1 /*
2 * net/sunrpc/cache.c
3 *
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
6 *
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8 *
9 * Released under terms in GPL version 2. See COPYING.
10 *
11 */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37
38 #define RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
cache_init(struct cache_head * h)43 static void cache_init(struct cache_head *h)
44 {
45 time_t now = seconds_since_boot();
46 h->next = NULL;
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 h->last_refresh = now;
51 }
52
sunrpc_cache_lookup(struct cache_detail * detail,struct cache_head * key,int hash)53 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
54 struct cache_head *key, int hash)
55 {
56 struct cache_head **head, **hp;
57 struct cache_head *new = NULL, *freeme = NULL;
58
59 head = &detail->hash_table[hash];
60
61 read_lock(&detail->hash_lock);
62
63 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
64 struct cache_head *tmp = *hp;
65 if (detail->match(tmp, key)) {
66 if (cache_is_expired(detail, tmp))
67 /* This entry is expired, we will discard it. */
68 break;
69 cache_get(tmp);
70 read_unlock(&detail->hash_lock);
71 return tmp;
72 }
73 }
74 read_unlock(&detail->hash_lock);
75 /* Didn't find anything, insert an empty entry */
76
77 new = detail->alloc();
78 if (!new)
79 return NULL;
80 /* must fully initialise 'new', else
81 * we might get lose if we need to
82 * cache_put it soon.
83 */
84 cache_init(new);
85 detail->init(new, key);
86
87 write_lock(&detail->hash_lock);
88
89 /* check if entry appeared while we slept */
90 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
91 struct cache_head *tmp = *hp;
92 if (detail->match(tmp, key)) {
93 if (cache_is_expired(detail, tmp)) {
94 *hp = tmp->next;
95 tmp->next = NULL;
96 detail->entries --;
97 freeme = tmp;
98 break;
99 }
100 cache_get(tmp);
101 write_unlock(&detail->hash_lock);
102 cache_put(new, detail);
103 return tmp;
104 }
105 }
106 new->next = *head;
107 *head = new;
108 detail->entries++;
109 cache_get(new);
110 write_unlock(&detail->hash_lock);
111
112 if (freeme)
113 cache_put(freeme, detail);
114 return new;
115 }
116 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
117
118
119 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
120
cache_fresh_locked(struct cache_head * head,time_t expiry)121 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
122 {
123 head->expiry_time = expiry;
124 head->last_refresh = seconds_since_boot();
125 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
126 set_bit(CACHE_VALID, &head->flags);
127 }
128
cache_fresh_unlocked(struct cache_head * head,struct cache_detail * detail)129 static void cache_fresh_unlocked(struct cache_head *head,
130 struct cache_detail *detail)
131 {
132 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
133 cache_revisit_request(head);
134 cache_dequeue(detail, head);
135 }
136 }
137
sunrpc_cache_update(struct cache_detail * detail,struct cache_head * new,struct cache_head * old,int hash)138 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
139 struct cache_head *new, struct cache_head *old, int hash)
140 {
141 /* The 'old' entry is to be replaced by 'new'.
142 * If 'old' is not VALID, we update it directly,
143 * otherwise we need to replace it
144 */
145 struct cache_head **head;
146 struct cache_head *tmp;
147
148 if (!test_bit(CACHE_VALID, &old->flags)) {
149 write_lock(&detail->hash_lock);
150 if (!test_bit(CACHE_VALID, &old->flags)) {
151 if (test_bit(CACHE_NEGATIVE, &new->flags))
152 set_bit(CACHE_NEGATIVE, &old->flags);
153 else
154 detail->update(old, new);
155 cache_fresh_locked(old, new->expiry_time);
156 write_unlock(&detail->hash_lock);
157 cache_fresh_unlocked(old, detail);
158 return old;
159 }
160 write_unlock(&detail->hash_lock);
161 }
162 /* We need to insert a new entry */
163 tmp = detail->alloc();
164 if (!tmp) {
165 cache_put(old, detail);
166 return NULL;
167 }
168 cache_init(tmp);
169 detail->init(tmp, old);
170 head = &detail->hash_table[hash];
171
172 write_lock(&detail->hash_lock);
173 if (test_bit(CACHE_NEGATIVE, &new->flags))
174 set_bit(CACHE_NEGATIVE, &tmp->flags);
175 else
176 detail->update(tmp, new);
177 tmp->next = *head;
178 *head = tmp;
179 detail->entries++;
180 cache_get(tmp);
181 cache_fresh_locked(tmp, new->expiry_time);
182 cache_fresh_locked(old, 0);
183 write_unlock(&detail->hash_lock);
184 cache_fresh_unlocked(tmp, detail);
185 cache_fresh_unlocked(old, detail);
186 cache_put(old, detail);
187 return tmp;
188 }
189 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
190
cache_make_upcall(struct cache_detail * cd,struct cache_head * h)191 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
192 {
193 if (cd->cache_upcall)
194 return cd->cache_upcall(cd, h);
195 return sunrpc_cache_pipe_upcall(cd, h);
196 }
197
cache_is_valid(struct cache_head * h)198 static inline int cache_is_valid(struct cache_head *h)
199 {
200 if (!test_bit(CACHE_VALID, &h->flags))
201 return -EAGAIN;
202 else {
203 /* entry is valid */
204 if (test_bit(CACHE_NEGATIVE, &h->flags))
205 return -ENOENT;
206 else {
207 /*
208 * In combination with write barrier in
209 * sunrpc_cache_update, ensures that anyone
210 * using the cache entry after this sees the
211 * updated contents:
212 */
213 smp_rmb();
214 return 0;
215 }
216 }
217 }
218
try_to_negate_entry(struct cache_detail * detail,struct cache_head * h)219 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
220 {
221 int rv;
222
223 write_lock(&detail->hash_lock);
224 rv = cache_is_valid(h);
225 if (rv == -EAGAIN) {
226 set_bit(CACHE_NEGATIVE, &h->flags);
227 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
228 rv = -ENOENT;
229 }
230 write_unlock(&detail->hash_lock);
231 cache_fresh_unlocked(h, detail);
232 return rv;
233 }
234
235 /*
236 * This is the generic cache management routine for all
237 * the authentication caches.
238 * It checks the currency of a cache item and will (later)
239 * initiate an upcall to fill it if needed.
240 *
241 *
242 * Returns 0 if the cache_head can be used, or cache_puts it and returns
243 * -EAGAIN if upcall is pending and request has been queued
244 * -ETIMEDOUT if upcall failed or request could not be queue or
245 * upcall completed but item is still invalid (implying that
246 * the cache item has been replaced with a newer one).
