• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
btrfs_put_transaction(struct btrfs_transaction * transaction)61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		while (!list_empty(&transaction->pending_chunks)) {
68 			struct extent_map *em;
69 
70 			em = list_first_entry(&transaction->pending_chunks,
71 					      struct extent_map, list);
72 			list_del_init(&em->list);
73 			free_extent_map(em);
74 		}
75 		kmem_cache_free(btrfs_transaction_cachep, transaction);
76 	}
77 }
78 
switch_commit_roots(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 					 struct btrfs_fs_info *fs_info)
81 {
82 	struct btrfs_root *root, *tmp;
83 
84 	down_write(&fs_info->commit_root_sem);
85 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 				 dirty_list) {
87 		list_del_init(&root->dirty_list);
88 		free_extent_buffer(root->commit_root);
89 		root->commit_root = btrfs_root_node(root);
90 		if (is_fstree(root->objectid))
91 			btrfs_unpin_free_ino(root);
92 	}
93 	up_write(&fs_info->commit_root_sem);
94 }
95 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 					 unsigned int type)
98 {
99 	if (type & TRANS_EXTWRITERS)
100 		atomic_inc(&trans->num_extwriters);
101 }
102 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 					 unsigned int type)
105 {
106 	if (type & TRANS_EXTWRITERS)
107 		atomic_dec(&trans->num_extwriters);
108 }
109 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 					  unsigned int type)
112 {
113 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
114 }
115 
extwriter_counter_read(struct btrfs_transaction * trans)116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
117 {
118 	return atomic_read(&trans->num_extwriters);
119 }
120 
121 /*
122  * either allocate a new transaction or hop into the existing one
123  */
join_transaction(struct btrfs_root * root,unsigned int type)124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
125 {
126 	struct btrfs_transaction *cur_trans;
127 	struct btrfs_fs_info *fs_info = root->fs_info;
128 
129 	spin_lock(&fs_info->trans_lock);
130 loop:
131 	/* The file system has been taken offline. No new transactions. */
132 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 		spin_unlock(&fs_info->trans_lock);
134 		return -EROFS;
135 	}
136 
137 	cur_trans = fs_info->running_transaction;
138 	if (cur_trans) {
139 		if (cur_trans->aborted) {
140 			spin_unlock(&fs_info->trans_lock);
141 			return cur_trans->aborted;
142 		}
143 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 			spin_unlock(&fs_info->trans_lock);
145 			return -EBUSY;
146 		}
147 		atomic_inc(&cur_trans->use_count);
148 		atomic_inc(&cur_trans->num_writers);
149 		extwriter_counter_inc(cur_trans, type);
150 		spin_unlock(&fs_info->trans_lock);
151 		return 0;
152 	}
153 	spin_unlock(&fs_info->trans_lock);
154 
155 	/*
156 	 * If we are ATTACH, we just want to catch the current transaction,
157 	 * and commit it. If there is no transaction, just return ENOENT.
158 	 */
159 	if (type == TRANS_ATTACH)
160 		return -ENOENT;
161 
162 	/*
163 	 * JOIN_NOLOCK only happens during the transaction commit, so
164 	 * it is impossible that ->running_transaction is NULL
165 	 */
166 	BUG_ON(type == TRANS_JOIN_NOLOCK);
167 
168 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 	if (!cur_trans)
170 		return -ENOMEM;
171 
172 	spin_lock(&fs_info->trans_lock);
173 	if (fs_info->running_transaction) {
174 		/*
175 		 * someone started a transaction after we unlocked.  Make sure
176 		 * to redo the checks above
177 		 */
178 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 		goto loop;
180 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 		spin_unlock(&fs_info->trans_lock);
182 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 		return -EROFS;
184 	}
185 
186 	atomic_set(&cur_trans->num_writers, 1);
187 	extwriter_counter_init(cur_trans, type);
188 	init_waitqueue_head(&cur_trans->writer_wait);
189 	init_waitqueue_head(&cur_trans->commit_wait);
190 	cur_trans->state = TRANS_STATE_RUNNING;
191 	/*
192 	 * One for this trans handle, one so it will live on until we
193 	 * commit the transaction.
194 	 */
195 	atomic_set(&cur_trans->use_count, 2);
196 	cur_trans->start_time = get_seconds();
197 
198 	cur_trans->delayed_refs.href_root = RB_ROOT;
199 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 	cur_trans->delayed_refs.num_heads_ready = 0;
201 	cur_trans->delayed_refs.num_heads = 0;
202 	cur_trans->delayed_refs.flushing = 0;
203 	cur_trans->delayed_refs.run_delayed_start = 0;
204 
205 	/*
206 	 * although the tree mod log is per file system and not per transaction,
207 	 * the log must never go across transaction boundaries.
208 	 */
209 	smp_mb();
210 	if (!list_empty(&fs_info->tree_mod_seq_list))
211 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 			"creating a fresh transaction\n");
213 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 			"creating a fresh transaction\n");
216 	atomic64_set(&fs_info->tree_mod_seq, 0);
217 
218 	spin_lock_init(&cur_trans->delayed_refs.lock);
219 
220 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 	INIT_LIST_HEAD(&cur_trans->switch_commits);
223 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
224 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
225 	extent_io_tree_init(&cur_trans->dirty_pages,
226 			     fs_info->btree_inode->i_mapping);
227 	fs_info->generation++;
228 	cur_trans->transid = fs_info->generation;
229 	fs_info->running_transaction = cur_trans;
230 	cur_trans->aborted = 0;
231 	spin_unlock(&fs_info->trans_lock);
232 
233 	return 0;
234 }
235 
236 /*
237  * this does all the record keeping required to make sure that a reference
238  * counted root is properly recorded in a given transaction.  This is required
239  * to make sure the old root from before we joined the transaction is deleted
240  * when the transaction commits
241  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243 			       struct btrfs_root *root)
244 {
245 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246 	    root->last_trans < trans->transid) {
247 		WARN_ON(root == root->fs_info->extent_root);
248 		WARN_ON(root->commit_root != root->node);
249 
250 		/*
251 		 * see below for IN_TRANS_SETUP usage rules
252 		 * we have the reloc mutex held now, so there
253 		 * is only one writer in this function
254 		 */
255 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
256 
257 		/* make sure readers find IN_TRANS_SETUP before
258 		 * they find our root->last_trans update
259 		 */
260 		smp_wmb();
261 
262 		spin_lock(&root->fs_info->fs_roots_radix_lock);
263 		if (root->last_trans == trans->transid) {
264 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
265 			return 0;
266 		}
267 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268 			   (unsigned long)root->root_key.objectid,
269 			   BTRFS_ROOT_TRANS_TAG);
270 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
271 		root->last_trans = trans->transid;
272 
273 		/* this is pretty tricky.  We don't want to
274 		 * take the relocation lock in btrfs_record_root_in_trans
275 		 * unless we're really doing the first setup for this root in
276 		 * this transaction.
277 		 *
278 		 * Normally we'd use root->last_trans as a flag to decide
279 		 * if we want to take the expensive mutex.
280 		 *
281 		 * But, we have to set root->last_trans before we
282 		 * init the relocation root, otherwise, we trip over warnings
283 		 * in ctree.c.  The solution used here is to flag ourselves
284 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
285 		 * fixing up the reloc trees and everyone must wait.
286 		 *
287 		 * When this is zero, they can trust root->last_trans and fly
288 		 * through btrfs_record_root_in_trans without having to take the
289 		 * lock.  smp_wmb() makes sure that all the writes above are
290 		 * done before we pop in the zero below
291 		 */
292 		btrfs_init_reloc_root(trans, root);
293 		smp_mb__before_atomic();
294 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
295 	}
296 	return 0;
297 }
298 
299 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301 			       struct btrfs_root *root)
302 {
303 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304 		return 0;
305 
306 	/*
307 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308 	 * and barriers
309 	 */
310 	smp_rmb();
311 	if (root->last_trans == trans->transid &&
312 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313 		return 0;
314 
315 	mutex_lock(&root->fs_info->reloc_mutex);
316 	record_root_in_trans(trans, root);
317 	mutex_unlock(&root->fs_info->reloc_mutex);
318 
319 	return 0;
320 }
321 
is_transaction_blocked(struct btrfs_transaction * trans)322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
323 {
324 	return (trans->state >= TRANS_STATE_BLOCKED &&
325 		trans->state < TRANS_STATE_UNBLOCKED &&
326 		!trans->aborted);
327 }
328 
329 /* wait for commit against the current transaction to become unblocked
330  * when this is done, it is safe to start a new transaction, but the current
331  * transaction might not be fully on disk.
