• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <rdma/ib_umem.h>
36 #include <linux/atomic.h>
37 
38 #include "iw_cxgb4.h"
39 
40 int use_dsgl = 0;
41 module_param(use_dsgl, int, 0644);
42 MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=0)");
43 
44 #define T4_ULPTX_MIN_IO 32
45 #define C4IW_MAX_INLINE_SIZE 96
46 #define T4_ULPTX_MAX_DMA 1024
47 #define C4IW_INLINE_THRESHOLD 128
48 
49 static int inline_threshold = C4IW_INLINE_THRESHOLD;
50 module_param(inline_threshold, int, 0644);
51 MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
52 
_c4iw_write_mem_dma_aligned(struct c4iw_rdev * rdev,u32 addr,u32 len,dma_addr_t data,int wait)53 static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
54 				       u32 len, dma_addr_t data, int wait)
55 {
56 	struct sk_buff *skb;
57 	struct ulp_mem_io *req;
58 	struct ulptx_sgl *sgl;
59 	u8 wr_len;
60 	int ret = 0;
61 	struct c4iw_wr_wait wr_wait;
62 
63 	addr &= 0x7FFFFFF;
64 
65 	if (wait)
66 		c4iw_init_wr_wait(&wr_wait);
67 	wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
68 
69 	skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
70 	if (!skb)
71 		return -ENOMEM;
72 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
73 
74 	req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
75 	memset(req, 0, wr_len);
76 	INIT_ULPTX_WR(req, wr_len, 0, 0);
77 	req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
78 			(wait ? FW_WR_COMPL(1) : 0));
79 	req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L;
80 	req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
81 	req->cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE));
82 	req->cmd |= cpu_to_be32(V_T5_ULP_MEMIO_ORDER(1));
83 	req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(len>>5));
84 	req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
85 	req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr));
86 
87 	sgl = (struct ulptx_sgl *)(req + 1);
88 	sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_DSGL) |
89 				    ULPTX_NSGE(1));
90 	sgl->len0 = cpu_to_be32(len);
91 	sgl->addr0 = cpu_to_be64(data);
92 
93 	ret = c4iw_ofld_send(rdev, skb);
94 	if (ret)
95 		return ret;
96 	if (wait)
97 		ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
98 	return ret;
99 }
100 
_c4iw_write_mem_inline(struct c4iw_rdev * rdev,u32 addr,u32 len,void * data)101 static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
102 				  void *data)
103 {
104 	struct sk_buff *skb;
105 	struct ulp_mem_io *req;
106 	struct ulptx_idata *sc;
107 	u8 wr_len, *to_dp, *from_dp;
108 	int copy_len, num_wqe, i, ret = 0;
109 	struct c4iw_wr_wait wr_wait;
110 	__be32 cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE));
111 
112 	if (is_t4(rdev->lldi.adapter_type))
113 		cmd |= cpu_to_be32(ULP_MEMIO_ORDER(1));
114 	else
115 		cmd |= cpu_to_be32(V_T5_ULP_MEMIO_IMM(1));
116 
117 	addr &= 0x7FFFFFF;
118 	PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
119 	num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
120 	c4iw_init_wr_wait(&wr_wait);
121 	for (i = 0; i < num_wqe; i++) {
122 
123 		copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
124 			   len;
125 		wr_len = roundup(sizeof *req + sizeof *sc +
126 				 roundup(copy_len, T4_ULPTX_MIN_IO), 16);
127 
128 		skb = alloc_skb(wr_len, GFP_KERNEL);
129 		if (!skb)
130 			return -ENOMEM;
131 		set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
132 
133 		req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
