• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
con_flag_valid(unsigned long con_flag)105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
con_flag_clear(struct ceph_connection * con,unsigned long con_flag)119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
con_flag_set(struct ceph_connection * con,unsigned long con_flag)126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
con_flag_test(struct ceph_connection * con,unsigned long con_flag)133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
ceph_pr_addr(const struct sockaddr_storage * ss)195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
encode_my_addr(struct ceph_messenger * msgr)225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
ceph_msgr_slab_init(void)236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
ceph_msgr_slab_exit(void)260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
_ceph_msgr_exit(void)271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	kunmap(zero_page);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 }
285 
ceph_msgr_init(void)286 int ceph_msgr_init(void)
287 {
288 	BUG_ON(zero_page != NULL);
289 	zero_page = ZERO_PAGE(0);
290 	page_cache_get(zero_page);
291 
292 	if (ceph_msgr_slab_init())
293 		return -ENOMEM;
294 
295 	/*
296 	 * The number of active work items is limited by the number of
297 	 * connections, so leave @max_active at default.
298 	 */
299 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 	if (ceph_msgr_wq)
301 		return 0;
302 
303 	pr_err("msgr_init failed to create workqueue\n");
304 	_ceph_msgr_exit();
305 
306 	return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309 
ceph_msgr_exit(void)310 void ceph_msgr_exit(void)
311 {
312 	BUG_ON(ceph_msgr_wq == NULL);
313 
314 	_ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317 
ceph_msgr_flush(void)318 void ceph_msgr_flush(void)
319 {
320 	flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323 
324 /* Connection socket state transition functions */
325 
con_sock_state_init(struct ceph_connection * con)326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 	int old_state;
329 
330 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 		printk("%s: unexpected old state %d\n", __func__, old_state);
333 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 	     CON_SOCK_STATE_CLOSED);
335 }
336 
con_sock_state_connecting(struct ceph_connection * con)337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 	int old_state;
340 
341 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 		printk("%s: unexpected old state %d\n", __func__, old_state);
344 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 	     CON_SOCK_STATE_CONNECTING);
346 }
347 
con_sock_state_connected(struct ceph_connection * con)348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 	int old_state;
351 
352 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CONNECTED);
357 }
358 
con_sock_state_closing(struct ceph_connection * con)359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 	int old_state;
362 
363 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 			old_state != CON_SOCK_STATE_CONNECTED &&
366 			old_state != CON_SOCK_STATE_CLOSING))
367 		printk("%s: unexpected old state %d\n", __func__, old_state);
368 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 	     CON_SOCK_STATE_CLOSING);
370 }
371 
con_sock_state_closed(struct ceph_connection * con)372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 	int old_state;
375 
376 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 		    old_state != CON_SOCK_STATE_CLOSING &&
379 		    old_state != CON_SOCK_STATE_CONNECTING &&
380 		    old_state != CON_SOCK_STATE_CLOSED))
381 		printk("%s: unexpected old state %d\n", __func__, old_state);
382 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 	     CON_SOCK_STATE_CLOSED);
384 }
385 
386 /*
387  * socket callback functions
388  */
389 
390 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 	struct ceph_connection *con = sk->sk_user_data;
394 	if (atomic_read(&con->msgr->stopping)) {
395 		return;
396 	}
397 
398 	if (sk->sk_state != TCP_CLOSE_WAIT) {
399 		dout("%s on %p state = %lu, queueing work\n", __func__,
400 		     con, con->state);
401 		queue_con(con);
402 	}
403 }
404 
405 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 	struct ceph_connection *con = sk->sk_user_data;
409 
410 	/* only queue to workqueue if there is data we want to write,
411 	 * and there is sufficient space in the socket buffer to accept
412 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
413 	 * doesn't get called again until try_write() fills the socket
414 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 	 * and net/core/stream.c:sk_stream_write_space().
