1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
3
4 #include <asm/page.h>
5 #include <asm/e820.h>
6
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \
15 : (prot))
16
17 #ifndef __ASSEMBLY__
18 #include <asm/x86_init.h>
19
20 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
21
22 /*
23 * ZERO_PAGE is a global shared page that is always zero: used
24 * for zero-mapped memory areas etc..
25 */
26 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
27 __visible;
28 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
29
30 extern spinlock_t pgd_lock;
31 extern struct list_head pgd_list;
32
33 extern struct mm_struct *pgd_page_get_mm(struct page *page);
34
35 #ifdef CONFIG_PARAVIRT
36 #include <asm/paravirt.h>
37 #else /* !CONFIG_PARAVIRT */
38 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
39 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
40 #define set_pmd_at(mm, addr, pmdp, pmd) native_set_pmd_at(mm, addr, pmdp, pmd)
41
42 #define set_pte_atomic(ptep, pte) \
43 native_set_pte_atomic(ptep, pte)
44
45 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
46
47 #ifndef __PAGETABLE_PUD_FOLDED
48 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
49 #define pgd_clear(pgd) native_pgd_clear(pgd)
50 #endif
51
52 #ifndef set_pud
53 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
54 #endif
55
56 #ifndef __PAGETABLE_PMD_FOLDED
57 #define pud_clear(pud) native_pud_clear(pud)
58 #endif
59
60 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
61 #define pmd_clear(pmd) native_pmd_clear(pmd)
62
63 #define pte_update(mm, addr, ptep) do { } while (0)
64 #define pte_update_defer(mm, addr, ptep) do { } while (0)
65 #define pmd_update(mm, addr, ptep) do { } while (0)
66 #define pmd_update_defer(mm, addr, ptep) do { } while (0)
67
68 #define pgd_val(x) native_pgd_val(x)
69 #define __pgd(x) native_make_pgd(x)
70
71 #ifndef __PAGETABLE_PUD_FOLDED
72 #define pud_val(x) native_pud_val(x)
73 #define __pud(x) native_make_pud(x)
74 #endif
75
76 #ifndef __PAGETABLE_PMD_FOLDED
77 #define pmd_val(x) native_pmd_val(x)
78 #define __pmd(x) native_make_pmd(x)
79 #endif
80
81 #define pte_val(x) native_pte_val(x)
82 #define __pte(x) native_make_pte(x)
83
84 #define arch_end_context_switch(prev) do {} while(0)
85
86 #endif /* CONFIG_PARAVIRT */
87
88 /*
89 * The following only work if pte_present() is true.
90 * Undefined behaviour if not..
91 */
pte_dirty(pte_t pte)92 static inline int pte_dirty(pte_t pte)
93 {
94 return pte_flags(pte) & _PAGE_DIRTY;
95 }
96
pte_young(pte_t pte)97 static inline int pte_young(pte_t pte)
98 {
99 return pte_flags(pte) & _PAGE_ACCESSED;
100 }
101
pmd_dirty(pmd_t pmd)102 static inline int pmd_dirty(pmd_t pmd)
103 {
104 return pmd_flags(pmd) & _PAGE_DIRTY;
105 }
106
pmd_young(pmd_t pmd)107 static inline int pmd_young(pmd_t pmd)
108 {
109 return pmd_flags(pmd) & _PAGE_ACCESSED;
110 }
111
pte_write(pte_t pte)112 static inline int pte_write(pte_t pte)
113 {
114 return pte_flags(pte) & _PAGE_RW;
115 }
116
pte_file(pte_t pte)117 static inline int pte_file(pte_t pte)
118 {
119 return pte_flags(pte) & _PAGE_FILE;
120 }
121
pte_huge(pte_t pte)122 static inline int pte_huge(pte_t pte)
123 {
124 return pte_flags(pte) & _PAGE_PSE;
125 }
126
pte_global(pte_t pte)127 static inline int pte_global(pte_t pte)
128 {
129 return pte_flags(pte) & _PAGE_GLOBAL;
130 }
131
pte_exec(pte_t pte)132 static inline int pte_exec(pte_t pte)
133 {
134 return !(pte_flags(pte) & _PAGE_NX);
135 }
136
pte_special(pte_t pte)137 static inline int pte_special(pte_t pte)
138 {
139 /*
140 * See CONFIG_NUMA_BALANCING pte_numa in include/asm-generic/pgtable.h.