332  */
wait_current_trans(struct btrfs_root * root)333 static void wait_current_trans(struct btrfs_root *root)
334 {
335 	struct btrfs_transaction *cur_trans;
336 
337 	spin_lock(&root->fs_info->trans_lock);
338 	cur_trans = root->fs_info->running_transaction;
339 	if (cur_trans && is_transaction_blocked(cur_trans)) {
340 		atomic_inc(&cur_trans->use_count);
341 		spin_unlock(&root->fs_info->trans_lock);
342 
343 		wait_event(root->fs_info->transaction_wait,
344 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345 			   cur_trans->aborted);
346 		btrfs_put_transaction(cur_trans);
347 	} else {
348 		spin_unlock(&root->fs_info->trans_lock);
349 	}
350 }
351 
may_wait_transaction(struct btrfs_root * root,int type)352 static int may_wait_transaction(struct btrfs_root *root, int type)
353 {
354 	if (root->fs_info->log_root_recovering)
355 		return 0;
356 
357 	if (type == TRANS_USERSPACE)
358 		return 1;
359 
360 	if (type == TRANS_START &&
361 	    !atomic_read(&root->fs_info->open_ioctl_trans))
362 		return 1;
363 
364 	return 0;
365 }
366 
need_reserve_reloc_root(struct btrfs_root * root)367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
368 {
369 	if (!root->fs_info->reloc_ctl ||
370 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372 	    root->reloc_root)
373 		return false;
374 
375 	return true;
376 }
377 
378 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,u64 num_items,unsigned int type,enum btrfs_reserve_flush_enum flush)379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380 		  enum btrfs_reserve_flush_enum flush)
381 {
382 	struct btrfs_trans_handle *h;
383 	struct btrfs_transaction *cur_trans;
384 	u64 num_bytes = 0;
385 	u64 qgroup_reserved = 0;
386 	bool reloc_reserved = false;
387 	int ret;
388 
389 	/* Send isn't supposed to start transactions. */
390 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
391 
392 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
393 		return ERR_PTR(-EROFS);
394 
395 	if (current->journal_info) {
396 		WARN_ON(type & TRANS_EXTWRITERS);
397 		h = current->journal_info;
398 		h->use_count++;
399 		WARN_ON(h->use_count > 2);
400 		h->orig_rsv = h->block_rsv;
401 		h->block_rsv = NULL;
402 		goto got_it;
403 	}
404 
405 	/*
406 	 * Do the reservation before we join the transaction so we can do all
407 	 * the appropriate flushing if need be.
408 	 */
409 	if (num_items > 0 && root != root->fs_info->chunk_root) {
410 		if (root->fs_info->quota_enabled &&
411 		    is_fstree(root->root_key.objectid)) {
412 			qgroup_reserved = num_items * root->nodesize;
413 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
414 			if (ret)
415 				return ERR_PTR(ret);
416 		}
417 
418 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
419 		/*
420 		 * Do the reservation for the relocation root creation
421 		 */
422 		if (need_reserve_reloc_root(root)) {
423 			num_bytes += root->nodesize;
424 			reloc_reserved = true;
425 		}
426 
427 		ret = btrfs_block_rsv_add(root,
428 					  &root->fs_info->trans_block_rsv,
429 					  num_bytes, flush);
430 		if (ret)
431 			goto reserve_fail;
432 	}
433 again:
434 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
435 	if (!h) {
436 		ret = -ENOMEM;
437 		goto alloc_fail;
438 	}
439 
440 	/*
441 	 * If we are JOIN_NOLOCK we're already committing a transaction and
442 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
443 	 * because we're already holding a ref.  We need this because we could
444 	 * have raced in and did an fsync() on a file which can kick a commit
445 	 * and then we deadlock with somebody doing a freeze.
446 	 *
447 	 * If we are ATTACH, it means we just want to catch the current
448 	 * transaction and commit it, so we needn't do sb_start_intwrite().
449 	 */
450 	if (type & __TRANS_FREEZABLE)
451 		sb_start_intwrite(root->fs_info->sb);
452 
453 	if (may_wait_transaction(root, type))
454 		wait_current_trans(root);
455 
456 	do {
457 		ret = join_transaction(root, type);
458 		if (ret == -EBUSY) {
459 			wait_current_trans(root);
460 			if (unlikely(type == TRANS_ATTACH))
461 				ret = -ENOENT;
462 		}
463 	} while (ret == -EBUSY);
464 
465 	if (ret < 0) {
466 		/* We must get the transaction if we are JOIN_NOLOCK. */
467 		BUG_ON(type == TRANS_JOIN_NOLOCK);
468 		goto join_fail;
469 	}
470 
471 	cur_trans = root->fs_info->running_transaction;
472 
473 	h->transid = cur_trans->transid;
474 	h->transaction = cur_trans;
475 	h->bytes_reserved = 0;
476 	h->root = root;
477 	h->delayed_ref_updates = 0;
478 	h->use_count = 1;
479 	h->adding_csums = 0;
480 	h->block_rsv = NULL;
481 	h->orig_rsv = NULL;
482 	h->aborted = 0;
483 	h->qgroup_reserved = 0;
484 	h->delayed_ref_elem.seq = 0;
485 	h->type = type;
486 	h->allocating_chunk = false;
487 	h->reloc_reserved = false;
488 	h->sync = false;
489 	INIT_LIST_HEAD(&h->qgroup_ref_list);
490 	INIT_LIST_HEAD(&h->new_bgs);
491 	INIT_LIST_HEAD(&h->ordered);
492 
493 	smp_mb();
494 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
495 	    may_wait_transaction(root, type)) {
496 		current->journal_info = h;
497 		btrfs_commit_transaction(h, root);
498 		goto again;
499 	}
500 
501 	if (num_bytes) {
502 		trace_btrfs_space_reservation(root->fs_info, "transaction",
503 					      h->transid, num_bytes, 1);
504 		h->block_rsv = &root->fs_info->trans_block_rsv;
505 		h->bytes_reserved = num_bytes;
506 		h->reloc_reserved = reloc_reserved;
507 	}
508 	h->qgroup_reserved = qgroup_reserved;
509 
510 got_it:
511 	btrfs_record_root_in_trans(h, root);
512 
513 	if (!current->journal_info && type != TRANS_USERSPACE)
514 		current->journal_info = h;
515 	return h;
516 
517 join_fail:
518 	if (type & __TRANS_FREEZABLE)
519 		sb_end_intwrite(root->fs_info->sb);
520 	kmem_cache_free(btrfs_trans_handle_cachep, h);
521 alloc_fail:
522 	if (num_bytes)
523 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
524 					num_bytes);
525 reserve_fail:
526 	if (qgroup_reserved)
527 		btrfs_qgroup_free(root, qgroup_reserved);
528 	return ERR_PTR(ret);
529 }
530 
btrfs_start_transaction(struct btrfs_root * root,int num_items)531 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
532 						   int num_items)
533 {
534 	return start_transaction(root, num_items, TRANS_START,
535 				 BTRFS_RESERVE_FLUSH_ALL);
536 }
537 
btrfs_start_transaction_lflush(struct btrfs_root * root,int num_items)538 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
539 					struct btrfs_root *root, int num_items)
540 {
541 	return start_transaction(root, num_items, TRANS_START,
542 				 BTRFS_RESERVE_FLUSH_LIMIT);
543 }
544 
btrfs_join_transaction(struct btrfs_root * root)545 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
546 {
547 	return start_transaction(root, 0, TRANS_JOIN, 0);
548 }
549 
btrfs_join_transaction_nolock(struct btrfs_root * root)550 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
551 {
552 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
553 }
554 
btrfs_start_ioctl_transaction(struct btrfs_root * root)555 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
556 {
557 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
558 }
559 
560 /*
561  * btrfs_attach_transaction() - catch the running transaction
562  *
563  * It is used when we want to commit the current the transaction, but
564  * don't want to start a new one.
