*
4564 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4565 	 */
4566 	/* first correct the data pointers */
4567 	for (i = slot; i < nritems; i++) {
4568 		u32 ioff;
4569 		item = btrfs_item_nr(i);
4570 
4571 		ioff = btrfs_token_item_offset(leaf, item, &token);
4572 		btrfs_set_token_item_offset(leaf, item,
4573 					    ioff + size_diff, &token);
4574 	}
4575 
4576 	/* shift the data */
4577 	if (from_end) {
4578 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4579 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4580 			      data_end, old_data_start + new_size - data_end);
4581 	} else {
4582 		struct btrfs_disk_key disk_key;
4583 		u64 offset;
4584 
4585 		btrfs_item_key(leaf, &disk_key, slot);
4586 
4587 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4588 			unsigned long ptr;
4589 			struct btrfs_file_extent_item *fi;
4590 
4591 			fi = btrfs_item_ptr(leaf, slot,
4592 					    struct btrfs_file_extent_item);
4593 			fi = (struct btrfs_file_extent_item *)(
4594 			     (unsigned long)fi - size_diff);
4595 
4596 			if (btrfs_file_extent_type(leaf, fi) ==
4597 			    BTRFS_FILE_EXTENT_INLINE) {
4598 				ptr = btrfs_item_ptr_offset(leaf, slot);
4599 				memmove_extent_buffer(leaf, ptr,
4600 				      (unsigned long)fi,
4601 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4602 			}
4603 		}
4604 
4605 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4606 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4607 			      data_end, old_data_start - data_end);
4608 
4609 		offset = btrfs_disk_key_offset(&disk_key);
4610 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4611 		btrfs_set_item_key(leaf, &disk_key, slot);
4612 		if (slot == 0)
4613 			fixup_low_keys(root, path, &disk_key, 1);
4614 	}
4615 
4616 	item = btrfs_item_nr(slot);
4617 	btrfs_set_item_size(leaf, item, new_size);
4618 	btrfs_mark_buffer_dirty(leaf);
4619 
4620 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4621 		btrfs_print_leaf(root, leaf);
4622 		BUG();
4623 	}
4624 }
4625 
4626 /*
4627  * make the item pointed to by the path bigger, data_size is the added size.
4628  */
btrfs_extend_item(struct btrfs_root * root,struct btrfs_path * path,u32 data_size)4629 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4630 		       u32 data_size)
4631 {
4632 	int slot;
4633 	struct extent_buffer *leaf;
4634 	struct btrfs_item *item;
4635 	u32 nritems;
4636 	unsigned int data_end;
4637 	unsigned int old_data;
4638 	unsigned int old_size;
4639 	int i;
4640 	struct btrfs_map_token token;
4641 
4642 	btrfs_init_map_token(&token);
4643 
4644 	leaf = path->nodes[0];
4645 
4646 	nritems = btrfs_header_nritems(leaf);
4647 	data_end = leaf_data_end(root, leaf);
4648 
4649 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4650 		btrfs_print_leaf(root, leaf);
4651 		BUG();
4652 	}
4653 	slot = path->slots[0];
4654 	old_data = btrfs_item_end_nr(leaf, slot);
4655 
4656 	BUG_ON(slot < 0);
4657 	if (slot >= nritems) {
4658 		btrfs_print_leaf(root, leaf);
4659 		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4660 		       slot, nritems);
4661 		BUG_ON(1);
4662 	}
4663 
4664 	/*
4665 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4666 	 */
4667 	/* first correct the data pointers */
4668 	for (i = slot; i < nritems; i++) {
4669 		u32 ioff;
4670 		item = btrfs_item_nr(i);
4671 
4672 		ioff = btrfs_token_item_offset(leaf, item, &token);
4673 		btrfs_set_token_item_offset(leaf, item,
4674 					    ioff - data_size, &token);
4675 	}
4676 
4677 	/* shift the data */
4678 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4679 		      data_end - data_size, btrfs_leaf_data(leaf) +
4680 		      data_end, old_data - data_end);
4681 
4682 	data_end = old_data;
4683 	old_size = btrfs_item_size_nr(leaf, slot);
4684 	item = btrfs_item_nr(slot);
4685 	btrfs_set_item_size(leaf, item, old_size + data_size);
4686 	btrfs_mark_buffer_dirty(leaf);
4687 
4688 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4689 		btrfs_print_leaf(root, leaf);
4690 		BUG();
4691 	}
4692 }
4693 
4694 /*
4695  * this is a helper for btrfs_insert_empty_items, the main goal here is
4696  * to save stack depth by doing the bulk of the work in a function
4697  * that doesn't call btrfs_search_slot
4698  */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)4699 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4700 			    struct btrfs_key *cpu_key, u32 *data_size,
4701 			    u32 total_data, u32 total_size, int nr)
4702 {
4703 	struct btrfs_item *item;
4704 	int i;
4705 	u32 nritems;
4706 	unsigned int data_end;
4707 	struct btrfs_disk_key disk_key;
4708 	struct extent_buffer *leaf;
4709 	int slot;
4710 	struct btrfs_map_token token;
4711 
4712 	if (path->slots[0] == 0) {
4713 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4714 		fixup_low_keys(root, path, &disk_key, 1);
4715 	}
4716 	btrfs_unlock_up_safe(path, 1);
4717 
4718 	btrfs_init_map_token(&token);
4719 
4720 	leaf = path->nodes[0];
4721 	slot = path->slots[0];
4722 
4723 	nritems = btrfs_header_nritems(leaf);
4724 	data_end = leaf_data_end(root, leaf);
4725 
4726 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4727 		btrfs_print_leaf(root, leaf);
4728 		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4729 		       total_size, btrfs_leaf_free_space(root, leaf));
4730 		BUG();
4731 	}
4732 
4733 	if (slot != nritems) {
4734 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4735 
4736 		if (old_data < data_end) {
4737 			btrfs_print_leaf(root, leaf);