141 * On x86 we have _PAGE_BIT_NUMA == _PAGE_BIT_GLOBAL+1 ==
142 * __PAGE_BIT_SOFTW1 == _PAGE_BIT_SPECIAL.
143 */
144 return (pte_flags(pte) & _PAGE_SPECIAL) &&
145 (pte_flags(pte) & (_PAGE_PRESENT|_PAGE_PROTNONE));
146 }
147
pte_pfn(pte_t pte)148 static inline unsigned long pte_pfn(pte_t pte)
149 {
150 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
151 }
152
pmd_pfn(pmd_t pmd)153 static inline unsigned long pmd_pfn(pmd_t pmd)
154 {
155 return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT;
156 }
157
pud_pfn(pud_t pud)158 static inline unsigned long pud_pfn(pud_t pud)
159 {
160 return (pud_val(pud) & PTE_PFN_MASK) >> PAGE_SHIFT;
161 }
162
163 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
164
pmd_large(pmd_t pte)165 static inline int pmd_large(pmd_t pte)
166 {
167 return pmd_flags(pte) & _PAGE_PSE;
168 }
169
170 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_splitting(pmd_t pmd)171 static inline int pmd_trans_splitting(pmd_t pmd)
172 {
173 return pmd_val(pmd) & _PAGE_SPLITTING;
174 }
175
pmd_trans_huge(pmd_t pmd)176 static inline int pmd_trans_huge(pmd_t pmd)
177 {
178 return pmd_val(pmd) & _PAGE_PSE;
179 }
180
has_transparent_hugepage(void)181 static inline int has_transparent_hugepage(void)
182 {
183 return cpu_has_pse;
184 }
185 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
186
pte_set_flags(pte_t pte,pteval_t set)187 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
188 {
189 pteval_t v = native_pte_val(pte);
190
191 return native_make_pte(v | set);
192 }
193
pte_clear_flags(pte_t pte,pteval_t clear)194 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
195 {
196 pteval_t v = native_pte_val(pte);
197
198 return native_make_pte(v & ~clear);
199 }
200
pte_mkclean(pte_t pte)201 static inline pte_t pte_mkclean(pte_t pte)
202 {
203 return pte_clear_flags(pte, _PAGE_DIRTY);
204 }
205
pte_mkold(pte_t pte)206 static inline pte_t pte_mkold(pte_t pte)
207 {
208 return pte_clear_flags(pte, _PAGE_ACCESSED);
209 }
210
pte_wrprotect(pte_t pte)211 static inline pte_t pte_wrprotect(pte_t pte)
212 {
213 return pte_clear_flags(pte, _PAGE_RW);
214 }
215
pte_mkexec(pte_t pte)216 static inline pte_t pte_mkexec(pte_t pte)
217 {
218 return pte_clear_flags(pte, _PAGE_NX);
219 }
220
pte_mkdirty(pte_t pte)221 static inline pte_t pte_mkdirty(pte_t pte)
222 {
223 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
224 }
225
pte_mkyoung(pte_t pte)226 static inline pte_t pte_mkyoung(pte_t pte)
227 {
228 return pte_set_flags(pte, _PAGE_ACCESSED);
229 }
230
pte_mkwrite(pte_t pte)231 static inline pte_t pte_mkwrite(pte_t pte)
232 {
233 return pte_set_flags(pte, _PAGE_RW);
234 }
235
pte_mkhuge(pte_t pte)236 static inline pte_t pte_mkhuge(pte_t pte)
237 {
238 return pte_set_flags(pte, _PAGE_PSE);
239 }
240
pte_clrhuge(pte_t pte)241 static inline pte_t pte_clrhuge(pte_t pte)
242 {
243 return pte_clear_flags(pte, _PAGE_PSE);
244 }
245
pte_mkglobal(pte_t pte)246 static inline pte_t pte_mkglobal(pte_t pte)
247 {
