• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	kmod, the new module loader (replaces kerneld)
3 	Kirk Petersen
4 
5 	Reorganized not to be a daemon by Adam Richter, with guidance
6 	from Greg Zornetzer.
7 
8 	Modified to avoid chroot and file sharing problems.
9 	Mikael Pettersson
10 
11 	Limit the concurrent number of kmod modprobes to catch loops from
12 	"modprobe needs a service that is in a module".
13 	Keith Owens <kaos@ocs.com.au> December 1999
14 
15 	Unblock all signals when we exec a usermode process.
16 	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17 
18 	call_usermodehelper wait flag, and remove exec_usermodehelper.
19 	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 
44 #include <trace/events/module.h>
45 
46 extern int max_threads;
47 
48 static struct workqueue_struct *khelper_wq;
49 
50 /*
51  * kmod_thread_locker is used for deadlock avoidance.  There is no explicit
52  * locking to protect this global - it is private to the singleton khelper
53  * thread and should only ever be modified by that thread.
54  */
55 static const struct task_struct *kmod_thread_locker;
56 
57 #define CAP_BSET	(void *)1
58 #define CAP_PI		(void *)2
59 
60 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
61 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
62 static DEFINE_SPINLOCK(umh_sysctl_lock);
63 static DECLARE_RWSEM(umhelper_sem);
64 
65 #ifdef CONFIG_MODULES
66 
67 /*
68 	modprobe_path is set via /proc/sys.
69 */
70 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
71 
free_modprobe_argv(struct subprocess_info * info)72 static void free_modprobe_argv(struct subprocess_info *info)
73 {
74 	kfree(info->argv[3]); /* check call_modprobe() */
75 	kfree(info->argv);
76 }
77 
call_modprobe(char * module_name,int wait)78 static int call_modprobe(char *module_name, int wait)
79 {
80 	struct subprocess_info *info;
81 	static char *envp[] = {
82 		"HOME=/",
83 		"TERM=linux",
84 		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
85 		NULL
86 	};
87 
88 	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
89 	if (!argv)
90 		goto out;
91 
92 	module_name = kstrdup(module_name, GFP_KERNEL);
93 	if (!module_name)
94 		goto free_argv;
95 
96 	argv[0] = modprobe_path;
97 	argv[1] = "-q";
98 	argv[2] = "--";
99 	argv[3] = module_name;	/* check free_modprobe_argv() */
100 	argv[4] = NULL;
101 
102 	info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
103 					 NULL, free_modprobe_argv, NULL);
104 	if (!info)
105 		goto free_module_name;
106 
107 	return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
108 
109 free_module_name:
110 	kfree(module_name);
111 free_argv:
112 	kfree(argv);
113 out:
114 	return -ENOMEM;
115 }
116 
117 /**
118  * __request_module - try to load a kernel module
119  * @wait: wait (or not) for the operation to complete
120  * @fmt: printf style format string for the name of the module
121  * @...: arguments as specified in the format string
122  *
123  * Load a module using the user mode module loader. The function returns
124  * zero on success or a negative errno code on failure. Note that a
125  * successful module load does not mean the module did not then unload
126  * and exit on an error of its own. Callers must check that the service
127  * they requested is now available not blindly invoke it.
128  *
129  * If module auto-loading support is disabled then this function
130  * becomes a no-operation.
131  */
__request_module(bool wait,const char * fmt,...)132 int __request_module(bool wait, const char *fmt, ...)
133 {
134 	va_list args;
135 	char module_name[MODULE_NAME_LEN];
136 	unsigned int max_modprobes;
137 	int ret;
138 	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
139 #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
140 	static int kmod_loop_msg;
141 
142 	/*
143 	 * We don't allow synchronous module loading from async.  Module
144 	 * init may invoke async_synchronize_full() which will end up
145 	 * waiting for this task which already is waiting for the module
146 	 * loading to complete, leading to a deadlock.