4738 			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4739 			       slot, old_data, data_end);
4740 			BUG_ON(1);
4741 		}
4742 		/*
4743 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4744 		 */
4745 		/* first correct the data pointers */
4746 		for (i = slot; i < nritems; i++) {
4747 			u32 ioff;
4748 
4749 			item = btrfs_item_nr( i);
4750 			ioff = btrfs_token_item_offset(leaf, item, &token);
4751 			btrfs_set_token_item_offset(leaf, item,
4752 						    ioff - total_data, &token);
4753 		}
4754 		/* shift the items */
4755 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4756 			      btrfs_item_nr_offset(slot),
4757 			      (nritems - slot) * sizeof(struct btrfs_item));
4758 
4759 		/* shift the data */
4760 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4761 			      data_end - total_data, btrfs_leaf_data(leaf) +
4762 			      data_end, old_data - data_end);
4763 		data_end = old_data;
4764 	}
4765 
4766 	/* setup the item for the new data */
4767 	for (i = 0; i < nr; i++) {
4768 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4769 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4770 		item = btrfs_item_nr(slot + i);
4771 		btrfs_set_token_item_offset(leaf, item,
4772 					    data_end - data_size[i], &token);
4773 		data_end -= data_size[i];
4774 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4775 	}
4776 
4777 	btrfs_set_header_nritems(leaf, nritems + nr);
4778 	btrfs_mark_buffer_dirty(leaf);
4779 
4780 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4781 		btrfs_print_leaf(root, leaf);
4782 		BUG();
4783 	}
4784 }
4785 
4786 /*
4787  * Given a key and some data, insert items into the tree.
4788  * This does all the path init required, making room in the tree if needed.
4789  */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * cpu_key,u32 * data_size,int nr)4790 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4791 			    struct btrfs_root *root,
4792 			    struct btrfs_path *path,
4793 			    struct btrfs_key *cpu_key, u32 *data_size,
4794 			    int nr)
4795 {
4796 	int ret = 0;
4797 	int slot;
4798 	int i;
4799 	u32 total_size = 0;
4800 	u32 total_data = 0;
4801 
4802 	for (i = 0; i < nr; i++)
4803 		total_data += data_size[i];
4804 
4805 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4806 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4807 	if (ret == 0)
4808 		return -EEXIST;
4809 	if (ret < 0)
4810 		return ret;
4811 
4812 	slot = path->slots[0];
4813 	BUG_ON(slot < 0);
4814 
4815 	setup_items_for_insert(root, path, cpu_key, data_size,
4816 			       total_data, total_size, nr);
4817 	return 0;
4818 }
4819 
4820 /*
4821  * Given a key and some data, insert an item into the tree.
4822  * This does all the path init required, making room in the tree if needed.
4823  */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * cpu_key,void * data,u32 data_size)4824 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4825 		      *root, struct btrfs_key *cpu_key, void *data, u32
4826 		      data_size)
4827 {
4828 	int ret = 0;
4829 	struct btrfs_path *path;
4830 	struct extent_buffer *leaf;
4831 	unsigned long ptr;
4832 
4833 	path = btrfs_alloc_path();
4834 	if (!path)
4835 		return -ENOMEM;
4836 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4837 	if (!ret) {
4838 		leaf = path->nodes[0];
4839 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4840 		write_extent_buffer(leaf, data, ptr, data_size);
4841 		btrfs_mark_buffer_dirty(leaf);
4842 	}
4843 	btrfs_free_path(path);
4844 	return ret;
4845 }
4846 
4847 /*
4848  * delete the pointer from a given node.
4849  *
4850  * the tree should have been previously balanced so the deletion does not
4851  * empty a node.
4852  */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4853 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4854 		    int level, int slot)
4855 {
4856 	struct extent_buffer *parent = path->nodes[level];
4857 	u32 nritems;
4858 	int ret;
4859 
4860 	nritems = btrfs_header_nritems(parent);
4861 	if (slot != nritems - 1) {
4862 		if (level)
4863 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4864 					     slot + 1, nritems - slot - 1);
4865 		memmove_extent_buffer(parent,
4866 			      btrfs_node_key_ptr_offset(slot),
4867 			      btrfs_node_key_ptr_offset(slot + 1),
4868 			      sizeof(struct btrfs_key_ptr) *
4869 			      (nritems - slot - 1));
4870 	} else if (level) {
4871 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4872 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4873 		BUG_ON(ret < 0);
4874 	}
4875 
4876 	nritems--;
4877 	btrfs_set_header_nritems(parent, nritems);
4878 	if (nritems == 0 && parent == root->node) {
4879 		BUG_ON(btrfs_header_level(root->node) != 1);
4880 		/* just turn the root into a leaf and break */
4881 		btrfs_set_header_level(root->node, 0);
4882 	} else if (slot == 0) {
4883 		struct btrfs_disk_key disk_key;
4884 
4885 		btrfs_node_key(parent, &disk_key, 0);
4886 		fixup_low_keys(root, path, &disk_key, level + 1);
4887 	}
4888 	btrfs_mark_buffer_dirty(parent);
4889 }
4890 
4891 /*
4892  * a helper function to delete the leaf pointed to by path->slots[1] and
4893  * path->nodes[1].
4894  *
4895  * This deletes the pointer in path->nodes[1] and frees the leaf
4896  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4897  *
4898  * The path must have already been setup for deleting the leaf, including
4899  * all the proper balancing.  path->nodes[1] must be locked.
