1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
btrfs_put_transaction(struct btrfs_transaction * transaction)61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
69
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
74 }
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
76 }
77 }
78
switch_commit_roots(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 struct btrfs_fs_info *fs_info)
81 {
82 struct btrfs_root *root, *tmp;
83
84 down_write(&fs_info->commit_root_sem);
85 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 dirty_list) {
87 list_del_init(&root->dirty_list);
88 free_extent_buffer(root->commit_root);
89 root->commit_root = btrfs_root_node(root);
90 if (is_fstree(root->objectid))
91 btrfs_unpin_free_ino(root);
92 }
93 up_write(&fs_info->commit_root_sem);
94 }
95
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 unsigned int type)
98 {
99 if (type & TRANS_EXTWRITERS)
100 atomic_inc(&trans->num_extwriters);
101 }
102
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 unsigned int type)
105 {
106 if (type & TRANS_EXTWRITERS)
107 atomic_dec(&trans->num_extwriters);
108 }
109
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 unsigned int type)
112 {
113 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115
extwriter_counter_read(struct btrfs_transaction * trans)116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 return atomic_read(&trans->num_extwriters);
119 }
120
121 /*
122 * either allocate a new transaction or hop into the existing one
123 */
join_transaction(struct btrfs_root * root,unsigned int type)124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 struct btrfs_transaction *cur_trans;
127 struct btrfs_fs_info *fs_info = root->fs_info;
128
129 spin_lock(&fs_info->trans_lock);
130 loop:
131 /* The file system has been taken offline. No new transactions. */
132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 spin_unlock(&fs_info->trans_lock);
134 return -EROFS;
135 }
136
137 cur_trans = fs_info->running_transaction;
138 if (cur_trans) {
139 if (cur_trans->aborted) {
140 spin_unlock(&fs_info->trans_lock);
141 return cur_trans->aborted;
142 }
143 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 spin_unlock(&fs_info->trans_lock);
145 return -EBUSY;
146 }
147 atomic_inc(&cur_trans->use_count);
148 atomic_inc(&cur_trans->num_writers);
149 extwriter_counter_inc(cur_trans, type);
150 spin_unlock(&fs_info->trans_lock);
151 return 0;
152 }
153 spin_unlock(&fs_info->trans_lock);
154
155 /*
156 * If we are ATTACH, we just want to catch the current transaction,
157 * and commit it. If there is no transaction, just return ENOENT.
158 */
159 if (type == TRANS_ATTACH)
160 return -ENOENT;
161
162 /*
163 * JOIN_NOLOCK only happens during the transaction commit, so
164 * it is impossible that ->running_transaction is NULL
165 */
166 BUG_ON(type == TRANS_JOIN_NOLOCK);
167
168 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 if (!cur_trans)
170 return -ENOMEM;
171
172 spin_lock(&fs_info->trans_lock);
173 if (fs_info->running_transaction) {
174 /*
175 * someone started a transaction after we unlocked. Make sure
176 * to redo the checks above
177 */
178 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 goto loop;
180 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 spin_unlock(&fs_info->trans_lock);
182 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 return -EROFS;
184 }
185
186 atomic_set(&cur_trans->num_writers, 1);
187 extwriter_counter_init(cur_trans, type);
188 init_waitqueue_head(&cur_trans->writer_wait);
189 init_waitqueue_head(&cur_trans->commit_wait);
190 cur_trans->state = TRANS_STATE_RUNNING;
191 /*
192 * One for this trans handle, one so it will live on until we
193 * commit the transaction.
194 */
195 atomic_set(&cur_trans->use_count, 2);
196 cur_trans->start_time = get_seconds();
197
198 cur_trans->delayed_refs.href_root = RB_ROOT;
199 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 cur_trans->delayed_refs.num_heads_ready = 0;
201 cur_trans->delayed_refs.num_heads = 0;
202 cur_trans->delayed_refs.flushing = 0;
203 cur_trans->delayed_refs.run_delayed_start = 0;
204
205 /*
206 * although the tree mod log is per file system and not per transaction,
207 * the log must never go across transaction boundaries.
208 */
209 smp_mb();
210 if (!list_empty(&fs_info->tree_mod_seq_list))
211 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 "creating a fresh transaction\n");
213 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 "creating a fresh transaction\n");
216 atomic64_set(&fs_info->tree_mod_seq, 0);
217
218 spin_lock_init(&cur_trans->delayed_refs.lock);
219
220 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 INIT_LIST_HEAD(&cur_trans->switch_commits);
223 INIT_LIST_HEAD(&cur_trans->pending_ordered);
224 list_add_tail(&cur_trans->list, &fs_info->trans_list);
225 extent_io_tree_init(&cur_trans->dirty_pages,
226 fs_info->btree_inode->i_mapping);
227 fs_info->generation++;
228 cur_trans->transid = fs_info->generation;
229 fs_info->running_transaction = cur_trans;
230 cur_trans->aborted = 0;
231 spin_unlock(&fs_info->trans_lock);
232
233 return 0;
234 }
235
236 /*
237 * this does all the record keeping required to make sure that a reference
238 * counted root is properly recorded in a given transaction. This is required
239 * to make sure the old root from before we joined the transaction is deleted
240 * when the transaction commits
241 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root)
244 {
245 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246 root->last_trans < trans->transid) {
247 WARN_ON(root == root->fs_info->extent_root);
248 WARN_ON(root->commit_root != root->node);
249
250 /*
251 * see below for IN_TRANS_SETUP usage rules
252 * we have the reloc mutex held now, so there
253 * is only one writer in this function
254 */
255 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
256
257 /* make sure readers find IN_TRANS_SETUP before
258 * they find our root->last_trans update
259 */
260 smp_wmb();
261
262 spin_lock(&root->fs_info->fs_roots_radix_lock);
263 if (root->last_trans == trans->transid) {
264 spin_unlock(&root->fs_info->fs_roots_radix_lock);
265 return 0;
266 }
267 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268 (unsigned long)root->root_key.objectid,
269 BTRFS_ROOT_TRANS_TAG);
270 spin_unlock(&root->fs_info->fs_roots_radix_lock);
271 root->last_trans = trans->transid;
272
273 /* this is pretty tricky. We don't want to
274 * take the relocation lock in btrfs_record_root_in_trans
275 * unless we're really doing the first setup for this root in
276 * this transaction.
277 *
278 * Normally we'd use root->last_trans as a flag to decide
279 * if we want to take the expensive mutex.
280 *
281 * But, we have to set root->last_trans before we
282 * init the relocation root, otherwise, we trip over warnings
283 * in ctree.c. The solution used here is to flag ourselves
284 * with root IN_TRANS_SETUP. When this is 1, we're still
285 * fixing up the reloc trees and everyone must wait.
286 *
287 * When this is zero, they can trust root->last_trans and fly
288 * through btrfs_record_root_in_trans without having to take the
289 * lock. smp_wmb() makes sure that all the writes above are
290 * done before we pop in the zero below
291 */
292 btrfs_init_reloc_root(trans, root);
293 smp_mb__before_atomic();
294 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 }
296 return 0;
297 }
298
299
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301 struct btrfs_root *root)
302 {
303 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304 return 0;
305
306 /*
307 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308 * and barriers
309 */
310 smp_rmb();
311 if (root->last_trans == trans->transid &&
312 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313 return 0;
314
315 mutex_lock(&root->fs_info->reloc_mutex);
316 record_root_in_trans(trans, root);
317 mutex_unlock(&root->fs_info->reloc_mutex);
318
319 return 0;
320 }
321
is_transaction_blocked(struct btrfs_transaction * trans)322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
323 {
324 return (trans->state >= TRANS_STATE_BLOCKED &&
325 trans->state < TRANS_STATE_UNBLOCKED &&
326 !trans->aborted);
327 }
328
329 /* wait for commit against the current transaction to become unblocked
330 * when this is done, it is safe to start a new transaction, but the current
331 * transaction might not be fully on disk.