565  *
566  * Note: If this function return -ENOENT, it just means there is no
567  * running transaction. But it is possible that the inactive transaction
568  * is still in the memory, not fully on disk. If you hope there is no
569  * inactive transaction in the fs when -ENOENT is returned, you should
570  * invoke
571  *     btrfs_attach_transaction_barrier()
572  */
btrfs_attach_transaction(struct btrfs_root * root)573 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
574 {
575 	return start_transaction(root, 0, TRANS_ATTACH, 0);
576 }
577 
578 /*
579  * btrfs_attach_transaction_barrier() - catch the running transaction
580  *
581  * It is similar to the above function, the differentia is this one
582  * will wait for all the inactive transactions until they fully
583  * complete.
584  */
585 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)586 btrfs_attach_transaction_barrier(struct btrfs_root *root)
587 {
588 	struct btrfs_trans_handle *trans;
589 
590 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
591 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
592 		btrfs_wait_for_commit(root, 0);
593 
594 	return trans;
595 }
596 
597 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)598 static noinline void wait_for_commit(struct btrfs_root *root,
599 				    struct btrfs_transaction *commit)
600 {
601 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
602 }
603 
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)604 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
605 {
606 	struct btrfs_transaction *cur_trans = NULL, *t;
607 	int ret = 0;
608 
609 	if (transid) {
610 		if (transid <= root->fs_info->last_trans_committed)
611 			goto out;
612 
613 		/* find specified transaction */
614 		spin_lock(&root->fs_info->trans_lock);
615 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
616 			if (t->transid == transid) {
617 				cur_trans = t;
618 				atomic_inc(&cur_trans->use_count);
619 				ret = 0;
620 				break;
621 			}
622 			if (t->transid > transid) {
623 				ret = 0;
624 				break;
625 			}
626 		}
627 		spin_unlock(&root->fs_info->trans_lock);
628 
629 		/*
630 		 * The specified transaction doesn't exist, or we
631 		 * raced with btrfs_commit_transaction
632 		 */
633 		if (!cur_trans) {
634 			if (transid > root->fs_info->last_trans_committed)
635 				ret = -EINVAL;
636 			goto out;
637 		}
638 	} else {
639 		/* find newest transaction that is committing | committed */
640 		spin_lock(&root->fs_info->trans_lock);
641 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
642 					    list) {
643 			if (t->state >= TRANS_STATE_COMMIT_START) {
644 				if (t->state == TRANS_STATE_COMPLETED)
645 					break;
646 				cur_trans = t;
647 				atomic_inc(&cur_trans->use_count);
648 				break;
649 			}
650 		}
651 		spin_unlock(&root->fs_info->trans_lock);
652 		if (!cur_trans)
653 			goto out;  /* nothing committing|committed */
654 	}
655 
656 	wait_for_commit(root, cur_trans);
657 	btrfs_put_transaction(cur_trans);
658 out:
659 	return ret;
660 }
661 
btrfs_throttle(struct btrfs_root * root)662 void btrfs_throttle(struct btrfs_root *root)
663 {
664 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
665 		wait_current_trans(root);
666 }
667 
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)668 static int should_end_transaction(struct btrfs_trans_handle *trans,
669 				  struct btrfs_root *root)
670 {
671 	if (root->fs_info->global_block_rsv.space_info->full &&
672 	    btrfs_check_space_for_delayed_refs(trans, root))
673 		return 1;
674 
675 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
676 }
677 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)678 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
679 				 struct btrfs_root *root)
680 {
681 	struct btrfs_transaction *cur_trans = trans->transaction;
682 	int updates;
683 	int err;
684 
685 	smp_mb();
686 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
687 	    cur_trans->delayed_refs.flushing)
688 		return 1;
689 
690 	updates = trans->delayed_ref_updates;
691 	trans->delayed_ref_updates = 0;
692 	if (updates) {
693 		err = btrfs_run_delayed_refs(trans, root, updates);
694 		if (err) /* Error code will also eval true */
695 			return err;
696 	}
697 
698 	return should_end_transaction(trans, root);
699 }
700 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle)701 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
702 			  struct btrfs_root *root, int throttle)
703 {
704 	struct btrfs_transaction *cur_trans = trans->transaction;
705 	struct btrfs_fs_info *info = root->fs_info;
706 	unsigned long cur = trans->delayed_ref_updates;
707 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
708 	int err = 0;
709 	int must_run_delayed_refs = 0;
710 
711 	if (trans->use_count > 1) {
712 		trans->use_count--;
713 		trans->block_rsv = trans->orig_rsv;
714 		return 0;
715 	}
716 
717 	btrfs_trans_release_metadata(trans, root);
718 	trans->block_rsv = NULL;
719 
720 	if (!list_empty(&trans->new_bgs))
721 		btrfs_create_pending_block_groups(trans, root);
722 
723 	if (!list_empty(&trans->ordered)) {
724 		spin_lock(&info->trans_lock);
725 		list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
726 		spin_unlock(&info->trans_lock);
727 	}
728 
729 	trans->delayed_ref_updates = 0;
730 	if (!trans->sync) {
731 		must_run_delayed_refs =
732 			btrfs_should_throttle_delayed_refs(trans, root);
733 		cur = max_t(unsigned long, cur, 32);
734 
735 		/*
736 		 * don't make the caller wait if they are from a NOLOCK
737 		 * or ATTACH transaction, it will deadlock with commit
738 		 */
739 		if (must_run_delayed_refs == 1 &&
740 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
741 			must_run_delayed_refs = 2;
742 	}
743 
744 	if (trans->qgroup_reserved) {
745 		/*
746 		 * the same root has to be passed here between start_transaction
747 		 * and end_transaction. Subvolume quota depends on this.
748 		 */
749 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
750 		trans->qgroup_reserved = 0;
751 	}
752 
753 	btrfs_trans_release_metadata(trans, root);
754 	trans->block_rsv = NULL;
755 
756 	if (!list_empty(&trans->new_bgs))
757 		btrfs_create_pending_block_groups(trans, root);
758 
759 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
760 	    should_end_transaction(trans, root) &&
761 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
762 		spin_lock(&info->trans_lock);
763 		if (cur_trans->state == TRANS_STATE_RUNNING)
764 			cur_trans->state = TRANS_STATE_BLOCKED;
765 		spin_unlock(&info->trans_lock);
766 	}
767 
768 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
769 		if (throttle)
770 			return btrfs_commit_transaction(trans, root);
771 		else
772 			wake_up_process(info->transaction_kthread);
773 	}
774 
775 	if (trans->type & __TRANS_FREEZABLE)
776 		sb_end_intwrite(root->fs_info->sb);
777 
778 	WARN_ON(cur_trans != info->running_transaction);
779 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
780 	atomic_dec(&cur_trans->num_writers);
781 	extwriter_counter_dec(cur_trans, trans->type);
782 
783 	smp_mb();
784 	if (waitqueue_active(&cur_trans->writer_wait))
785 		wake_up(&cur_trans->writer_wait);
786 	btrfs_put_transaction(cur_trans);
787 
788 	if (current->journal_info == trans)
789 		current->journal_info = NULL;
790 
791 	if (throttle)
792 		btrfs_run_delayed_iputs(root);
793 
794 	if (trans->aborted ||
795 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
796 		wake_up_process(info->transaction_kthread);
797 		err = -EIO;
798 	}
799 	assert_qgroups_uptodate(trans);
800 
801 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
802 	if (must_run_delayed_refs) {
803 		btrfs_async_run_delayed_refs(root, cur,
804 					     must_run_delayed_refs == 1);
805 	}
806 	return err;
807 }
808 
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)809 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
810 			  struct btrfs_root *root)
811 {
812 	return __btrfs_end_transaction(trans, root, 0);
813 }
814 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)815 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
816 				   struct btrfs_root *root)
817 {
818 	return __btrfs_end_transaction(trans, root, 1);
819 }
820 
821 /*
822  * when btree blocks are allocated, they have some corresponding bits set for
823  * them in one of two extent_io trees.  This is used to make sure all of
824  * those extents are sent to disk but does not wait on them
825  */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)826 int btrfs_write_marked_extents(struct btrfs_root *root,
827 			       struct extent_io_tree *dirty_pages, int mark)
828 {
829 	int err = 0;
830 	int werr = 0;
831 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
832 	struct extent_state *cached_state = NULL;
833 	u64 start = 0;
834 	u64 end;
835 
836 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
837 				      mark, &cached_state)) {
838 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