416 	 */
417 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 		if (sk_stream_is_writeable(sk)) {
419 			dout("%s %p queueing write work\n", __func__, con);
420 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 			queue_con(con);
422 		}
423 	} else {
424 		dout("%s %p nothing to write\n", __func__, con);
425 	}
426 }
427 
428 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 	struct ceph_connection *con = sk->sk_user_data;
432 
433 	dout("%s %p state = %lu sk_state = %u\n", __func__,
434 	     con, con->state, sk->sk_state);
435 
436 	switch (sk->sk_state) {
437 	case TCP_CLOSE:
438 		dout("%s TCP_CLOSE\n", __func__);
439 	case TCP_CLOSE_WAIT:
440 		dout("%s TCP_CLOSE_WAIT\n", __func__);
441 		con_sock_state_closing(con);
442 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 		queue_con(con);
444 		break;
445 	case TCP_ESTABLISHED:
446 		dout("%s TCP_ESTABLISHED\n", __func__);
447 		con_sock_state_connected(con);
448 		queue_con(con);
449 		break;
450 	default:	/* Everything else is uninteresting */
451 		break;
452 	}
453 }
454 
455 /*
456  * set up socket callbacks
457  */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)458 static void set_sock_callbacks(struct socket *sock,
459 			       struct ceph_connection *con)
460 {
461 	struct sock *sk = sock->sk;
462 	sk->sk_user_data = con;
463 	sk->sk_data_ready = ceph_sock_data_ready;
464 	sk->sk_write_space = ceph_sock_write_space;
465 	sk->sk_state_change = ceph_sock_state_change;
466 }
467 
468 
469 /*
470  * socket helpers
471  */
472 
473 /*
474  * initiate connection to a remote socket.
475  */
ceph_tcp_connect(struct ceph_connection * con)476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 	struct socket *sock;
480 	int ret;
481 
482 	BUG_ON(con->sock);
483 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 			       IPPROTO_TCP, &sock);
485 	if (ret)
486 		return ret;
487 	sock->sk->sk_allocation = GFP_NOFS;
488 
489 #ifdef CONFIG_LOCKDEP
490 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492 
493 	set_sock_callbacks(sock, con);
494 
495 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496 
497 	con_sock_state_connecting(con);
498 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 				 O_NONBLOCK);
500 	if (ret == -EINPROGRESS) {
501 		dout("connect %s EINPROGRESS sk_state = %u\n",
502 		     ceph_pr_addr(&con->peer_addr.in_addr),
503 		     sock->sk->sk_state);
504 	} else if (ret < 0) {
505 		pr_err("connect %s error %d\n",
506 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 		sock_release(sock);
508 		con->error_msg = "connect error";
509 
510 		return ret;
511 	}
512 
513 	con->sock = sock;
514 	return 0;
515 }
516 
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 	struct kvec iov = {buf, len};
520 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 	int r;
522 
523 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
524 	if (r == -EAGAIN)
525 		r = 0;
526 	return r;
527 }
528 
ceph_tcp_recvpage(struct socket * sock,struct page * page,int page_offset,size_t length)529 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
530 		     int page_offset, size_t length)
531 {
532 	void *kaddr;
533 	int ret;
534 
535 	BUG_ON(page_offset + length > PAGE_SIZE);
536 
537 	kaddr = kmap(page);
538 	BUG_ON(!kaddr);
539 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
540 	kunmap(page);
541 
542 	return ret;
543 }
544 
545 /*
546  * write something.  @more is true if caller will be sending more data
547  * shortly.
548  */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550 		     size_t kvlen, size_t len, int more)
551 {
552 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553 	int r;
554 
555 	if (more)
556 		msg.msg_flags |= MSG_MORE;
557 	else
558 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
559 
560 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561 	if (r == -EAGAIN)
562 		r = 0;
563 	return r;
564 }
565 
__ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)566 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 		     int offset, size_t size, bool more)
568 {
569 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
570 	int ret;
571 
572 	ret = kernel_sendpage(sock, page, offset, size, flags);
573 	if (ret == -EAGAIN)
574 		ret = 0;
575 
576 	return ret;
577 }
578 
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)579 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
580 		     int offset, size_t size, bool more)
581 {
582 	int ret;
583 	struct kvec iov;
584 
585 	/* sendpage cannot properly handle pages with page_count == 0,
586 	 * we need to fallback to sendmsg if that's the case */
587 	if (page_count(page) >= 1)
588 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
589 
590 	iov.iov_base = kmap(page) + offset;
591 	iov.iov_len = size;
592 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
593 	kunmap(page);
594 
595 	return ret;
596 }
597 
598 /*
599  * Shutdown/close the socket for the given connection.