332 */
wait_current_trans(struct btrfs_root * root)333 static void wait_current_trans(struct btrfs_root *root)
334 {
335 struct btrfs_transaction *cur_trans;
336
337 spin_lock(&root->fs_info->trans_lock);
338 cur_trans = root->fs_info->running_transaction;
339 if (cur_trans && is_transaction_blocked(cur_trans)) {
340 atomic_inc(&cur_trans->use_count);
341 spin_unlock(&root->fs_info->trans_lock);
342
343 wait_event(root->fs_info->transaction_wait,
344 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345 cur_trans->aborted);
346 btrfs_put_transaction(cur_trans);
347 } else {
348 spin_unlock(&root->fs_info->trans_lock);
349 }
350 }
351
may_wait_transaction(struct btrfs_root * root,int type)352 static int may_wait_transaction(struct btrfs_root *root, int type)
353 {
354 if (root->fs_info->log_root_recovering)
355 return 0;
356
357 if (type == TRANS_USERSPACE)
358 return 1;
359
360 if (type == TRANS_START &&
361 !atomic_read(&root->fs_info->open_ioctl_trans))
362 return 1;
363
364 return 0;
365 }
366
need_reserve_reloc_root(struct btrfs_root * root)367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
368 {
369 if (!root->fs_info->reloc_ctl ||
370 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372 root->reloc_root)
373 return false;
374
375 return true;
376 }
377
378 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,u64 num_items,unsigned int type,enum btrfs_reserve_flush_enum flush)379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380 enum btrfs_reserve_flush_enum flush)
381 {
382 struct btrfs_trans_handle *h;
383 struct btrfs_transaction *cur_trans;
384 u64 num_bytes = 0;
385 u64 qgroup_reserved = 0;
386 bool reloc_reserved = false;
387 int ret;
388
389 /* Send isn't supposed to start transactions. */
390 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
391
392 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
393 return ERR_PTR(-EROFS);
394
395 if (current->journal_info) {
396 WARN_ON(type & TRANS_EXTWRITERS);
397 h = current->journal_info;
398 h->use_count++;
399 WARN_ON(h->use_count > 2);
400 h->orig_rsv = h->block_rsv;
401 h->block_rsv = NULL;
402 goto got_it;
403 }
404
405 /*
406 * Do the reservation before we join the transaction so we can do all
407 * the appropriate flushing if need be.
408 */
409 if (num_items > 0 && root != root->fs_info->chunk_root) {
410 if (root->fs_info->quota_enabled &&
411 is_fstree(root->root_key.objectid)) {
412 qgroup_reserved = num_items * root->nodesize;
413 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
414 if (ret)
415 return ERR_PTR(ret);
416 }
417
418 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
419 /*
420 * Do the reservation for the relocation root creation
421 */
422 if (need_reserve_reloc_root(root)) {
423 num_bytes += root->nodesize;
424 reloc_reserved = true;
425 }
426
427 ret = btrfs_block_rsv_add(root,
428 &root->fs_info->trans_block_rsv,
429 num_bytes, flush);
430 if (ret)
431 goto reserve_fail;
432 }
433 again:
434 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
435 if (!h) {
436 ret = -ENOMEM;
437 goto alloc_fail;
438 }
439
440 /*
441 * If we are JOIN_NOLOCK we're already committing a transaction and
442 * waiting on this guy, so we don't need to do the sb_start_intwrite
443 * because we're already holding a ref. We need this because we could
444 * have raced in and did an fsync() on a file which can kick a commit
445 * and then we deadlock with somebody doing a freeze.
446 *
447 * If we are ATTACH, it means we just want to catch the current
448 * transaction and commit it, so we needn't do sb_start_intwrite().
449 */
450 if (type & __TRANS_FREEZABLE)
451 sb_start_intwrite(root->fs_info->sb);
452
453 if (may_wait_transaction(root, type))
454 wait_current_trans(root);
455
456 do {
457 ret = join_transaction(root, type);
458 if (ret == -EBUSY) {
459 wait_current_trans(root);
460 if (unlikely(type == TRANS_ATTACH))
461 ret = -ENOENT;
462 }
463 } while (ret == -EBUSY);
464
465 if (ret < 0) {
466 /* We must get the transaction if we are JOIN_NOLOCK. */
467 BUG_ON(type == TRANS_JOIN_NOLOCK);
468 goto join_fail;
469 }
470
471 cur_trans = root->fs_info->running_transaction;
472
473 h->transid = cur_trans->transid;
474 h->transaction = cur_trans;
475 h->bytes_reserved = 0;
476 h->root = root;
477 h->delayed_ref_updates = 0;
478 h->use_count = 1;
479 h->adding_csums = 0;
480 h->block_rsv = NULL;
481 h->orig_rsv = NULL;
482 h->aborted = 0;
483 h->qgroup_reserved = 0;
484 h->delayed_ref_elem.seq = 0;
485 h->type = type;
486 h->allocating_chunk = false;
487 h->reloc_reserved = false;
488 h->sync = false;
489 INIT_LIST_HEAD(&h->qgroup_ref_list);
490 INIT_LIST_HEAD(&h->new_bgs);
491 INIT_LIST_HEAD(&h->ordered);
492
493 smp_mb();
494 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
495 may_wait_transaction(root, type)) {
496 current->journal_info = h;
497 btrfs_commit_transaction(h, root);
498 goto again;
499 }
500
501 if (num_bytes) {
502 trace_btrfs_space_reservation(root->fs_info, "transaction",
503 h->transid, num_bytes, 1);
504 h->block_rsv = &root->fs_info->trans_block_rsv;
505 h->bytes_reserved = num_bytes;
506 h->reloc_reserved = reloc_reserved;
507 }
508 h->qgroup_reserved = qgroup_reserved;
509
510 got_it:
511 btrfs_record_root_in_trans(h, root);
512
513 if (!current->journal_info && type != TRANS_USERSPACE)
514 current->journal_info = h;
515 return h;
516
517 join_fail:
518 if (type & __TRANS_FREEZABLE)
519 sb_end_intwrite(root->fs_info->sb);
520 kmem_cache_free(btrfs_trans_handle_cachep, h);
521 alloc_fail:
522 if (num_bytes)
523 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
524 num_bytes);
525 reserve_fail:
526 if (qgroup_reserved)
527 btrfs_qgroup_free(root, qgroup_reserved);
528 return ERR_PTR(ret);
529 }
530
btrfs_start_transaction(struct btrfs_root * root,int num_items)531 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
532 int num_items)
533 {
534 return start_transaction(root, num_items, TRANS_START,
535 BTRFS_RESERVE_FLUSH_ALL);
536 }
537
btrfs_start_transaction_lflush(struct btrfs_root * root,int num_items)538 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
539 struct btrfs_root *root, int num_items)
540 {
541 return start_transaction(root, num_items, TRANS_START,
542 BTRFS_RESERVE_FLUSH_LIMIT);
543 }
544
btrfs_join_transaction(struct btrfs_root * root)545 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
546 {
547 return start_transaction(root, 0, TRANS_JOIN, 0);
548 }
549
btrfs_join_transaction_nolock(struct btrfs_root * root)550 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
551 {
552 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
553 }
554
btrfs_start_ioctl_transaction(struct btrfs_root * root)555 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
556 {
557 return start_transaction(root, 0, TRANS_USERSPACE, 0);
558 }
559
560 /*
561 * btrfs_attach_transaction() - catch the running transaction
562 *
563 * It is used when we want to commit the current the transaction, but
564 * don't want to start a new one.