247 * -ENOENT if cache entry was negative
248 */
cache_check(struct cache_detail * detail,struct cache_head * h,struct cache_req * rqstp)249 int cache_check(struct cache_detail *detail,
250 struct cache_head *h, struct cache_req *rqstp)
251 {
252 int rv;
253 long refresh_age, age;
254
255 /* First decide return status as best we can */
256 rv = cache_is_valid(h);
257
258 /* now see if we want to start an upcall */
259 refresh_age = (h->expiry_time - h->last_refresh);
260 age = seconds_since_boot() - h->last_refresh;
261
262 if (rqstp == NULL) {
263 if (rv == -EAGAIN)
264 rv = -ENOENT;
265 } else if (rv == -EAGAIN ||
266 (h->expiry_time != 0 && age > refresh_age/2)) {
267 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
268 refresh_age, age);
269 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
270 switch (cache_make_upcall(detail, h)) {
271 case -EINVAL:
272 rv = try_to_negate_entry(detail, h);
273 break;
274 case -EAGAIN:
275 cache_fresh_unlocked(h, detail);
276 break;
277 }
278 }
279 }
280
281 if (rv == -EAGAIN) {
282 if (!cache_defer_req(rqstp, h)) {
283 /*
284 * Request was not deferred; handle it as best
285 * we can ourselves:
286 */
287 rv = cache_is_valid(h);
288 if (rv == -EAGAIN)
289 rv = -ETIMEDOUT;
290 }
291 }
292 if (rv)
293 cache_put(h, detail);
294 return rv;
295 }
296 EXPORT_SYMBOL_GPL(cache_check);
297
298 /*
299 * caches need to be periodically cleaned.
300 * For this we maintain a list of cache_detail and
301 * a current pointer into that list and into the table
302 * for that entry.
303 *
304 * Each time cache_clean is called it finds the next non-empty entry
305 * in the current table and walks the list in that entry
306 * looking for entries that can be removed.
307 *
308 * An entry gets removed if:
309 * - The expiry is before current time
310 * - The last_refresh time is before the flush_time for that cache
311 *
312 * later we might drop old entries with non-NEVER expiry if that table
313 * is getting 'full' for some definition of 'full'
314 *
315 * The question of "how often to scan a table" is an interesting one
316 * and is answered in part by the use of the "nextcheck" field in the
317 * cache_detail.
318 * When a scan of a table begins, the nextcheck field is set to a time
319 * that is well into the future.
320 * While scanning, if an expiry time is found that is earlier than the
321 * current nextcheck time, nextcheck is set to that expiry time.
322 * If the flush_time is ever set to a time earlier than the nextcheck
323 * time, the nextcheck time is then set to that flush_time.
324 *
325 * A table is then only scanned if the current time is at least
326 * the nextcheck time.
327 *
328 */
329
330 static LIST_HEAD(cache_list);
331 static DEFINE_SPINLOCK(cache_list_lock);
332 static struct cache_detail *current_detail;
333 static int current_index;
334
335 static void do_cache_clean(struct work_struct *work);
336 static struct delayed_work cache_cleaner;
337
sunrpc_init_cache_detail(struct cache_detail * cd)338 void sunrpc_init_cache_detail(struct cache_detail *cd)
339 {
340 rwlock_init(&cd->hash_lock);
341 INIT_LIST_HEAD(&cd->queue);
342 spin_lock(&cache_list_lock);
343 cd->nextcheck = 0;
344 cd->entries = 0;
345 atomic_set(&cd->readers, 0);
346 cd->last_close = 0;
347 cd->last_warn = -1;
348 list_add(&cd->others, &cache_list);
349 spin_unlock(&cache_list_lock);
350
351 /* start the cleaning process */
352 schedule_delayed_work(&cache_cleaner, 0);
353 }
354 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
355
sunrpc_destroy_cache_detail(struct cache_detail * cd)356 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
357 {
358 cache_purge(cd);
359 spin_lock(&cache_list_lock);
360 write_lock(&cd->hash_lock);
361 if (cd->entries || atomic_read(&cd->inuse)) {
362 write_unlock(&cd->hash_lock);
363 spin_unlock(&cache_list_lock);
364 goto out;
365 }
366 if (current_detail == cd)
367 current_detail = NULL;
368 list_del_init(&cd->others);
369 write_unlock(&cd->hash_lock);
370 spin_unlock(&cache_list_lock);
371 if (list_empty(&cache_list)) {
372 /* module must be being unloaded so its safe to kill the worker */
373 cancel_delayed_work_sync(&cache_cleaner);
374 }
375 return;
376 out:
377 printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
378 }
379 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
380
381 /* clean cache tries to find something to clean
382 * and cleans it.
383 * It returns 1 if it cleaned something,
384 * 0 if it didn't find anything this time
385 * -1 if it fell off the end of the list.
386 */
cache_clean(void)387 static int cache_clean(void)
388 {
389 int rv = 0;
390 struct list_head *next;
391
392 spin_lock(&cache_list_lock);
393
394 /* find a suitable table if we don't already have one */
395 while (current_detail == NULL ||
396 current_index >= current_detail->hash_size) {
397 if (current_detail)
398 next = current_detail->others.next;
399 else
400 next = cache_list.next;
401 if (next == &cache_list) {
402 current_detail = NULL;
403 spin_unlock(&cache_list_lock);
404 return -1;
405 }
406 current_detail = list_entry(next, struct cache_detail, others);
407 if (current_detail->nextcheck > seconds_since_boot())
408 current_index = current_detail->hash_size;
409 else {
410 current_index = 0;
411 current_detail->nextcheck = seconds_since_boot()+30*60;
412 }
413 }
414
415 /* find a non-empty bucket in the table */
416 while (current_detail &&
417 current_index < current_detail->hash_size &&
418 current_detail->hash_table[current_index] == NULL)
419 current_index++;
420
421 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
422
423 if (current_detail && current_index < current_detail->hash_size) {
424 struct cache_head *ch, **cp;
425 struct cache_detail *d;
426
427 write_lock(¤t_detail->hash_lock);
428
429 /* Ok, now to clean this strand */
430
431 cp = & current_detail->hash_table[current_index];
432 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
433 if (current_detail->nextcheck > ch->expiry_time)
434 current_detail->nextcheck = ch->expiry_time+1;
435 if (!cache_is_expired(current_detail, ch))
436 continue;
437
438 *cp = ch->next;
439 ch->next = NULL;
440 current_detail->entries--;
441 rv = 1;
442 break;
443 }
444
445 write_unlock(¤t_detail->hash_lock);
446 d = current_detail;
447 if (!ch)
448 current_index ++;
449 spin_unlock(&cache_list_lock);
450 if (ch) {
451 set_bit(CACHE_CLEANED, &ch->flags);
452 cache_fresh_unlocked(ch, d);
453 cache_put(ch, d);
454 }
455 } else
456 spin_unlock(&cache_list_lock);
457
458 return rv;
459 }
460
461 /*
462 * We want to regularly clean the cache, so we need to schedule some work ...
463 */
do_cache_clean(struct work_struct * work)464 static void do_cache_clean(struct work_struct *work)
465 {
466 int delay = 5;
467 if (cache_clean() == -1)
468 delay = round_jiffies_relative(30*HZ);
469
470 if (list_empty(&cache_list))
471 delay = 0;
472
473 if (delay)
474 schedule_delayed_work(&cache_cleaner, delay);
475 }
476
477
478 /*
479 * Clean all caches promptly. This just calls cache_clean
480 * repeatedly until we are sure that every cache has had a chance to
481 * be fully cleaned
482 */
cache_flush(void)483 void cache_flush(void)
484 {
485 while (cache_clean() != -1)
486 cond_resched();
487 while (cache_clean() != -1)
488 cond_resched();
489 }
490 EXPORT_SYMBOL_GPL(cache_flush);
491
cache_purge(struct cache_detail * detail)492 void cache_purge(struct cache_detail *detail)
493 {
494 detail->flush_time = LONG_MAX;
495 detail->nextcheck = seconds_since_boot();
496 cache_flush();
497 detail->flush_time = 1;
498 }
499 EXPORT_SYMBOL_GPL(cache_purge);
500
501
502 /*
503 * Deferral and Revisiting of Requests.