600  */
con_close_socket(struct ceph_connection * con)601 static int con_close_socket(struct ceph_connection *con)
602 {
603 	int rc = 0;
604 
605 	dout("con_close_socket on %p sock %p\n", con, con->sock);
606 	if (con->sock) {
607 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
608 		sock_release(con->sock);
609 		con->sock = NULL;
610 	}
611 
612 	/*
613 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
614 	 * independent of the connection mutex, and we could have
615 	 * received a socket close event before we had the chance to
616 	 * shut the socket down.
617 	 */
618 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
619 
620 	con_sock_state_closed(con);
621 	return rc;
622 }
623 
624 /*
625  * Reset a connection.  Discard all incoming and outgoing messages
626  * and clear *_seq state.
627  */
ceph_msg_remove(struct ceph_msg * msg)628 static void ceph_msg_remove(struct ceph_msg *msg)
629 {
630 	list_del_init(&msg->list_head);
631 	BUG_ON(msg->con == NULL);
632 	msg->con->ops->put(msg->con);
633 	msg->con = NULL;
634 
635 	ceph_msg_put(msg);
636 }
ceph_msg_remove_list(struct list_head * head)637 static void ceph_msg_remove_list(struct list_head *head)
638 {
639 	while (!list_empty(head)) {
640 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
641 							list_head);
642 		ceph_msg_remove(msg);
643 	}
644 }
645 
reset_connection(struct ceph_connection * con)646 static void reset_connection(struct ceph_connection *con)
647 {
648 	/* reset connection, out_queue, msg_ and connect_seq */
649 	/* discard existing out_queue and msg_seq */
650 	dout("reset_connection %p\n", con);
651 	ceph_msg_remove_list(&con->out_queue);
652 	ceph_msg_remove_list(&con->out_sent);
653 
654 	if (con->in_msg) {
655 		BUG_ON(con->in_msg->con != con);
656 		con->in_msg->con = NULL;
657 		ceph_msg_put(con->in_msg);
658 		con->in_msg = NULL;
659 		con->ops->put(con);
660 	}
661 
662 	con->connect_seq = 0;
663 	con->out_seq = 0;
664 	if (con->out_msg) {
665 		ceph_msg_put(con->out_msg);
666 		con->out_msg = NULL;
667 	}
668 	con->in_seq = 0;
669 	con->in_seq_acked = 0;
670 }
671 
672 /*
673  * mark a peer down.  drop any open connections.
674  */
ceph_con_close(struct ceph_connection * con)675 void ceph_con_close(struct ceph_connection *con)
676 {
677 	mutex_lock(&con->mutex);
678 	dout("con_close %p peer %s\n", con,
679 	     ceph_pr_addr(&con->peer_addr.in_addr));
680 	con->state = CON_STATE_CLOSED;
681 
682 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
683 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
684 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
685 	con_flag_clear(con, CON_FLAG_BACKOFF);
686 
687 	reset_connection(con);
688 	con->peer_global_seq = 0;
689 	cancel_con(con);
690 	con_close_socket(con);
691 	mutex_unlock(&con->mutex);
692 }
693 EXPORT_SYMBOL(ceph_con_close);
694 
695 /*
696  * Reopen a closed connection, with a new peer address.