565 *
566 * Note: If this function return -ENOENT, it just means there is no
567 * running transaction. But it is possible that the inactive transaction
568 * is still in the memory, not fully on disk. If you hope there is no
569 * inactive transaction in the fs when -ENOENT is returned, you should
570 * invoke
571 * btrfs_attach_transaction_barrier()
572 */
btrfs_attach_transaction(struct btrfs_root * root)573 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
574 {
575 return start_transaction(root, 0, TRANS_ATTACH, 0);
576 }
577
578 /*
579 * btrfs_attach_transaction_barrier() - catch the running transaction
580 *
581 * It is similar to the above function, the differentia is this one
582 * will wait for all the inactive transactions until they fully
583 * complete.
584 */
585 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)586 btrfs_attach_transaction_barrier(struct btrfs_root *root)
587 {
588 struct btrfs_trans_handle *trans;
589
590 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
591 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
592 btrfs_wait_for_commit(root, 0);
593
594 return trans;
595 }
596
597 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)598 static noinline void wait_for_commit(struct btrfs_root *root,
599 struct btrfs_transaction *commit)
600 {
601 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
602 }
603
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)604 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
605 {
606 struct btrfs_transaction *cur_trans = NULL, *t;
607 int ret = 0;
608
609 if (transid) {
610 if (transid <= root->fs_info->last_trans_committed)
611 goto out;
612
613 /* find specified transaction */
614 spin_lock(&root->fs_info->trans_lock);
615 list_for_each_entry(t, &root->fs_info->trans_list, list) {
616 if (t->transid == transid) {
617 cur_trans = t;
618 atomic_inc(&cur_trans->use_count);
619 ret = 0;
620 break;
621 }
622 if (t->transid > transid) {
623 ret = 0;
624 break;
625 }
626 }
627 spin_unlock(&root->fs_info->trans_lock);
628
629 /*
630 * The specified transaction doesn't exist, or we
631 * raced with btrfs_commit_transaction
632 */
633 if (!cur_trans) {
634 if (transid > root->fs_info->last_trans_committed)
635 ret = -EINVAL;
636 goto out;
637 }
638 } else {
639 /* find newest transaction that is committing | committed */
640 spin_lock(&root->fs_info->trans_lock);
641 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
642 list) {
643 if (t->state >= TRANS_STATE_COMMIT_START) {
644 if (t->state == TRANS_STATE_COMPLETED)
645 break;
646 cur_trans = t;
647 atomic_inc(&cur_trans->use_count);
648 break;
649 }
650 }
651 spin_unlock(&root->fs_info->trans_lock);
652 if (!cur_trans)
653 goto out; /* nothing committing|committed */
654 }
655
656 wait_for_commit(root, cur_trans);
657 btrfs_put_transaction(cur_trans);
658 out:
659 return ret;
660 }
661
btrfs_throttle(struct btrfs_root * root)662 void btrfs_throttle(struct btrfs_root *root)
663 {
664 if (!atomic_read(&root->fs_info->open_ioctl_trans))
665 wait_current_trans(root);
666 }
667
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)668 static int should_end_transaction(struct btrfs_trans_handle *trans,
669 struct btrfs_root *root)
670 {
671 if (root->fs_info->global_block_rsv.space_info->full &&
672 btrfs_check_space_for_delayed_refs(trans, root))
673 return 1;
674
675 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
676 }
677
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)678 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
679 struct btrfs_root *root)
680 {
681 struct btrfs_transaction *cur_trans = trans->transaction;
682 int updates;
683 int err;
684
685 smp_mb();
686 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
687 cur_trans->delayed_refs.flushing)
688 return 1;
689
690 updates = trans->delayed_ref_updates;
691 trans->delayed_ref_updates = 0;
692 if (updates) {
693 err = btrfs_run_delayed_refs(trans, root, updates);
694 if (err) /* Error code will also eval true */
695 return err;
696 }
697
698 return should_end_transaction(trans, root);
699 }
700
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle)701 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
702 struct btrfs_root *root, int throttle)
703 {
704 struct btrfs_transaction *cur_trans = trans->transaction;
705 struct btrfs_fs_info *info = root->fs_info;
706 unsigned long cur = trans->delayed_ref_updates;
707 int lock = (trans->type != TRANS_JOIN_NOLOCK);
708 int err = 0;
709 int must_run_delayed_refs = 0;
710
711 if (trans->use_count > 1) {
712 trans->use_count--;
713 trans->block_rsv = trans->orig_rsv;
714 return 0;
715 }
716
717 btrfs_trans_release_metadata(trans, root);
718 trans->block_rsv = NULL;
719
720 if (!list_empty(&trans->new_bgs))
721 btrfs_create_pending_block_groups(trans, root);
722
723 if (!list_empty(&trans->ordered)) {
724 spin_lock(&info->trans_lock);
725 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
726 spin_unlock(&info->trans_lock);
727 }
728
729 trans->delayed_ref_updates = 0;
730 if (!trans->sync) {
731 must_run_delayed_refs =
732 btrfs_should_throttle_delayed_refs(trans, root);
733 cur = max_t(unsigned long, cur, 32);
734
735 /*
736 * don't make the caller wait if they are from a NOLOCK
737 * or ATTACH transaction, it will deadlock with commit
738 */
739 if (must_run_delayed_refs == 1 &&
740 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
741 must_run_delayed_refs = 2;
742 }
743
744 if (trans->qgroup_reserved) {
745 /*
746 * the same root has to be passed here between start_transaction
747 * and end_transaction. Subvolume quota depends on this.
748 */
749 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
750 trans->qgroup_reserved = 0;
751 }
752
753 btrfs_trans_release_metadata(trans, root);
754 trans->block_rsv = NULL;
755
756 if (!list_empty(&trans->new_bgs))
757 btrfs_create_pending_block_groups(trans, root);
758
759 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
760 should_end_transaction(trans, root) &&
761 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
762 spin_lock(&info->trans_lock);
763 if (cur_trans->state == TRANS_STATE_RUNNING)
764 cur_trans->state = TRANS_STATE_BLOCKED;
765 spin_unlock(&info->trans_lock);
766 }
767
768 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
769 if (throttle)
770 return btrfs_commit_transaction(trans, root);
771 else
772 wake_up_process(info->transaction_kthread);
773 }
774
775 if (trans->type & __TRANS_FREEZABLE)
776 sb_end_intwrite(root->fs_info->sb);
777
778 WARN_ON(cur_trans != info->running_transaction);
779 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
780 atomic_dec(&cur_trans->num_writers);
781 extwriter_counter_dec(cur_trans, trans->type);
782
783 smp_mb();
784 if (waitqueue_active(&cur_trans->writer_wait))
785 wake_up(&cur_trans->writer_wait);
786 btrfs_put_transaction(cur_trans);
787
788 if (current->journal_info == trans)
789 current->journal_info = NULL;
790
791 if (throttle)
792 btrfs_run_delayed_iputs(root);
793
794 if (trans->aborted ||
795 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
796 wake_up_process(info->transaction_kthread);
797 err = -EIO;
798 }
799 assert_qgroups_uptodate(trans);
800
801 kmem_cache_free(btrfs_trans_handle_cachep, trans);
802 if (must_run_delayed_refs) {
803 btrfs_async_run_delayed_refs(root, cur,
804 must_run_delayed_refs == 1);
805 }
806 return err;
807 }
808
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)809 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
810 struct btrfs_root *root)
811 {
812 return __btrfs_end_transaction(trans, root, 0);
813 }
814
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)815 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
816 struct btrfs_root *root)
817 {
818 return __btrfs_end_transaction(trans, root, 1);
819 }
820
821 /*
822 * when btree blocks are allocated, they have some corresponding bits set for
823 * them in one of two extent_io trees. This is used to make sure all of
824 * those extents are sent to disk but does not wait on them
825 */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)826 int btrfs_write_marked_extents(struct btrfs_root *root,
827 struct extent_io_tree *dirty_pages, int mark)
828 {
829 int err = 0;
830 int werr = 0;
831 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
832 struct extent_state *cached_state = NULL;
833 u64 start = 0;
834 u64 end;
835
836 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
837 mark, &cached_state)) {