147 	 */
148 	WARN_ON_ONCE(wait && current_is_async());
149 
150 	if (!modprobe_path[0])
151 		return 0;
152 
153 	va_start(args, fmt);
154 	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
155 	va_end(args);
156 	if (ret >= MODULE_NAME_LEN)
157 		return -ENAMETOOLONG;
158 
159 	ret = security_kernel_module_request(module_name);
160 	if (ret)
161 		return ret;
162 
163 	/* If modprobe needs a service that is in a module, we get a recursive
164 	 * loop.  Limit the number of running kmod threads to max_threads/2 or
165 	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
166 	 * would be to run the parents of this process, counting how many times
167 	 * kmod was invoked.  That would mean accessing the internals of the
168 	 * process tables to get the command line, proc_pid_cmdline is static
169 	 * and it is not worth changing the proc code just to handle this case.
170 	 * KAO.
171 	 *
172 	 * "trace the ppid" is simple, but will fail if someone's
173 	 * parent exits.  I think this is as good as it gets. --RR
174 	 */
175 	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
176 	atomic_inc(&kmod_concurrent);
177 	if (atomic_read(&kmod_concurrent) > max_modprobes) {
178 		/* We may be blaming an innocent here, but unlikely */
179 		if (kmod_loop_msg < 5) {
180 			printk(KERN_ERR
181 			       "request_module: runaway loop modprobe %s\n",
182 			       module_name);
183 			kmod_loop_msg++;
184 		}
185 		atomic_dec(&kmod_concurrent);
186 		return -ENOMEM;
187 	}
188 
189 	trace_module_request(module_name, wait, _RET_IP_);
190 
191 	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
192 
193 	atomic_dec(&kmod_concurrent);
194 	return ret;
195 }
196 EXPORT_SYMBOL(__request_module);
197 #endif /* CONFIG_MODULES */
198 
call_usermodehelper_freeinfo(struct subprocess_info * info)199 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
200 {
201 	if (info->cleanup)
202 		(*info->cleanup)(info);
203 	kfree(info);
204 }
205 
umh_complete(struct subprocess_info * sub_info)206 static void umh_complete(struct subprocess_info *sub_info)
207 {
208 	struct completion *comp = xchg(&sub_info->complete, NULL);
209 	/*
210 	 * See call_usermodehelper_exec(). If xchg() returns NULL
211 	 * we own sub_info, the UMH_KILLABLE caller has gone away
212 	 * or the caller used UMH_NO_WAIT.
213 	 */
214 	if (comp)
215 		complete(comp);
216 	else
217 		call_usermodehelper_freeinfo(sub_info);
218 }
219 
220 /*
221  * This is the task which runs the usermode application
222  */
____call_usermodehelper(void * data)223 static int ____call_usermodehelper(void *data)
224 {
225 	struct subprocess_info *sub_info = data;
226 	int wait = sub_info->wait & ~UMH_KILLABLE;
227 	struct cred *new;
228 	int retval;
229 
230 	spin_lock_irq(&current->sighand->siglock);
231 	flush_signal_handlers(current, 1);
232 	spin_unlock_irq(&current->sighand->siglock);
233 
234 	/* We can run anywhere, unlike our parent keventd(). */
235 	set_cpus_allowed_ptr(current, cpu_all_mask);
236 
237 	/*
238 	 * Our parent is keventd, which runs with elevated scheduling priority.
239 	 * Avoid propagating that into the userspace child.