697  */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)698 void ceph_con_open(struct ceph_connection *con,
699 		   __u8 entity_type, __u64 entity_num,
700 		   struct ceph_entity_addr *addr)
701 {
702 	mutex_lock(&con->mutex);
703 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
704 
705 	WARN_ON(con->state != CON_STATE_CLOSED);
706 	con->state = CON_STATE_PREOPEN;
707 
708 	con->peer_name.type = (__u8) entity_type;
709 	con->peer_name.num = cpu_to_le64(entity_num);
710 
711 	memcpy(&con->peer_addr, addr, sizeof(*addr));
712 	con->delay = 0;      /* reset backoff memory */
713 	mutex_unlock(&con->mutex);
714 	queue_con(con);
715 }
716 EXPORT_SYMBOL(ceph_con_open);
717 
718 /*
719  * return true if this connection ever successfully opened
720  */
ceph_con_opened(struct ceph_connection * con)721 bool ceph_con_opened(struct ceph_connection *con)
722 {
723 	return con->connect_seq > 0;
724 }
725 
726 /*
727  * initialize a new connection.
728  */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)729 void ceph_con_init(struct ceph_connection *con, void *private,
730 	const struct ceph_connection_operations *ops,
731 	struct ceph_messenger *msgr)
732 {
733 	dout("con_init %p\n", con);
734 	memset(con, 0, sizeof(*con));
735 	con->private = private;
736 	con->ops = ops;
737 	con->msgr = msgr;
738 
739 	con_sock_state_init(con);
740 
741 	mutex_init(&con->mutex);
742 	INIT_LIST_HEAD(&con->out_queue);
743 	INIT_LIST_HEAD(&con->out_sent);
744 	INIT_DELAYED_WORK(&con->work, con_work);
745 
746 	con->state = CON_STATE_CLOSED;
747 }
748 EXPORT_SYMBOL(ceph_con_init);
749 
750 
751 /*
752  * We maintain a global counter to order connection attempts.  Get
753  * a unique seq greater than @gt.
754  */
get_global_seq(struct ceph_messenger * msgr,u32 gt)755 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
756 {
757 	u32 ret;
758 
759 	spin_lock(&msgr->global_seq_lock);
760 	if (msgr->global_seq < gt)
761 		msgr->global_seq = gt;
762 	ret = ++msgr->global_seq;
763 	spin_unlock(&msgr->global_seq_lock);
764 	return ret;
765 }
766 
con_out_kvec_reset(struct ceph_connection * con)767 static void con_out_kvec_reset(struct ceph_connection *con)
768 {
769 	con->out_kvec_left = 0;
770 	con->out_kvec_bytes = 0;
771 	con->out_kvec_cur = &con->out_kvec[0];
772 }
773 
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)774 static void con_out_kvec_add(struct ceph_connection *con,
775 				size_t size, void *data)
776 {
777 	int index;
778 
779 	index = con->out_kvec_left;
780 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
781 
782 	con->out_kvec[index].iov_len = size;
783 	con->out_kvec[index].iov_base = data;
784 	con->out_kvec_left++;
785 	con->out_kvec_bytes += size;
786 }
787 
788 #ifdef CONFIG_BLOCK
789 
790 /*
791  * For a bio data item, a piece is whatever remains of the next
792  * entry in the current bio iovec, or the first entry in the next
793  * bio in the list.