838 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
839 mark, &cached_state, GFP_NOFS);
840 cached_state = NULL;
841 err = filemap_fdatawrite_range(mapping, start, end);
842 if (err)
843 werr = err;
844 cond_resched();
845 start = end + 1;
846 }
847 if (err)
848 werr = err;
849 return werr;
850 }
851
852 /*
853 * when btree blocks are allocated, they have some corresponding bits set for
854 * them in one of two extent_io trees. This is used to make sure all of
855 * those extents are on disk for transaction or log commit. We wait
856 * on all the pages and clear them from the dirty pages state tree
857 */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)858 int btrfs_wait_marked_extents(struct btrfs_root *root,
859 struct extent_io_tree *dirty_pages, int mark)
860 {
861 int err = 0;
862 int werr = 0;
863 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
864 struct extent_state *cached_state = NULL;
865 u64 start = 0;
866 u64 end;
867 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
868 bool errors = false;
869
870 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
871 EXTENT_NEED_WAIT, &cached_state)) {
872 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
873 0, 0, &cached_state, GFP_NOFS);
874 err = filemap_fdatawait_range(mapping, start, end);
875 if (err)
876 werr = err;
877 cond_resched();
878 start = end + 1;
879 }
880 if (err)
881 werr = err;
882
883 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
884 if ((mark & EXTENT_DIRTY) &&
885 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
886 &btree_ino->runtime_flags))
887 errors = true;
888
889 if ((mark & EXTENT_NEW) &&
890 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
891 &btree_ino->runtime_flags))
892 errors = true;
893 } else {
894 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
895 &btree_ino->runtime_flags))
896 errors = true;
897 }
898
899 if (errors && !werr)
900 werr = -EIO;
901
902 return werr;
903 }
904
905 /*
906 * when btree blocks are allocated, they have some corresponding bits set for
907 * them in one of two extent_io trees. This is used to make sure all of
908 * those extents are on disk for transaction or log commit
909 */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)910 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
911 struct extent_io_tree *dirty_pages, int mark)
912 {
913 int ret;
914 int ret2;
915 struct blk_plug plug;
916
917 blk_start_plug(&plug);
918 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
919 blk_finish_plug(&plug);
920 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
921
922 if (ret)
923 return ret;
924 if (ret2)
925 return ret2;
926 return 0;
927 }
928
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)929 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
930 struct btrfs_root *root)
931 {
932 if (!trans || !trans->transaction) {
933 struct inode *btree_inode;
934 btree_inode = root->fs_info->btree_inode;
935 return filemap_write_and_wait(btree_inode->i_mapping);
936 }
937 return btrfs_write_and_wait_marked_extents(root,
938 &trans->transaction->dirty_pages,
939 EXTENT_DIRTY);
940 }
941
942 /*
943 * this is used to update the root pointer in the tree of tree roots.
944 *
945 * But, in the case of the extent allocation tree, updating the root
946 * pointer may allocate blocks which may change the root of the extent
947 * allocation tree.
948 *
949 * So, this loops and repeats and makes sure the cowonly root didn't
950 * change while the root pointer was being updated in the metadata.
951 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)952 static int update_cowonly_root(struct btrfs_trans_handle *trans,
953 struct btrfs_root *root)
954 {
955 int ret;
956 u64 old_root_bytenr;
957 u64 old_root_used;
958 struct btrfs_root *tree_root = root->fs_info->tree_root;
959
960 old_root_used = btrfs_root_used(&root->root_item);
961 btrfs_write_dirty_block_groups(trans, root);
962
963 while (1) {
964 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
965 if (old_root_bytenr == root->node->start &&
966 old_root_used == btrfs_root_used(&root->root_item))
967 break;
968
969 btrfs_set_root_node(&root->root_item, root->node);
970 ret = btrfs_update_root(trans, tree_root,
971 &root->root_key,
972 &root->root_item);
973 if (ret)
974 return ret;
975
976 old_root_used = btrfs_root_used(&root->root_item);
977 ret = btrfs_write_dirty_block_groups(trans, root);
978 if (ret)
979 return ret;
980 }
981
982 return 0;
983 }
984
985 /*
986 * update all the cowonly tree roots on disk
987 *
988 * The error handling in this function may not be obvious. Any of the
989 * failures will cause the file system to go offline. We still need
990 * to clean up the delayed refs.
991 */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)992 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
993 struct btrfs_root *root)
994 {
995 struct btrfs_fs_info *fs_info = root->fs_info;
996 struct list_head *next;
997 struct extent_buffer *eb;
998 int ret;
999
1000 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1001 if (ret)
1002 return ret;
1003
1004 eb = btrfs_lock_root_node(fs_info->tree_root);
1005 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1006 0, &eb);
1007 btrfs_tree_unlock(eb);
1008 free_extent_buffer(eb);
1009
1010 if (ret)
1011 return ret;
1012
1013 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1014 if (ret)
1015 return ret;
1016
1017 ret = btrfs_run_dev_stats(trans, root->fs_info);
1018 if (ret)
1019 return ret;
1020 ret = btrfs_run_dev_replace(trans, root->fs_info);
1021 if (ret)
1022 return ret;
1023 ret = btrfs_run_qgroups(trans, root->fs_info);
1024 if (ret)
1025 return ret;
1026
1027 /* run_qgroups might have added some more refs */
1028 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1029 if (ret)
1030 return ret;
1031
1032 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1033 next = fs_info->dirty_cowonly_roots.next;
1034 list_del_init(next);
1035 root = list_entry(next, struct btrfs_root, dirty_list);
1036
1037 if (root != fs_info->extent_root)
1038 list_add_tail(&root->dirty_list,
1039 &trans->transaction->switch_commits);
1040 ret = update_cowonly_root(trans, root);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 list_add_tail(&fs_info->extent_root->dirty_list,
1046 &trans->transaction->switch_commits);
1047 btrfs_after_dev_replace_commit(fs_info);
1048
1049 return 0;
1050 }
1051
1052 /*
1053 * dead roots are old snapshots that need to be deleted. This allocates
1054 * a dirty root struct and adds it into the list of dead roots that need to
1055 * be deleted
1056 */
btrfs_add_dead_root(struct btrfs_root * root)1057 void btrfs_add_dead_root(struct btrfs_root *root)
1058 {
1059 spin_lock(&root->fs_info->trans_lock);
1060 if (list_empty(&root->root_list))
1061 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1062 spin_unlock(&root->fs_info->trans_lock);
1063 }
1064
1065 /*
1066 * update all the cowonly tree roots on disk
1067 */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1068 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root)
1070 {
1071 struct btrfs_root *gang[8];
1072 struct btrfs_fs_info *fs_info = root->fs_info;
1073 int i;
1074 int ret;
1075 int err = 0;
1076
1077 spin_lock(&fs_info->fs_roots_radix_lock);
1078 while (1) {
1079 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1080 (void **)gang, 0,
1081 ARRAY_SIZE(gang),
1082 BTRFS_ROOT_TRANS_TAG);
1083 if (ret == 0)
1084 break;
1085 for (i = 0; i < ret; i++) {
1086 root = gang[i];
1087 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1088 (unsigned long)root->root_key.objectid,
1089 BTRFS_ROOT_TRANS_TAG);
1090 spin_unlock(&fs_info->fs_roots_radix_lock);
1091
1092 btrfs_free_log(trans, root);
1093 btrfs_update_reloc_root(trans, root);
1094 btrfs_orphan_commit_root(trans, root);
1095
1096 btrfs_save_ino_cache(root, trans);
1097
1098 /* see comments in should_cow_block() */
1099 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1100 smp_mb__after_atomic();
1101
1102 if (root->commit_root != root->node) {
1103 list_add_tail(&root->dirty_list,
1104 &trans->transaction->switch_commits);
1105 btrfs_set_root_node(&root->root_item,
1106 root->node);
1107 }
1108
1109 err = btrfs_update_root(trans, fs_info->tree_root,
1110 &root->root_key,
1111 &root->root_item);
1112 spin_lock(&fs_info->fs_roots_radix_lock);
1113 if (err)
1114 break;
1115 }
1116 }
1117 spin_unlock(&fs_info->fs_roots_radix_lock);
1118 return err;
1119 }
1120
1121 /*
1122 * defrag a given btree.