4900  */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4901 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4902 				    struct btrfs_root *root,
4903 				    struct btrfs_path *path,
4904 				    struct extent_buffer *leaf)
4905 {
4906 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4907 	del_ptr(root, path, 1, path->slots[1]);
4908 
4909 	/*
4910 	 * btrfs_free_extent is expensive, we want to make sure we
4911 	 * aren't holding any locks when we call it
4912 	 */
4913 	btrfs_unlock_up_safe(path, 0);
4914 
4915 	root_sub_used(root, leaf->len);
4916 
4917 	extent_buffer_get(leaf);
4918 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4919 	free_extent_buffer_stale(leaf);
4920 }
4921 /*
4922  * delete the item at the leaf level in path.  If that empties
4923  * the leaf, remove it from the tree
4924  */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)4925 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4926 		    struct btrfs_path *path, int slot, int nr)
4927 {
4928 	struct extent_buffer *leaf;
4929 	struct btrfs_item *item;
4930 	int last_off;
4931 	int dsize = 0;
4932 	int ret = 0;
4933 	int wret;
4934 	int i;
4935 	u32 nritems;
4936 	struct btrfs_map_token token;
4937 
4938 	btrfs_init_map_token(&token);
4939 
4940 	leaf = path->nodes[0];
4941 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4942 
4943 	for (i = 0; i < nr; i++)
4944 		dsize += btrfs_item_size_nr(leaf, slot + i);
4945 
4946 	nritems = btrfs_header_nritems(leaf);
4947 
4948 	if (slot + nr != nritems) {
4949 		int data_end = leaf_data_end(root, leaf);
4950 
4951 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4952 			      data_end + dsize,
4953 			      btrfs_leaf_data(leaf) + data_end,
4954 			      last_off - data_end);
4955 
4956 		for (i = slot + nr; i < nritems; i++) {
4957 			u32 ioff;
4958 
4959 			item = btrfs_item_nr(i);
4960 			ioff = btrfs_token_item_offset(leaf, item, &token);
4961 			btrfs_set_token_item_offset(leaf, item,
4962 						    ioff + dsize, &token);
4963 		}
4964 
4965 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4966 			      btrfs_item_nr_offset(slot + nr),
4967 			      sizeof(struct btrfs_item) *
4968 			      (nritems - slot - nr));
4969 	}
4970 	btrfs_set_header_nritems(leaf, nritems - nr);
4971 	nritems -= nr;
4972 
4973 	/* delete the leaf if we've emptied it */
4974 	if (nritems == 0) {
4975 		if (leaf == root->node) {
4976 			btrfs_set_header_level(leaf, 0);
4977 		} else {
4978 			btrfs_set_path_blocking(path);
4979 			clean_tree_block(trans, root, leaf);
4980 			btrfs_del_leaf(trans, root, path, leaf);
4981 		}
4982 	} else {
4983 		int used = leaf_space_used(leaf, 0, nritems);
4984 		if (slot == 0) {
4985 			struct btrfs_disk_key disk_key;
4986 
4987 			btrfs_item_key(leaf, &disk_key, 0);
4988 			fixup_low_keys(root, path, &disk_key, 1);
4989 		}
4990 
4991 		/* delete the leaf if it is mostly empty */
4992 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4993 			/* push_leaf_left fixes the path.
4994 			 * make sure the path still points to our leaf
4995 			 * for possible call to del_ptr below
4996 			 */
4997 			slot = path->slots[1];
4998 			extent_buffer_get(leaf);
4999 
5000 			btrfs_set_path_blocking(path);
5001 			wret = push_leaf_left(trans, root, path, 1, 1,
5002 					      1, (u32)-1);
5003 			if (wret < 0 && wret != -ENOSPC)
5004 				ret = wret;
5005 
5006 			if (path->nodes[0] == leaf &&
5007 			    btrfs_header_nritems(leaf)) {
5008 				wret = push_leaf_right(trans, root, path, 1,
5009 						       1, 1, 0);
5010 				if (wret < 0 && wret != -ENOSPC)
5011 					ret = wret;
5012 			}
5013 
5014 			if (btrfs_header_nritems(leaf) == 0) {
5015 				path->slots[1] = slot;
5016 				btrfs_del_leaf(trans, root, path, leaf);
5017 				free_extent_buffer(leaf);
5018 				ret = 0;
5019 			} else {
5020 				/* if we're still in the path, make sure
5021 				 * we're dirty.  Otherwise, one of the
5022 				 * push_leaf functions must have already
5023 				 * dirtied this buffer
5024 				 */
5025 				if (path->nodes[0] == leaf)
5026 					btrfs_mark_buffer_dirty(leaf);
5027 				free_extent_buffer(leaf);
5028 			}
5029 		} else {
5030 			btrfs_mark_buffer_dirty(leaf);
5031 		}
5032 	}
5033 	return ret;
5034 }
5035 
5036 /*
5037  * search the tree again to find a leaf with lesser keys
5038  * returns 0 if it found something or 1 if there are no lesser leaves.
5039  * returns < 0 on io errors.
5040  *
5041  * This may release the path, and so you may lose any locks held at the
5042  * time you call it.
5043  */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)5044 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5045 {
5046 	struct btrfs_key key;
5047 	struct btrfs_disk_key found_key;
5048 	int ret;
5049 
5050 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5051 
5052 	if (key.offset > 0) {
5053 		key.offset--;
5054 	} else if (key.type > 0) {
5055 		key.type--;
5056 		key.offset = (u64)-1;
5057 	} else if (key.objectid > 0) {
5058 		key.objectid--;
5059 		key.type = (u8)-1;
5060 		key.offset = (u64)-1;
5061 	} else {
5062 		return 1;
5063 	}
5064 
5065 	btrfs_release_path(path);
5066 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5067 	if (ret < 0)
5068 		return ret;
5069 	btrfs_item_key(path->nodes[0], &found_key, 0);
5070 	ret = comp_keys(&found_key, &key);
5071 	/*
5072 	 * We might have had an item with the previous key in the tree right
5073 	 * before we released our path. And after we released our path, that
5074 	 * item might have been pushed to the first slot (0) of the leaf we
5075 	 * were holding due to a tree balance. Alternatively, an item with the
5076 	 * previous key can exist as the only element of a leaf (big fat item).