248 return pte_set_flags(pte, _PAGE_GLOBAL);
249 }
250
pte_clrglobal(pte_t pte)251 static inline pte_t pte_clrglobal(pte_t pte)
252 {
253 return pte_clear_flags(pte, _PAGE_GLOBAL);
254 }
255
pte_mkspecial(pte_t pte)256 static inline pte_t pte_mkspecial(pte_t pte)
257 {
258 return pte_set_flags(pte, _PAGE_SPECIAL);
259 }
260
pmd_set_flags(pmd_t pmd,pmdval_t set)261 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
262 {
263 pmdval_t v = native_pmd_val(pmd);
264
265 return __pmd(v | set);
266 }
267
pmd_clear_flags(pmd_t pmd,pmdval_t clear)268 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
269 {
270 pmdval_t v = native_pmd_val(pmd);
271
272 return __pmd(v & ~clear);
273 }
274
pmd_mkold(pmd_t pmd)275 static inline pmd_t pmd_mkold(pmd_t pmd)
276 {
277 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
278 }
279
pmd_wrprotect(pmd_t pmd)280 static inline pmd_t pmd_wrprotect(pmd_t pmd)
281 {
282 return pmd_clear_flags(pmd, _PAGE_RW);
283 }
284
pmd_mkdirty(pmd_t pmd)285 static inline pmd_t pmd_mkdirty(pmd_t pmd)
286 {
287 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
288 }
289
pmd_mkhuge(pmd_t pmd)290 static inline pmd_t pmd_mkhuge(pmd_t pmd)
291 {
292 return pmd_set_flags(pmd, _PAGE_PSE);
293 }
294
pmd_mkyoung(pmd_t pmd)295 static inline pmd_t pmd_mkyoung(pmd_t pmd)
296 {
297 return pmd_set_flags(pmd, _PAGE_ACCESSED);
298 }
299
pmd_mkwrite(pmd_t pmd)300 static inline pmd_t pmd_mkwrite(pmd_t pmd)
301 {
302 return pmd_set_flags(pmd, _PAGE_RW);
303 }
304
pmd_mknotpresent(pmd_t pmd)305 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
306 {
307 return pmd_clear_flags(pmd, _PAGE_PRESENT);
308 }
309
310 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)311 static inline int pte_soft_dirty(pte_t pte)
312 {
313 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
314 }
315
pmd_soft_dirty(pmd_t pmd)316 static inline int pmd_soft_dirty(pmd_t pmd)
317 {
318 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
319 }
320
pte_mksoft_dirty(pte_t pte)321 static inline pte_t pte_mksoft_dirty(pte_t pte)
322 {
323 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
324 }
325
pmd_mksoft_dirty(pmd_t pmd)326 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
327 {
328 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
329 }
330
pte_file_clear_soft_dirty(pte_t pte)331 static inline pte_t pte_file_clear_soft_dirty(pte_t pte)
332 {
333 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
334 }
335
pte_file_mksoft_dirty(pte_t pte)336 static inline pte_t pte_file_mksoft_dirty(pte_t pte)
337 {
338 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
339 }
340
pte_file_soft_dirty(pte_t pte)341 static inline int pte_file_soft_dirty(pte_t pte)
342 {
343 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
344 }
345
346 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
347
348 /*
349 * Mask out unsupported bits in a present pgprot. Non-present pgprots
350 * can use those bits for other purposes, so leave them be.