839 				   mark, &cached_state, GFP_NOFS);
840 		cached_state = NULL;
841 		err = filemap_fdatawrite_range(mapping, start, end);
842 		if (err)
843 			werr = err;
844 		cond_resched();
845 		start = end + 1;
846 	}
847 	if (err)
848 		werr = err;
849 	return werr;
850 }
851 
852 /*
853  * when btree blocks are allocated, they have some corresponding bits set for
854  * them in one of two extent_io trees.  This is used to make sure all of
855  * those extents are on disk for transaction or log commit.  We wait
856  * on all the pages and clear them from the dirty pages state tree
857  */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)858 int btrfs_wait_marked_extents(struct btrfs_root *root,
859 			      struct extent_io_tree *dirty_pages, int mark)
860 {
861 	int err = 0;
862 	int werr = 0;
863 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
864 	struct extent_state *cached_state = NULL;
865 	u64 start = 0;
866 	u64 end;
867 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
868 	bool errors = false;
869 
870 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
871 				      EXTENT_NEED_WAIT, &cached_state)) {
872 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
873 				 0, 0, &cached_state, GFP_NOFS);
874 		err = filemap_fdatawait_range(mapping, start, end);
875 		if (err)
876 			werr = err;
877 		cond_resched();
878 		start = end + 1;
879 	}
880 	if (err)
881 		werr = err;
882 
883 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
884 		if ((mark & EXTENT_DIRTY) &&
885 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
886 				       &btree_ino->runtime_flags))
887 			errors = true;
888 
889 		if ((mark & EXTENT_NEW) &&
890 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
891 				       &btree_ino->runtime_flags))
892 			errors = true;
893 	} else {
894 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
895 				       &btree_ino->runtime_flags))
896 			errors = true;
897 	}
898 
899 	if (errors && !werr)
900 		werr = -EIO;
901 
902 	return werr;
903 }
904 
905 /*
906  * when btree blocks are allocated, they have some corresponding bits set for
907  * them in one of two extent_io trees.  This is used to make sure all of
908  * those extents are on disk for transaction or log commit
909  */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)910 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
911 				struct extent_io_tree *dirty_pages, int mark)
912 {
913 	int ret;
914 	int ret2;
915 	struct blk_plug plug;
916 
917 	blk_start_plug(&plug);
918 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
919 	blk_finish_plug(&plug);
920 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
921 
922 	if (ret)
923 		return ret;
924 	if (ret2)
925 		return ret2;
926 	return 0;
927 }
928 
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)929 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
930 				     struct btrfs_root *root)
931 {
932 	if (!trans || !trans->transaction) {
933 		struct inode *btree_inode;
934 		btree_inode = root->fs_info->btree_inode;
935 		return filemap_write_and_wait(btree_inode->i_mapping);
936 	}
937 	return btrfs_write_and_wait_marked_extents(root,
938 					   &trans->transaction->dirty_pages,
939 					   EXTENT_DIRTY);
940 }
941 
942 /*
943  * this is used to update the root pointer in the tree of tree roots.
944  *
945  * But, in the case of the extent allocation tree, updating the root
946  * pointer may allocate blocks which may change the root of the extent
947  * allocation tree.
948  *
949  * So, this loops and repeats and makes sure the cowonly root didn't
950  * change while the root pointer was being updated in the metadata.
951  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)952 static int update_cowonly_root(struct btrfs_trans_handle *trans,
953 			       struct btrfs_root *root)
954 {
955 	int ret;
956 	u64 old_root_bytenr;
957 	u64 old_root_used;
958 	struct btrfs_root *tree_root = root->fs_info->tree_root;
959 
960 	old_root_used = btrfs_root_used(&root->root_item);
961 	btrfs_write_dirty_block_groups(trans, root);
962 
963 	while (1) {
964 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
965 		if (old_root_bytenr == root->node->start &&
966 		    old_root_used == btrfs_root_used(&root->root_item))
967 			break;
968 
969 		btrfs_set_root_node(&root->root_item, root->node);
970 		ret = btrfs_update_root(trans, tree_root,
971 					&root->root_key,
972 					&root->root_item);
973 		if (ret)
974 			return ret;
975 
976 		old_root_used = btrfs_root_used(&root->root_item);
977 		ret = btrfs_write_dirty_block_groups(trans, root);
978 		if (ret)
979 			return ret;
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * update all the cowonly tree roots on disk
987  *
988  * The error handling in this function may not be obvious. Any of the
989  * failures will cause the file system to go offline. We still need
990  * to clean up the delayed refs.
991  */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)992 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
993 					 struct btrfs_root *root)
994 {
995 	struct btrfs_fs_info *fs_info = root->fs_info;
996 	struct list_head *next;
997 	struct extent_buffer *eb;
998 	int ret;
999 
1000 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1001 	if (ret)
1002 		return ret;
1003 
1004 	eb = btrfs_lock_root_node(fs_info->tree_root);
1005 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1006 			      0, &eb);
1007 	btrfs_tree_unlock(eb);
1008 	free_extent_buffer(eb);
1009 
1010 	if (ret)
1011 		return ret;
1012 
1013 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1014 	if (ret)
1015 		return ret;
1016 
1017 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1018 	if (ret)
1019 		return ret;
1020 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1021 	if (ret)
1022 		return ret;
1023 	ret = btrfs_run_qgroups(trans, root->fs_info);
1024 	if (ret)
1025 		return ret;
1026 
1027 	/* run_qgroups might have added some more refs */
1028 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1029 	if (ret)
1030 		return ret;
1031 
1032 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1033 		next = fs_info->dirty_cowonly_roots.next;
1034 		list_del_init(next);
1035 		root = list_entry(next, struct btrfs_root, dirty_list);
1036 
1037 		if (root != fs_info->extent_root)
1038 			list_add_tail(&root->dirty_list,
1039 				      &trans->transaction->switch_commits);
1040 		ret = update_cowonly_root(trans, root);
1041 		if (ret)
1042 			return ret;
1043 	}
1044 
1045 	list_add_tail(&fs_info->extent_root->dirty_list,
1046 		      &trans->transaction->switch_commits);
1047 	btrfs_after_dev_replace_commit(fs_info);
1048 
1049 	return 0;
1050 }
1051 
1052 /*
1053  * dead roots are old snapshots that need to be deleted.  This allocates
1054  * a dirty root struct and adds it into the list of dead roots that need to
1055  * be deleted
1056  */
btrfs_add_dead_root(struct btrfs_root * root)1057 void btrfs_add_dead_root(struct btrfs_root *root)
1058 {
1059 	spin_lock(&root->fs_info->trans_lock);
1060 	if (list_empty(&root->root_list))
1061 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1062 	spin_unlock(&root->fs_info->trans_lock);
1063 }
1064 
1065 /*
1066  * update all the cowonly tree roots on disk
1067  */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1068 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1069 				    struct btrfs_root *root)
1070 {
1071 	struct btrfs_root *gang[8];
1072 	struct btrfs_fs_info *fs_info = root->fs_info;
1073 	int i;
1074 	int ret;
1075 	int err = 0;
1076 
1077 	spin_lock(&fs_info->fs_roots_radix_lock);
1078 	while (1) {
1079 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1080 						 (void **)gang, 0,
1081 						 ARRAY_SIZE(gang),
1082 						 BTRFS_ROOT_TRANS_TAG);
1083 		if (ret == 0)
1084 			break;
1085 		for (i = 0; i < ret; i++) {
1086 			root = gang[i];
1087 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1088 					(unsigned long)root->root_key.objectid,
1089 					BTRFS_ROOT_TRANS_TAG);
1090 			spin_unlock(&fs_info->fs_roots_radix_lock);
1091 
1092 			btrfs_free_log(trans, root);
1093 			btrfs_update_reloc_root(trans, root);
1094 			btrfs_orphan_commit_root(trans, root);
1095 
1096 			btrfs_save_ino_cache(root, trans);
1097 
1098 			/* see comments in should_cow_block() */
1099 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1100 			smp_mb__after_atomic();
1101 
1102 			if (root->commit_root != root->node) {
1103 				list_add_tail(&root->dirty_list,
1104 					&trans->transaction->switch_commits);
1105 				btrfs_set_root_node(&root->root_item,
1106 						    root->node);
1107 			}
1108 
1109 			err = btrfs_update_root(trans, fs_info->tree_root,
1110 						&root->root_key,
1111 						&root->root_item);
1112 			spin_lock(&fs_info->fs_roots_radix_lock);
1113 			if (err)
1114 				break;
1115 		}
1116 	}
1117 	spin_unlock(&fs_info->fs_roots_radix_lock);
1118 	return err;
1119 }
1120 
1121 /*
1122  * defrag a given btree.