5077 	 * Therefore account for these 2 cases, so that our callers (like
5078 	 * btrfs_previous_item) don't miss an existing item with a key matching
5079 	 * the previous key we computed above.
5080 	 */
5081 	if (ret <= 0)
5082 		return 0;
5083 	return 1;
5084 }
5085 
5086 /*
5087  * A helper function to walk down the tree starting at min_key, and looking
5088  * for nodes or leaves that are have a minimum transaction id.
5089  * This is used by the btree defrag code, and tree logging
5090  *
5091  * This does not cow, but it does stuff the starting key it finds back
5092  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5093  * key and get a writable path.
5094  *
5095  * This does lock as it descends, and path->keep_locks should be set
5096  * to 1 by the caller.
5097  *
5098  * This honors path->lowest_level to prevent descent past a given level
5099  * of the tree.
5100  *
5101  * min_trans indicates the oldest transaction that you are interested
5102  * in walking through.  Any nodes or leaves older than min_trans are
5103  * skipped over (without reading them).
5104  *
5105  * returns zero if something useful was found, < 0 on error and 1 if there
5106  * was nothing in the tree that matched the search criteria.
5107  */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)5108 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5109 			 struct btrfs_path *path,
5110 			 u64 min_trans)
5111 {
5112 	struct extent_buffer *cur;
5113 	struct btrfs_key found_key;
5114 	int slot;
5115 	int sret;
5116 	u32 nritems;
5117 	int level;
5118 	int ret = 1;
5119 	int keep_locks = path->keep_locks;
5120 
5121 	path->keep_locks = 1;
5122 again:
5123 	cur = btrfs_read_lock_root_node(root);
5124 	level = btrfs_header_level(cur);
5125 	WARN_ON(path->nodes[level]);
5126 	path->nodes[level] = cur;
5127 	path->locks[level] = BTRFS_READ_LOCK;
5128 
5129 	if (btrfs_header_generation(cur) < min_trans) {
5130 		ret = 1;
5131 		goto out;
5132 	}
5133 	while (1) {
5134 		nritems = btrfs_header_nritems(cur);
5135 		level = btrfs_header_level(cur);
5136 		sret = bin_search(cur, min_key, level, &slot);
5137 
5138 		/* at the lowest level, we're done, setup the path and exit */
5139 		if (level == path->lowest_level) {
5140 			if (slot >= nritems)
5141 				goto find_next_key;
5142 			ret = 0;
5143 			path->slots[level] = slot;
5144 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5145 			goto out;
5146 		}
5147 		if (sret && slot > 0)
5148 			slot--;
5149 		/*
5150 		 * check this node pointer against the min_trans parameters.
5151 		 * If it is too old, old, skip to the next one.
5152 		 */
5153 		while (slot < nritems) {
5154 			u64 gen;
5155 
5156 			gen = btrfs_node_ptr_generation(cur, slot);
5157 			if (gen < min_trans) {
5158 				slot++;
5159 				continue;
5160 			}
5161 			break;
5162 		}
5163 find_next_key:
5164 		/*
5165 		 * we didn't find a candidate key in this node, walk forward
5166 		 * and find another one
5167 		 */
5168 		if (slot >= nritems) {
5169 			path->slots[level] = slot;
5170 			btrfs_set_path_blocking(path);
5171 			sret = btrfs_find_next_key(root, path, min_key, level,
5172 						  min_trans);
5173 			if (sret == 0) {
5174 				btrfs_release_path(path);
5175 				goto again;
5176 			} else {
5177 				goto out;
5178 			}
5179 		}
5180 		/* save our key for returning back */
5181 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5182 		path->slots[level] = slot;
5183 		if (level == path->lowest_level) {
5184 			ret = 0;
5185 			goto out;
5186 		}
5187 		btrfs_set_path_blocking(path);
5188 		cur = read_node_slot(root, cur, slot);
5189 		BUG_ON(!cur); /* -ENOMEM */
5190 
5191 		btrfs_tree_read_lock(cur);
5192 
5193 		path->locks[level - 1] = BTRFS_READ_LOCK;
5194 		path->nodes[level - 1] = cur;
5195 		unlock_up(path, level, 1, 0, NULL);
5196 		btrfs_clear_path_blocking(path, NULL, 0);
5197 	}
5198 out:
5199 	path->keep_locks = keep_locks;
5200 	if (ret == 0) {
5201 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5202 		btrfs_set_path_blocking(path);
5203 		memcpy(min_key, &found_key, sizeof(found_key));
5204 	}
5205 	return ret;
5206 }
5207 
tree_move_down(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level)5208 static void tree_move_down(struct btrfs_root *root,
5209 			   struct btrfs_path *path,
5210 			   int *level, int root_level)
5211 {
5212 	BUG_ON(*level == 0);
5213 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5214 					path->slots[*level]);
5215 	path->slots[*level - 1] = 0;
5216 	(*level)--;
5217 }
5218 
tree_move_next_or_upnext(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level)5219 static int tree_move_next_or_upnext(struct btrfs_root *root,
5220 				    struct btrfs_path *path,
5221 				    int *level, int root_level)
5222 {
5223 	int ret = 0;
5224 	int nritems;
5225 	nritems = btrfs_header_nritems(path->nodes[*level]);
5226 
5227 	path->slots[*level]++;
5228 
5229 	while (path->slots[*level] >= nritems) {
5230 		if (*level == root_level)
5231 			return -1;
5232 
5233 		/* move upnext */
5234 		path->slots[*level] = 0;
5235 		free_extent_buffer(path->nodes[*level]);
5236 		path->nodes[*level] = NULL;
5237 		(*level)++;
5238 		path->slots[*level]++;
5239 
5240 		nritems = btrfs_header_nritems(path->nodes[*level]);
5241 		ret = 1;
5242 	}
5243 	return ret;
5244 }
5245 
5246 /*
5247  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5248  * or down.