351 */
massage_pgprot(pgprot_t pgprot)352 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
353 {
354 pgprotval_t protval = pgprot_val(pgprot);
355
356 if (protval & _PAGE_PRESENT)
357 protval &= __supported_pte_mask;
358
359 return protval;
360 }
361
pfn_pte(unsigned long page_nr,pgprot_t pgprot)362 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
363 {
364 return __pte(((phys_addr_t)page_nr << PAGE_SHIFT) |
365 massage_pgprot(pgprot));
366 }
367
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)368 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
369 {
370 return __pmd(((phys_addr_t)page_nr << PAGE_SHIFT) |
371 massage_pgprot(pgprot));
372 }
373
pte_modify(pte_t pte,pgprot_t newprot)374 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
375 {
376 pteval_t val = pte_val(pte);
377
378 /*
379 * Chop off the NX bit (if present), and add the NX portion of
380 * the newprot (if present):
381 */
382 val &= _PAGE_CHG_MASK;
383 val |= massage_pgprot(newprot) & ~_PAGE_CHG_MASK;
384
385 return __pte(val);
386 }
387
pmd_modify(pmd_t pmd,pgprot_t newprot)388 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
389 {
390 pmdval_t val = pmd_val(pmd);
391
392 val &= _HPAGE_CHG_MASK;
393 val |= massage_pgprot(newprot) & ~_HPAGE_CHG_MASK;
394
395 return __pmd(val);
396 }
397
398 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
399 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)400 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
401 {
402 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
403 pgprotval_t addbits = pgprot_val(newprot);
404 return __pgprot(preservebits | addbits);
405 }
406
407 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK)
408
409 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
410
is_new_memtype_allowed(u64 paddr,unsigned long size,unsigned long flags,unsigned long new_flags)411 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
412 unsigned long flags,
413 unsigned long new_flags)
414 {
415 /*
416 * PAT type is always WB for untracked ranges, so no need to check.
417 */
418 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
419 return 1;
420
421 /*
422 * Certain new memtypes are not allowed with certain
423 * requested memtype:
424 * - request is uncached, return cannot be write-back
425 * - request is write-combine, return cannot be write-back
426 */
427 if ((flags == _PAGE_CACHE_UC_MINUS &&
428 new_flags == _PAGE_CACHE_WB) ||
429 (flags == _PAGE_CACHE_WC &&
430 new_flags == _PAGE_CACHE_WB)) {
431 return 0;
432 }
433
434 return 1;
435 }
436
437 pmd_t *populate_extra_pmd(unsigned long vaddr);
438 pte_t *populate_extra_pte(unsigned long vaddr);
439 #endif /* __ASSEMBLY__ */
440
441 #ifdef CONFIG_X86_32
442 # include <asm/pgtable_32.h>
443 #else
444 # include <asm/pgtable_64.h>
445 #endif
446
447 #ifndef __ASSEMBLY__
448 #include <linux/mm_types.h>
449 #include <linux/mmdebug.h>
450 #include <linux/log2.h>
451
pte_none(pte_t pte)452 static inline int pte_none(pte_t pte)
453 {
454 return !pte.pte;
455 }
456
457 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)458 static inline int pte_same(pte_t a, pte_t b)
459 {
460 return a.pte == b.pte;
461 }
462
pte_present(pte_t a)463 static inline int pte_present(pte_t a)
464 {
465 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE |
466 _PAGE_NUMA);
467 }
468
469 #define pte_present_nonuma pte_present_nonuma
pte_present_nonuma(pte_t a)470 static inline int pte_present_nonuma(pte_t a)
471 {
472 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
473 }
474
475 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)476 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
477 {
478 if (pte_flags(a) & _PAGE_PRESENT)
479 return true;
480
481 if ((pte_flags(a) & (_PAGE_PROTNONE | _PAGE_NUMA)) &&
482 mm_tlb_flush_pending(mm))
483 return true;
484
485 return false;
486 }
487
pte_hidden(pte_t pte)488 static inline int pte_hidden(pte_t pte)
489 {
490 return pte_flags(pte) & _PAGE_HIDDEN;
491 }
492
pmd_present(pmd_t pmd)493 static inline int pmd_present(pmd_t pmd)
494 {
495 /*
496 * Checking for _PAGE_PSE is needed too because
497 * split_huge_page will temporarily clear the present bit (but
498 * the _PAGE_PSE flag will remain set at all times while the
499 * _PAGE_PRESENT bit is clear).
