1 /*
2 * Port on Texas Instruments TMS320C6x architecture
3 *
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29
30
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
34 #include <asm/dscr.h>
35 #include <asm/clock.h>
36 #include <asm/soc.h>
37 #include <asm/special_insns.h>
38
39 static const char *c6x_soc_name;
40
41 int c6x_num_cores;
42 EXPORT_SYMBOL_GPL(c6x_num_cores);
43
44 unsigned int c6x_silicon_rev;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
46
47 /*
48 * Device status register. This holds information
49 * about device configuration needed by some drivers.
50 */
51 unsigned int c6x_devstat;
52 EXPORT_SYMBOL_GPL(c6x_devstat);
53
54 /*
55 * Some SoCs have fuse registers holding a unique MAC
56 * address. This is parsed out of the device tree with
57 * the resulting MAC being held here.
58 */
59 unsigned char c6x_fuse_mac[6];
60
61 unsigned long memory_start;
62 unsigned long memory_end;
63
64 unsigned long ram_start;
65 unsigned long ram_end;
66
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata;
69 static unsigned long dma_size __initdata;
70
71 struct cpuinfo_c6x {
72 const char *cpu_name;
73 const char *cpu_voltage;
74 const char *mmu;
75 const char *fpu;
76 char *cpu_rev;
77 unsigned int core_id;
78 char __cpu_rev[5];
79 };
80
81 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
82
83 unsigned int ticks_per_ns_scaled;
84 EXPORT_SYMBOL(ticks_per_ns_scaled);
85
86 unsigned int c6x_core_freq;
87
get_cpuinfo(void)88 static void __init get_cpuinfo(void)
89 {
90 unsigned cpu_id, rev_id, csr;
91 struct clk *coreclk = clk_get_sys(NULL, "core");
92 unsigned long core_khz;
93 u64 tmp;
94 struct cpuinfo_c6x *p;
95 struct device_node *node, *np;
96
97 p = &per_cpu(cpu_data, smp_processor_id());
98
99 if (!IS_ERR(coreclk))
100 c6x_core_freq = clk_get_rate(coreclk);
101 else {
102 printk(KERN_WARNING
103 "Cannot find core clock frequency. Using 700MHz\n");
104 c6x_core_freq = 700000000;
105 }
106
107 core_khz = c6x_core_freq / 1000;
108
109 tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
110 do_div(tmp, 1000000);
111 ticks_per_ns_scaled = tmp;
112
113 csr = get_creg(CSR);
114 cpu_id = csr >> 24;
115 rev_id = (csr >> 16) & 0xff;
116
117 p->mmu = "none";
118 p->fpu = "none";
119 p->cpu_voltage = "unknown";
120
121 switch (cpu_id) {
122 case 0:
123 p->cpu_name = "C67x";
124 p->fpu = "yes";
125 break;
126 case 2:
127 p->cpu_name = "C62x";
128 break;
129 case 8:
130 p->cpu_name = "C64x";
131 break;
132 case 12:
133 p->cpu_name = "C64x";
134 break;
135 case 16:
136 p->cpu_name = "C64x+";
137 p->cpu_voltage = "1.2";
138 break;
139 case 21:
140 p->cpu_name = "C66X";
141 p->cpu_voltage = "1.2";
142 break;
143 default:
144 p->cpu_name = "unknown";
145 break;
146 }
147
148 if (cpu_id < 16) {
149 switch (rev_id) {
150 case 0x1:
151 if (cpu_id > 8) {
152 p->cpu_rev = "DM640/DM641/DM642/DM643";
153 p->cpu_voltage = "1.2 - 1.4";
154 } else {
155 p->cpu_rev = "C6201";
156 p->cpu_voltage = "2.5";
157 }
158 break;
159 case 0x2:
160 p->cpu_rev = "C6201B/C6202/C6211";
161 p->cpu_voltage = "1.8";
162 break;
163 case 0x3:
164 p->cpu_rev = "C6202B/C6203/C6204/C6205";
165 p->cpu_voltage = "1.5";
166 break;
167 case 0x201:
168 p->cpu_rev = "C6701 revision 0 (early CPU)";
169 p->cpu_voltage = "1.8";
170 break;
171 case 0x202:
172 p->cpu_rev = "C6701/C6711/C6712";
173 p->cpu_voltage = "1.8";
174 break;
175 case 0x801:
176 p->cpu_rev = "C64x";
177 p->cpu_voltage = "1.5";
178 break;
179 default:
180 p->cpu_rev = "unknown";
181 }
182 } else {
183 p->cpu_rev = p->__cpu_rev;
184 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
185 }
186
187 p->core_id = get_coreid();
188
189 node = of_find_node_by_name(NULL, "cpus");
190 if (node) {
191 for_each_child_of_node(node, np)
192 if (!strcmp("cpu", np->name))