5249  */
tree_advance(struct btrfs_root * root,struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key)5250 static int tree_advance(struct btrfs_root *root,
5251 			struct btrfs_path *path,
5252 			int *level, int root_level,
5253 			int allow_down,
5254 			struct btrfs_key *key)
5255 {
5256 	int ret;
5257 
5258 	if (*level == 0 || !allow_down) {
5259 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5260 	} else {
5261 		tree_move_down(root, path, level, root_level);
5262 		ret = 0;
5263 	}
5264 	if (ret >= 0) {
5265 		if (*level == 0)
5266 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5267 					path->slots[*level]);
5268 		else
5269 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5270 					path->slots[*level]);
5271 	}
5272 	return ret;
5273 }
5274 
tree_compare_item(struct btrfs_root * left_root,struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)5275 static int tree_compare_item(struct btrfs_root *left_root,
5276 			     struct btrfs_path *left_path,
5277 			     struct btrfs_path *right_path,
5278 			     char *tmp_buf)
5279 {
5280 	int cmp;
5281 	int len1, len2;
5282 	unsigned long off1, off2;
5283 
5284 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5285 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5286 	if (len1 != len2)
5287 		return 1;
5288 
5289 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5290 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5291 				right_path->slots[0]);
5292 
5293 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5294 
5295 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5296 	if (cmp)
5297 		return 1;
5298 	return 0;
5299 }
5300 
5301 #define ADVANCE 1
5302 #define ADVANCE_ONLY_NEXT -1
5303 
5304 /*
5305  * This function compares two trees and calls the provided callback for
5306  * every changed/new/deleted item it finds.
5307  * If shared tree blocks are encountered, whole subtrees are skipped, making
5308  * the compare pretty fast on snapshotted subvolumes.
5309  *
5310  * This currently works on commit roots only. As commit roots are read only,
5311  * we don't do any locking. The commit roots are protected with transactions.
5312  * Transactions are ended and rejoined when a commit is tried in between.
5313  *
5314  * This function checks for modifications done to the trees while comparing.
5315  * If it detects a change, it aborts immediately.
5316  */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,btrfs_changed_cb_t changed_cb,void * ctx)5317 int btrfs_compare_trees(struct btrfs_root *left_root,
5318 			struct btrfs_root *right_root,
5319 			btrfs_changed_cb_t changed_cb, void *ctx)
5320 {
5321 	int ret;
5322 	int cmp;
5323 	struct btrfs_path *left_path = NULL;
5324 	struct btrfs_path *right_path = NULL;
5325 	struct btrfs_key left_key;
5326 	struct btrfs_key right_key;
5327 	char *tmp_buf = NULL;
5328 	int left_root_level;
5329 	int right_root_level;
5330 	int left_level;
5331 	int right_level;
5332 	int left_end_reached;
5333 	int right_end_reached;
5334 	int advance_left;
5335 	int advance_right;
5336 	u64 left_blockptr;
5337 	u64 right_blockptr;
5338 	u64 left_gen;
5339 	u64 right_gen;
5340 
5341 	left_path = btrfs_alloc_path();
5342 	if (!left_path) {
5343 		ret = -ENOMEM;
5344 		goto out;
5345 	}
5346 	right_path = btrfs_alloc_path();
5347 	if (!right_path) {
5348 		ret = -ENOMEM;
5349 		goto out;
5350 	}
5351 
5352 	tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5353 	if (!tmp_buf) {
5354 		ret = -ENOMEM;
5355 		goto out;
5356 	}
5357 
5358 	left_path->search_commit_root = 1;
5359 	left_path->skip_locking = 1;
5360 	right_path->search_commit_root = 1;
5361 	right_path->skip_locking = 1;
5362 
5363 	/*
5364 	 * Strategy: Go to the first items of both trees. Then do
5365 	 *
5366 	 * If both trees are at level 0
5367 	 *   Compare keys of current items
5368 	 *     If left < right treat left item as new, advance left tree
5369 	 *       and repeat
5370 	 *     If left > right treat right item as deleted, advance right tree
5371 	 *       and repeat
5372 	 *     If left == right do deep compare of items, treat as changed if
5373 	 *       needed, advance both trees and repeat
5374 	 * If both trees are at the same level but not at level 0
5375 	 *   Compare keys of current nodes/leafs
5376 	 *     If left < right advance left tree and repeat
5377 	 *     If left > right advance right tree and repeat
5378 	 *     If left == right compare blockptrs of the next nodes/leafs
5379 	 *       If they match advance both trees but stay at the same level
5380 	 *         and repeat
5381 	 *       If they don't match advance both trees while allowing to go
5382 	 *         deeper and repeat
5383 	 * If tree levels are different
5384 	 *   Advance the tree that needs it and repeat
5385 	 *
5386 	 * Advancing a tree means:
5387 	 *   If we are at level 0, try to go to the next slot. If that's not
5388 	 *   possible, go one level up and repeat. Stop when we found a level
5389 	 *   where we could go to the next slot. We may at this point be on a
5390 	 *   node or a leaf.