504 *
505 * If a cache lookup finds a pending entry, we
506 * need to defer the request and revisit it later.
507 * All deferred requests are stored in a hash table,
508 * indexed by "struct cache_head *".
509 * As it may be wasteful to store a whole request
510 * structure, we allow the request to provide a
511 * deferred form, which must contain a
512 * 'struct cache_deferred_req'
513 * This cache_deferred_req contains a method to allow
514 * it to be revisited when cache info is available
515 */
516
517 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
518 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
519
520 #define DFR_MAX 300 /* ??? */
521
522 static DEFINE_SPINLOCK(cache_defer_lock);
523 static LIST_HEAD(cache_defer_list);
524 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
525 static int cache_defer_cnt;
526
__unhash_deferred_req(struct cache_deferred_req * dreq)527 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
528 {
529 hlist_del_init(&dreq->hash);
530 if (!list_empty(&dreq->recent)) {
531 list_del_init(&dreq->recent);
532 cache_defer_cnt--;
533 }
534 }
535
__hash_deferred_req(struct cache_deferred_req * dreq,struct cache_head * item)536 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
537 {
538 int hash = DFR_HASH(item);
539
540 INIT_LIST_HEAD(&dreq->recent);
541 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
542 }
543
setup_deferral(struct cache_deferred_req * dreq,struct cache_head * item,int count_me)544 static void setup_deferral(struct cache_deferred_req *dreq,
545 struct cache_head *item,
546 int count_me)
547 {
548
549 dreq->item = item;
550
551 spin_lock(&cache_defer_lock);
552
553 __hash_deferred_req(dreq, item);
554
555 if (count_me) {
556 cache_defer_cnt++;
557 list_add(&dreq->recent, &cache_defer_list);
558 }
559
560 spin_unlock(&cache_defer_lock);
561
562 }
563
564 struct thread_deferred_req {
565 struct cache_deferred_req handle;
566 struct completion completion;
567 };
568
cache_restart_thread(struct cache_deferred_req * dreq,int too_many)569 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
570 {
571 struct thread_deferred_req *dr =
572 container_of(dreq, struct thread_deferred_req, handle);
573 complete(&dr->completion);
574 }
575
cache_wait_req(struct cache_req * req,struct cache_head * item)576 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
577 {
578 struct thread_deferred_req sleeper;
579 struct cache_deferred_req *dreq = &sleeper.handle;
580
581 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
582 dreq->revisit = cache_restart_thread;
583
584 setup_deferral(dreq, item, 0);
585
586 if (!test_bit(CACHE_PENDING, &item->flags) ||
587 wait_for_completion_interruptible_timeout(
588 &sleeper.completion, req->thread_wait) <= 0) {
589 /* The completion wasn't completed, so we need
590 * to clean up
591 */
592 spin_lock(&cache_defer_lock);
593 if (!hlist_unhashed(&sleeper.handle.hash)) {
594 __unhash_deferred_req(&sleeper.handle);
595 spin_unlock(&cache_defer_lock);
596 } else {
597 /* cache_revisit_request already removed
598 * this from the hash table, but hasn't
599 * called ->revisit yet. It will very soon
600 * and we need to wait for it.
601 */
602 spin_unlock(&cache_defer_lock);
603 wait_for_completion(&sleeper.completion);
604 }
605 }
606 }
607
cache_limit_defers(void)608 static void cache_limit_defers(void)
609 {
610 /* Make sure we haven't exceed the limit of allowed deferred
611 * requests.
612 */
613 struct cache_deferred_req *discard = NULL;
614
615 if (cache_defer_cnt <= DFR_MAX)
616 return;
617
618 spin_lock(&cache_defer_lock);
619
620 /* Consider removing either the first or the last */
621 if (cache_defer_cnt > DFR_MAX) {
622 if (prandom_u32() & 1)
623 discard = list_entry(cache_defer_list.next,
624 struct cache_deferred_req, recent);
625 else
626 discard = list_entry(cache_defer_list.prev,
627 struct cache_deferred_req, recent);
628 __unhash_deferred_req(discard);
629 }
630 spin_unlock(&cache_defer_lock);
631 if (discard)
632 discard->revisit(discard, 1);
633 }
634
635 /* Return true if and only if a deferred request is queued. */
cache_defer_req(struct cache_req * req,struct cache_head * item)636 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
637 {
638 struct cache_deferred_req *dreq;
639
640 if (req->thread_wait) {
641 cache_wait_req(req, item);
642 if (!test_bit(CACHE_PENDING, &item->flags))
643 return false;
644 }
645 dreq = req->defer(req);
646 if (dreq == NULL)
647 return false;
648 setup_deferral(dreq, item, 1);
649 if (!test_bit(CACHE_PENDING, &item->flags))
650 /* Bit could have been cleared before we managed to
651 * set up the deferral, so need to revisit just in case
652 */
653 cache_revisit_request(item);
654
655 cache_limit_defers();
656 return true;
657 }
658
cache_revisit_request(struct cache_head * item)659 static void cache_revisit_request(struct cache_head *item)
660 {
661 struct cache_deferred_req *dreq;
662 struct list_head pending;
663 struct hlist_node *tmp;
664 int hash = DFR_HASH(item);
665
666 INIT_LIST_HEAD(&pending);
667 spin_lock(&cache_defer_lock);
668
669 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
670 if (dreq->item == item) {
671 __unhash_deferred_req(dreq);
672 list_add(&dreq->recent, &pending);
673 }
674
675 spin_unlock(&cache_defer_lock);
676
677 while (!list_empty(&pending)) {
678 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
679 list_del_init(&dreq->recent);
680 dreq->revisit(dreq, 0);
681 }
682 }
683
cache_clean_deferred(void * owner)684 void cache_clean_deferred(void *owner)
685 {
686 struct cache_deferred_req *dreq, *tmp;
687 struct list_head pending;
688
689
690 INIT_LIST_HEAD(&pending);
691 spin_lock(&cache_defer_lock);
692
693 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
694 if (dreq->owner == owner) {
695 __unhash_deferred_req(dreq);
696 list_add(&dreq->recent, &pending);
697 }
698 }
699 spin_unlock(&cache_defer_lock);
700
701 while (!list_empty(&pending)) {
702 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
703 list_del_init(&dreq->recent);
704 dreq->revisit(dreq, 1);
705 }
706 }
707
708 /*
709 * communicate with user-space
710 *
711 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
712 * On read, you get a full request, or block.
713 * On write, an update request is processed.
714 * Poll works if anything to read, and always allows write.
715 *
716 * Implemented by linked list of requests. Each open file has
717 * a ->private that also exists in this list. New requests are added
718 * to the end and may wakeup and preceding readers.
719 * New readers are added to the head. If, on read, an item is found with
720 * CACHE_UPCALLING clear, we free it from the list.