794  */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)795 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
796 					size_t length)
797 {
798 	struct ceph_msg_data *data = cursor->data;
799 	struct bio *bio;
800 
801 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
802 
803 	bio = data->bio;
804 	BUG_ON(!bio);
805 
806 	cursor->resid = min(length, data->bio_length);
807 	cursor->bio = bio;
808 	cursor->bvec_iter = bio->bi_iter;
809 	cursor->last_piece =
810 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
811 }
812 
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)813 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
814 						size_t *page_offset,
815 						size_t *length)
816 {
817 	struct ceph_msg_data *data = cursor->data;
818 	struct bio *bio;
819 	struct bio_vec bio_vec;
820 
821 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
822 
823 	bio = cursor->bio;
824 	BUG_ON(!bio);
825 
826 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
827 
828 	*page_offset = (size_t) bio_vec.bv_offset;
829 	BUG_ON(*page_offset >= PAGE_SIZE);
830 	if (cursor->last_piece) /* pagelist offset is always 0 */
831 		*length = cursor->resid;
832 	else
833 		*length = (size_t) bio_vec.bv_len;
834 	BUG_ON(*length > cursor->resid);
835 	BUG_ON(*page_offset + *length > PAGE_SIZE);
836 
837 	return bio_vec.bv_page;
838 }
839 
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)840 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
841 					size_t bytes)
842 {
843 	struct bio *bio;
844 	struct bio_vec bio_vec;
845 
846 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
847 
848 	bio = cursor->bio;
849 	BUG_ON(!bio);
850 
851 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
852 
853 	/* Advance the cursor offset */
854 
855 	BUG_ON(cursor->resid < bytes);
856 	cursor->resid -= bytes;
857 
858 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
859 
860 	if (bytes < bio_vec.bv_len)
861 		return false;	/* more bytes to process in this segment */
862 
863 	/* Move on to the next segment, and possibly the next bio */
864 
865 	if (!cursor->bvec_iter.bi_size) {
866 		bio = bio->bi_next;
867 		cursor->bio = bio;
868 		if (bio)
869 			cursor->bvec_iter = bio->bi_iter;
870 		else
871 			memset(&cursor->bvec_iter, 0,
872 			       sizeof(cursor->bvec_iter));
873 	}
874 
875 	if (!cursor->last_piece) {
876 		BUG_ON(!cursor->resid);
877 		BUG_ON(!bio);
878 		/* A short read is OK, so use <= rather than == */
879 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
880 			cursor->last_piece = true;
881 	}
882 
883 	return true;
884 }
885 #endif /* CONFIG_BLOCK */
886 
887 /*
888  * For a page array, a piece comes from the first page in the array
889  * that has not already been fully consumed.
890  */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)891 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
892 					size_t length)
893 {
894 	struct ceph_msg_data *data = cursor->data;
895 	int page_count;
896 
897 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
898 
899 	BUG_ON(!data->pages);
900 	BUG_ON(!data->length);
901 
902 	cursor->resid = min(length, data->length);
903 	page_count = calc_pages_for(data->alignment, (u64)data->length);
904 	cursor->page_offset = data->alignment & ~PAGE_MASK;
905 	cursor->page_index = 0;
906 	BUG_ON(page_count > (int)USHRT_MAX);
907 	cursor->page_count = (unsigned short)page_count;
908 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
909 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
910 }
911 
912 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)913 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
914 					size_t *page_offset, size_t *length)
915 {
916 	struct ceph_msg_data *data = cursor->data;
917 
918 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
919 
920 	BUG_ON(cursor->page_index >= cursor->page_count);
921 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
922 
923 	*page_offset = cursor->page_offset;
924 	if (cursor->last_piece)
925 		*length = cursor->resid;
926 	else
927 		*length = PAGE_SIZE - *page_offset;
928 
929 	return data->pages[cursor->page_index];
930 }
931 
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)932 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
933 						size_t bytes)
934 {
935 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
936 
937 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
938 
939 	/* Advance the cursor page offset */
940 
941 	cursor->resid -= bytes;
942 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
943 	if (!bytes || cursor->page_offset)
944 		return false;	/* more bytes to process in the current page */
945 
946 	if (!cursor->resid)
947 		return false;   /* no more data */
948 
949 	/* Move on to the next page; offset is already at 0 */
950 
951 	BUG_ON(cursor->page_index >= cursor->page_count);
952 	cursor->page_index++;
953 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
954 
955 	return true;
956 }
957 
958 /*
959  * For a pagelist, a piece is whatever remains to be consumed in the
960  * first page in the list, or the front of the next page.