1123  * Every leaf in the btree is read and defragged.
1124  */
btrfs_defrag_root(struct btrfs_root * root)1125 int btrfs_defrag_root(struct btrfs_root *root)
1126 {
1127 	struct btrfs_fs_info *info = root->fs_info;
1128 	struct btrfs_trans_handle *trans;
1129 	int ret;
1130 
1131 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1132 		return 0;
1133 
1134 	while (1) {
1135 		trans = btrfs_start_transaction(root, 0);
1136 		if (IS_ERR(trans))
1137 			return PTR_ERR(trans);
1138 
1139 		ret = btrfs_defrag_leaves(trans, root);
1140 
1141 		btrfs_end_transaction(trans, root);
1142 		btrfs_btree_balance_dirty(info->tree_root);
1143 		cond_resched();
1144 
1145 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1146 			break;
1147 
1148 		if (btrfs_defrag_cancelled(root->fs_info)) {
1149 			pr_debug("BTRFS: defrag_root cancelled\n");
1150 			ret = -EAGAIN;
1151 			break;
1152 		}
1153 	}
1154 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1155 	return ret;
1156 }
1157 
1158 /*
1159  * new snapshots need to be created at a very specific time in the
1160  * transaction commit.  This does the actual creation.
1161  *
1162  * Note:
1163  * If the error which may affect the commitment of the current transaction
1164  * happens, we should return the error number. If the error which just affect
1165  * the creation of the pending snapshots, just return 0.
1166  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)1167 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1168 				   struct btrfs_fs_info *fs_info,
1169 				   struct btrfs_pending_snapshot *pending)
1170 {
1171 	struct btrfs_key key;
1172 	struct btrfs_root_item *new_root_item;
1173 	struct btrfs_root *tree_root = fs_info->tree_root;
1174 	struct btrfs_root *root = pending->root;
1175 	struct btrfs_root *parent_root;
1176 	struct btrfs_block_rsv *rsv;
1177 	struct inode *parent_inode;
1178 	struct btrfs_path *path;
1179 	struct btrfs_dir_item *dir_item;
1180 	struct dentry *dentry;
1181 	struct extent_buffer *tmp;
1182 	struct extent_buffer *old;
1183 	struct timespec cur_time = CURRENT_TIME;
1184 	int ret = 0;
1185 	u64 to_reserve = 0;
1186 	u64 index = 0;
1187 	u64 objectid;
1188 	u64 root_flags;
1189 	uuid_le new_uuid;
1190 
1191 	path = btrfs_alloc_path();
1192 	if (!path) {
1193 		pending->error = -ENOMEM;
1194 		return 0;
1195 	}
1196 
1197 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1198 	if (!new_root_item) {
1199 		pending->error = -ENOMEM;
1200 		goto root_item_alloc_fail;
1201 	}
1202 
1203 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1204 	if (pending->error)
1205 		goto no_free_objectid;
1206 
1207 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1208 
1209 	if (to_reserve > 0) {
1210 		pending->error = btrfs_block_rsv_add(root,
1211 						     &pending->block_rsv,
1212 						     to_reserve,
1213 						     BTRFS_RESERVE_NO_FLUSH);
1214 		if (pending->error)
1215 			goto no_free_objectid;
1216 	}
1217 
1218 	key.objectid = objectid;
1219 	key.offset = (u64)-1;
1220 	key.type = BTRFS_ROOT_ITEM_KEY;
1221 
1222 	rsv = trans->block_rsv;
1223 	trans->block_rsv = &pending->block_rsv;
1224 	trans->bytes_reserved = trans->block_rsv->reserved;
1225 
1226 	dentry = pending->dentry;
1227 	parent_inode = pending->dir;
1228 	parent_root = BTRFS_I(parent_inode)->root;
1229 	record_root_in_trans(trans, parent_root);
1230 
1231 	/*
1232 	 * insert the directory item
1233 	 */
1234 	ret = btrfs_set_inode_index(parent_inode, &index);
1235 	BUG_ON(ret); /* -ENOMEM */
1236 
1237 	/* check if there is a file/dir which has the same name. */
1238 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1239 					 btrfs_ino(parent_inode),
1240 					 dentry->d_name.name,
1241 					 dentry->d_name.len, 0);
1242 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1243 		pending->error = -EEXIST;
1244 		goto dir_item_existed;
1245 	} else if (IS_ERR(dir_item)) {
1246 		ret = PTR_ERR(dir_item);
1247 		btrfs_abort_transaction(trans, root, ret);
1248 		goto fail;
1249 	}
1250 	btrfs_release_path(path);
1251 
1252 	/*
1253 	 * pull in the delayed directory update
1254 	 * and the delayed inode item
1255 	 * otherwise we corrupt the FS during
1256 	 * snapshot
1257 	 */
1258 	ret = btrfs_run_delayed_items(trans, root);
1259 	if (ret) {	/* Transaction aborted */
1260 		btrfs_abort_transaction(trans, root, ret);
1261 		goto fail;
1262 	}
1263 
1264 	record_root_in_trans(trans, root);
1265 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1266 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1267 	btrfs_check_and_init_root_item(new_root_item);
1268 
1269 	root_flags = btrfs_root_flags(new_root_item);
1270 	if (pending->readonly)
1271 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1272 	else
1273 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1274 	btrfs_set_root_flags(new_root_item, root_flags);
1275 
1276 	btrfs_set_root_generation_v2(new_root_item,
1277 			trans->transid);
1278 	uuid_le_gen(&new_uuid);
1279 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1280 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1281 			BTRFS_UUID_SIZE);
1282 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1283 		memset(new_root_item->received_uuid, 0,
1284 		       sizeof(new_root_item->received_uuid));
1285 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1286 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1287 		btrfs_set_root_stransid(new_root_item, 0);
1288 		btrfs_set_root_rtransid(new_root_item, 0);
1289 	}
1290 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1291 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1292 	btrfs_set_root_otransid(new_root_item, trans->transid);
1293 
1294 	old = btrfs_lock_root_node(root);
1295 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1296 	if (ret) {
1297 		btrfs_tree_unlock(old);
1298 		free_extent_buffer(old);
1299 		btrfs_abort_transaction(trans, root, ret);
1300 		goto fail;
1301 	}
1302 
1303 	btrfs_set_lock_blocking(old);
1304 
1305 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1306 	/* clean up in any case */
1307 	btrfs_tree_unlock(old);
1308 	free_extent_buffer(old);
1309 	if (ret) {
1310 		btrfs_abort_transaction(trans, root, ret);
1311 		goto fail;
1312 	}
1313 
1314 	/*
1315 	 * We need to flush delayed refs in order to make sure all of our quota
1316 	 * operations have been done before we call btrfs_qgroup_inherit.