5391 	 *
5392 	 *   If we are not at level 0 and not on shared tree blocks, go one
5393 	 *   level deeper.
5394 	 *
5395 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5396 	 *   the right if possible or go up and right.
5397 	 */
5398 
5399 	down_read(&left_root->fs_info->commit_root_sem);
5400 	left_level = btrfs_header_level(left_root->commit_root);
5401 	left_root_level = left_level;
5402 	left_path->nodes[left_level] = left_root->commit_root;
5403 	extent_buffer_get(left_path->nodes[left_level]);
5404 
5405 	right_level = btrfs_header_level(right_root->commit_root);
5406 	right_root_level = right_level;
5407 	right_path->nodes[right_level] = right_root->commit_root;
5408 	extent_buffer_get(right_path->nodes[right_level]);
5409 	up_read(&left_root->fs_info->commit_root_sem);
5410 
5411 	if (left_level == 0)
5412 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5413 				&left_key, left_path->slots[left_level]);
5414 	else
5415 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5416 				&left_key, left_path->slots[left_level]);
5417 	if (right_level == 0)
5418 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5419 				&right_key, right_path->slots[right_level]);
5420 	else
5421 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5422 				&right_key, right_path->slots[right_level]);
5423 
5424 	left_end_reached = right_end_reached = 0;
5425 	advance_left = advance_right = 0;
5426 
5427 	while (1) {
5428 		if (advance_left && !left_end_reached) {
5429 			ret = tree_advance(left_root, left_path, &left_level,
5430 					left_root_level,
5431 					advance_left != ADVANCE_ONLY_NEXT,
5432 					&left_key);
5433 			if (ret < 0)
5434 				left_end_reached = ADVANCE;
5435 			advance_left = 0;
5436 		}
5437 		if (advance_right && !right_end_reached) {
5438 			ret = tree_advance(right_root, right_path, &right_level,
5439 					right_root_level,
5440 					advance_right != ADVANCE_ONLY_NEXT,
5441 					&right_key);
5442 			if (ret < 0)
5443 				right_end_reached = ADVANCE;
5444 			advance_right = 0;
5445 		}
5446 
5447 		if (left_end_reached && right_end_reached) {
5448 			ret = 0;
5449 			goto out;
5450 		} else if (left_end_reached) {
5451 			if (right_level == 0) {
5452 				ret = changed_cb(left_root, right_root,
5453 						left_path, right_path,
5454 						&right_key,
5455 						BTRFS_COMPARE_TREE_DELETED,
5456 						ctx);
5457 				if (ret < 0)
5458 					goto out;
5459 			}
5460 			advance_right = ADVANCE;
5461 			continue;
5462 		} else if (right_end_reached) {
5463 			if (left_level == 0) {
5464 				ret = changed_cb(left_root, right_root,
5465 						left_path, right_path,
5466 						&left_key,
5467 						BTRFS_COMPARE_TREE_NEW,
5468 						ctx);
5469 				if (ret < 0)
5470 					goto out;
5471 			}
5472 			advance_left = ADVANCE;
5473 			continue;
5474 		}
5475 
5476 		if (left_level == 0 && right_level == 0) {
5477 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5478 			if (cmp < 0) {
5479 				ret = changed_cb(left_root, right_root,
5480 						left_path, right_path,
5481 						&left_key,
5482 						BTRFS_COMPARE_TREE_NEW,
5483 						ctx);
5484 				if (ret < 0)
5485 					goto out;
5486 				advance_left = ADVANCE;
5487 			} else if (cmp > 0) {
5488 				ret = changed_cb(left_root, right_root,
5489 						left_path, right_path,
5490 						&right_key,
5491 						BTRFS_COMPARE_TREE_DELETED,
5492 						ctx);
5493 				if (ret < 0)
5494 					goto out;
5495 				advance_right = ADVANCE;
5496 			} else {
5497 				enum btrfs_compare_tree_result result;
5498 
5499 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5500 				ret = tree_compare_item(left_root, left_path,
5501 						right_path, tmp_buf);
5502 				if (ret)
5503 					result = BTRFS_COMPARE_TREE_CHANGED;
5504 				else
5505 					result = BTRFS_COMPARE_TREE_SAME;
5506 				ret = changed_cb(left_root, right_root,
5507 						 left_path, right_path,
5508 						 &left_key, result, ctx);
5509 				if (ret < 0)
5510 					goto out;
5511 				advance_left = ADVANCE;
5512 				advance_right = ADVANCE;
5513 			}
5514 		} else if (left_level == right_level) {
5515 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5516 			if (cmp < 0) {
5517 				advance_left = ADVANCE;
5518 			} else if (cmp > 0) {
5519 				advance_right = ADVANCE;
5520 			} else {
5521 				left_blockptr = btrfs_node_blockptr(
5522 						left_path->nodes[left_level],
5523 						left_path->slots[left_level]);
5524 				right_blockptr = btrfs_node_blockptr(
5525 						right_path->nodes[right_level],
5526 						right_path->slots[right_level]);
5527 				left_gen = btrfs_node_ptr_generation(
5528 						left_path->nodes[left_level],
5529 						left_path->slots[left_level]);
5530 				right_gen = btrfs_node_ptr_generation(
5531 						right_path->nodes[right_level],
5532 						right_path->slots[right_level]);
5533 				if (left_blockptr == right_blockptr &&
5534 				    left_gen == right_gen) {
5535 					/*
5536 					 * As we're on a shared block, don't
5537 					 * allow to go deeper.