500 */
501 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE |
502 _PAGE_NUMA);
503 }
504
pmd_none(pmd_t pmd)505 static inline int pmd_none(pmd_t pmd)
506 {
507 /* Only check low word on 32-bit platforms, since it might be
508 out of sync with upper half. */
509 return (unsigned long)native_pmd_val(pmd) == 0;
510 }
511
pmd_page_vaddr(pmd_t pmd)512 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
513 {
514 return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK);
515 }
516
517 /*
518 * Currently stuck as a macro due to indirect forward reference to
519 * linux/mmzone.h's __section_mem_map_addr() definition:
520 */
521 #define pmd_page(pmd) pfn_to_page((pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT)
522
523 /*
524 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
525 *
526 * this macro returns the index of the entry in the pmd page which would
527 * control the given virtual address
528 */
pmd_index(unsigned long address)529 static inline unsigned long pmd_index(unsigned long address)
530 {
531 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
532 }
533
534 /*
535 * Conversion functions: convert a page and protection to a page entry,
536 * and a page entry and page directory to the page they refer to.
537 *
538 * (Currently stuck as a macro because of indirect forward reference
539 * to linux/mm.h:page_to_nid())
540 */
541 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
542
543 /*
544 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
545 *
546 * this function returns the index of the entry in the pte page which would
547 * control the given virtual address
548 */
pte_index(unsigned long address)549 static inline unsigned long pte_index(unsigned long address)
550 {
551 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
552 }
553
pte_offset_kernel(pmd_t * pmd,unsigned long address)554 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
555 {
556 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
557 }
558
pmd_bad(pmd_t pmd)559 static inline int pmd_bad(pmd_t pmd)
560 {
561 #ifdef CONFIG_NUMA_BALANCING
562 /* pmd_numa check */
563 if ((pmd_flags(pmd) & (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA)
564 return 0;
565 #endif
566 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
567 }
568
pages_to_mb(unsigned long npg)569 static inline unsigned long pages_to_mb(unsigned long npg)
570 {
571 return npg >> (20 - PAGE_SHIFT);
572 }
573
574 #if PAGETABLE_LEVELS > 2
pud_none(pud_t pud)575 static inline int pud_none(pud_t pud)
576 {
577 return native_pud_val(pud) == 0;
578 }
579
pud_present(pud_t pud)580 static inline int pud_present(pud_t pud)
581 {
582 return pud_flags(pud) & _PAGE_PRESENT;
583 }
584
pud_page_vaddr(pud_t pud)585 static inline unsigned long pud_page_vaddr(pud_t pud)
586 {
587 return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK);
588 }
589
590 /*
591 * Currently stuck as a macro due to indirect forward reference to
592 * linux/mmzone.h's __section_mem_map_addr() definition:
593 */
594 #define pud_page(pud) pfn_to_page(pud_val(pud) >> PAGE_SHIFT)
595
596 /* Find an entry in the second-level page table.. */
pmd_offset(pud_t * pud,unsigned long address)597 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
598 {
599 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
600 }
601
pud_large(pud_t pud)602 static inline int pud_large(pud_t pud)
603 {
604 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
605 (_PAGE_PSE | _PAGE_PRESENT);
606 }
607
pud_bad(pud_t pud)608 static inline int pud_bad(pud_t pud)
609 {
610 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
611 }
612 #else
pud_large(pud_t pud)613 static inline int pud_large(pud_t pud)
614 {
615 return 0;
616 }
617 #endif /* PAGETABLE_LEVELS > 2 */
618
619 #if PAGETABLE_LEVELS > 3
pgd_present(pgd_t pgd)620 static inline int pgd_present(pgd_t pgd)
621 {
622 return pgd_flags(pgd) & _PAGE_PRESENT;
623 }
624
pgd_page_vaddr(pgd_t pgd)625 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
626 {