240 	 */
241 	set_user_nice(current, 0);
242 
243 	retval = -ENOMEM;
244 	new = prepare_kernel_cred(current);
245 	if (!new)
246 		goto out;
247 
248 	spin_lock(&umh_sysctl_lock);
249 	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
250 	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
251 					     new->cap_inheritable);
252 	spin_unlock(&umh_sysctl_lock);
253 
254 	if (sub_info->init) {
255 		retval = sub_info->init(sub_info, new);
256 		if (retval) {
257 			abort_creds(new);
258 			goto out;
259 		}
260 	}
261 
262 	commit_creds(new);
263 
264 	retval = do_execve(getname_kernel(sub_info->path),
265 			   (const char __user *const __user *)sub_info->argv,
266 			   (const char __user *const __user *)sub_info->envp);
267 out:
268 	sub_info->retval = retval;
269 	/* wait_for_helper() will call umh_complete if UHM_WAIT_PROC. */
270 	if (wait != UMH_WAIT_PROC)
271 		umh_complete(sub_info);
272 	if (!retval)
273 		return 0;
274 	do_exit(0);
275 }
276 
call_helper(void * data)277 static int call_helper(void *data)
278 {
279 	/* Worker thread started blocking khelper thread. */
280 	kmod_thread_locker = current;
281 	return ____call_usermodehelper(data);
282 }
283 
284 /* Keventd can't block, but this (a child) can. */
wait_for_helper(void * data)285 static int wait_for_helper(void *data)
286 {
287 	struct subprocess_info *sub_info = data;
288 	pid_t pid;
289 
290 	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
291 	kernel_sigaction(SIGCHLD, SIG_DFL);
292 	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
293 	if (pid < 0) {
294 		sub_info->retval = pid;
295 	} else {
296 		int ret = -ECHILD;
297 		/*
298 		 * Normally it is bogus to call wait4() from in-kernel because
299 		 * wait4() wants to write the exit code to a userspace address.
300 		 * But wait_for_helper() always runs as keventd, and put_user()
301 		 * to a kernel address works OK for kernel threads, due to their
302 		 * having an mm_segment_t which spans the entire address space.
303 		 *
304 		 * Thus the __user pointer cast is valid here.
305 		 */
306 		sys_wait4(pid, (int __user *)&ret, 0, NULL);
307 
308 		/*
309 		 * If ret is 0, either ____call_usermodehelper failed and the
310 		 * real error code is already in sub_info->retval or
311 		 * sub_info->retval is 0 anyway, so don't mess with it then.
312 		 */
313 		if (ret)
314 			sub_info->retval = ret;
315 	}
316 
317 	umh_complete(sub_info);
318 	do_exit(0);
319 }
320 
321 /* This is run by khelper thread  */
__call_usermodehelper(struct work_struct * work)322 static void __call_usermodehelper(struct work_struct *work)
323 {
324 	struct subprocess_info *sub_info =
325 		container_of(work, struct subprocess_info, work);
326 	int wait = sub_info->wait & ~UMH_KILLABLE;
327 	pid_t pid;
328 
329 	/* CLONE_VFORK: wait until the usermode helper has execve'd
330 	 * successfully We need the data structures to stay around
331 	 * until that is done.  */
332 	if (wait == UMH_WAIT_PROC)
333 		pid = kernel_thread(wait_for_helper, sub_info,
334 				    CLONE_FS | CLONE_FILES | SIGCHLD);
335 	else {
336 		pid = kernel_thread(call_helper, sub_info,
337 				    CLONE_VFORK | SIGCHLD);
338 		/* Worker thread stopped blocking khelper thread. */
339 		kmod_thread_locker = NULL;
340 	}
341 
342 	if (pid < 0) {
343 		sub_info->retval = pid;
344 		umh_complete(sub_info);
345 	}
346 }
347 
348 /*
349  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
350  * (used for preventing user land processes from being created after the user
351  * land has been frozen during a system-wide hibernation or suspend operation).
352  * Should always be manipulated under umhelper_sem acquired for write.
353  */
354 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
355 
356 /* Number of helpers running */
357 static atomic_t running_helpers = ATOMIC_INIT(0);
358 
359 /*
360  * Wait queue head used by usermodehelper_disable() to wait for all running
361  * helpers to finish.
362  */
363 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
364 
365 /*
366  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
367  * to become 'false'.