134 		memset(req, 0, wr_len);
135 		INIT_ULPTX_WR(req, wr_len, 0, 0);
136 
137 		if (i == (num_wqe-1)) {
138 			req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
139 						    FW_WR_COMPL(1));
140 			req->wr.wr_lo = (__force __be64)(unsigned long) &wr_wait;
141 		} else
142 			req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR));
143 		req->wr.wr_mid = cpu_to_be32(
144 				       FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
145 
146 		req->cmd = cmd;
147 		req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(
148 				DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
149 		req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
150 						      16));
151 		req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr + i * 3));
152 
153 		sc = (struct ulptx_idata *)(req + 1);
154 		sc->cmd_more = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_IMM));
155 		sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
156 
157 		to_dp = (u8 *)(sc + 1);
158 		from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
159 		if (data)
160 			memcpy(to_dp, from_dp, copy_len);
161 		else
162 			memset(to_dp, 0, copy_len);
163 		if (copy_len % T4_ULPTX_MIN_IO)
164 			memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
165 			       (copy_len % T4_ULPTX_MIN_IO));
166 		ret = c4iw_ofld_send(rdev, skb);
167 		if (ret)
168 			return ret;
169 		len -= C4IW_MAX_INLINE_SIZE;
170 	}
171 
172 	ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
173 	return ret;
174 }
175 
_c4iw_write_mem_dma(struct c4iw_rdev * rdev,u32 addr,u32 len,void * data)176 static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
177 {
178 	u32 remain = len;
179 	u32 dmalen;
180 	int ret = 0;
181 	dma_addr_t daddr;
182 	dma_addr_t save;
183 
184 	daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
185 	if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
186 		return -1;
187 	save = daddr;
188 
189 	while (remain > inline_threshold) {
190 		if (remain < T4_ULPTX_MAX_DMA) {
191 			if (remain & ~T4_ULPTX_MIN_IO)
192 				dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
193 			else
194 				dmalen = remain;
195 		} else
196 			dmalen = T4_ULPTX_MAX_DMA;
197 		remain -= dmalen;
198 		ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
199 						 !remain);
200 		if (ret)
201 			goto out;
202 		addr += dmalen >> 5;
203 		data += dmalen;
204 		daddr += dmalen;
205 	}
206 	if (remain)
207 		ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
208 out:
209 	dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
210 	return ret;
211 }
212 
213 /*
214  * write len bytes of data into addr (32B aligned address)
215  * If data is NULL, clear len byte of memory to zero.
216  */
write_adapter_mem(struct c4iw_rdev * rdev,u32 addr,u32 len,void * data)217 static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
218 			     void *data)
219 {
220 	if (is_t5(rdev->lldi.adapter_type) && use_dsgl) {
221 		if (len > inline_threshold) {
222 			if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
223 				printk_ratelimited(KERN_WARNING
224 						   "%s: dma map"
225 						   " failure (non fatal)\n",
226 						   pci_name(rdev->lldi.pdev));
227 				return _c4iw_write_mem_inline(rdev, addr, len,
228 							      data);
229 			} else
230 				return 0;
231 		} else
232 			return _c4iw_write_mem_inline(rdev, addr, len, data);
233 	} else
234 		return _c4iw_write_mem_inline(rdev, addr, len, data);
235 }
236 
237 /*
238  * Build and write a TPT entry.