627 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
628 }
629
630 /*
631 * Currently stuck as a macro due to indirect forward reference to
632 * linux/mmzone.h's __section_mem_map_addr() definition:
633 */
634 #define pgd_page(pgd) pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT)
635
636 /* to find an entry in a page-table-directory. */
pud_index(unsigned long address)637 static inline unsigned long pud_index(unsigned long address)
638 {
639 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
640 }
641
pud_offset(pgd_t * pgd,unsigned long address)642 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
643 {
644 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address);
645 }
646
pgd_bad(pgd_t pgd)647 static inline int pgd_bad(pgd_t pgd)
648 {
649 return (pgd_flags(pgd) & ~_PAGE_USER) != _KERNPG_TABLE;
650 }
651
pgd_none(pgd_t pgd)652 static inline int pgd_none(pgd_t pgd)
653 {
654 return !native_pgd_val(pgd);
655 }
656 #endif /* PAGETABLE_LEVELS > 3 */
657
658 #endif /* __ASSEMBLY__ */
659
660 /*
661 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
662 *
663 * this macro returns the index of the entry in the pgd page which would
664 * control the given virtual address
665 */
666 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
667
668 /*
669 * pgd_offset() returns a (pgd_t *)
670 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
671 */
672 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
673 /*
674 * a shortcut which implies the use of the kernel's pgd, instead
675 * of a process's
676 */
677 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
678
679
680 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
681 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
682
683 #ifndef __ASSEMBLY__
684
685 extern int direct_gbpages;
686 void init_mem_mapping(void);
687 void early_alloc_pgt_buf(void);
688
689 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)690 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
691 {
692 pte_t res = *ptep;
693
694 /* Pure native function needs no input for mm, addr */
695 native_pte_clear(NULL, 0, ptep);
696 return res;
697 }
698
native_local_pmdp_get_and_clear(pmd_t * pmdp)699 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
700 {
701 pmd_t res = *pmdp;
702
703 native_pmd_clear(pmdp);
704 return res;
705 }
706
native_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)707 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
708 pte_t *ptep , pte_t pte)
709 {
710 native_set_pte(ptep, pte);
711 }
712
native_set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)713 static inline void native_set_pmd_at(struct mm_struct *mm, unsigned long addr,
714 pmd_t *pmdp , pmd_t pmd)
715 {
716 native_set_pmd(pmdp, pmd);
717 }
718
719 #ifndef CONFIG_PARAVIRT
720 /*
721 * Rules for using pte_update - it must be called after any PTE update which
722 * has not been done using the set_pte / clear_pte interfaces. It is used by
723 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
724 * updates should either be sets, clears, or set_pte_atomic for P->P
725 * transitions, which means this hook should only be called for user PTEs.
726 * This hook implies a P->P protection or access change has taken place, which
727 * requires a subsequent TLB flush. The notification can optionally be delayed
728 * until the TLB flush event by using the pte_update_defer form of the
729 * interface, but care must be taken to assure that the flush happens while
730 * still holding the same page table lock so that the shadow and primary pages
731 * do not become out of sync on SMP.
732 */
733 #define pte_update(mm, addr, ptep) do { } while (0)
734 #define pte_update_defer(mm, addr, ptep) do { } while (0)
735 #endif
736
737 /*
738 * We only update the dirty/accessed state if we set
739 * the dirty bit by hand in the kernel, since the hardware
740 * will do the accessed bit for us, and we don't want to
741 * race with other CPU's that might be updating the dirty
742 * bit at the same time.