1123 * Every leaf in the btree is read and defragged.
1124 */
btrfs_defrag_root(struct btrfs_root * root)1125 int btrfs_defrag_root(struct btrfs_root *root)
1126 {
1127 struct btrfs_fs_info *info = root->fs_info;
1128 struct btrfs_trans_handle *trans;
1129 int ret;
1130
1131 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1132 return 0;
1133
1134 while (1) {
1135 trans = btrfs_start_transaction(root, 0);
1136 if (IS_ERR(trans))
1137 return PTR_ERR(trans);
1138
1139 ret = btrfs_defrag_leaves(trans, root);
1140
1141 btrfs_end_transaction(trans, root);
1142 btrfs_btree_balance_dirty(info->tree_root);
1143 cond_resched();
1144
1145 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1146 break;
1147
1148 if (btrfs_defrag_cancelled(root->fs_info)) {
1149 pr_debug("BTRFS: defrag_root cancelled\n");
1150 ret = -EAGAIN;
1151 break;
1152 }
1153 }
1154 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1155 return ret;
1156 }
1157
1158 /*
1159 * new snapshots need to be created at a very specific time in the
1160 * transaction commit. This does the actual creation.
1161 *
1162 * Note:
1163 * If the error which may affect the commitment of the current transaction
1164 * happens, we should return the error number. If the error which just affect
1165 * the creation of the pending snapshots, just return 0.
1166 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)1167 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1168 struct btrfs_fs_info *fs_info,
1169 struct btrfs_pending_snapshot *pending)
1170 {
1171 struct btrfs_key key;
1172 struct btrfs_root_item *new_root_item;
1173 struct btrfs_root *tree_root = fs_info->tree_root;
1174 struct btrfs_root *root = pending->root;
1175 struct btrfs_root *parent_root;
1176 struct btrfs_block_rsv *rsv;
1177 struct inode *parent_inode;
1178 struct btrfs_path *path;
1179 struct btrfs_dir_item *dir_item;
1180 struct dentry *dentry;
1181 struct extent_buffer *tmp;
1182 struct extent_buffer *old;
1183 struct timespec cur_time = CURRENT_TIME;
1184 int ret = 0;
1185 u64 to_reserve = 0;
1186 u64 index = 0;
1187 u64 objectid;
1188 u64 root_flags;
1189 uuid_le new_uuid;
1190
1191 path = btrfs_alloc_path();
1192 if (!path) {
1193 pending->error = -ENOMEM;
1194 return 0;
1195 }
1196
1197 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1198 if (!new_root_item) {
1199 pending->error = -ENOMEM;
1200 goto root_item_alloc_fail;
1201 }
1202
1203 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1204 if (pending->error)
1205 goto no_free_objectid;
1206
1207 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1208
1209 if (to_reserve > 0) {
1210 pending->error = btrfs_block_rsv_add(root,
1211 &pending->block_rsv,
1212 to_reserve,
1213 BTRFS_RESERVE_NO_FLUSH);
1214 if (pending->error)
1215 goto no_free_objectid;
1216 }
1217
1218 key.objectid = objectid;
1219 key.offset = (u64)-1;
1220 key.type = BTRFS_ROOT_ITEM_KEY;
1221
1222 rsv = trans->block_rsv;
1223 trans->block_rsv = &pending->block_rsv;
1224 trans->bytes_reserved = trans->block_rsv->reserved;
1225
1226 dentry = pending->dentry;
1227 parent_inode = pending->dir;
1228 parent_root = BTRFS_I(parent_inode)->root;
1229 record_root_in_trans(trans, parent_root);
1230
1231 /*
1232 * insert the directory item
1233 */
1234 ret = btrfs_set_inode_index(parent_inode, &index);
1235 BUG_ON(ret); /* -ENOMEM */
1236
1237 /* check if there is a file/dir which has the same name. */
1238 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1239 btrfs_ino(parent_inode),
1240 dentry->d_name.name,
1241 dentry->d_name.len, 0);
1242 if (dir_item != NULL && !IS_ERR(dir_item)) {
1243 pending->error = -EEXIST;
1244 goto dir_item_existed;
1245 } else if (IS_ERR(dir_item)) {
1246 ret = PTR_ERR(dir_item);
1247 btrfs_abort_transaction(trans, root, ret);
1248 goto fail;
1249 }
1250 btrfs_release_path(path);
1251
1252 /*
1253 * pull in the delayed directory update
1254 * and the delayed inode item
1255 * otherwise we corrupt the FS during
1256 * snapshot
1257 */
1258 ret = btrfs_run_delayed_items(trans, root);
1259 if (ret) { /* Transaction aborted */
1260 btrfs_abort_transaction(trans, root, ret);
1261 goto fail;
1262 }
1263
1264 record_root_in_trans(trans, root);
1265 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1266 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1267 btrfs_check_and_init_root_item(new_root_item);
1268
1269 root_flags = btrfs_root_flags(new_root_item);
1270 if (pending->readonly)
1271 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1272 else
1273 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1274 btrfs_set_root_flags(new_root_item, root_flags);
1275
1276 btrfs_set_root_generation_v2(new_root_item,
1277 trans->transid);
1278 uuid_le_gen(&new_uuid);
1279 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1280 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1281 BTRFS_UUID_SIZE);
1282 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1283 memset(new_root_item->received_uuid, 0,
1284 sizeof(new_root_item->received_uuid));
1285 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1286 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1287 btrfs_set_root_stransid(new_root_item, 0);
1288 btrfs_set_root_rtransid(new_root_item, 0);
1289 }
1290 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1291 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1292 btrfs_set_root_otransid(new_root_item, trans->transid);
1293
1294 old = btrfs_lock_root_node(root);
1295 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1296 if (ret) {
1297 btrfs_tree_unlock(old);
1298 free_extent_buffer(old);
1299 btrfs_abort_transaction(trans, root, ret);
1300 goto fail;
1301 }
1302
1303 btrfs_set_lock_blocking(old);
1304
1305 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1306 /* clean up in any case */
1307 btrfs_tree_unlock(old);
1308 free_extent_buffer(old);
1309 if (ret) {
1310 btrfs_abort_transaction(trans, root, ret);
1311 goto fail;
1312 }
1313
1314 /*
1315 * We need to flush delayed refs in order to make sure all of our quota
1316 * operations have been done before we call btrfs_qgroup_inherit.