1317 	 */
1318 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1319 	if (ret) {
1320 		btrfs_abort_transaction(trans, root, ret);
1321 		goto fail;
1322 	}
1323 
1324 	ret = btrfs_qgroup_inherit(trans, fs_info,
1325 				   root->root_key.objectid,
1326 				   objectid, pending->inherit);
1327 	if (ret) {
1328 		btrfs_abort_transaction(trans, root, ret);
1329 		goto fail;
1330 	}
1331 
1332 	/* see comments in should_cow_block() */
1333 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1334 	smp_wmb();
1335 
1336 	btrfs_set_root_node(new_root_item, tmp);
1337 	/* record when the snapshot was created in key.offset */
1338 	key.offset = trans->transid;
1339 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1340 	btrfs_tree_unlock(tmp);
1341 	free_extent_buffer(tmp);
1342 	if (ret) {
1343 		btrfs_abort_transaction(trans, root, ret);
1344 		goto fail;
1345 	}
1346 
1347 	/*
1348 	 * insert root back/forward references
1349 	 */
1350 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1351 				 parent_root->root_key.objectid,
1352 				 btrfs_ino(parent_inode), index,
1353 				 dentry->d_name.name, dentry->d_name.len);
1354 	if (ret) {
1355 		btrfs_abort_transaction(trans, root, ret);
1356 		goto fail;
1357 	}
1358 
1359 	key.offset = (u64)-1;
1360 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1361 	if (IS_ERR(pending->snap)) {
1362 		ret = PTR_ERR(pending->snap);
1363 		btrfs_abort_transaction(trans, root, ret);
1364 		goto fail;
1365 	}
1366 
1367 	ret = btrfs_reloc_post_snapshot(trans, pending);
1368 	if (ret) {
1369 		btrfs_abort_transaction(trans, root, ret);
1370 		goto fail;
1371 	}
1372 
1373 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1374 	if (ret) {
1375 		btrfs_abort_transaction(trans, root, ret);
1376 		goto fail;
1377 	}
1378 
1379 	ret = btrfs_insert_dir_item(trans, parent_root,
1380 				    dentry->d_name.name, dentry->d_name.len,
1381 				    parent_inode, &key,
1382 				    BTRFS_FT_DIR, index);
1383 	/* We have check then name at the beginning, so it is impossible. */
1384 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1385 	if (ret) {
1386 		btrfs_abort_transaction(trans, root, ret);
1387 		goto fail;
1388 	}
1389 
1390 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1391 					 dentry->d_name.len * 2);
1392 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1393 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1394 	if (ret) {
1395 		btrfs_abort_transaction(trans, root, ret);
1396 		goto fail;
1397 	}
1398 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1399 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1400 	if (ret) {
1401 		btrfs_abort_transaction(trans, root, ret);
1402 		goto fail;
1403 	}
1404 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1405 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1406 					  new_root_item->received_uuid,
1407 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1408 					  objectid);
1409 		if (ret && ret != -EEXIST) {
1410 			btrfs_abort_transaction(trans, root, ret);
1411 			goto fail;
1412 		}
1413 	}
1414 fail:
1415 	pending->error = ret;
1416 dir_item_existed:
1417 	trans->block_rsv = rsv;
1418 	trans->bytes_reserved = 0;
1419 no_free_objectid:
1420 	kfree(new_root_item);
1421 root_item_alloc_fail:
1422 	btrfs_free_path(path);
1423 	return ret;
1424 }
1425 
1426 /*
1427  * create all the snapshots we've scheduled for creation
1428  */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1429 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1430 					     struct btrfs_fs_info *fs_info)
1431 {
1432 	struct btrfs_pending_snapshot *pending, *next;
1433 	struct list_head *head = &trans->transaction->pending_snapshots;
1434 	int ret = 0;
1435 
1436 	list_for_each_entry_safe(pending, next, head, list) {
1437 		list_del(&pending->list);
1438 		ret = create_pending_snapshot(trans, fs_info, pending);
1439 		if (ret)
1440 			break;
1441 	}
1442 	return ret;
1443 }
1444 
update_super_roots(struct btrfs_root * root)1445 static void update_super_roots(struct btrfs_root *root)
1446 {
1447 	struct btrfs_root_item *root_item;
1448 	struct btrfs_super_block *super;
1449 
1450 	super = root->fs_info->super_copy;
1451 
1452 	root_item = &root->fs_info->chunk_root->root_item;
1453 	super->chunk_root = root_item->bytenr;
1454 	super->chunk_root_generation = root_item->generation;
1455 	super->chunk_root_level = root_item->level;
1456 
1457 	root_item = &root->fs_info->tree_root->root_item;
1458 	super->root = root_item->bytenr;
1459 	super->generation = root_item->generation;
1460 	super->root_level = root_item->level;
1461 	if (btrfs_test_opt(root, SPACE_CACHE))
1462 		super->cache_generation = root_item->generation;
1463 	if (root->fs_info->update_uuid_tree_gen)
1464 		super->uuid_tree_generation = root_item->generation;
1465 }
1466 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1467 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1468 {
1469 	struct btrfs_transaction *trans;
1470 	int ret = 0;
1471 
1472 	spin_lock(&info->trans_lock);
1473 	trans = info->running_transaction;
1474 	if (trans)
1475 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1476 	spin_unlock(&info->trans_lock);
1477 	return ret;
1478 }
1479 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1480 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1481 {
1482 	struct btrfs_transaction *trans;
1483 	int ret = 0;
1484 
1485 	spin_lock(&info->trans_lock);
1486 	trans = info->running_transaction;
1487 	if (trans)
1488 		ret = is_transaction_blocked(trans);
1489 	spin_unlock(&info->trans_lock);
1490 	return ret;
1491 }
1492 
1493 /*
1494  * wait for the current transaction commit to start and block subsequent
1495  * transaction joins
1496  */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1497 static void wait_current_trans_commit_start(struct btrfs_root *root,
1498 					    struct btrfs_transaction *trans)
1499 {
1500 	wait_event(root->fs_info->transaction_blocked_wait,
1501 		   trans->state >= TRANS_STATE_COMMIT_START ||
1502 		   trans->aborted);
1503 }
1504 
1505 /*
1506  * wait for the current transaction to start and then become unblocked.
1507  * caller holds ref.
1508  */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1509 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1510 					 struct btrfs_transaction *trans)
1511 {
1512 	wait_event(root->fs_info->transaction_wait,
1513 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1514 		   trans->aborted);
1515 }
1516 
1517 /*
1518  * commit transactions asynchronously. once btrfs_commit_transaction_async
1519  * returns, any subsequent transaction will not be allowed to join.
1520  */
1521 struct btrfs_async_commit {
1522 	struct btrfs_trans_handle *newtrans;
1523 	struct btrfs_root *root;
1524 	struct work_struct work;
1525 };
1526 
do_async_commit(struct work_struct * work)1527 static void do_async_commit(struct work_struct *work)
1528 {
1529 	struct btrfs_async_commit *ac =
1530 		container_of(work, struct btrfs_async_commit, work);
1531 
1532 	/*
1533 	 * We've got freeze protection passed with the transaction.
1534 	 * Tell lockdep about it.
1535 	 */
1536 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1537 		rwsem_acquire_read(
1538 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1539 		     0, 1, _THIS_IP_);
1540 
1541 	current->journal_info = ac->newtrans;
1542 
1543 	btrfs_commit_transaction(ac->newtrans, ac->root);
1544 	kfree(ac);
1545 }
1546 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1547 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1548 				   struct btrfs_root *root,
1549 				   int wait_for_unblock)
1550 {
1551 	struct btrfs_async_commit *ac;
1552 	struct btrfs_transaction *cur_trans;
1553 
1554 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1555 	if (!ac)
1556 		return -ENOMEM;
1557 
1558 	INIT_WORK(&ac->work, do_async_commit);
1559 	ac->root = root;
1560 	ac->newtrans = btrfs_join_transaction(root);
1561 	if (IS_ERR(ac->newtrans)) {
1562 		int err = PTR_ERR(ac->newtrans);
1563 		kfree(ac);
1564 		return err;
1565 	}
1566 
1567 	/* take transaction reference */
1568 	cur_trans = trans->transaction;
1569 	atomic_inc(&cur_trans->use_count);
1570 
1571 	btrfs_end_transaction(trans, root);
1572 
1573 	/*
1574 	 * Tell lockdep we've released the freeze rwsem, since the
1575 	 * async commit thread will be the one to unlock it.
1576 	 */
1577 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1578 		rwsem_release(
1579 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1580 			1, _THIS_IP_);
1581 
1582 	schedule_work(&ac->work);
1583 
1584 	/* wait for transaction to start and unblock */
1585 	if (wait_for_unblock)
1586 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1587 	else
1588 		wait_current_trans_commit_start(root, cur_trans);
1589 
1590 	if (current->journal_info == trans)
1591 		current->journal_info = NULL;
1592 
1593 	btrfs_put_transaction(cur_trans);
1594 	return 0;
1595 }
1596 
1597 
cleanup_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int err)1598 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1599 				struct btrfs_root *root, int err)
1600 {
1601 	struct btrfs_transaction *cur_trans = trans->transaction;
1602 	DEFINE_WAIT(wait);
1603 
1604 	WARN_ON(trans->use_count > 1);
1605 
1606 	btrfs_abort_transaction(trans, root, err);
1607 
1608 	spin_lock(&root->fs_info->trans_lock);
1609 
1610 	/*
1611 	 * If the transaction is removed from the list, it means this
1612 	 * transaction has been committed successfully, so it is impossible
1613 	 * to call the cleanup function.