193 ++c6x_num_cores;
194 of_node_put(node);
195 }
196
197 node = of_find_node_by_name(NULL, "soc");
198 if (node) {
199 if (of_property_read_string(node, "model", &c6x_soc_name))
200 c6x_soc_name = "unknown";
201 of_node_put(node);
202 } else
203 c6x_soc_name = "unknown";
204
205 printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
206 p->core_id, p->cpu_name, p->cpu_rev,
207 p->cpu_voltage, c6x_core_freq / 1000000);
208 }
209
210 /*
211 * Early parsing of the command line
212 */
213 static u32 mem_size __initdata;
214
215 /* "mem=" parsing. */
early_mem(char * p)216 static int __init early_mem(char *p)
217 {
218 if (!p)
219 return -EINVAL;
220
221 mem_size = memparse(p, &p);
222 /* don't remove all of memory when handling "mem={invalid}" */
223 if (mem_size == 0)
224 return -EINVAL;
225
226 return 0;
227 }
228 early_param("mem", early_mem);
229
230 /* "memdma=<size>[@<address>]" parsing. */
early_memdma(char * p)231 static int __init early_memdma(char *p)
232 {
233 if (!p)
234 return -EINVAL;
235
236 dma_size = memparse(p, &p);
237 if (*p == '@')
238 dma_start = memparse(p, &p);
239
240 return 0;
241 }
242 early_param("memdma", early_memdma);
243
c6x_add_memory(phys_addr_t start,unsigned long size)244 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
245 {
246 static int ram_found __initdata;
247
248 /* We only handle one bank (the one with PAGE_OFFSET) for now */
249 if (ram_found)
250 return -EINVAL;
251
252 if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
253 return 0;
254
255 ram_start = start;
256 ram_end = start + size;
257
258 ram_found = 1;
259 return 0;
260 }
261
262 /*
263 * Do early machine setup and device tree parsing. This is called very
264 * early on the boot process.
265 */
machine_init(unsigned long dt_ptr)266 notrace void __init machine_init(unsigned long dt_ptr)
267 {
268 const void *dtb = __va(dt_ptr);
269 const void *fdt = _fdt_start;
270
271 /* interrupts must be masked */
272 set_creg(IER, 2);
273
274 /*
275 * Set the Interrupt Service Table (IST) to the beginning of the
276 * vector table.
277 */
278 set_ist(_vectors_start);
279
280 lockdep_init();
281
282 /*
283 * dtb is passed in from bootloader.
284 * fdt is linked in blob.
285 */
286 if (dtb && dtb != fdt)
287 fdt = dtb;
288
289 /* Do some early initialization based on the flat device tree */
290 early_init_dt_scan(fdt);
291
292 parse_early_param();
293 }
294
setup_arch(char ** cmdline_p)295 void __init setup_arch(char **cmdline_p)
296 {
297 int bootmap_size;
298 struct memblock_region *reg;
299
300 printk(KERN_INFO "Initializing kernel\n");
301
302 /* Initialize command line */
303 *cmdline_p = boot_command_line;
304
305 memory_end = ram_end;
306 memory_end &= ~(PAGE_SIZE - 1);
307
308 if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
309 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
310
311 /* add block that this kernel can use */
312 memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
313
314 /* reserve kernel text/data/bss */
315 memblock_reserve(PAGE_OFFSET,
316 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
317
318 if (dma_size) {
319 /* align to cacheability granularity */
320 dma_size = CACHE_REGION_END(dma_size);
321
322 if (!dma_start)
323 dma_start = memory_end - dma_size;
324
325 /* align to cacheability granularity */
326 dma_start = CACHE_REGION_START(dma_start);
327
328 /* reserve DMA memory taken from kernel memory */
329 if (memblock_is_region_memory(dma_start, dma_size))
330 memblock_reserve(dma_start, dma_size);
331 }
332
333 memory_start = PAGE_ALIGN((unsigned int) &_end);
334
335 printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
336 memory_start, memory_end);
337
338 #ifdef CONFIG_BLK_DEV_INITRD
339 /*
340 * Reserve initrd memory if in kernel memory.