239  * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
240  *     pbl_size and pbl_addr
241  * OUT: stag index
242  */
write_tpt_entry(struct c4iw_rdev * rdev,u32 reset_tpt_entry,u32 * stag,u8 stag_state,u32 pdid,enum fw_ri_stag_type type,enum fw_ri_mem_perms perm,int bind_enabled,u32 zbva,u64 to,u64 len,u8 page_size,u32 pbl_size,u32 pbl_addr)243 static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
244 			   u32 *stag, u8 stag_state, u32 pdid,
245 			   enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
246 			   int bind_enabled, u32 zbva, u64 to,
247 			   u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
248 {
249 	int err;
250 	struct fw_ri_tpte tpt;
251 	u32 stag_idx;
252 	static atomic_t key;
253 
254 	if (c4iw_fatal_error(rdev))
255 		return -EIO;
256 
257 	stag_state = stag_state > 0;
258 	stag_idx = (*stag) >> 8;
259 
260 	if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
261 		stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
262 		if (!stag_idx) {
263 			mutex_lock(&rdev->stats.lock);
264 			rdev->stats.stag.fail++;
265 			mutex_unlock(&rdev->stats.lock);
266 			return -ENOMEM;
267 		}
268 		mutex_lock(&rdev->stats.lock);
269 		rdev->stats.stag.cur += 32;
270 		if (rdev->stats.stag.cur > rdev->stats.stag.max)
271 			rdev->stats.stag.max = rdev->stats.stag.cur;
272 		mutex_unlock(&rdev->stats.lock);
273 		*stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
274 	}
275 	PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
276 	     __func__, stag_state, type, pdid, stag_idx);
277 
278 	/* write TPT entry */
279 	if (reset_tpt_entry)
280 		memset(&tpt, 0, sizeof(tpt));
281 	else {
282 		tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
283 			V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
284 			V_FW_RI_TPTE_STAGSTATE(stag_state) |
285 			V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
286 		tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
287 			(bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
288 			V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
289 						      FW_RI_VA_BASED_TO))|
290 			V_FW_RI_TPTE_PS(page_size));
291 		tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
292 			V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
293 		tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
294 		tpt.va_hi = cpu_to_be32((u32)(to >> 32));
295 		tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
296 		tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
297 		tpt.len_hi = cpu_to_be32((u32)(len >> 32));
298 	}
299 	err = write_adapter_mem(rdev, stag_idx +
300 				(rdev->lldi.vr->stag.start >> 5),
301 				sizeof(tpt), &tpt);
302 
303 	if (reset_tpt_entry) {
304 		c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
305 		mutex_lock(&rdev->stats.lock);
306 		rdev->stats.stag.cur -= 32;
307 		mutex_unlock(&rdev->stats.lock);
308 	}
309 	return err;
310 }
311 
write_pbl(struct c4iw_rdev * rdev,__be64 * pbl,u32 pbl_addr,u32 pbl_size)312 static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
313 		     u32 pbl_addr, u32 pbl_size)
314 {
315 	int err;
316 
317 	PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
318 	     __func__, pbl_addr, rdev->lldi.vr->pbl.start,
319 	     pbl_size);
320 
321 	err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
322 	return err;
323 }
324 
dereg_mem(struct c4iw_rdev * rdev,u32 stag,u32 pbl_size,u32 pbl_addr)325 static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
326 		     u32 pbl_addr)
327 {
328 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
329 			       pbl_size, pbl_addr);
330 }
331 