1614 	 */
1615 	BUG_ON(list_empty(&cur_trans->list));
1616 
1617 	list_del_init(&cur_trans->list);
1618 	if (cur_trans == root->fs_info->running_transaction) {
1619 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1620 		spin_unlock(&root->fs_info->trans_lock);
1621 		wait_event(cur_trans->writer_wait,
1622 			   atomic_read(&cur_trans->num_writers) == 1);
1623 
1624 		spin_lock(&root->fs_info->trans_lock);
1625 	}
1626 	spin_unlock(&root->fs_info->trans_lock);
1627 
1628 	btrfs_cleanup_one_transaction(trans->transaction, root);
1629 
1630 	spin_lock(&root->fs_info->trans_lock);
1631 	if (cur_trans == root->fs_info->running_transaction)
1632 		root->fs_info->running_transaction = NULL;
1633 	spin_unlock(&root->fs_info->trans_lock);
1634 
1635 	if (trans->type & __TRANS_FREEZABLE)
1636 		sb_end_intwrite(root->fs_info->sb);
1637 	btrfs_put_transaction(cur_trans);
1638 	btrfs_put_transaction(cur_trans);
1639 
1640 	trace_btrfs_transaction_commit(root);
1641 
1642 	if (current->journal_info == trans)
1643 		current->journal_info = NULL;
1644 	btrfs_scrub_cancel(root->fs_info);
1645 
1646 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1647 }
1648 
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)1649 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1650 {
1651 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1652 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1653 	return 0;
1654 }
1655 
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)1656 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1657 {
1658 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1659 		btrfs_wait_ordered_roots(fs_info, -1);
1660 }
1661 
1662 static inline void
btrfs_wait_pending_ordered(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)1663 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1664 			   struct btrfs_fs_info *fs_info)
1665 {
1666 	struct btrfs_ordered_extent *ordered;
1667 
1668 	spin_lock(&fs_info->trans_lock);
1669 	while (!list_empty(&cur_trans->pending_ordered)) {
1670 		ordered = list_first_entry(&cur_trans->pending_ordered,
1671 					   struct btrfs_ordered_extent,
1672 					   trans_list);
1673 		list_del_init(&ordered->trans_list);
1674 		spin_unlock(&fs_info->trans_lock);
1675 
1676 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1677 						   &ordered->flags));
1678 		btrfs_put_ordered_extent(ordered);
1679 		spin_lock(&fs_info->trans_lock);
1680 	}
1681 	spin_unlock(&fs_info->trans_lock);
1682 }
1683 
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1684 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1685 			     struct btrfs_root *root)
1686 {
1687 	struct btrfs_transaction *cur_trans = trans->transaction;
1688 	struct btrfs_transaction *prev_trans = NULL;
1689 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1690 	int ret;
1691 
1692 	/* Stop the commit early if ->aborted is set */
1693 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1694 		ret = cur_trans->aborted;
1695 		btrfs_end_transaction(trans, root);
1696 		return ret;
1697 	}
1698 
1699 	/* make a pass through all the delayed refs we have so far
1700 	 * any runnings procs may add more while we are here
1701 	 */
1702 	ret = btrfs_run_delayed_refs(trans, root, 0);
1703 	if (ret) {
1704 		btrfs_end_transaction(trans, root);
1705 		return ret;
1706 	}
1707 
1708 	btrfs_trans_release_metadata(trans, root);
1709 	trans->block_rsv = NULL;
1710 	if (trans->qgroup_reserved) {
1711 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1712 		trans->qgroup_reserved = 0;
1713 	}
1714 
1715 	cur_trans = trans->transaction;
1716 
1717 	/*
1718 	 * set the flushing flag so procs in this transaction have to
1719 	 * start sending their work down.
1720 	 */
1721 	cur_trans->delayed_refs.flushing = 1;
1722 	smp_wmb();
1723 
1724 	if (!list_empty(&trans->new_bgs))
1725 		btrfs_create_pending_block_groups(trans, root);
1726 
1727 	ret = btrfs_run_delayed_refs(trans, root, 0);
1728 	if (ret) {
1729 		btrfs_end_transaction(trans, root);
1730 		return ret;
1731 	}
1732 
1733 	spin_lock(&root->fs_info->trans_lock);
1734 	list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1735 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1736 		spin_unlock(&root->fs_info->trans_lock);
1737 		atomic_inc(&cur_trans->use_count);
1738 		ret = btrfs_end_transaction(trans, root);
1739 
1740 		wait_for_commit(root, cur_trans);
1741 
1742 		btrfs_put_transaction(cur_trans);
1743 
1744 		return ret;
1745 	}
1746 
1747 	cur_trans->state = TRANS_STATE_COMMIT_START;
1748 	wake_up(&root->fs_info->transaction_blocked_wait);
1749 
1750 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1751 		prev_trans = list_entry(cur_trans->list.prev,
1752 					struct btrfs_transaction, list);
1753 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1754 			atomic_inc(&prev_trans->use_count);
1755 			spin_unlock(&root->fs_info->trans_lock);
1756 
1757 			wait_for_commit(root, prev_trans);
1758 			ret = prev_trans->aborted;
1759 
1760 			btrfs_put_transaction(prev_trans);
1761 			if (ret)
1762 				goto cleanup_transaction;
1763 		} else {
1764 			spin_unlock(&root->fs_info->trans_lock);
1765 		}
1766 	} else {
1767 		spin_unlock(&root->fs_info->trans_lock);
1768 	}
1769 
1770 	extwriter_counter_dec(cur_trans, trans->type);
1771 
1772 	ret = btrfs_start_delalloc_flush(root->fs_info);
1773 	if (ret)
1774 		goto cleanup_transaction;
1775 
1776 	ret = btrfs_run_delayed_items(trans, root);
1777 	if (ret)
1778 		goto cleanup_transaction;
1779 
1780 	wait_event(cur_trans->writer_wait,
1781 		   extwriter_counter_read(cur_trans) == 0);
1782 
1783 	/* some pending stuffs might be added after the previous flush. */
1784 	ret = btrfs_run_delayed_items(trans, root);
1785 	if (ret)
1786 		goto cleanup_transaction;
1787 
1788 	btrfs_wait_delalloc_flush(root->fs_info);
1789 
1790 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1791 
1792 	btrfs_scrub_pause(root);
1793 	/*
1794 	 * Ok now we need to make sure to block out any other joins while we
1795 	 * commit the transaction.  We could have started a join before setting
1796 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1797 	 */
1798 	spin_lock(&root->fs_info->trans_lock);
1799 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1800 	spin_unlock(&root->fs_info->trans_lock);
1801 	wait_event(cur_trans->writer_wait,
1802 		   atomic_read(&cur_trans->num_writers) == 1);
1803 
1804 	/* ->aborted might be set after the previous check, so check it */
1805 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1806 		ret = cur_trans->aborted;
1807 		goto scrub_continue;
1808 	}
1809 	/*
1810 	 * the reloc mutex makes sure that we stop
1811 	 * the balancing code from coming in and moving
1812 	 * extents around in the middle of the commit
1813 	 */
1814 	mutex_lock(&root->fs_info->reloc_mutex);
1815 
1816 	/*
1817 	 * We needn't worry about the delayed items because we will
1818 	 * deal with them in create_pending_snapshot(), which is the
1819 	 * core function of the snapshot creation.
1820 	 */
1821 	ret = create_pending_snapshots(trans, root->fs_info);
1822 	if (ret) {
1823 		mutex_unlock(&root->fs_info->reloc_mutex);
1824 		goto scrub_continue;
1825 	}
1826 
1827 	/*
1828 	 * We insert the dir indexes of the snapshots and update the inode
1829 	 * of the snapshots' parents after the snapshot creation, so there
1830 	 * are some delayed items which are not dealt with. Now deal with
1831 	 * them.