721 *
722 */
723
724 static DEFINE_SPINLOCK(queue_lock);
725 static DEFINE_MUTEX(queue_io_mutex);
726
727 struct cache_queue {
728 struct list_head list;
729 int reader; /* if 0, then request */
730 };
731 struct cache_request {
732 struct cache_queue q;
733 struct cache_head *item;
734 char * buf;
735 int len;
736 int readers;
737 };
738 struct cache_reader {
739 struct cache_queue q;
740 int offset; /* if non-0, we have a refcnt on next request */
741 };
742
cache_request(struct cache_detail * detail,struct cache_request * crq)743 static int cache_request(struct cache_detail *detail,
744 struct cache_request *crq)
745 {
746 char *bp = crq->buf;
747 int len = PAGE_SIZE;
748
749 detail->cache_request(detail, crq->item, &bp, &len);
750 if (len < 0)
751 return -EAGAIN;
752 return PAGE_SIZE - len;
753 }
754
cache_read(struct file * filp,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)755 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
756 loff_t *ppos, struct cache_detail *cd)
757 {
758 struct cache_reader *rp = filp->private_data;
759 struct cache_request *rq;
760 struct inode *inode = file_inode(filp);
761 int err;
762
763 if (count == 0)
764 return 0;
765
766 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
767 * readers on this file */
768 again:
769 spin_lock(&queue_lock);
770 /* need to find next request */
771 while (rp->q.list.next != &cd->queue &&
772 list_entry(rp->q.list.next, struct cache_queue, list)
773 ->reader) {
774 struct list_head *next = rp->q.list.next;
775 list_move(&rp->q.list, next);
776 }
777 if (rp->q.list.next == &cd->queue) {
778 spin_unlock(&queue_lock);
779 mutex_unlock(&inode->i_mutex);
780 WARN_ON_ONCE(rp->offset);
781 return 0;
782 }
783 rq = container_of(rp->q.list.next, struct cache_request, q.list);
784 WARN_ON_ONCE(rq->q.reader);
785 if (rp->offset == 0)
786 rq->readers++;
787 spin_unlock(&queue_lock);
788
789 if (rq->len == 0) {
790 err = cache_request(cd, rq);
791 if (err < 0)
792 goto out;
793 rq->len = err;
794 }
795
796 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
797 err = -EAGAIN;
798 spin_lock(&queue_lock);
799 list_move(&rp->q.list, &rq->q.list);
800 spin_unlock(&queue_lock);
801 } else {
802 if (rp->offset + count > rq->len)
803 count = rq->len - rp->offset;
804 err = -EFAULT;
805 if (copy_to_user(buf, rq->buf + rp->offset, count))
806 goto out;
807 rp->offset += count;
808 if (rp->offset >= rq->len) {
809 rp->offset = 0;
810 spin_lock(&queue_lock);
811 list_move(&rp->q.list, &rq->q.list);
812 spin_unlock(&queue_lock);
813 }
814 err = 0;
815 }
816 out:
817 if (rp->offset == 0) {
818 /* need to release rq */
819 spin_lock(&queue_lock);
820 rq->readers--;
821 if (rq->readers == 0 &&
822 !test_bit(CACHE_PENDING, &rq->item->flags)) {
823 list_del(&rq->q.list);
824 spin_unlock(&queue_lock);
825 cache_put(rq->item, cd);
826 kfree(rq->buf);
827 kfree(rq);
828 } else
829 spin_unlock(&queue_lock);
830 }
831 if (err == -EAGAIN)
832 goto again;
833 mutex_unlock(&inode->i_mutex);
834 return err ? err : count;
835 }
836
cache_do_downcall(char * kaddr,const char __user * buf,size_t count,struct cache_detail * cd)837 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
838 size_t count, struct cache_detail *cd)
839 {
840 ssize_t ret;
841
842 if (count == 0)
843 return -EINVAL;
844 if (copy_from_user(kaddr, buf, count))
845 return -EFAULT;
846 kaddr[count] = '\0';
847 ret = cd->cache_parse(cd, kaddr, count);
848 if (!ret)
849 ret = count;
850 return ret;
851 }
852
cache_slow_downcall(const char __user * buf,size_t count,struct cache_detail * cd)853 static ssize_t cache_slow_downcall(const char __user *buf,
854 size_t count, struct cache_detail *cd)
855 {
856 static char write_buf[8192]; /* protected by queue_io_mutex */
857 ssize_t ret = -EINVAL;
858
859 if (count >= sizeof(write_buf))
860 goto out;
861 mutex_lock(&queue_io_mutex);
862 ret = cache_do_downcall(write_buf, buf, count, cd);
863 mutex_unlock(&queue_io_mutex);
864 out:
865 return ret;
866 }
867
cache_downcall(struct address_space * mapping,const char __user * buf,size_t count,struct cache_detail * cd)868 static ssize_t cache_downcall(struct address_space *mapping,
869 const char __user *buf,
870 size_t count, struct cache_detail *cd)
871 {
872 struct page *page;
873 char *kaddr;
874 ssize_t ret = -ENOMEM;
875
876 if (count >= PAGE_CACHE_SIZE)
877 goto out_slow;
878
879 page = find_or_create_page(mapping, 0, GFP_KERNEL);
880 if (!page)
881 goto out_slow;
882
883 kaddr = kmap(page);
884 ret = cache_do_downcall(kaddr, buf, count, cd);
885 kunmap(page);
886 unlock_page(page);
887 page_cache_release(page);
888 return ret;
889 out_slow:
890 return cache_slow_downcall(buf, count, cd);
891 }
892
cache_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)893 static ssize_t cache_write(struct file *filp, const char __user *buf,
894 size_t count, loff_t *ppos,
895 struct cache_detail *cd)
896 {
897 struct address_space *mapping = filp->f_mapping;
898 struct inode *inode = file_inode(filp);
899 ssize_t ret = -EINVAL;
900
901 if (!cd->cache_parse)
902 goto out;
903
904 mutex_lock(&inode->i_mutex);
905 ret = cache_downcall(mapping, buf, count, cd);
906 mutex_unlock(&inode->i_mutex);
907 out:
908 return ret;
909 }
910
911 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
912
cache_poll(struct file * filp,poll_table * wait,struct cache_detail * cd)913 static unsigned int cache_poll(struct file *filp, poll_table *wait,
914 struct cache_detail *cd)
915 {
916 unsigned int mask;
917 struct cache_reader *rp = filp->private_data;
918 struct cache_queue *cq;
919
920 poll_wait(filp, &queue_wait, wait);
921
922 /* alway allow write */
923 mask = POLLOUT | POLLWRNORM;
924
925 if (!rp)
926 return mask;
927
928 spin_lock(&queue_lock);
929
930 for (cq= &rp->q; &cq->list != &cd->queue;
931 cq = list_entry(cq->list.next, struct cache_queue, list))
932 if (!cq->reader) {
933 mask |= POLLIN | POLLRDNORM;
934 break;
935 }
936 spin_unlock(&queue_lock);