allocate_window(struct c4iw_rdev * rdev,u32 * stag,u32 pdid)332 static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
333 {
334 	*stag = T4_STAG_UNSET;
335 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
336 			       0UL, 0, 0, 0, 0);
337 }
338 
deallocate_window(struct c4iw_rdev * rdev,u32 stag)339 static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
340 {
341 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
342 			       0);
343 }
344 
allocate_stag(struct c4iw_rdev * rdev,u32 * stag,u32 pdid,u32 pbl_size,u32 pbl_addr)345 static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
346 			 u32 pbl_size, u32 pbl_addr)
347 {
348 	*stag = T4_STAG_UNSET;
349 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
350 			       0UL, 0, 0, pbl_size, pbl_addr);
351 }
352 
finish_mem_reg(struct c4iw_mr * mhp,u32 stag)353 static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
354 {
355 	u32 mmid;
356 
357 	mhp->attr.state = 1;
358 	mhp->attr.stag = stag;
359 	mmid = stag >> 8;
360 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
361 	PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
362 	return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
363 }
364 
register_mem(struct c4iw_dev * rhp,struct c4iw_pd * php,struct c4iw_mr * mhp,int shift)365 static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
366 		      struct c4iw_mr *mhp, int shift)
367 {
368 	u32 stag = T4_STAG_UNSET;
369 	int ret;
370 
371 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
372 			      FW_RI_STAG_NSMR, mhp->attr.perms,
373 			      mhp->attr.mw_bind_enable, mhp->attr.zbva,
374 			      mhp->attr.va_fbo, mhp->attr.len, shift - 12,
375 			      mhp->attr.pbl_size, mhp->attr.pbl_addr);
376 	if (ret)
377 		return ret;
378 
379 	ret = finish_mem_reg(mhp, stag);
380 	if (ret)
381 		dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
382 		       mhp->attr.pbl_addr);
383 	return ret;
384 }
385 
reregister_mem(struct c4iw_dev * rhp,struct c4iw_pd * php,struct c4iw_mr * mhp,int shift,int npages)386 static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
387 			  struct c4iw_mr *mhp, int shift, int npages)
388 {
389 	u32 stag;
390 	int ret;
391 
392 	if (npages > mhp->attr.pbl_size)
393 		return -ENOMEM;
394 
395 	stag = mhp->attr.stag;
396 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
397 			      FW_RI_STAG_NSMR, mhp->attr.perms,
398 			      mhp->attr.mw_bind_enable, mhp->attr.zbva,
399 			      mhp->attr.va_fbo, mhp->attr.len, shift - 12,
400 			      mhp->attr.pbl_size, mhp->attr.pbl_addr);
401 	if (ret)
402 		return ret;
403 
404 	ret = finish_mem_reg(mhp, stag);
405 	if (ret)
406 		dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
407 		       mhp->attr.pbl_addr);
408 
409 	return ret;
410 }
411 
alloc_pbl(struct c4iw_mr * mhp,int npages)412 static int alloc_pbl(struct c4iw_mr *mhp, int npages)
413 {
414 	mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
415 						    npages << 3);
416 
417 	if (!mhp->attr.pbl_addr)
418 		return -ENOMEM;
419 
420 	mhp->attr.pbl_size = npages;
421 
422 	return 0;
423 }
424 
build_phys_page_list(struct ib_phys_buf * buffer_list,int num_phys_buf,u64 * iova_start,u64 * total_size,int * npages,int * shift,__be64 ** page_list)425 static int build_phys_page_list(struct ib_phys_buf *buffer_list,
426 				int num_phys_buf, u64 *iova_start,
427 				u64 *total_size, int *npages,
428 				int *shift, __be64 **page_list)
429 {
430 	u64 mask;
431 	int i, j, n;
432 
433 	mask = 0;
434 	*total_size = 0;
435 	for (i = 0; i < num_phys_buf; ++i) {
436 		if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
437 			return -EINVAL;