1317 */
1318 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1319 if (ret) {
1320 btrfs_abort_transaction(trans, root, ret);
1321 goto fail;
1322 }
1323
1324 ret = btrfs_qgroup_inherit(trans, fs_info,
1325 root->root_key.objectid,
1326 objectid, pending->inherit);
1327 if (ret) {
1328 btrfs_abort_transaction(trans, root, ret);
1329 goto fail;
1330 }
1331
1332 /* see comments in should_cow_block() */
1333 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1334 smp_wmb();
1335
1336 btrfs_set_root_node(new_root_item, tmp);
1337 /* record when the snapshot was created in key.offset */
1338 key.offset = trans->transid;
1339 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1340 btrfs_tree_unlock(tmp);
1341 free_extent_buffer(tmp);
1342 if (ret) {
1343 btrfs_abort_transaction(trans, root, ret);
1344 goto fail;
1345 }
1346
1347 /*
1348 * insert root back/forward references
1349 */
1350 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1351 parent_root->root_key.objectid,
1352 btrfs_ino(parent_inode), index,
1353 dentry->d_name.name, dentry->d_name.len);
1354 if (ret) {
1355 btrfs_abort_transaction(trans, root, ret);
1356 goto fail;
1357 }
1358
1359 key.offset = (u64)-1;
1360 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1361 if (IS_ERR(pending->snap)) {
1362 ret = PTR_ERR(pending->snap);
1363 btrfs_abort_transaction(trans, root, ret);
1364 goto fail;
1365 }
1366
1367 ret = btrfs_reloc_post_snapshot(trans, pending);
1368 if (ret) {
1369 btrfs_abort_transaction(trans, root, ret);
1370 goto fail;
1371 }
1372
1373 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1374 if (ret) {
1375 btrfs_abort_transaction(trans, root, ret);
1376 goto fail;
1377 }
1378
1379 ret = btrfs_insert_dir_item(trans, parent_root,
1380 dentry->d_name.name, dentry->d_name.len,
1381 parent_inode, &key,
1382 BTRFS_FT_DIR, index);
1383 /* We have check then name at the beginning, so it is impossible. */
1384 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1385 if (ret) {
1386 btrfs_abort_transaction(trans, root, ret);
1387 goto fail;
1388 }
1389
1390 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1391 dentry->d_name.len * 2);
1392 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1393 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1394 if (ret) {
1395 btrfs_abort_transaction(trans, root, ret);
1396 goto fail;
1397 }
1398 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1399 BTRFS_UUID_KEY_SUBVOL, objectid);
1400 if (ret) {
1401 btrfs_abort_transaction(trans, root, ret);
1402 goto fail;
1403 }
1404 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1405 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1406 new_root_item->received_uuid,
1407 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1408 objectid);
1409 if (ret && ret != -EEXIST) {
1410 btrfs_abort_transaction(trans, root, ret);
1411 goto fail;
1412 }
1413 }
1414 fail:
1415 pending->error = ret;
1416 dir_item_existed:
1417 trans->block_rsv = rsv;
1418 trans->bytes_reserved = 0;
1419 no_free_objectid:
1420 kfree(new_root_item);
1421 root_item_alloc_fail:
1422 btrfs_free_path(path);
1423 return ret;
1424 }
1425
1426 /*
1427 * create all the snapshots we've scheduled for creation
1428 */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1429 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1430 struct btrfs_fs_info *fs_info)
1431 {
1432 struct btrfs_pending_snapshot *pending, *next;
1433 struct list_head *head = &trans->transaction->pending_snapshots;
1434 int ret = 0;
1435
1436 list_for_each_entry_safe(pending, next, head, list) {
1437 list_del(&pending->list);
1438 ret = create_pending_snapshot(trans, fs_info, pending);
1439 if (ret)
1440 break;
1441 }
1442 return ret;
1443 }
1444
update_super_roots(struct btrfs_root * root)1445 static void update_super_roots(struct btrfs_root *root)
1446 {
1447 struct btrfs_root_item *root_item;
1448 struct btrfs_super_block *super;
1449
1450 super = root->fs_info->super_copy;
1451
1452 root_item = &root->fs_info->chunk_root->root_item;
1453 super->chunk_root = root_item->bytenr;
1454 super->chunk_root_generation = root_item->generation;
1455 super->chunk_root_level = root_item->level;
1456
1457 root_item = &root->fs_info->tree_root->root_item;
1458 super->root = root_item->bytenr;
1459 super->generation = root_item->generation;
1460 super->root_level = root_item->level;
1461 if (btrfs_test_opt(root, SPACE_CACHE))
1462 super->cache_generation = root_item->generation;
1463 if (root->fs_info->update_uuid_tree_gen)
1464 super->uuid_tree_generation = root_item->generation;
1465 }
1466
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1467 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1468 {
1469 struct btrfs_transaction *trans;
1470 int ret = 0;
1471
1472 spin_lock(&info->trans_lock);
1473 trans = info->running_transaction;
1474 if (trans)
1475 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1476 spin_unlock(&info->trans_lock);
1477 return ret;
1478 }
1479
btrfs_transaction_blocked(struct btrfs_fs_info * info)1480 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1481 {
1482 struct btrfs_transaction *trans;
1483 int ret = 0;
1484
1485 spin_lock(&info->trans_lock);
1486 trans = info->running_transaction;
1487 if (trans)
1488 ret = is_transaction_blocked(trans);
1489 spin_unlock(&info->trans_lock);
1490 return ret;
1491 }
1492
1493 /*
1494 * wait for the current transaction commit to start and block subsequent
1495 * transaction joins
1496 */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1497 static void wait_current_trans_commit_start(struct btrfs_root *root,
1498 struct btrfs_transaction *trans)
1499 {
1500 wait_event(root->fs_info->transaction_blocked_wait,
1501 trans->state >= TRANS_STATE_COMMIT_START ||
1502 trans->aborted);
1503 }
1504
1505 /*
1506 * wait for the current transaction to start and then become unblocked.
1507 * caller holds ref.
1508 */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1509 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1510 struct btrfs_transaction *trans)
1511 {
1512 wait_event(root->fs_info->transaction_wait,
1513 trans->state >= TRANS_STATE_UNBLOCKED ||
1514 trans->aborted);
1515 }
1516
1517 /*
1518 * commit transactions asynchronously. once btrfs_commit_transaction_async
1519 * returns, any subsequent transaction will not be allowed to join.
1520 */
1521 struct btrfs_async_commit {
1522 struct btrfs_trans_handle *newtrans;
1523 struct btrfs_root *root;
1524 struct work_struct work;
1525 };
1526
do_async_commit(struct work_struct * work)1527 static void do_async_commit(struct work_struct *work)
1528 {
1529 struct btrfs_async_commit *ac =
1530 container_of(work, struct btrfs_async_commit, work);
1531
1532 /*
1533 * We've got freeze protection passed with the transaction.
1534 * Tell lockdep about it.
1535 */
1536 if (ac->newtrans->type & __TRANS_FREEZABLE)
1537 rwsem_acquire_read(
1538 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1539 0, 1, _THIS_IP_);
1540
1541 current->journal_info = ac->newtrans;
1542
1543 btrfs_commit_transaction(ac->newtrans, ac->root);
1544 kfree(ac);
1545 }
1546
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1547 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root,
1549 int wait_for_unblock)
1550 {
1551 struct btrfs_async_commit *ac;
1552 struct btrfs_transaction *cur_trans;
1553
1554 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1555 if (!ac)
1556 return -ENOMEM;
1557
1558 INIT_WORK(&ac->work, do_async_commit);
1559 ac->root = root;
1560 ac->newtrans = btrfs_join_transaction(root);
1561 if (IS_ERR(ac->newtrans)) {
1562 int err = PTR_ERR(ac->newtrans);
1563 kfree(ac);
1564 return err;
1565 }
1566
1567 /* take transaction reference */
1568 cur_trans = trans->transaction;
1569 atomic_inc(&cur_trans->use_count);
1570
1571 btrfs_end_transaction(trans, root);
1572
1573 /*
1574 * Tell lockdep we've released the freeze rwsem, since the
1575 * async commit thread will be the one to unlock it.