368  */
369 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
370 
371 /*
372  * Time to wait for running_helpers to become zero before the setting of
373  * usermodehelper_disabled in usermodehelper_disable() fails
374  */
375 #define RUNNING_HELPERS_TIMEOUT	(5 * HZ)
376 
usermodehelper_read_trylock(void)377 int usermodehelper_read_trylock(void)
378 {
379 	DEFINE_WAIT(wait);
380 	int ret = 0;
381 
382 	down_read(&umhelper_sem);
383 	for (;;) {
384 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
385 				TASK_INTERRUPTIBLE);
386 		if (!usermodehelper_disabled)
387 			break;
388 
389 		if (usermodehelper_disabled == UMH_DISABLED)
390 			ret = -EAGAIN;
391 
392 		up_read(&umhelper_sem);
393 
394 		if (ret)
395 			break;
396 
397 		schedule();
398 		try_to_freeze();
399 
400 		down_read(&umhelper_sem);
401 	}
402 	finish_wait(&usermodehelper_disabled_waitq, &wait);
403 	return ret;
404 }
405 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
406 
usermodehelper_read_lock_wait(long timeout)407 long usermodehelper_read_lock_wait(long timeout)
408 {
409 	DEFINE_WAIT(wait);
410 
411 	if (timeout < 0)
412 		return -EINVAL;
413 
414 	down_read(&umhelper_sem);
415 	for (;;) {
416 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
417 				TASK_UNINTERRUPTIBLE);
418 		if (!usermodehelper_disabled)
419 			break;
420 
421 		up_read(&umhelper_sem);
422 
423 		timeout = schedule_timeout(timeout);
424 		if (!timeout)
425 			break;
426 
427 		down_read(&umhelper_sem);
428 	}
429 	finish_wait(&usermodehelper_disabled_waitq, &wait);
430 	return timeout;
431 }
432 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
433 
usermodehelper_read_unlock(void)434 void usermodehelper_read_unlock(void)
435 {
436 	up_read(&umhelper_sem);
437 }
438 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
439 
440 /**
441  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
442  * @depth: New value to assign to usermodehelper_disabled.
443  *
444  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
445  * writing) and wakeup tasks waiting for it to change.
446  */
__usermodehelper_set_disable_depth(enum umh_disable_depth depth)447 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
448 {
449 	down_write(&umhelper_sem);
450 	usermodehelper_disabled = depth;
451 	wake_up(&usermodehelper_disabled_waitq);
452 	up_write(&umhelper_sem);
453 }
454 
455 /**
456  * __usermodehelper_disable - Prevent new helpers from being started.
457  * @depth: New value to assign to usermodehelper_disabled.
458  *
459  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
460  */
__usermodehelper_disable(enum umh_disable_depth depth)461 int __usermodehelper_disable(enum umh_disable_depth depth)
462 {
463 	long retval;
464 
465 	if (!depth)
466 		return -EINVAL;
467 
468 	down_write(&umhelper_sem);
469 	usermodehelper_disabled = depth;
470 	up_write(&umhelper_sem);
471 
472 	/*
473 	 * From now on call_usermodehelper_exec() won't start any new
474 	 * helpers, so it is sufficient if running_helpers turns out to
475 	 * be zero at one point (it may be increased later, but that
476 	 * doesn't matter).
477 	 */
478 	retval = wait_event_timeout(running_helpers_waitq,
479 					atomic_read(&running_helpers) == 0,
480 					RUNNING_HELPERS_TIMEOUT);
481 	if (retval)
482 		return 0;
483 
484 	__usermodehelper_set_disable_depth(UMH_ENABLED);
485 	return -EAGAIN;
486 }
487 
helper_lock(void)488 static void helper_lock(void)
489 {
490 	atomic_inc(&running_helpers);
491 	smp_mb__after_atomic();
492 }
493 
helper_unlock(void)494 static void helper_unlock(void)
495 {
496 	if (atomic_dec_and_test(&running_helpers))
497 		wake_up(&running_helpers_waitq);
498 }
499 
500 /**
501  * call_usermodehelper_setup - prepare to call a usermode helper
502  * @path: path to usermode executable
503  * @argv: arg vector for process
504  * @envp: environment for process
505  * @gfp_mask: gfp mask for memory allocation
506  * @cleanup: a cleanup function
507  * @init: an init function
508  * @data: arbitrary context sensitive data
509  *
510  * Returns either %NULL on allocation failure, or a subprocess_info
511  * structure.  This should be passed to call_usermodehelper_exec to
512  * exec the process and free the structure.