5538 					 */
5539 					advance_left = ADVANCE_ONLY_NEXT;
5540 					advance_right = ADVANCE_ONLY_NEXT;
5541 				} else {
5542 					advance_left = ADVANCE;
5543 					advance_right = ADVANCE;
5544 				}
5545 			}
5546 		} else if (left_level < right_level) {
5547 			advance_right = ADVANCE;
5548 		} else {
5549 			advance_left = ADVANCE;
5550 		}
5551 	}
5552 
5553 out:
5554 	btrfs_free_path(left_path);
5555 	btrfs_free_path(right_path);
5556 	kfree(tmp_buf);
5557 	return ret;
5558 }
5559 
5560 /*
5561  * this is similar to btrfs_next_leaf, but does not try to preserve
5562  * and fixup the path.  It looks for and returns the next key in the
5563  * tree based on the current path and the min_trans parameters.
5564  *
5565  * 0 is returned if another key is found, < 0 if there are any errors
5566  * and 1 is returned if there are no higher keys in the tree
5567  *
5568  * path->keep_locks should be set to 1 on the search made before
5569  * calling this function.
5570  */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)5571 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5572 			struct btrfs_key *key, int level, u64 min_trans)
5573 {
5574 	int slot;
5575 	struct extent_buffer *c;
5576 
5577 	WARN_ON(!path->keep_locks);
5578 	while (level < BTRFS_MAX_LEVEL) {
5579 		if (!path->nodes[level])
5580 			return 1;
5581 
5582 		slot = path->slots[level] + 1;
5583 		c = path->nodes[level];
5584 next:
5585 		if (slot >= btrfs_header_nritems(c)) {
5586 			int ret;
5587 			int orig_lowest;
5588 			struct btrfs_key cur_key;
5589 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5590 			    !path->nodes[level + 1])
5591 				return 1;
5592 
5593 			if (path->locks[level + 1]) {
5594 				level++;
5595 				continue;
5596 			}
5597 
5598 			slot = btrfs_header_nritems(c) - 1;
5599 			if (level == 0)
5600 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5601 			else
5602 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5603 
5604 			orig_lowest = path->lowest_level;
5605 			btrfs_release_path(path);
5606 			path->lowest_level = level;
5607 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5608 						0, 0);
5609 			path->lowest_level = orig_lowest;
5610 			if (ret < 0)
5611 				return ret;
5612 
5613 			c = path->nodes[level];
5614 			slot = path->slots[level];
5615 			if (ret == 0)
5616 				slot++;
5617 			goto next;
5618 		}
5619 
5620 		if (level == 0)
5621 			btrfs_item_key_to_cpu(c, key, slot);
5622 		else {
5623 			u64 gen = btrfs_node_ptr_generation(c, slot);
5624 
5625 			if (gen < min_trans) {
5626 				slot++;
5627 				goto next;
5628 			}
5629 			btrfs_node_key_to_cpu(c, key, slot);
5630 		}
5631 		return 0;
5632 	}
5633 	return 1;
5634 }
5635 
5636 /*
5637  * search the tree again to find a leaf with greater keys
5638  * returns 0 if it found something or 1 if there are no greater leaves.
5639  * returns < 0 on io errors.
5640  */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)5641 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5642 {
5643 	return btrfs_next_old_leaf(root, path, 0);
5644 }
5645 
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5646 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5647 			u64 time_seq)
5648 {
5649 	int slot;
5650 	int level;
5651 	struct extent_buffer *c;
5652 	struct extent_buffer *next;
5653 	struct btrfs_key key;
5654 	u32 nritems;
5655 	int ret;
5656 	int old_spinning = path->leave_spinning;
5657 	int next_rw_lock = 0;
5658 
5659 	nritems = btrfs_header_nritems(path->nodes[0]);
5660 	if (nritems == 0)
5661 		return 1;
5662 
5663 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5664 again:
5665 	level = 1;
5666 	next = NULL;
5667 	next_rw_lock = 0;
5668 	btrfs_release_path(path);
5669 
5670 	path->keep_locks = 1;
5671 	path->leave_spinning = 1;
5672 
5673 	if (time_seq)
5674 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5675 	else
5676 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5677 	path->keep_locks = 0;
5678 
5679 	if (ret < 0)
5680 		return ret;
5681 
5682 	nritems = btrfs_header_nritems(path->nodes[0]);
5683 	/*
5684 	 * by releasing the path above we dropped all our locks.  A balance
5685 	 * could have added more items next to the key that used to be
5686 	 * at the very end of the block.  So, check again here and
5687 	 * advance the path if there are now more items available.
5688 	 */
5689 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5690 		if (ret == 0)
5691 			path->slots[0]++;
5692 		ret = 0;
5693 		goto done;
5694 	}
5695 	/*
5696 	 * So the above check misses one case:
5697 	 * - after releasing the path above, someone has removed the item that
5698 	 *   used to be at the very end of the block, and balance between leafs
5699 	 *   gets another one with bigger key.offset to replace it.
5700 	 *
5701 	 * This one should be returned as well, or we can get leaf corruption
5702 	 * later(esp. in __btrfs_drop_extents()).
5703 	 *
5704 	 * And a bit more explanation about this check,
5705 	 * with ret > 0, the key isn't found, the path points to the slot
5706 	 * where it should be inserted, so the path->slots[0] item must be the
5707 	 * bigger one.