937 return mask;
938 }
939
cache_ioctl(struct inode * ino,struct file * filp,unsigned int cmd,unsigned long arg,struct cache_detail * cd)940 static int cache_ioctl(struct inode *ino, struct file *filp,
941 unsigned int cmd, unsigned long arg,
942 struct cache_detail *cd)
943 {
944 int len = 0;
945 struct cache_reader *rp = filp->private_data;
946 struct cache_queue *cq;
947
948 if (cmd != FIONREAD || !rp)
949 return -EINVAL;
950
951 spin_lock(&queue_lock);
952
953 /* only find the length remaining in current request,
954 * or the length of the next request
955 */
956 for (cq= &rp->q; &cq->list != &cd->queue;
957 cq = list_entry(cq->list.next, struct cache_queue, list))
958 if (!cq->reader) {
959 struct cache_request *cr =
960 container_of(cq, struct cache_request, q);
961 len = cr->len - rp->offset;
962 break;
963 }
964 spin_unlock(&queue_lock);
965
966 return put_user(len, (int __user *)arg);
967 }
968
cache_open(struct inode * inode,struct file * filp,struct cache_detail * cd)969 static int cache_open(struct inode *inode, struct file *filp,
970 struct cache_detail *cd)
971 {
972 struct cache_reader *rp = NULL;
973
974 if (!cd || !try_module_get(cd->owner))
975 return -EACCES;
976 nonseekable_open(inode, filp);
977 if (filp->f_mode & FMODE_READ) {
978 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
979 if (!rp) {
980 module_put(cd->owner);
981 return -ENOMEM;
982 }
983 rp->offset = 0;
984 rp->q.reader = 1;
985 atomic_inc(&cd->readers);
986 spin_lock(&queue_lock);
987 list_add(&rp->q.list, &cd->queue);
988 spin_unlock(&queue_lock);
989 }
990 filp->private_data = rp;
991 return 0;
992 }
993
cache_release(struct inode * inode,struct file * filp,struct cache_detail * cd)994 static int cache_release(struct inode *inode, struct file *filp,
995 struct cache_detail *cd)
996 {
997 struct cache_reader *rp = filp->private_data;
998
999 if (rp) {
1000 spin_lock(&queue_lock);
1001 if (rp->offset) {
1002 struct cache_queue *cq;
1003 for (cq= &rp->q; &cq->list != &cd->queue;
1004 cq = list_entry(cq->list.next, struct cache_queue, list))
1005 if (!cq->reader) {
1006 container_of(cq, struct cache_request, q)
1007 ->readers--;
1008 break;
1009 }
1010 rp->offset = 0;
1011 }
1012 list_del(&rp->q.list);
1013 spin_unlock(&queue_lock);
1014
1015 filp->private_data = NULL;
1016 kfree(rp);
1017
1018 cd->last_close = seconds_since_boot();
1019 atomic_dec(&cd->readers);
1020 }
1021 module_put(cd->owner);
1022 return 0;
1023 }
1024
1025
1026
cache_dequeue(struct cache_detail * detail,struct cache_head * ch)1027 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1028 {
1029 struct cache_queue *cq, *tmp;
1030 struct cache_request *cr;
1031 struct list_head dequeued;
1032
1033 INIT_LIST_HEAD(&dequeued);
1034 spin_lock(&queue_lock);
1035 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1036 if (!cq->reader) {
1037 cr = container_of(cq, struct cache_request, q);
1038 if (cr->item != ch)
1039 continue;
1040 if (test_bit(CACHE_PENDING, &ch->flags))
1041 /* Lost a race and it is pending again */
1042 break;
1043 if (cr->readers != 0)
1044 continue;
1045 list_move(&cr->q.list, &dequeued);
1046 }
1047 spin_unlock(&queue_lock);
1048 while (!list_empty(&dequeued)) {
1049 cr = list_entry(dequeued.next, struct cache_request, q.list);
1050 list_del(&cr->q.list);
1051 cache_put(cr->item, detail);
1052 kfree(cr->buf);
1053 kfree(cr);
1054 }
1055 }
1056
1057 /*
1058 * Support routines for text-based upcalls.
1059 * Fields are separated by spaces.
1060 * Fields are either mangled to quote space tab newline slosh with slosh
1061 * or a hexified with a leading \x
1062 * Record is terminated with newline.
1063 *
1064 */
1065
qword_add(char ** bpp,int * lp,char * str)1066 void qword_add(char **bpp, int *lp, char *str)
1067 {
1068 char *bp = *bpp;
1069 int len = *lp;
1070 char c;
1071
1072 if (len < 0) return;
1073
1074 while ((c=*str++) && len)
1075 switch(c) {
1076 case ' ':
1077 case '\t':
1078 case '\n':
1079 case '\\':
1080 if (len >= 4) {
1081 *bp++ = '\\';
1082 *bp++ = '0' + ((c & 0300)>>6);
1083 *bp++ = '0' + ((c & 0070)>>3);
1084 *bp++ = '0' + ((c & 0007)>>0);
1085 }
1086 len -= 4;
1087 break;
1088 default:
1089 *bp++ = c;
1090 len--;
1091 }
1092 if (c || len <1) len = -1;
1093 else {
1094 *bp++ = ' ';
1095 len--;
1096 }
1097 *bpp = bp;
1098 *lp = len;
1099 }
1100 EXPORT_SYMBOL_GPL(qword_add);
1101
qword_addhex(char ** bpp,int * lp,char * buf,int blen)1102 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1103 {
1104 char *bp = *bpp;
1105 int len = *lp;
1106
1107 if (len < 0) return;
1108
1109 if (len > 2) {
1110 *bp++ = '\\';
1111 *bp++ = 'x';
1112 len -= 2;
1113 while (blen && len >= 2) {
1114 bp = hex_byte_pack(bp, *buf++);
1115 len -= 2;
1116 blen--;
1117 }
1118 }
1119 if (blen || len<1) len = -1;
1120 else {
1121 *bp++ = ' ';
1122 len--;
1123 }
1124 *bpp = bp;
1125 *lp = len;
1126 }
1127 EXPORT_SYMBOL_GPL(qword_addhex);
1128
warn_no_listener(struct cache_detail * detail)1129 static void warn_no_listener(struct cache_detail *detail)
1130 {
1131 if (detail->last_warn != detail->last_close) {
1132 detail->last_warn = detail->last_close;
1133 if (detail->warn_no_listener)
1134 detail->warn_no_listener(detail, detail->last_close != 0);
1135 }
1136 }
1137
cache_listeners_exist(struct cache_detail * detail)1138 static bool cache_listeners_exist(struct cache_detail *detail)
1139 {
1140 if (atomic_read(&detail->readers))
1141 return true;
1142 if (detail->last_close == 0)
1143 /* This cache was never opened */
1144 return false;
1145 if (detail->last_close < seconds_since_boot() - 30)
1146 /*
1147 * We allow for the possibility that someone might
1148 * restart a userspace daemon without restarting the
1149 * server; but after 30 seconds, we give up.
1150 */
1151 return false;
1152 return true;
1153 }
1154
1155 /*
1156 * register an upcall request to user-space and queue it up for read() by the
1157 * upcall daemon.
1158 *
1159 * Each request is at most one page long.