1576 */
1577 if (ac->newtrans->type & __TRANS_FREEZABLE)
1578 rwsem_release(
1579 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1580 1, _THIS_IP_);
1581
1582 schedule_work(&ac->work);
1583
1584 /* wait for transaction to start and unblock */
1585 if (wait_for_unblock)
1586 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1587 else
1588 wait_current_trans_commit_start(root, cur_trans);
1589
1590 if (current->journal_info == trans)
1591 current->journal_info = NULL;
1592
1593 btrfs_put_transaction(cur_trans);
1594 return 0;
1595 }
1596
1597
cleanup_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int err)1598 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root, int err)
1600 {
1601 struct btrfs_transaction *cur_trans = trans->transaction;
1602 DEFINE_WAIT(wait);
1603
1604 WARN_ON(trans->use_count > 1);
1605
1606 btrfs_abort_transaction(trans, root, err);
1607
1608 spin_lock(&root->fs_info->trans_lock);
1609
1610 /*
1611 * If the transaction is removed from the list, it means this
1612 * transaction has been committed successfully, so it is impossible
1613 * to call the cleanup function.
1614 */
1615 BUG_ON(list_empty(&cur_trans->list));
1616
1617 list_del_init(&cur_trans->list);
1618 if (cur_trans == root->fs_info->running_transaction) {
1619 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1620 spin_unlock(&root->fs_info->trans_lock);
1621 wait_event(cur_trans->writer_wait,
1622 atomic_read(&cur_trans->num_writers) == 1);
1623
1624 spin_lock(&root->fs_info->trans_lock);
1625 }
1626 spin_unlock(&root->fs_info->trans_lock);
1627
1628 btrfs_cleanup_one_transaction(trans->transaction, root);
1629
1630 spin_lock(&root->fs_info->trans_lock);
1631 if (cur_trans == root->fs_info->running_transaction)
1632 root->fs_info->running_transaction = NULL;
1633 spin_unlock(&root->fs_info->trans_lock);
1634
1635 if (trans->type & __TRANS_FREEZABLE)
1636 sb_end_intwrite(root->fs_info->sb);
1637 btrfs_put_transaction(cur_trans);
1638 btrfs_put_transaction(cur_trans);
1639
1640 trace_btrfs_transaction_commit(root);
1641
1642 if (current->journal_info == trans)
1643 current->journal_info = NULL;
1644 btrfs_scrub_cancel(root->fs_info);
1645
1646 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1647 }
1648
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)1649 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1650 {
1651 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1652 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1653 return 0;
1654 }
1655
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)1656 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1657 {
1658 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1659 btrfs_wait_ordered_roots(fs_info, -1);
1660 }
1661
1662 static inline void
btrfs_wait_pending_ordered(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)1663 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1664 struct btrfs_fs_info *fs_info)
1665 {
1666 struct btrfs_ordered_extent *ordered;
1667
1668 spin_lock(&fs_info->trans_lock);
1669 while (!list_empty(&cur_trans->pending_ordered)) {
1670 ordered = list_first_entry(&cur_trans->pending_ordered,
1671 struct btrfs_ordered_extent,
1672 trans_list);
1673 list_del_init(&ordered->trans_list);
1674 spin_unlock(&fs_info->trans_lock);
1675
1676 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1677 &ordered->flags));
1678 btrfs_put_ordered_extent(ordered);
1679 spin_lock(&fs_info->trans_lock);
1680 }
1681 spin_unlock(&fs_info->trans_lock);
1682 }
1683
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1684 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1685 struct btrfs_root *root)
1686 {
1687 struct btrfs_transaction *cur_trans = trans->transaction;
1688 struct btrfs_transaction *prev_trans = NULL;
1689 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1690 int ret;
1691
1692 /* Stop the commit early if ->aborted is set */
1693 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1694 ret = cur_trans->aborted;
1695 btrfs_end_transaction(trans, root);
1696 return ret;
1697 }
1698
1699 /* make a pass through all the delayed refs we have so far
1700 * any runnings procs may add more while we are here
1701 */
1702 ret = btrfs_run_delayed_refs(trans, root, 0);
1703 if (ret) {
1704 btrfs_end_transaction(trans, root);
1705 return ret;
1706 }
1707
1708 btrfs_trans_release_metadata(trans, root);
1709 trans->block_rsv = NULL;
1710 if (trans->qgroup_reserved) {
1711 btrfs_qgroup_free(root, trans->qgroup_reserved);
1712 trans->qgroup_reserved = 0;
1713 }
1714
1715 cur_trans = trans->transaction;
1716
1717 /*
1718 * set the flushing flag so procs in this transaction have to
1719 * start sending their work down.
1720 */
1721 cur_trans->delayed_refs.flushing = 1;
1722 smp_wmb();
1723
1724 if (!list_empty(&trans->new_bgs))
1725 btrfs_create_pending_block_groups(trans, root);
1726
1727 ret = btrfs_run_delayed_refs(trans, root, 0);
1728 if (ret) {
1729 btrfs_end_transaction(trans, root);
1730 return ret;
1731 }
1732
1733 spin_lock(&root->fs_info->trans_lock);
1734 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1735 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1736 spin_unlock(&root->fs_info->trans_lock);
1737 atomic_inc(&cur_trans->use_count);
1738 ret = btrfs_end_transaction(trans, root);
1739
1740 wait_for_commit(root, cur_trans);
1741
1742 btrfs_put_transaction(cur_trans);
1743
1744 return ret;
1745 }
1746
1747 cur_trans->state = TRANS_STATE_COMMIT_START;
1748 wake_up(&root->fs_info->transaction_blocked_wait);
1749
1750 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1751 prev_trans = list_entry(cur_trans->list.prev,
1752 struct btrfs_transaction, list);
1753 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1754 atomic_inc(&prev_trans->use_count);
1755 spin_unlock(&root->fs_info->trans_lock);
1756
1757 wait_for_commit(root, prev_trans);
1758 ret = prev_trans->aborted;
1759
1760 btrfs_put_transaction(prev_trans);
1761 if (ret)
1762 goto cleanup_transaction;
1763 } else {
1764 spin_unlock(&root->fs_info->trans_lock);
1765 }
1766 } else {
1767 spin_unlock(&root->fs_info->trans_lock);
1768 }
1769
1770 extwriter_counter_dec(cur_trans, trans->type);
1771
1772 ret = btrfs_start_delalloc_flush(root->fs_info);
1773 if (ret)
1774 goto cleanup_transaction;
1775
1776 ret = btrfs_run_delayed_items(trans, root);
1777 if (ret)
1778 goto cleanup_transaction;
1779
1780 wait_event(cur_trans->writer_wait,
1781 extwriter_counter_read(cur_trans) == 0);
1782
1783 /* some pending stuffs might be added after the previous flush. */
1784 ret = btrfs_run_delayed_items(trans, root);
1785 if (ret)
1786 goto cleanup_transaction;
1787
1788 btrfs_wait_delalloc_flush(root->fs_info);
1789
1790 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1791
1792 btrfs_scrub_pause(root);
1793 /*
1794 * Ok now we need to make sure to block out any other joins while we
1795 * commit the transaction. We could have started a join before setting
1796 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1797 */
1798 spin_lock(&root->fs_info->trans_lock);
1799 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1800 spin_unlock(&root->fs_info->trans_lock);
1801 wait_event(cur_trans->writer_wait,
1802 atomic_read(&cur_trans->num_writers) == 1);
1803
1804 /* ->aborted might be set after the previous check, so check it */
1805 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1806 ret = cur_trans->aborted;
1807 goto scrub_continue;
1808 }
1809 /*
1810 * the reloc mutex makes sure that we stop
1811 * the balancing code from coming in and moving
1812 * extents around in the middle of the commit
1813 */
1814 mutex_lock(&root->fs_info->reloc_mutex);
1815
1816 /*
1817 * We needn't worry about the delayed items because we will
1818 * deal with them in create_pending_snapshot(), which is the
1819 * core function of the snapshot creation.
1820 */
1821 ret = create_pending_snapshots(trans, root->fs_info);
1822 if (ret) {
1823 mutex_unlock(&root->fs_info->reloc_mutex);
1824 goto scrub_continue;
1825 }
1826
1827 /*
1828 * We insert the dir indexes of the snapshots and update the inode
1829 * of the snapshots' parents after the snapshot creation, so there
1830 * are some delayed items which are not dealt with. Now deal with
1831 * them.