513  *
514  * The init function is used to customize the helper process prior to
515  * exec.  A non-zero return code causes the process to error out, exit,
516  * and return the failure to the calling process
517  *
518  * The cleanup function is just before ethe subprocess_info is about to
519  * be freed.  This can be used for freeing the argv and envp.  The
520  * Function must be runnable in either a process context or the
521  * context in which call_usermodehelper_exec is called.
522  */
call_usermodehelper_setup(char * path,char ** argv,char ** envp,gfp_t gfp_mask,int (* init)(struct subprocess_info * info,struct cred * new),void (* cleanup)(struct subprocess_info * info),void * data)523 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
524 		char **envp, gfp_t gfp_mask,
525 		int (*init)(struct subprocess_info *info, struct cred *new),
526 		void (*cleanup)(struct subprocess_info *info),
527 		void *data)
528 {
529 	struct subprocess_info *sub_info;
530 	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
531 	if (!sub_info)
532 		goto out;
533 
534 	INIT_WORK(&sub_info->work, __call_usermodehelper);
535 	sub_info->path = path;
536 	sub_info->argv = argv;
537 	sub_info->envp = envp;
538 
539 	sub_info->cleanup = cleanup;
540 	sub_info->init = init;
541 	sub_info->data = data;
542   out:
543 	return sub_info;
544 }
545 EXPORT_SYMBOL(call_usermodehelper_setup);
546 
547 /**
548  * call_usermodehelper_exec - start a usermode application
549  * @sub_info: information about the subprocessa
550  * @wait: wait for the application to finish and return status.
551  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
552  *        when the program couldn't be exec'ed. This makes it safe to call
553  *        from interrupt context.
554  *
555  * Runs a user-space application.  The application is started
556  * asynchronously if wait is not set, and runs as a child of keventd.
557  * (ie. it runs with full root capabilities).
558  */
call_usermodehelper_exec(struct subprocess_info * sub_info,int wait)559 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
560 {
561 	DECLARE_COMPLETION_ONSTACK(done);
562 	int retval = 0;
563 
564 	if (!sub_info->path) {
565 		call_usermodehelper_freeinfo(sub_info);
566 		return -EINVAL;
567 	}
568 	helper_lock();
569 	if (!khelper_wq || usermodehelper_disabled) {
570 		retval = -EBUSY;
571 		goto out;
572 	}
573 	/*
574 	 * Worker thread must not wait for khelper thread at below
575 	 * wait_for_completion() if the thread was created with CLONE_VFORK
576 	 * flag, for khelper thread is already waiting for the thread at
577 	 * wait_for_completion() in do_fork().
578 	 */
579 	if (wait != UMH_NO_WAIT && current == kmod_thread_locker) {
580 		retval = -EBUSY;
581 		goto out;
582 	}
583 
584 	/*
585 	 * Set the completion pointer only if there is a waiter.
586 	 * This makes it possible to use umh_complete to free
587 	 * the data structure in case of UMH_NO_WAIT.