1160 */
sunrpc_cache_pipe_upcall(struct cache_detail * detail,struct cache_head * h)1161 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1162 {
1163
1164 char *buf;
1165 struct cache_request *crq;
1166 int ret = 0;
1167
1168 if (!detail->cache_request)
1169 return -EINVAL;
1170
1171 if (!cache_listeners_exist(detail)) {
1172 warn_no_listener(detail);
1173 return -EINVAL;
1174 }
1175 if (test_bit(CACHE_CLEANED, &h->flags))
1176 /* Too late to make an upcall */
1177 return -EAGAIN;
1178
1179 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1180 if (!buf)
1181 return -EAGAIN;
1182
1183 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1184 if (!crq) {
1185 kfree(buf);
1186 return -EAGAIN;
1187 }
1188
1189 crq->q.reader = 0;
1190 crq->buf = buf;
1191 crq->len = 0;
1192 crq->readers = 0;
1193 spin_lock(&queue_lock);
1194 if (test_bit(CACHE_PENDING, &h->flags)) {
1195 crq->item = cache_get(h);
1196 list_add_tail(&crq->q.list, &detail->queue);
1197 } else
1198 /* Lost a race, no longer PENDING, so don't enqueue */
1199 ret = -EAGAIN;
1200 spin_unlock(&queue_lock);
1201 wake_up(&queue_wait);
1202 if (ret == -EAGAIN) {
1203 kfree(buf);
1204 kfree(crq);
1205 }
1206 return ret;
1207 }
1208 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1209
1210 /*
1211 * parse a message from user-space and pass it
1212 * to an appropriate cache
1213 * Messages are, like requests, separated into fields by
1214 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1215 *
1216 * Message is
1217 * reply cachename expiry key ... content....
1218 *
1219 * key and content are both parsed by cache
1220 */
1221
qword_get(char ** bpp,char * dest,int bufsize)1222 int qword_get(char **bpp, char *dest, int bufsize)
1223 {
1224 /* return bytes copied, or -1 on error */
1225 char *bp = *bpp;
1226 int len = 0;
1227
1228 while (*bp == ' ') bp++;
1229
1230 if (bp[0] == '\\' && bp[1] == 'x') {
1231 /* HEX STRING */
1232 bp += 2;
1233 while (len < bufsize - 1) {
1234 int h, l;
1235
1236 h = hex_to_bin(bp[0]);
1237 if (h < 0)
1238 break;
1239
1240 l = hex_to_bin(bp[1]);
1241 if (l < 0)
1242 break;
1243
1244 *dest++ = (h << 4) | l;
1245 bp += 2;
1246 len++;
1247 }
1248 } else {
1249 /* text with \nnn octal quoting */
1250 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1251 if (*bp == '\\' &&
1252 isodigit(bp[1]) && (bp[1] <= '3') &&
1253 isodigit(bp[2]) &&
1254 isodigit(bp[3])) {
1255 int byte = (*++bp -'0');
1256 bp++;
1257 byte = (byte << 3) | (*bp++ - '0');
1258 byte = (byte << 3) | (*bp++ - '0');
1259 *dest++ = byte;
1260 len++;
1261 } else {
1262 *dest++ = *bp++;
1263 len++;
1264 }
1265 }
1266 }
1267
1268 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1269 return -1;
1270 while (*bp == ' ') bp++;
1271 *bpp = bp;
1272 *dest = '\0';
1273 return len;
1274 }
1275 EXPORT_SYMBOL_GPL(qword_get);
1276
1277
1278 /*
1279 * support /proc/sunrpc/cache/$CACHENAME/content
1280 * as a seqfile.
1281 * We call ->cache_show passing NULL for the item to
1282 * get a header, then pass each real item in the cache
1283 */
1284
1285 struct handle {
1286 struct cache_detail *cd;
1287 };
1288
c_start(struct seq_file * m,loff_t * pos)1289 static void *c_start(struct seq_file *m, loff_t *pos)
1290 __acquires(cd->hash_lock)
1291 {
1292 loff_t n = *pos;
1293 unsigned int hash, entry;
1294 struct cache_head *ch;
1295 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1296
1297
1298 read_lock(&cd->hash_lock);
1299 if (!n--)
1300 return SEQ_START_TOKEN;
1301 hash = n >> 32;
1302 entry = n & ((1LL<<32) - 1);
1303
1304 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1305 if (!entry--)
1306 return ch;
1307 n &= ~((1LL<<32) - 1);
1308 do {
1309 hash++;
1310 n += 1LL<<32;
1311 } while(hash < cd->hash_size &&
1312 cd->hash_table[hash]==NULL);
1313 if (hash >= cd->hash_size)
1314 return NULL;
1315 *pos = n+1;
1316 return cd->hash_table[hash];
1317 }
1318
c_next(struct seq_file * m,void * p,loff_t * pos)1319 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1320 {
1321 struct cache_head *ch = p;
1322 int hash = (*pos >> 32);
1323 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1324
1325 if (p == SEQ_START_TOKEN)
1326 hash = 0;
1327 else if (ch->next == NULL) {
1328 hash++;
1329 *pos += 1LL<<32;
1330 } else {
1331 ++*pos;
1332 return ch->next;
1333 }
1334 *pos &= ~((1LL<<32) - 1);
1335 while (hash < cd->hash_size &&
1336 cd->hash_table[hash] == NULL) {
1337 hash++;
1338 *pos += 1LL<<32;
1339 }
1340 if (hash >= cd->hash_size)
1341 return NULL;
1342 ++*pos;
1343 return cd->hash_table[hash];
1344 }
1345
c_stop(struct seq_file * m,void * p)1346 static void c_stop(struct seq_file *m, void *p)
1347 __releases(cd->hash_lock)
1348 {
1349 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1350 read_unlock(&cd->hash_lock);
1351 }
1352
c_show(struct seq_file * m,void * p)1353 static int c_show(struct seq_file *m, void *p)
1354 {
1355 struct cache_head *cp = p;
1356 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1357
1358 if (p == SEQ_START_TOKEN)
1359 return cd->cache_show(m, cd, NULL);
1360
1361 ifdebug(CACHE)
1362 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1363 convert_to_wallclock(cp->expiry_time),
1364 atomic_read(&cp->ref.refcount), cp->flags);
1365 cache_get(cp);
1366 if (cache_check(cd, cp, NULL))
1367 /* cache_check does a cache_put on failure */
1368 seq_printf(m, "# ");
1369 else {
1370 if (cache_is_expired(cd, cp))
1371 seq_printf(m, "# ");
1372 cache_put(cp, cd);
1373 }
1374
1375 return cd->cache_show(m, cd, cp);
1376 }
1377
1378 static const struct seq_operations cache_content_op = {
1379 .start = c_start,
1380 .next = c_next,
1381 .stop = c_stop,
1382 .show = c_show,
1383 };
1384
content_open(struct inode * inode,struct file * file,struct cache_detail * cd)1385 static int content_open(struct inode *inode, struct file *file,
1386 struct cache_detail *cd)
1387 {
1388 struct handle *han;
1389
1390 if (!cd || !try_module_get(cd->owner))
1391 return -EACCES;
1392 han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1393 if (han == NULL) {
1394 module_put(cd->owner);
1395 return -ENOMEM;
1396 }
1397
1398 han->cd = cd;
1399 return 0;
1400 }
1401
content_release(struct inode * inode,struct file * file,struct cache_detail * cd)1402 static int content_release(struct inode *inode, struct file *file,
1403 struct cache_detail *cd)
1404 {
1405 int ret = seq_release_private(inode, file);
1406 module_put(cd->owner);
1407 return ret;
1408 }
1409
open_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1410 static int open_flush(struct inode *inode, struct file *file,
1411 struct cache_detail *cd)
1412 {
1413 if (!cd || !try_module_get(cd->owner))
1414 return -EACCES;
1415 return nonseekable_open(inode, file);
1416 }
1417
release_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1418 static int release_flush(struct inode *inode, struct file *file,
1419 struct cache_detail *cd)
1420 {
1421 module_put(cd->owner);