438 		if (i != 0 && i != num_phys_buf - 1 &&
439 		    (buffer_list[i].size & ~PAGE_MASK))
440 			return -EINVAL;
441 		*total_size += buffer_list[i].size;
442 		if (i > 0)
443 			mask |= buffer_list[i].addr;
444 		else
445 			mask |= buffer_list[i].addr & PAGE_MASK;
446 		if (i != num_phys_buf - 1)
447 			mask |= buffer_list[i].addr + buffer_list[i].size;
448 		else
449 			mask |= (buffer_list[i].addr + buffer_list[i].size +
450 				PAGE_SIZE - 1) & PAGE_MASK;
451 	}
452 
453 	if (*total_size > 0xFFFFFFFFULL)
454 		return -ENOMEM;
455 
456 	/* Find largest page shift we can use to cover buffers */
457 	for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
458 		if ((1ULL << *shift) & mask)
459 			break;
460 
461 	buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
462 	buffer_list[0].addr &= ~0ull << *shift;
463 
464 	*npages = 0;
465 	for (i = 0; i < num_phys_buf; ++i)
466 		*npages += (buffer_list[i].size +
467 			(1ULL << *shift) - 1) >> *shift;
468 
469 	if (!*npages)
470 		return -EINVAL;
471 
472 	*page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
473 	if (!*page_list)
474 		return -ENOMEM;
475 
476 	n = 0;
477 	for (i = 0; i < num_phys_buf; ++i)
478 		for (j = 0;
479 		     j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
480 		     ++j)
481 			(*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
482 			    ((u64) j << *shift));
483 
484 	PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
485 	     __func__, (unsigned long long)*iova_start,
486 	     (unsigned long long)mask, *shift, (unsigned long long)*total_size,
487 	     *npages);
488 
489 	return 0;
490 
491 }
492 
c4iw_reregister_phys_mem(struct ib_mr * mr,int mr_rereg_mask,struct ib_pd * pd,struct ib_phys_buf * buffer_list,int num_phys_buf,int acc,u64 * iova_start)493 int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
494 			     struct ib_pd *pd, struct ib_phys_buf *buffer_list,
495 			     int num_phys_buf, int acc, u64 *iova_start)
496 {
497 
498 	struct c4iw_mr mh, *mhp;
499 	struct c4iw_pd *php;
500 	struct c4iw_dev *rhp;
501 	__be64 *page_list = NULL;
502 	int shift = 0;
503 	u64 total_size;
504 	int npages;
505 	int ret;
506 
507 	PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
508 
509 	/* There can be no memory windows */
510 	if (atomic_read(&mr->usecnt))
511 		return -EINVAL;
512 
513 	mhp = to_c4iw_mr(mr);
514 	rhp = mhp->rhp;
515 	php = to_c4iw_pd(mr->pd);
516 
517 	/* make sure we are on the same adapter */
518 	if (rhp != php->rhp)
519 		return -EINVAL;
520 
521 	memcpy(&mh, mhp, sizeof *mhp);
522 
523 	if (mr_rereg_mask & IB_MR_REREG_PD)
524 		php = to_c4iw_pd(pd);
525 	if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
526 		mh.attr.perms = c4iw_ib_to_tpt_access(acc);
527 		mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
528 					 IB_ACCESS_MW_BIND;
529 	}
530 	if (mr_rereg_mask & IB_MR_REREG_TRANS) {
531 		ret = build_phys_page_list(buffer_list, num_phys_buf,
532 						iova_start,
533 						&total_size, &npages,
534 						&shift, &page_list);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	ret = reregister_mem(rhp, php, &mh, shift, npages);
540 	kfree(page_list);
541 	if (ret)
542 		return ret;
543 	if (mr_rereg_mask & IB_MR_REREG_PD)
544 		mhp->attr.pdid = php->pdid;
545 	if (mr_rereg_mask & IB_MR_REREG_ACCESS)
546 		mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
547 	if (mr_rereg_mask & IB_MR_REREG_TRANS) {
548 		mhp->attr.zbva = 0;
549 		mhp->attr.va_fbo = *iova_start;
550 		mhp->attr.page_size = shift - 12;
551 		mhp->attr.len = (u32) total_size;
552 		mhp->attr.pbl_size = npages;
553 	}
554 
555 	return 0;
556 }
557 