961  */
962 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)963 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
964 					size_t length)
965 {
966 	struct ceph_msg_data *data = cursor->data;
967 	struct ceph_pagelist *pagelist;
968 	struct page *page;
969 
970 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
971 
972 	pagelist = data->pagelist;
973 	BUG_ON(!pagelist);
974 
975 	if (!length)
976 		return;		/* pagelist can be assigned but empty */
977 
978 	BUG_ON(list_empty(&pagelist->head));
979 	page = list_first_entry(&pagelist->head, struct page, lru);
980 
981 	cursor->resid = min(length, pagelist->length);
982 	cursor->page = page;
983 	cursor->offset = 0;
984 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
985 }
986 
987 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)988 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
989 				size_t *page_offset, size_t *length)
990 {
991 	struct ceph_msg_data *data = cursor->data;
992 	struct ceph_pagelist *pagelist;
993 
994 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
995 
996 	pagelist = data->pagelist;
997 	BUG_ON(!pagelist);
998 
999 	BUG_ON(!cursor->page);
1000 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1001 
1002 	/* offset of first page in pagelist is always 0 */
1003 	*page_offset = cursor->offset & ~PAGE_MASK;
1004 	if (cursor->last_piece)
1005 		*length = cursor->resid;
1006 	else
1007 		*length = PAGE_SIZE - *page_offset;
1008 
1009 	return cursor->page;
1010 }
1011 
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1012 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1013 						size_t bytes)
1014 {
1015 	struct ceph_msg_data *data = cursor->data;
1016 	struct ceph_pagelist *pagelist;
1017 
1018 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1019 
1020 	pagelist = data->pagelist;
1021 	BUG_ON(!pagelist);
1022 
1023 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1024 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1025 
1026 	/* Advance the cursor offset */
1027 
1028 	cursor->resid -= bytes;
1029 	cursor->offset += bytes;
1030 	/* offset of first page in pagelist is always 0 */
1031 	if (!bytes || cursor->offset & ~PAGE_MASK)
1032 		return false;	/* more bytes to process in the current page */
1033 
1034 	if (!cursor->resid)
1035 		return false;   /* no more data */
1036 
1037 	/* Move on to the next page */
1038 
1039 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1040 	cursor->page = list_entry_next(cursor->page, lru);
1041 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1042 
1043 	return true;
1044 }
1045 
1046 /*
1047  * Message data is handled (sent or received) in pieces, where each
1048  * piece resides on a single page.  The network layer might not
1049  * consume an entire piece at once.  A data item's cursor keeps
1050  * track of which piece is next to process and how much remains to
1051  * be processed in that piece.  It also tracks whether the current
1052  * piece is the last one in the data item.
1053  */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)1054 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1055 {
1056 	size_t length = cursor->total_resid;
1057 
1058 	switch (cursor->data->type) {
1059 	case CEPH_MSG_DATA_PAGELIST:
1060 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1061 		break;
1062 	case CEPH_MSG_DATA_PAGES:
1063 		ceph_msg_data_pages_cursor_init(cursor, length);
1064 		break;
1065 #ifdef CONFIG_BLOCK
1066 	case CEPH_MSG_DATA_BIO:
1067 		ceph_msg_data_bio_cursor_init(cursor, length);
1068 		break;
1069 #endif /* CONFIG_BLOCK */
1070 	case CEPH_MSG_DATA_NONE:
1071 	default:
1072 		/* BUG(); */
1073 		break;
1074 	}
1075 	cursor->need_crc = true;
1076 }
1077 
ceph_msg_data_cursor_init(struct ceph_msg * msg,size_t length)1078 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1079 {
1080 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1081 	struct ceph_msg_data *data;
1082 
1083 	BUG_ON(!length);
1084 	BUG_ON(length > msg->data_length);
1085 	BUG_ON(list_empty(&msg->data));
1086 
1087 	cursor->data_head = &msg->data;
1088 	cursor->total_resid = length;
1089 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1090 	cursor->data = data;
1091 
1092 	__ceph_msg_data_cursor_init(cursor);
1093 }
1094 
1095 /*
1096  * Return the page containing the next piece to process for a given
1097  * data item, and supply the page offset and length of that piece.
1098  * Indicate whether this is the last piece in this data item.