1422 return 0;
1423 }
1424
read_flush(struct file * file,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1425 static ssize_t read_flush(struct file *file, char __user *buf,
1426 size_t count, loff_t *ppos,
1427 struct cache_detail *cd)
1428 {
1429 char tbuf[22];
1430 unsigned long p = *ppos;
1431 size_t len;
1432
1433 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1434 len = strlen(tbuf);
1435 if (p >= len)
1436 return 0;
1437 len -= p;
1438 if (len > count)
1439 len = count;
1440 if (copy_to_user(buf, (void*)(tbuf+p), len))
1441 return -EFAULT;
1442 *ppos += len;
1443 return len;
1444 }
1445
write_flush(struct file * file,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1446 static ssize_t write_flush(struct file *file, const char __user *buf,
1447 size_t count, loff_t *ppos,
1448 struct cache_detail *cd)
1449 {
1450 char tbuf[20];
1451 char *bp, *ep;
1452
1453 if (*ppos || count > sizeof(tbuf)-1)
1454 return -EINVAL;
1455 if (copy_from_user(tbuf, buf, count))
1456 return -EFAULT;
1457 tbuf[count] = 0;
1458 simple_strtoul(tbuf, &ep, 0);
1459 if (*ep && *ep != '\n')
1460 return -EINVAL;
1461
1462 bp = tbuf;
1463 cd->flush_time = get_expiry(&bp);
1464 cd->nextcheck = seconds_since_boot();
1465 cache_flush();
1466
1467 *ppos += count;
1468 return count;
1469 }
1470
cache_read_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1471 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1472 size_t count, loff_t *ppos)
1473 {
1474 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1475
1476 return cache_read(filp, buf, count, ppos, cd);
1477 }
1478
cache_write_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1479 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1480 size_t count, loff_t *ppos)
1481 {
1482 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1483
1484 return cache_write(filp, buf, count, ppos, cd);
1485 }
1486
cache_poll_procfs(struct file * filp,poll_table * wait)1487 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1488 {
1489 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1490
1491 return cache_poll(filp, wait, cd);
1492 }
1493
cache_ioctl_procfs(struct file * filp,unsigned int cmd,unsigned long arg)1494 static long cache_ioctl_procfs(struct file *filp,
1495 unsigned int cmd, unsigned long arg)
1496 {
1497 struct inode *inode = file_inode(filp);
1498 struct cache_detail *cd = PDE_DATA(inode);
1499
1500 return cache_ioctl(inode, filp, cmd, arg, cd);
1501 }
1502
cache_open_procfs(struct inode * inode,struct file * filp)1503 static int cache_open_procfs(struct inode *inode, struct file *filp)
1504 {
1505 struct cache_detail *cd = PDE_DATA(inode);
1506
1507 return cache_open(inode, filp, cd);
1508 }
1509
cache_release_procfs(struct inode * inode,struct file * filp)1510 static int cache_release_procfs(struct inode *inode, struct file *filp)
1511 {
1512 struct cache_detail *cd = PDE_DATA(inode);
1513
1514 return cache_release(inode, filp, cd);
1515 }
1516
1517 static const struct file_operations cache_file_operations_procfs = {
1518 .owner = THIS_MODULE,
1519 .llseek = no_llseek,
1520 .read = cache_read_procfs,
1521 .write = cache_write_procfs,
1522 .poll = cache_poll_procfs,
1523 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1524 .open = cache_open_procfs,
1525 .release = cache_release_procfs,
1526 };
1527
content_open_procfs(struct inode * inode,struct file * filp)1528 static int content_open_procfs(struct inode *inode, struct file *filp)
1529 {
1530 struct cache_detail *cd = PDE_DATA(inode);
1531
1532 return content_open(inode, filp, cd);
1533 }
1534
content_release_procfs(struct inode * inode,struct file * filp)1535 static int content_release_procfs(struct inode *inode, struct file *filp)
1536 {
1537 struct cache_detail *cd = PDE_DATA(inode);
1538
1539 return content_release(inode, filp, cd);
1540 }
1541
1542 static const struct file_operations content_file_operations_procfs = {
1543 .open = content_open_procfs,
1544 .read = seq_read,
1545 .llseek = seq_lseek,
1546 .release = content_release_procfs,
1547 };
1548
open_flush_procfs(struct inode * inode,struct file * filp)1549 static int open_flush_procfs(struct inode *inode, struct file *filp)
1550 {
1551 struct cache_detail *cd = PDE_DATA(inode);
1552
1553 return open_flush(inode, filp, cd);
1554 }
1555
release_flush_procfs(struct inode * inode,struct file * filp)1556 static int release_flush_procfs(struct inode *inode, struct file *filp)
1557 {
1558 struct cache_detail *cd = PDE_DATA(inode);
1559
1560 return release_flush(inode, filp, cd);
1561 }
1562
read_flush_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1563 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1564 size_t count, loff_t *ppos)
1565 {
1566 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568 return read_flush(filp, buf, count, ppos, cd);
1569 }
1570
write_flush_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1571 static ssize_t write_flush_procfs(struct file *filp,
1572 const char __user *buf,
1573 size_t count, loff_t *ppos)
1574 {
1575 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1576
1577 return write_flush(filp, buf, count, ppos, cd);
1578 }
1579
1580 static const struct file_operations cache_flush_operations_procfs = {
1581 .open = open_flush_procfs,
1582 .read = read_flush_procfs,
1583 .write = write_flush_procfs,
1584 .release = release_flush_procfs,
1585 .llseek = no_llseek,
1586 };
1587
remove_cache_proc_entries(struct cache_detail * cd,struct net * net)1588 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1589 {
1590 struct sunrpc_net *sn;
1591
1592 if (cd->u.procfs.proc_ent == NULL)
1593 return;
1594 if (cd->u.procfs.flush_ent)
1595 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1596 if (cd->u.procfs.channel_ent)
1597 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1598 if (cd->u.procfs.content_ent)
1599 remove_proc_entry("content", cd->u.procfs.proc_ent);
1600 cd->u.procfs.proc_ent = NULL;
1601 sn = net_generic(net, sunrpc_net_id);
1602 remove_proc_entry(cd->name, sn->proc_net_rpc);
1603 }
1604
1605 #ifdef CONFIG_PROC_FS
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1606 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1607 {
1608 struct proc_dir_entry *p;
1609 struct sunrpc_net *sn;
1610
1611 sn = net_generic(net, sunrpc_net_id);
1612 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1613 if (cd->u.procfs.proc_ent == NULL)
1614 goto out_nomem;
1615 cd->u.procfs.channel_ent = NULL;
1616 cd->u.procfs.content_ent = NULL;
1617
1618 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1619 cd->u.procfs.proc_ent,
1620 &cache_flush_operations_procfs, cd);
1621 cd->u.procfs.flush_ent = p;
1622 if (p == NULL)
1623 goto out_nomem;
1624
1625 if (cd->cache_request || cd->cache_parse) {
1626 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1627 cd->u.procfs.proc_ent,
1628 &cache_file_operations_procfs, cd);
1629 cd->u.procfs.channel_ent = p;