c4iw_register_phys_mem(struct ib_pd * pd,struct ib_phys_buf * buffer_list,int num_phys_buf,int acc,u64 * iova_start)558 struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
559 				     struct ib_phys_buf *buffer_list,
560 				     int num_phys_buf, int acc, u64 *iova_start)
561 {
562 	__be64 *page_list;
563 	int shift;
564 	u64 total_size;
565 	int npages;
566 	struct c4iw_dev *rhp;
567 	struct c4iw_pd *php;
568 	struct c4iw_mr *mhp;
569 	int ret;
570 
571 	PDBG("%s ib_pd %p\n", __func__, pd);
572 	php = to_c4iw_pd(pd);
573 	rhp = php->rhp;
574 
575 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
576 	if (!mhp)
577 		return ERR_PTR(-ENOMEM);
578 
579 	mhp->rhp = rhp;
580 
581 	/* First check that we have enough alignment */
582 	if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
583 		ret = -EINVAL;
584 		goto err;
585 	}
586 
587 	if (num_phys_buf > 1 &&
588 	    ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
589 		ret = -EINVAL;
590 		goto err;
591 	}
592 
593 	ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
594 					&total_size, &npages, &shift,
595 					&page_list);
596 	if (ret)
597 		goto err;
598 
599 	ret = alloc_pbl(mhp, npages);
600 	if (ret) {
601 		kfree(page_list);
602 		goto err;
603 	}
604 
605 	ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
606 			     npages);
607 	kfree(page_list);
608 	if (ret)
609 		goto err_pbl;
610 
611 	mhp->attr.pdid = php->pdid;
612 	mhp->attr.zbva = 0;
613 
614 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
615 	mhp->attr.va_fbo = *iova_start;
616 	mhp->attr.page_size = shift - 12;
617 
618 	mhp->attr.len = (u32) total_size;
619 	mhp->attr.pbl_size = npages;
620 	ret = register_mem(rhp, php, mhp, shift);
621 	if (ret)
622 		goto err_pbl;
623 
624 	return &mhp->ibmr;
625 
626 err_pbl:
627 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
628 			      mhp->attr.pbl_size << 3);
629 
630 err:
631 	kfree(mhp);
632 	return ERR_PTR(ret);
633 
634 }
635 
c4iw_get_dma_mr(struct ib_pd * pd,int acc)636 struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
637 {
638 	struct c4iw_dev *rhp;
639 	struct c4iw_pd *php;
640 	struct c4iw_mr *mhp;
641 	int ret;
642 	u32 stag = T4_STAG_UNSET;
643 
644 	PDBG("%s ib_pd %p\n", __func__, pd);
645 	php = to_c4iw_pd(pd);
646 	rhp = php->rhp;
647 
648 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
649 	if (!mhp)
650 		return ERR_PTR(-ENOMEM);
651 
652 	mhp->rhp = rhp;
653 	mhp->attr.pdid = php->pdid;
654 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
655 	mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
656 	mhp->attr.zbva = 0;
657 	mhp->attr.va_fbo = 0;
658 	mhp->attr.page_size = 0;
659 	mhp->attr.len = ~0UL;
660 	mhp->attr.pbl_size = 0;
661 
662 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
663 			      FW_RI_STAG_NSMR, mhp->attr.perms,
664 			      mhp->attr.mw_bind_enable, 0, 0, ~0UL, 0, 0, 0);
665 	if (ret)
666 		goto err1;
667 
668 	ret = finish_mem_reg(mhp, stag);
669 	if (ret)
670 		goto err2;
671 	return &mhp->ibmr;
672 err2:
673 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
674 		  mhp->attr.pbl_addr);
675 err1:
676 	kfree(mhp);
677 	return ERR_PTR(ret);
678 }
679 
c4iw_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt,int acc,struct ib_udata * udata)680 struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
681 			       u64 virt, int acc, struct ib_udata *udata)
682 {
683 	__be64 *pages;
684 	int shift, n, len;
685 	int i, k, entry;
686 	int err = 0;
687 	struct scatterlist *sg;
688 	struct c4iw_dev *rhp;
689 	struct c4iw_pd *php;
690 	struct c4iw_mr *mhp;
691 
692 	PDBG("%s ib_pd %p\n", __func__, pd);
693 
694 	if (length == ~0ULL)