588 	 */
589 	sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
590 	sub_info->wait = wait;
591 
592 	queue_work(khelper_wq, &sub_info->work);
593 	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
594 		goto unlock;
595 
596 	if (wait & UMH_KILLABLE) {
597 		retval = wait_for_completion_killable(&done);
598 		if (!retval)
599 			goto wait_done;
600 
601 		/* umh_complete() will see NULL and free sub_info */
602 		if (xchg(&sub_info->complete, NULL))
603 			goto unlock;
604 		/* fallthrough, umh_complete() was already called */
605 	}
606 
607 	wait_for_completion(&done);
608 wait_done:
609 	retval = sub_info->retval;
610 out:
611 	call_usermodehelper_freeinfo(sub_info);
612 unlock:
613 	helper_unlock();
614 	return retval;
615 }
616 EXPORT_SYMBOL(call_usermodehelper_exec);
617 
618 /**
619  * call_usermodehelper() - prepare and start a usermode application
620  * @path: path to usermode executable
621  * @argv: arg vector for process
622  * @envp: environment for process
623  * @wait: wait for the application to finish and return status.
624  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
625  *        when the program couldn't be exec'ed. This makes it safe to call
626  *        from interrupt context.
627  *
628  * This function is the equivalent to use call_usermodehelper_setup() and
629  * call_usermodehelper_exec().
630  */
call_usermodehelper(char * path,char ** argv,char ** envp,int wait)631 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
632 {
633 	struct subprocess_info *info;
634 	gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
635 
636 	info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
637 					 NULL, NULL, NULL);
638 	if (info == NULL)
639 		return -ENOMEM;
640 
641 	return call_usermodehelper_exec(info, wait);
642 }
643 EXPORT_SYMBOL(call_usermodehelper);
644 
proc_cap_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)645 static int proc_cap_handler(struct ctl_table *table, int write,
646 			 void __user *buffer, size_t *lenp, loff_t *ppos)
647 {
648 	struct ctl_table t;
649 	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
650 	kernel_cap_t new_cap;
651 	int err, i;
652 
653 	if (write && (!capable(CAP_SETPCAP) ||
654 		      !capable(CAP_SYS_MODULE)))
655 		return -EPERM;
656 
657 	/*
658 	 * convert from the global kernel_cap_t to the ulong array to print to
659 	 * userspace if this is a read.
660 	 */
661 	spin_lock(&umh_sysctl_lock);
662 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
663 		if (table->data == CAP_BSET)
664 			cap_array[i] = usermodehelper_bset.cap[i];
665 		else if (table->data == CAP_PI)
666 			cap_array[i] = usermodehelper_inheritable.cap[i];
667 		else
668 			BUG();
669 	}
670 	spin_unlock(&umh_sysctl_lock);
671 
672 	t = *table;
673 	t.data = &cap_array;
674 
675 	/*
676 	 * actually read or write and array of ulongs from userspace.  Remember
677 	 * these are least significant 32 bits first
678 	 */
679 	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
680 	if (err < 0)
681 		return err;
682 
683 	/*
684 	 * convert from the sysctl array of ulongs to the kernel_cap_t
685 	 * internal representation
686 	 */
687 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
688 		new_cap.cap[i] = cap_array[i];
689 
690 	/*
691 	 * Drop everything not in the new_cap (but don't add things)
692 	 */
693 	spin_lock(&umh_sysctl_lock);
694 	if (write) {
695 		if (table->data == CAP_BSET)
696 			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
697 		if (table->data == CAP_PI)
698 			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
699 	}
700 	spin_unlock(&umh_sysctl_lock);
701 
702 	return 0;
703 }
704 
705 struct ctl_table usermodehelper_table[] = {
706 	{
707 		.procname	= "bset",
708 		.data		= CAP_BSET,
709 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
710 		.mode		= 0600,
711 		.proc_handler	= proc_cap_handler,
712 	},
713 	{
714 		.procname	= "inheritable",
715 		.data		= CAP_PI,
716 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
717 		.mode		= 0600,
718 		.proc_handler	= proc_cap_handler,
719 	},
720 	{ }
721 };
722 
usermodehelper_init(void)723 void __init usermodehelper_init(void)
724 {
725 	khelper_wq = create_singlethread_workqueue("khelper");
726 	BUG_ON(!khelper_wq);
727 }
728