1832 	 *
1833 	 * We needn't worry that this operation will corrupt the snapshots,
1834 	 * because all the tree which are snapshoted will be forced to COW
1835 	 * the nodes and leaves.
1836 	 */
1837 	ret = btrfs_run_delayed_items(trans, root);
1838 	if (ret) {
1839 		mutex_unlock(&root->fs_info->reloc_mutex);
1840 		goto scrub_continue;
1841 	}
1842 
1843 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1844 	if (ret) {
1845 		mutex_unlock(&root->fs_info->reloc_mutex);
1846 		goto scrub_continue;
1847 	}
1848 
1849 	/*
1850 	 * make sure none of the code above managed to slip in a
1851 	 * delayed item
1852 	 */
1853 	btrfs_assert_delayed_root_empty(root);
1854 
1855 	WARN_ON(cur_trans != trans->transaction);
1856 
1857 	/* btrfs_commit_tree_roots is responsible for getting the
1858 	 * various roots consistent with each other.  Every pointer
1859 	 * in the tree of tree roots has to point to the most up to date
1860 	 * root for every subvolume and other tree.  So, we have to keep
1861 	 * the tree logging code from jumping in and changing any
1862 	 * of the trees.
1863 	 *
1864 	 * At this point in the commit, there can't be any tree-log
1865 	 * writers, but a little lower down we drop the trans mutex
1866 	 * and let new people in.  By holding the tree_log_mutex
1867 	 * from now until after the super is written, we avoid races
1868 	 * with the tree-log code.
1869 	 */
1870 	mutex_lock(&root->fs_info->tree_log_mutex);
1871 
1872 	ret = commit_fs_roots(trans, root);
1873 	if (ret) {
1874 		mutex_unlock(&root->fs_info->tree_log_mutex);
1875 		mutex_unlock(&root->fs_info->reloc_mutex);
1876 		goto scrub_continue;
1877 	}
1878 
1879 	/*
1880 	 * Since the transaction is done, we should set the inode map cache flag
1881 	 * before any other comming transaction.
1882 	 */
1883 	if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1884 		btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1885 	else
1886 		btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1887 
1888 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1889 	 * safe to free the root of tree log roots
1890 	 */
1891 	btrfs_free_log_root_tree(trans, root->fs_info);
1892 
1893 	ret = commit_cowonly_roots(trans, root);
1894 	if (ret) {
1895 		mutex_unlock(&root->fs_info->tree_log_mutex);
1896 		mutex_unlock(&root->fs_info->reloc_mutex);
1897 		goto scrub_continue;
1898 	}
1899 
1900 	/*
1901 	 * The tasks which save the space cache and inode cache may also
1902 	 * update ->aborted, check it.
1903 	 */
1904 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1905 		ret = cur_trans->aborted;
1906 		mutex_unlock(&root->fs_info->tree_log_mutex);
1907 		mutex_unlock(&root->fs_info->reloc_mutex);
1908 		goto scrub_continue;
1909 	}
1910 
1911 	btrfs_prepare_extent_commit(trans, root);
1912 
1913 	cur_trans = root->fs_info->running_transaction;
1914 
1915 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1916 			    root->fs_info->tree_root->node);
1917 	list_add_tail(&root->fs_info->tree_root->dirty_list,
1918 		      &cur_trans->switch_commits);
1919 
1920 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1921 			    root->fs_info->chunk_root->node);
1922 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
1923 		      &cur_trans->switch_commits);
1924 
1925 	switch_commit_roots(cur_trans, root->fs_info);
1926 
1927 	assert_qgroups_uptodate(trans);
1928 	update_super_roots(root);
1929 
1930 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1931 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1932 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1933 	       sizeof(*root->fs_info->super_copy));
1934 
1935 	btrfs_update_commit_device_size(root->fs_info);
1936 	btrfs_update_commit_device_bytes_used(root, cur_trans);
1937 
1938 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
1939 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
1940 
1941 	spin_lock(&root->fs_info->trans_lock);
1942 	cur_trans->state = TRANS_STATE_UNBLOCKED;
1943 	root->fs_info->running_transaction = NULL;
1944 	spin_unlock(&root->fs_info->trans_lock);
1945 	mutex_unlock(&root->fs_info->reloc_mutex);
1946 
1947 	wake_up(&root->fs_info->transaction_wait);
1948 
1949 	ret = btrfs_write_and_wait_transaction(trans, root);
1950 	if (ret) {
1951 		btrfs_error(root->fs_info, ret,
1952 			    "Error while writing out transaction");
1953 		mutex_unlock(&root->fs_info->tree_log_mutex);
1954 		goto scrub_continue;
1955 	}
1956 
1957 	ret = write_ctree_super(trans, root, 0);
1958 	if (ret) {
1959 		mutex_unlock(&root->fs_info->tree_log_mutex);
1960 		goto scrub_continue;
1961 	}
1962 
1963 	/*
1964 	 * the super is written, we can safely allow the tree-loggers
1965 	 * to go about their business
1966 	 */
1967 	mutex_unlock(&root->fs_info->tree_log_mutex);
1968 
1969 	btrfs_finish_extent_commit(trans, root);
1970 
1971 	root->fs_info->last_trans_committed = cur_trans->transid;
1972 	/*
1973 	 * We needn't acquire the lock here because there is no other task
1974 	 * which can change it.
1975 	 */
1976 	cur_trans->state = TRANS_STATE_COMPLETED;
1977 	wake_up(&cur_trans->commit_wait);
1978 
1979 	spin_lock(&root->fs_info->trans_lock);
1980 	list_del_init(&cur_trans->list);
1981 	spin_unlock(&root->fs_info->trans_lock);
1982 
1983 	btrfs_put_transaction(cur_trans);
1984 	btrfs_put_transaction(cur_trans);
1985 
1986 	if (trans->type & __TRANS_FREEZABLE)
1987 		sb_end_intwrite(root->fs_info->sb);
1988 
1989 	trace_btrfs_transaction_commit(root);
1990 
1991 	btrfs_scrub_continue(root);
1992 
1993 	if (current->journal_info == trans)
1994 		current->journal_info = NULL;
1995 
1996 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1997 
1998 	if (current != root->fs_info->transaction_kthread)
1999 		btrfs_run_delayed_iputs(root);
2000 
2001 	return ret;
2002 
2003 scrub_continue:
2004 	btrfs_scrub_continue(root);
2005 cleanup_transaction:
2006 	btrfs_trans_release_metadata(trans, root);
2007 	trans->block_rsv = NULL;
2008 	if (trans->qgroup_reserved) {
2009 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2010 		trans->qgroup_reserved = 0;
2011 	}
2012 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2013 	if (current->journal_info == trans)
2014 		current->journal_info = NULL;
2015 	cleanup_transaction(trans, root, ret);
2016 
2017 	return ret;
2018 }
2019 
2020 /*
2021  * return < 0 if error
2022  * 0 if there are no more dead_roots at the time of call
2023  * 1 there are more to be processed, call me again
2024  *
2025  * The return value indicates there are certainly more snapshots to delete, but
2026  * if there comes a new one during processing, it may return 0. We don't mind,
2027  * because btrfs_commit_super will poke cleaner thread and it will process it a
2028  * few seconds later.
2029  */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2030 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2031 {
2032 	int ret;
2033 	struct btrfs_fs_info *fs_info = root->fs_info;
2034 
2035 	spin_lock(&fs_info->trans_lock);
2036 	if (list_empty(&fs_info->dead_roots)) {
2037 		spin_unlock(&fs_info->trans_lock);
2038 		return 0;
2039 	}
2040 	root = list_first_entry(&fs_info->dead_roots,
2041 			struct btrfs_root, root_list);
2042 	list_del_init(&root->root_list);
2043 	spin_unlock(&fs_info->trans_lock);
2044 
2045 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2046 
2047 	btrfs_kill_all_delayed_nodes(root);
2048 
2049 	if (btrfs_header_backref_rev(root->node) <
2050 			BTRFS_MIXED_BACKREF_REV)
2051 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2052 	else
2053 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2054 
2055 	return (ret < 0) ? 0 : 1;
2056 }
2057