695 		return ERR_PTR(-EINVAL);
696 
697 	if ((length + start) < start)
698 		return ERR_PTR(-EINVAL);
699 
700 	php = to_c4iw_pd(pd);
701 	rhp = php->rhp;
702 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
703 	if (!mhp)
704 		return ERR_PTR(-ENOMEM);
705 
706 	mhp->rhp = rhp;
707 
708 	mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
709 	if (IS_ERR(mhp->umem)) {
710 		err = PTR_ERR(mhp->umem);
711 		kfree(mhp);
712 		return ERR_PTR(err);
713 	}
714 
715 	shift = ffs(mhp->umem->page_size) - 1;
716 
717 	n = mhp->umem->nmap;
718 	err = alloc_pbl(mhp, n);
719 	if (err)
720 		goto err;
721 
722 	pages = (__be64 *) __get_free_page(GFP_KERNEL);
723 	if (!pages) {
724 		err = -ENOMEM;
725 		goto err_pbl;
726 	}
727 
728 	i = n = 0;
729 
730 	for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
731 		len = sg_dma_len(sg) >> shift;
732 		for (k = 0; k < len; ++k) {
733 			pages[i++] = cpu_to_be64(sg_dma_address(sg) +
734 				mhp->umem->page_size * k);
735 			if (i == PAGE_SIZE / sizeof *pages) {
736 				err = write_pbl(&mhp->rhp->rdev,
737 				      pages,
738 				      mhp->attr.pbl_addr + (n << 3), i);
739 				if (err)
740 					goto pbl_done;
741 				n += i;
742 				i = 0;
743 			}
744 		}
745 	}
746 
747 	if (i)
748 		err = write_pbl(&mhp->rhp->rdev, pages,
749 				     mhp->attr.pbl_addr + (n << 3), i);
750 
751 pbl_done:
752 	free_page((unsigned long) pages);
753 	if (err)
754 		goto err_pbl;
755 
756 	mhp->attr.pdid = php->pdid;
757 	mhp->attr.zbva = 0;
758 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
759 	mhp->attr.va_fbo = virt;
760 	mhp->attr.page_size = shift - 12;
761 	mhp->attr.len = length;
762 
763 	err = register_mem(rhp, php, mhp, shift);
764 	if (err)
765 		goto err_pbl;
766 
767 	return &mhp->ibmr;
768 
769 err_pbl:
770 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
771 			      mhp->attr.pbl_size << 3);
772 
773 err:
774 	ib_umem_release(mhp->umem);
775 	kfree(mhp);
776 	return ERR_PTR(err);
777 }
778 
c4iw_alloc_mw(struct ib_pd * pd,enum ib_mw_type type)779 struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
780 {
781 	struct c4iw_dev *rhp;
782 	struct c4iw_pd *php;
783 	struct c4iw_mw *mhp;
784 	u32 mmid;
785 	u32 stag = 0;
786 	int ret;
787 
788 	if (type != IB_MW_TYPE_1)
789 		return ERR_PTR(-EINVAL);
790 
791 	php = to_c4iw_pd(pd);
792 	rhp = php->rhp;
793 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
794 	if (!mhp)
795 		return ERR_PTR(-ENOMEM);
796 	ret = allocate_window(&rhp->rdev, &stag, php->pdid);
797 	if (ret) {
798 		kfree(mhp);
799 		return ERR_PTR(ret);
800 	}
801 	mhp->rhp = rhp;
802 	mhp->attr.pdid = php->pdid;
803 	mhp->attr.type = FW_RI_STAG_MW;
804 	mhp->attr.stag = stag;
805 	mmid = (stag) >> 8;
806 	mhp->ibmw.rkey = stag;
807 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
808 		deallocate_window(&rhp->rdev, mhp->attr.stag);
809 		kfree(mhp);
810 		return ERR_PTR(-ENOMEM);
811 	}
812 	PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
813 	return &(mhp->ibmw);
814 }
815 
c4iw_dealloc_mw(struct ib_mw * mw)816 int c4iw_dealloc_mw(struct ib_mw *mw)
817 {
818 	struct c4iw_dev *rhp;
819 	struct c4iw_mw *mhp;
820 	u32 mmid;
821 
822 	mhp = to_c4iw_mw(mw);
823 	rhp = mhp->rhp;
824 	mmid = (mw->rkey) >> 8;
825 	remove_handle(rhp, &rhp->mmidr, mmid);
826 	deallocate_window(&rhp->rdev, mhp->attr.stag);
827 	kfree(mhp);
828 	PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
829 	return 0;
830 }
831 
c4iw_alloc_fast_reg_mr(struct ib_pd * pd,int pbl_depth)832 struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth)
833 {
834 	struct c4iw_dev *rhp;
835 	struct c4iw_pd *php;