5708 	 */
5709 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5710 		ret = 0;
5711 		goto done;
5712 	}
5713 
5714 	while (level < BTRFS_MAX_LEVEL) {
5715 		if (!path->nodes[level]) {
5716 			ret = 1;
5717 			goto done;
5718 		}
5719 
5720 		slot = path->slots[level] + 1;
5721 		c = path->nodes[level];
5722 		if (slot >= btrfs_header_nritems(c)) {
5723 			level++;
5724 			if (level == BTRFS_MAX_LEVEL) {
5725 				ret = 1;
5726 				goto done;
5727 			}
5728 			continue;
5729 		}
5730 
5731 		if (next) {
5732 			btrfs_tree_unlock_rw(next, next_rw_lock);
5733 			free_extent_buffer(next);
5734 		}
5735 
5736 		next = c;
5737 		next_rw_lock = path->locks[level];
5738 		ret = read_block_for_search(NULL, root, path, &next, level,
5739 					    slot, &key, 0);
5740 		if (ret == -EAGAIN)
5741 			goto again;
5742 
5743 		if (ret < 0) {
5744 			btrfs_release_path(path);
5745 			goto done;
5746 		}
5747 
5748 		if (!path->skip_locking) {
5749 			ret = btrfs_try_tree_read_lock(next);
5750 			if (!ret && time_seq) {
5751 				/*
5752 				 * If we don't get the lock, we may be racing
5753 				 * with push_leaf_left, holding that lock while
5754 				 * itself waiting for the leaf we've currently
5755 				 * locked. To solve this situation, we give up
5756 				 * on our lock and cycle.
5757 				 */
5758 				free_extent_buffer(next);
5759 				btrfs_release_path(path);
5760 				cond_resched();
5761 				goto again;
5762 			}
5763 			if (!ret) {
5764 				btrfs_set_path_blocking(path);
5765 				btrfs_tree_read_lock(next);
5766 				btrfs_clear_path_blocking(path, next,
5767 							  BTRFS_READ_LOCK);
5768 			}
5769 			next_rw_lock = BTRFS_READ_LOCK;
5770 		}
5771 		break;
5772 	}
5773 	path->slots[level] = slot;
5774 	while (1) {
5775 		level--;
5776 		c = path->nodes[level];
5777 		if (path->locks[level])
5778 			btrfs_tree_unlock_rw(c, path->locks[level]);
5779 
5780 		free_extent_buffer(c);
5781 		path->nodes[level] = next;
5782 		path->slots[level] = 0;
5783 		if (!path->skip_locking)
5784 			path->locks[level] = next_rw_lock;
5785 		if (!level)
5786 			break;
5787 
5788 		ret = read_block_for_search(NULL, root, path, &next, level,
5789 					    0, &key, 0);
5790 		if (ret == -EAGAIN)
5791 			goto again;
5792 
5793 		if (ret < 0) {
5794 			btrfs_release_path(path);
5795 			goto done;
5796 		}
5797 
5798 		if (!path->skip_locking) {
5799 			ret = btrfs_try_tree_read_lock(next);
5800 			if (!ret) {
5801 				btrfs_set_path_blocking(path);
5802 				btrfs_tree_read_lock(next);
5803 				btrfs_clear_path_blocking(path, next,
5804 							  BTRFS_READ_LOCK);
5805 			}
5806 			next_rw_lock = BTRFS_READ_LOCK;
5807 		}
5808 	}
5809 	ret = 0;
5810 done:
5811 	unlock_up(path, 0, 1, 0, NULL);
5812 	path->leave_spinning = old_spinning;
5813 	if (!old_spinning)
5814 		btrfs_set_path_blocking(path);
5815 
5816 	return ret;
5817 }
5818 
5819 /*
5820  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5821  * searching until it gets past min_objectid or finds an item of 'type'
5822  *
5823  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5824  */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5825 int btrfs_previous_item(struct btrfs_root *root,
5826 			struct btrfs_path *path, u64 min_objectid,
5827 			int type)
5828 {
5829 	struct btrfs_key found_key;
5830 	struct extent_buffer *leaf;
5831 	u32 nritems;
5832 	int ret;
5833 
5834 	while (1) {
5835 		if (path->slots[0] == 0) {
5836 			btrfs_set_path_blocking(path);
5837 			ret = btrfs_prev_leaf(root, path);
5838 			if (ret != 0)
5839 				return ret;
5840 		} else {
5841 			path->slots[0]--;
5842 		}
5843 		leaf = path->nodes[0];
5844 		nritems = btrfs_header_nritems(leaf);
5845 		if (nritems == 0)
5846 			return 1;
5847 		if (path->slots[0] == nritems)
5848 			path->slots[0]--;
5849 
5850 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5851 		if (found_key.objectid < min_objectid)
5852 			break;
5853 		if (found_key.type == type)
5854 			return 0;
5855 		if (found_key.objectid == min_objectid &&
5856 		    found_key.type < type)
5857 			break;
5858 	}
5859 	return 1;
5860 }
5861 
5862 /*
5863  * search in extent tree to find a previous Metadata/Data extent item with
5864  * min objecitd.
5865  *
5866  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5867  */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5868 int btrfs_previous_extent_item(struct btrfs_root *root,
5869 			struct btrfs_path *path, u64 min_objectid)
5870 {
5871 	struct btrfs_key found_key;
5872 	struct extent_buffer *leaf;
5873 	u32 nritems;
5874 	int ret;
5875 
5876 	while (1) {
5877 		if (path->slots[0] == 0) {
5878 			btrfs_set_path_blocking(path);
5879 			ret = btrfs_prev_leaf(root, path);
5880 			if (ret != 0)
5881 				return ret;
5882 		} else {
5883 			path->slots[0]--;
5884 		}
5885 		leaf = path->nodes[0];
5886 		nritems = btrfs_header_nritems(leaf);
5887 		if (nritems == 0)
5888 			return 1;
5889 		if (path->slots[0] == nritems)
5890 			path->slots[0]--;
5891 
5892 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5893 		if (found_key.objectid < min_objectid)
5894 			break;
5895 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5896 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5897 			return 0;
5898 		if (found_key.objectid == min_objectid &&
5899 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5900 			break;
5901 	}
5902 	return 1;
5903 }
5904