1099  */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length,bool * last_piece)1100 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1101 					size_t *page_offset, size_t *length,
1102 					bool *last_piece)
1103 {
1104 	struct page *page;
1105 
1106 	switch (cursor->data->type) {
1107 	case CEPH_MSG_DATA_PAGELIST:
1108 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1109 		break;
1110 	case CEPH_MSG_DATA_PAGES:
1111 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1112 		break;
1113 #ifdef CONFIG_BLOCK
1114 	case CEPH_MSG_DATA_BIO:
1115 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1116 		break;
1117 #endif /* CONFIG_BLOCK */
1118 	case CEPH_MSG_DATA_NONE:
1119 	default:
1120 		page = NULL;
1121 		break;
1122 	}
1123 	BUG_ON(!page);
1124 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1125 	BUG_ON(!*length);
1126 	if (last_piece)
1127 		*last_piece = cursor->last_piece;
1128 
1129 	return page;
1130 }
1131 
1132 /*
1133  * Returns true if the result moves the cursor on to the next piece
1134  * of the data item.
1135  */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1136 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1137 				size_t bytes)
1138 {
1139 	bool new_piece;
1140 
1141 	BUG_ON(bytes > cursor->resid);
1142 	switch (cursor->data->type) {
1143 	case CEPH_MSG_DATA_PAGELIST:
1144 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1145 		break;
1146 	case CEPH_MSG_DATA_PAGES:
1147 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1148 		break;
1149 #ifdef CONFIG_BLOCK
1150 	case CEPH_MSG_DATA_BIO:
1151 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1152 		break;
1153 #endif /* CONFIG_BLOCK */
1154 	case CEPH_MSG_DATA_NONE:
1155 	default:
1156 		BUG();
1157 		break;
1158 	}
1159 	cursor->total_resid -= bytes;
1160 
1161 	if (!cursor->resid && cursor->total_resid) {
1162 		WARN_ON(!cursor->last_piece);
1163 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1164 		cursor->data = list_entry_next(cursor->data, links);
1165 		__ceph_msg_data_cursor_init(cursor);
1166 		new_piece = true;
1167 	}
1168 	cursor->need_crc = new_piece;
1169 
1170 	return new_piece;
1171 }
1172 
prepare_message_data(struct ceph_msg * msg,u32 data_len)1173 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1174 {
1175 	BUG_ON(!msg);
1176 	BUG_ON(!data_len);
1177 
1178 	/* Initialize data cursor */
1179 
1180 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1181 }
1182 
1183 /*
1184  * Prepare footer for currently outgoing message, and finish things
1185  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1186  */
prepare_write_message_footer(struct ceph_connection * con)1187 static void prepare_write_message_footer(struct ceph_connection *con)
1188 {
1189 	struct ceph_msg *m = con->out_msg;
1190 	int v = con->out_kvec_left;
1191 
1192 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1193 
1194 	dout("prepare_write_message_footer %p\n", con);
1195 	con->out_kvec_is_msg = true;
1196 	con->out_kvec[v].iov_base = &m->footer;
1197 	con->out_kvec[v].iov_len = sizeof(m->footer);
1198 	con->out_kvec_bytes += sizeof(m->footer);
1199 	con->out_kvec_left++;
1200 	con->out_more = m->more_to_follow;
1201 	con->out_msg_done = true;
1202 }
1203 
1204 /*
1205  * Prepare headers for the next outgoing message.
1206  */
prepare_write_message(struct ceph_connection * con)1207 static void prepare_write_message(struct ceph_connection *con)
1208 {
1209 	struct ceph_msg *m;
1210 	u32 crc;
1211 
1212 	con_out_kvec_reset(con);
1213 	con->out_kvec_is_msg = true;
1214 	con->out_msg_done = false;
1215 
1216 	/* Sneak an ack in there first?  If we can get it into the same
1217 	 * TCP packet that's a good thing. */
1218 	if (con->in_seq > con->in_seq_acked) {
1219 		con->in_seq_acked = con->in_seq;
1220 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1221 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1222 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1223 			&con->out_temp_ack);
1224 	}
1225 
1226 	BUG_ON(list_empty(&con->out_queue));
1227 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1228 	con->out_msg = m;
1229 	BUG_ON(m->con != con);
1230 
1231 	/* put message on sent list */
1232 	ceph_msg_get(m);
1233 	list_move_tail(&m->list_head, &con->out_sent);
1234 
1235 	/*
1236 	 * only assign outgoing seq # if we haven't sent this message
1237 	 * yet.  if it is requeued, resend with it's original seq.