836 	struct c4iw_mr *mhp;
837 	u32 mmid;
838 	u32 stag = 0;
839 	int ret = 0;
840 
841 	php = to_c4iw_pd(pd);
842 	rhp = php->rhp;
843 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
844 	if (!mhp) {
845 		ret = -ENOMEM;
846 		goto err;
847 	}
848 
849 	mhp->rhp = rhp;
850 	ret = alloc_pbl(mhp, pbl_depth);
851 	if (ret)
852 		goto err1;
853 	mhp->attr.pbl_size = pbl_depth;
854 	ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
855 				 mhp->attr.pbl_size, mhp->attr.pbl_addr);
856 	if (ret)
857 		goto err2;
858 	mhp->attr.pdid = php->pdid;
859 	mhp->attr.type = FW_RI_STAG_NSMR;
860 	mhp->attr.stag = stag;
861 	mhp->attr.state = 1;
862 	mmid = (stag) >> 8;
863 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
864 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
865 		ret = -ENOMEM;
866 		goto err3;
867 	}
868 
869 	PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
870 	return &(mhp->ibmr);
871 err3:
872 	dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
873 		       mhp->attr.pbl_addr);
874 err2:
875 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
876 			      mhp->attr.pbl_size << 3);
877 err1:
878 	kfree(mhp);
879 err:
880 	return ERR_PTR(ret);
881 }
882 
c4iw_alloc_fastreg_pbl(struct ib_device * device,int page_list_len)883 struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device,
884 						     int page_list_len)
885 {
886 	struct c4iw_fr_page_list *c4pl;
887 	struct c4iw_dev *dev = to_c4iw_dev(device);
888 	dma_addr_t dma_addr;
889 	int pll_len = roundup(page_list_len * sizeof(u64), 32);
890 
891 	c4pl = kmalloc(sizeof(*c4pl), GFP_KERNEL);
892 	if (!c4pl)
893 		return ERR_PTR(-ENOMEM);
894 
895 	c4pl->ibpl.page_list = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev,
896 						  pll_len, &dma_addr,
897 						  GFP_KERNEL);
898 	if (!c4pl->ibpl.page_list) {
899 		kfree(c4pl);
900 		return ERR_PTR(-ENOMEM);
901 	}
902 	dma_unmap_addr_set(c4pl, mapping, dma_addr);
903 	c4pl->dma_addr = dma_addr;
904 	c4pl->dev = dev;
905 	c4pl->pll_len = pll_len;
906 
907 	PDBG("%s c4pl %p pll_len %u page_list %p dma_addr %pad\n",
908 	     __func__, c4pl, c4pl->pll_len, c4pl->ibpl.page_list,
909 	     &c4pl->dma_addr);
910 
911 	return &c4pl->ibpl;
912 }
913 
c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list * ibpl)914 void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl)
915 {
916 	struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl);
917 
918 	PDBG("%s c4pl %p pll_len %u page_list %p dma_addr %pad\n",
919 	     __func__, c4pl, c4pl->pll_len, c4pl->ibpl.page_list,
920 	     &c4pl->dma_addr);
921 
922 	dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev,
923 			  c4pl->pll_len,
924 			  c4pl->ibpl.page_list, dma_unmap_addr(c4pl, mapping));
925 	kfree(c4pl);
926 }
927 
c4iw_dereg_mr(struct ib_mr * ib_mr)928 int c4iw_dereg_mr(struct ib_mr *ib_mr)
929 {
930 	struct c4iw_dev *rhp;
931 	struct c4iw_mr *mhp;
932 	u32 mmid;
933 
934 	PDBG("%s ib_mr %p\n", __func__, ib_mr);
935 	/* There can be no memory windows */
936 	if (atomic_read(&ib_mr->usecnt))
937 		return -EINVAL;
938 
939 	mhp = to_c4iw_mr(ib_mr);
940 	rhp = mhp->rhp;
941 	mmid = mhp->attr.stag >> 8;
942 	remove_handle(rhp, &rhp->mmidr, mmid);
943 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
944 		       mhp->attr.pbl_addr);
945 	if (mhp->attr.pbl_size)
946 		c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
947 				  mhp->attr.pbl_size << 3);
948 	if (mhp->kva)
949 		kfree((void *) (unsigned long) mhp->kva);
950 	if (mhp->umem)
951 		ib_umem_release(mhp->umem);
952 	PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
953 	kfree(mhp);
954 	return 0;
955 }
956