1832 *
1833 * We needn't worry that this operation will corrupt the snapshots,
1834 * because all the tree which are snapshoted will be forced to COW
1835 * the nodes and leaves.
1836 */
1837 ret = btrfs_run_delayed_items(trans, root);
1838 if (ret) {
1839 mutex_unlock(&root->fs_info->reloc_mutex);
1840 goto scrub_continue;
1841 }
1842
1843 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1844 if (ret) {
1845 mutex_unlock(&root->fs_info->reloc_mutex);
1846 goto scrub_continue;
1847 }
1848
1849 /*
1850 * make sure none of the code above managed to slip in a
1851 * delayed item
1852 */
1853 btrfs_assert_delayed_root_empty(root);
1854
1855 WARN_ON(cur_trans != trans->transaction);
1856
1857 /* btrfs_commit_tree_roots is responsible for getting the
1858 * various roots consistent with each other. Every pointer
1859 * in the tree of tree roots has to point to the most up to date
1860 * root for every subvolume and other tree. So, we have to keep
1861 * the tree logging code from jumping in and changing any
1862 * of the trees.
1863 *
1864 * At this point in the commit, there can't be any tree-log
1865 * writers, but a little lower down we drop the trans mutex
1866 * and let new people in. By holding the tree_log_mutex
1867 * from now until after the super is written, we avoid races
1868 * with the tree-log code.
1869 */
1870 mutex_lock(&root->fs_info->tree_log_mutex);
1871
1872 ret = commit_fs_roots(trans, root);
1873 if (ret) {
1874 mutex_unlock(&root->fs_info->tree_log_mutex);
1875 mutex_unlock(&root->fs_info->reloc_mutex);
1876 goto scrub_continue;
1877 }
1878
1879 /*
1880 * Since the transaction is done, we should set the inode map cache flag
1881 * before any other comming transaction.
1882 */
1883 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1884 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1885 else
1886 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1887
1888 /* commit_fs_roots gets rid of all the tree log roots, it is now
1889 * safe to free the root of tree log roots
1890 */
1891 btrfs_free_log_root_tree(trans, root->fs_info);
1892
1893 ret = commit_cowonly_roots(trans, root);
1894 if (ret) {
1895 mutex_unlock(&root->fs_info->tree_log_mutex);
1896 mutex_unlock(&root->fs_info->reloc_mutex);
1897 goto scrub_continue;
1898 }
1899
1900 /*
1901 * The tasks which save the space cache and inode cache may also
1902 * update ->aborted, check it.
1903 */
1904 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1905 ret = cur_trans->aborted;
1906 mutex_unlock(&root->fs_info->tree_log_mutex);
1907 mutex_unlock(&root->fs_info->reloc_mutex);
1908 goto scrub_continue;
1909 }
1910
1911 btrfs_prepare_extent_commit(trans, root);
1912
1913 cur_trans = root->fs_info->running_transaction;
1914
1915 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1916 root->fs_info->tree_root->node);
1917 list_add_tail(&root->fs_info->tree_root->dirty_list,
1918 &cur_trans->switch_commits);
1919
1920 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1921 root->fs_info->chunk_root->node);
1922 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1923 &cur_trans->switch_commits);
1924
1925 switch_commit_roots(cur_trans, root->fs_info);
1926
1927 assert_qgroups_uptodate(trans);
1928 update_super_roots(root);
1929
1930 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1931 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1932 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1933 sizeof(*root->fs_info->super_copy));
1934
1935 btrfs_update_commit_device_size(root->fs_info);
1936 btrfs_update_commit_device_bytes_used(root, cur_trans);
1937
1938 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
1939 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
1940
1941 spin_lock(&root->fs_info->trans_lock);
1942 cur_trans->state = TRANS_STATE_UNBLOCKED;
1943 root->fs_info->running_transaction = NULL;
1944 spin_unlock(&root->fs_info->trans_lock);
1945 mutex_unlock(&root->fs_info->reloc_mutex);
1946
1947 wake_up(&root->fs_info->transaction_wait);
1948
1949 ret = btrfs_write_and_wait_transaction(trans, root);
1950 if (ret) {
1951 btrfs_error(root->fs_info, ret,
1952 "Error while writing out transaction");
1953 mutex_unlock(&root->fs_info->tree_log_mutex);
1954 goto scrub_continue;
1955 }
1956
1957 ret = write_ctree_super(trans, root, 0);
1958 if (ret) {
1959 mutex_unlock(&root->fs_info->tree_log_mutex);
1960 goto scrub_continue;
1961 }
1962
1963 /*
1964 * the super is written, we can safely allow the tree-loggers
1965 * to go about their business
1966 */
1967 mutex_unlock(&root->fs_info->tree_log_mutex);
1968
1969 btrfs_finish_extent_commit(trans, root);
1970
1971 root->fs_info->last_trans_committed = cur_trans->transid;
1972 /*
1973 * We needn't acquire the lock here because there is no other task
1974 * which can change it.
1975 */
1976 cur_trans->state = TRANS_STATE_COMPLETED;
1977 wake_up(&cur_trans->commit_wait);
1978
1979 spin_lock(&root->fs_info->trans_lock);
1980 list_del_init(&cur_trans->list);
1981 spin_unlock(&root->fs_info->trans_lock);
1982
1983 btrfs_put_transaction(cur_trans);
1984 btrfs_put_transaction(cur_trans);
1985
1986 if (trans->type & __TRANS_FREEZABLE)
1987 sb_end_intwrite(root->fs_info->sb);
1988
1989 trace_btrfs_transaction_commit(root);
1990
1991 btrfs_scrub_continue(root);
1992
1993 if (current->journal_info == trans)
1994 current->journal_info = NULL;
1995
1996 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1997
1998 if (current != root->fs_info->transaction_kthread)
1999 btrfs_run_delayed_iputs(root);
2000
2001 return ret;
2002
2003 scrub_continue:
2004 btrfs_scrub_continue(root);
2005 cleanup_transaction:
2006 btrfs_trans_release_metadata(trans, root);
2007 trans->block_rsv = NULL;
2008 if (trans->qgroup_reserved) {
2009 btrfs_qgroup_free(root, trans->qgroup_reserved);
2010 trans->qgroup_reserved = 0;
2011 }
2012 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2013 if (current->journal_info == trans)
2014 current->journal_info = NULL;
2015 cleanup_transaction(trans, root, ret);
2016
2017 return ret;
2018 }
2019
2020 /*
2021 * return < 0 if error
2022 * 0 if there are no more dead_roots at the time of call
2023 * 1 there are more to be processed, call me again
2024 *
2025 * The return value indicates there are certainly more snapshots to delete, but
2026 * if there comes a new one during processing, it may return 0. We don't mind,
2027 * because btrfs_commit_super will poke cleaner thread and it will process it a
2028 * few seconds later.
2029 */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2030 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2031 {
2032 int ret;
2033 struct btrfs_fs_info *fs_info = root->fs_info;
2034
2035 spin_lock(&fs_info->trans_lock);
2036 if (list_empty(&fs_info->dead_roots)) {
2037 spin_unlock(&fs_info->trans_lock);
2038 return 0;
2039 }
2040 root = list_first_entry(&fs_info->dead_roots,
2041 struct btrfs_root, root_list);
2042 list_del_init(&root->root_list);
2043 spin_unlock(&fs_info->trans_lock);
2044
2045 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2046
2047 btrfs_kill_all_delayed_nodes(root);
2048
2049 if (btrfs_header_backref_rev(root->node) <
2050 BTRFS_MIXED_BACKREF_REV)
2051 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2052 else
2053 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2054
2055 return (ret < 0) ? 0 : 1;
2056 }
2057