341 */
342 if (initrd_start < initrd_end)
343 if (memblock_is_region_memory(initrd_start,
344 initrd_end - initrd_start))
345 memblock_reserve(initrd_start,
346 initrd_end - initrd_start);
347 #endif
348
349 init_mm.start_code = (unsigned long) &_stext;
350 init_mm.end_code = (unsigned long) &_etext;
351 init_mm.end_data = memory_start;
352 init_mm.brk = memory_start;
353
354 /*
355 * Give all the memory to the bootmap allocator, tell it to put the
356 * boot mem_map at the start of memory
357 */
358 bootmap_size = init_bootmem_node(NODE_DATA(0),
359 memory_start >> PAGE_SHIFT,
360 PAGE_OFFSET >> PAGE_SHIFT,
361 memory_end >> PAGE_SHIFT);
362 memblock_reserve(memory_start, bootmap_size);
363
364 unflatten_device_tree();
365
366 c6x_cache_init();
367
368 /* Set the whole external memory as non-cacheable */
369 disable_caching(ram_start, ram_end - 1);
370
371 /* Set caching of external RAM used by Linux */
372 for_each_memblock(memory, reg)
373 enable_caching(CACHE_REGION_START(reg->base),
374 CACHE_REGION_START(reg->base + reg->size - 1));
375
376 #ifdef CONFIG_BLK_DEV_INITRD
377 /*
378 * Enable caching for initrd which falls outside kernel memory.
379 */
380 if (initrd_start < initrd_end) {
381 if (!memblock_is_region_memory(initrd_start,
382 initrd_end - initrd_start))
383 enable_caching(CACHE_REGION_START(initrd_start),
384 CACHE_REGION_START(initrd_end - 1));
385 }
386 #endif
387
388 /*
389 * Disable caching for dma coherent memory taken from kernel memory.
390 */
391 if (dma_size && memblock_is_region_memory(dma_start, dma_size))
392 disable_caching(dma_start,
393 CACHE_REGION_START(dma_start + dma_size - 1));
394
395 /* Initialize the coherent memory allocator */
396 coherent_mem_init(dma_start, dma_size);
397
398 /*
399 * Free all memory as a starting point.
400 */
401 free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
402
403 /*
404 * Then reserve memory which is already being used.
405 */
406 for_each_memblock(reserved, reg) {
407 pr_debug("reserved - 0x%08x-0x%08x\n",
408 (u32) reg->base, (u32) reg->size);
409 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
410 }
411
412 max_low_pfn = PFN_DOWN(memory_end);
413 min_low_pfn = PFN_UP(memory_start);
414 max_mapnr = max_low_pfn - min_low_pfn;
415
416 /* Get kmalloc into gear */
417 paging_init();
418
419 /*
420 * Probe for Device State Configuration Registers.
421 * We have to do this early in case timer needs to be enabled
422 * through DSCR.
423 */
424 dscr_probe();
425
426 /* We do this early for timer and core clock frequency */
427 c64x_setup_clocks();
428
429 /* Get CPU info */
430 get_cpuinfo();
431
432 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
433 conswitchp = &dummy_con;
434 #endif
435 }
436
437 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
438 #define ptr_to_cpu(p) ((long)(p) - 1)
439
show_cpuinfo(struct seq_file * m,void * v)440 static int show_cpuinfo(struct seq_file *m, void *v)
441 {
442 int n = ptr_to_cpu(v);
443 struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
444
445 if (n == 0) {
446 seq_printf(m,
447 "soc\t\t: %s\n"
448 "soc revision\t: 0x%x\n"
449 "soc cores\t: %d\n",
450 c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
451 }
452
453 seq_printf(m,
454 "\n"
455 "processor\t: %d\n"
456 "cpu\t\t: %s\n"
457 "core revision\t: %s\n"
458 "core voltage\t: %s\n"
459 "core id\t\t: %d\n"
460 "mmu\t\t: %s\n"
461 "fpu\t\t: %s\n"
462 "cpu MHz\t\t: %u\n"
463 "bogomips\t: %lu.%02lu\n\n",
464 n,
465 p->cpu_name, p->cpu_rev, p->cpu_voltage,
466 p->core_id, p->mmu, p->fpu,
467 (c6x_core_freq + 500000) / 1000000,
468 (loops_per_jiffy/(500000/HZ)),
469 (loops_per_jiffy/(5000/HZ))%100);
470
471 return 0;
472 }
473
c_start(struct seq_file * m,loff_t * pos)474 static void *c_start(struct seq_file *m, loff_t *pos)
475 {
476 return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
477 }
c_next(struct seq_file * m,void * v,loff_t * pos)478 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
479 {
480 ++*pos;
481 return NULL;
482 }
c_stop(struct seq_file * m,void * v)483 static void c_stop(struct seq_file *m, void *v)
484 {
485 }
486
487 const struct seq_operations cpuinfo_op = {
488 c_start,
489 c_stop,
490 c_next,
491 show_cpuinfo
492 };
493
494 static struct cpu cpu_devices[NR_CPUS];
495
topology_init(void)496 static int __init topology_init(void)
497 {
498 int i;
499
500 for_each_present_cpu(i)
501 register_cpu(&cpu_devices[i], i);
502
503 return 0;
504 }
505
506 subsys_initcall(topology_init);
507