743 */
744 struct vm_area_struct;
745
746 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
747 extern int ptep_set_access_flags(struct vm_area_struct *vma,
748 unsigned long address, pte_t *ptep,
749 pte_t entry, int dirty);
750
751 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
752 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
753 unsigned long addr, pte_t *ptep);
754
755 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
756 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
757 unsigned long address, pte_t *ptep);
758
759 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)760 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
761 pte_t *ptep)
762 {
763 pte_t pte = native_ptep_get_and_clear(ptep);
764 pte_update(mm, addr, ptep);
765 return pte;
766 }
767
768 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)769 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
770 unsigned long addr, pte_t *ptep,
771 int full)
772 {
773 pte_t pte;
774 if (full) {
775 /*
776 * Full address destruction in progress; paravirt does not
777 * care about updates and native needs no locking
778 */
779 pte = native_local_ptep_get_and_clear(ptep);
780 } else {
781 pte = ptep_get_and_clear(mm, addr, ptep);
782 }
783 return pte;
784 }
785
786 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)787 static inline void ptep_set_wrprotect(struct mm_struct *mm,
788 unsigned long addr, pte_t *ptep)
789 {
790 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
791 pte_update(mm, addr, ptep);
792 }
793
794 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
795
796 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
797
798 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
799 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
800 unsigned long address, pmd_t *pmdp,
801 pmd_t entry, int dirty);
802
803 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
804 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
805 unsigned long addr, pmd_t *pmdp);
806
807 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
808 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
809 unsigned long address, pmd_t *pmdp);
810
811
812 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
813 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
814 unsigned long addr, pmd_t *pmdp);
815
816 #define __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)817 static inline int pmd_write(pmd_t pmd)
818 {
819 return pmd_flags(pmd) & _PAGE_RW;
820 }
821
822 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
pmdp_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)823 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long addr,
824 pmd_t *pmdp)
825 {
826 pmd_t pmd = native_pmdp_get_and_clear(pmdp);
827 pmd_update(mm, addr, pmdp);
828 return pmd;
829 }
830
831 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)832 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
833 unsigned long addr, pmd_t *pmdp)
834 {
835 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
836 pmd_update(mm, addr, pmdp);
837 }
838
839 /*
840 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
841 *
842 * dst - pointer to pgd range anwhere on a pgd page
843 * src - ""
844 * count - the number of pgds to copy.
845 *
846 * dst and src can be on the same page, but the range must not overlap,
847 * and must not cross a page boundary.
848 */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)849 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
850 {
851 memcpy(dst, src, count * sizeof(pgd_t));
852 }
853
854 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
page_level_shift(enum pg_level level)855 static inline int page_level_shift(enum pg_level level)
856 {
857 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
858 }
page_level_size(enum pg_level level)859 static inline unsigned long page_level_size(enum pg_level level)
860 {
861 return 1UL << page_level_shift(level);
862 }
page_level_mask(enum pg_level level)863 static inline unsigned long page_level_mask(enum pg_level level)
864 {
865 return ~(page_level_size(level) - 1);
866 }
867
868 /*
869 * The x86 doesn't have any external MMU info: the kernel page
870 * tables contain all the necessary information.
871 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)872 static inline void update_mmu_cache(struct vm_area_struct *vma,
873 unsigned long addr, pte_t *ptep)
874 {
875 }
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)876 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
877 unsigned long addr, pmd_t *pmd)
878 {
879 }
880
881 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)882 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
883 {
884 VM_BUG_ON(pte_present_nonuma(pte));
885 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
886 }
887
pte_swp_soft_dirty(pte_t pte)888 static inline int pte_swp_soft_dirty(pte_t pte)
889 {
890 VM_BUG_ON(pte_present_nonuma(pte));
891 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
892 }
893
pte_swp_clear_soft_dirty(pte_t pte)894 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
895 {
896 VM_BUG_ON(pte_present_nonuma(pte));
897 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
898 }
899 #endif
900
901 #include <asm-generic/pgtable.h>
902 #endif /* __ASSEMBLY__ */
903
904 #endif /* _ASM_X86_PGTABLE_H */
905