1630 if (p == NULL)
1631 goto out_nomem;
1632 }
1633 if (cd->cache_show) {
1634 p = proc_create_data("content", S_IFREG|S_IRUSR,
1635 cd->u.procfs.proc_ent,
1636 &content_file_operations_procfs, cd);
1637 cd->u.procfs.content_ent = p;
1638 if (p == NULL)
1639 goto out_nomem;
1640 }
1641 return 0;
1642 out_nomem:
1643 remove_cache_proc_entries(cd, net);
1644 return -ENOMEM;
1645 }
1646 #else /* CONFIG_PROC_FS */
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1647 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1648 {
1649 return 0;
1650 }
1651 #endif
1652
cache_initialize(void)1653 void __init cache_initialize(void)
1654 {
1655 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1656 }
1657
cache_register_net(struct cache_detail * cd,struct net * net)1658 int cache_register_net(struct cache_detail *cd, struct net *net)
1659 {
1660 int ret;
1661
1662 sunrpc_init_cache_detail(cd);
1663 ret = create_cache_proc_entries(cd, net);
1664 if (ret)
1665 sunrpc_destroy_cache_detail(cd);
1666 return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(cache_register_net);
1669
cache_unregister_net(struct cache_detail * cd,struct net * net)1670 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1671 {
1672 remove_cache_proc_entries(cd, net);
1673 sunrpc_destroy_cache_detail(cd);
1674 }
1675 EXPORT_SYMBOL_GPL(cache_unregister_net);
1676
cache_create_net(struct cache_detail * tmpl,struct net * net)1677 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1678 {
1679 struct cache_detail *cd;
1680
1681 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1682 if (cd == NULL)
1683 return ERR_PTR(-ENOMEM);
1684
1685 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1686 GFP_KERNEL);
1687 if (cd->hash_table == NULL) {
1688 kfree(cd);
1689 return ERR_PTR(-ENOMEM);
1690 }
1691 cd->net = net;
1692 return cd;
1693 }
1694 EXPORT_SYMBOL_GPL(cache_create_net);
1695
cache_destroy_net(struct cache_detail * cd,struct net * net)1696 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1697 {
1698 kfree(cd->hash_table);
1699 kfree(cd);
1700 }
1701 EXPORT_SYMBOL_GPL(cache_destroy_net);
1702
cache_read_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1703 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1704 size_t count, loff_t *ppos)
1705 {
1706 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1707
1708 return cache_read(filp, buf, count, ppos, cd);
1709 }
1710
cache_write_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1711 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1712 size_t count, loff_t *ppos)
1713 {
1714 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1715
1716 return cache_write(filp, buf, count, ppos, cd);
1717 }
1718
cache_poll_pipefs(struct file * filp,poll_table * wait)1719 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1720 {
1721 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1722
1723 return cache_poll(filp, wait, cd);
1724 }
1725
cache_ioctl_pipefs(struct file * filp,unsigned int cmd,unsigned long arg)1726 static long cache_ioctl_pipefs(struct file *filp,
1727 unsigned int cmd, unsigned long arg)
1728 {
1729 struct inode *inode = file_inode(filp);
1730 struct cache_detail *cd = RPC_I(inode)->private;
1731
1732 return cache_ioctl(inode, filp, cmd, arg, cd);
1733 }
1734
cache_open_pipefs(struct inode * inode,struct file * filp)1735 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1736 {
1737 struct cache_detail *cd = RPC_I(inode)->private;
1738
1739 return cache_open(inode, filp, cd);
1740 }
1741
cache_release_pipefs(struct inode * inode,struct file * filp)1742 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1743 {
1744 struct cache_detail *cd = RPC_I(inode)->private;
1745
1746 return cache_release(inode, filp, cd);
1747 }
1748
1749 const struct file_operations cache_file_operations_pipefs = {
1750 .owner = THIS_MODULE,
1751 .llseek = no_llseek,
1752 .read = cache_read_pipefs,
1753 .write = cache_write_pipefs,
1754 .poll = cache_poll_pipefs,
1755 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1756 .open = cache_open_pipefs,
1757 .release = cache_release_pipefs,
1758 };
1759
content_open_pipefs(struct inode * inode,struct file * filp)1760 static int content_open_pipefs(struct inode *inode, struct file *filp)
1761 {
1762 struct cache_detail *cd = RPC_I(inode)->private;
1763
1764 return content_open(inode, filp, cd);
1765 }
1766
content_release_pipefs(struct inode * inode,struct file * filp)1767 static int content_release_pipefs(struct inode *inode, struct file *filp)
1768 {
1769 struct cache_detail *cd = RPC_I(inode)->private;
1770
1771 return content_release(inode, filp, cd);
1772 }
1773
1774 const struct file_operations content_file_operations_pipefs = {
1775 .open = content_open_pipefs,
1776 .read = seq_read,
1777 .llseek = seq_lseek,
1778 .release = content_release_pipefs,
1779 };
1780
open_flush_pipefs(struct inode * inode,struct file * filp)1781 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1782 {
1783 struct cache_detail *cd = RPC_I(inode)->private;
1784
1785 return open_flush(inode, filp, cd);
1786 }
1787
release_flush_pipefs(struct inode * inode,struct file * filp)1788 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1789 {
1790 struct cache_detail *cd = RPC_I(inode)->private;
1791
1792 return release_flush(inode, filp, cd);
1793 }
1794
read_flush_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1795 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1796 size_t count, loff_t *ppos)
1797 {
1798 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1799
1800 return read_flush(filp, buf, count, ppos, cd);
1801 }
1802
write_flush_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1803 static ssize_t write_flush_pipefs(struct file *filp,
1804 const char __user *buf,
1805 size_t count, loff_t *ppos)
1806 {
1807 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1808
1809 return write_flush(filp, buf, count, ppos, cd);
1810 }
1811
1812 const struct file_operations cache_flush_operations_pipefs = {
1813 .open = open_flush_pipefs,
1814 .read = read_flush_pipefs,
1815 .write = write_flush_pipefs,
1816 .release = release_flush_pipefs,
1817 .llseek = no_llseek,
1818 };
1819
sunrpc_cache_register_pipefs(struct dentry * parent,const char * name,umode_t umode,struct cache_detail * cd)1820 int sunrpc_cache_register_pipefs(struct dentry *parent,
1821 const char *name, umode_t umode,
1822 struct cache_detail *cd)
1823 {
1824 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1825 if (IS_ERR(dir))
1826 return PTR_ERR(dir);
1827 cd->u.pipefs.dir = dir;
1828 return 0;
1829 }
1830 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1831
sunrpc_cache_unregister_pipefs(struct cache_detail * cd)1832 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1833 {
1834 rpc_remove_cache_dir(cd->u.pipefs.dir);
1835 cd->u.pipefs.dir = NULL;
1836 }
1837 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1838
1839