1238 	 */
1239 	if (m->needs_out_seq) {
1240 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1241 		m->needs_out_seq = false;
1242 	}
1243 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1244 
1245 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1246 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1247 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1248 	     m->data_length);
1249 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1250 
1251 	/* tag + hdr + front + middle */
1252 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1253 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1254 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1255 
1256 	if (m->middle)
1257 		con_out_kvec_add(con, m->middle->vec.iov_len,
1258 			m->middle->vec.iov_base);
1259 
1260 	/* fill in crc (except data pages), footer */
1261 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1262 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1263 	con->out_msg->footer.flags = 0;
1264 
1265 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1266 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1267 	if (m->middle) {
1268 		crc = crc32c(0, m->middle->vec.iov_base,
1269 				m->middle->vec.iov_len);
1270 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1271 	} else
1272 		con->out_msg->footer.middle_crc = 0;
1273 	dout("%s front_crc %u middle_crc %u\n", __func__,
1274 	     le32_to_cpu(con->out_msg->footer.front_crc),
1275 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1276 
1277 	/* is there a data payload? */
1278 	con->out_msg->footer.data_crc = 0;
1279 	if (m->data_length) {
1280 		prepare_message_data(con->out_msg, m->data_length);
1281 		con->out_more = 1;  /* data + footer will follow */
1282 	} else {
1283 		/* no, queue up footer too and be done */
1284 		prepare_write_message_footer(con);
1285 	}
1286 
1287 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1288 }
1289 
1290 /*
1291  * Prepare an ack.
1292  */
prepare_write_ack(struct ceph_connection * con)1293 static void prepare_write_ack(struct ceph_connection *con)
1294 {
1295 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1296 	     con->in_seq_acked, con->in_seq);
1297 	con->in_seq_acked = con->in_seq;
1298 
1299 	con_out_kvec_reset(con);
1300 
1301 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1302 
1303 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1304 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1305 				&con->out_temp_ack);
1306 
1307 	con->out_more = 1;  /* more will follow.. eventually.. */
1308 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1309 }
1310 
1311 /*
1312  * Prepare to share the seq during handshake
1313  */
prepare_write_seq(struct ceph_connection * con)1314 static void prepare_write_seq(struct ceph_connection *con)
1315 {
1316 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1317 	     con->in_seq_acked, con->in_seq);
1318 	con->in_seq_acked = con->in_seq;
1319 
1320 	con_out_kvec_reset(con);
1321 
1322 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1323 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1324 			 &con->out_temp_ack);
1325 
1326 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1327 }
1328 
1329 /*
1330  * Prepare to write keepalive byte.
1331  */
prepare_write_keepalive(struct ceph_connection * con)1332 static void prepare_write_keepalive(struct ceph_connection *con)
1333 {
1334 	dout("prepare_write_keepalive %p\n", con);
1335 	con_out_kvec_reset(con);
1336 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1337 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1338 }
1339 
1340 /*
1341  * Connection negotiation.
1342  */
1343 
get_connect_authorizer(struct ceph_connection * con,int * auth_proto)1344 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1345 						int *auth_proto)
1346 {
1347 	struct ceph_auth_handshake *auth;
1348 
1349 	if (!con->ops->get_authorizer) {
1350 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1351 		con->out_connect.authorizer_len = 0;
1352 		return NULL;
1353 	}
1354 
1355 	/* Can't hold the mutex while getting authorizer */
1356 	mutex_unlock(&con->mutex);
1357 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1358 	mutex_lock(&con->mutex);
1359 
1360 	if (IS_ERR(auth))
1361 		return auth;
1362 	if (con->state != CON_STATE_NEGOTIATING)
1363 		return ERR_PTR(-EAGAIN);
1364 
1365 	con->auth_reply_buf = auth->authorizer_reply_buf;
1366 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1367 	return auth;
1368 }
1369 
1370 /*
1371  * We connected to a peer and are saying hello.
1372  */
prepare_write_banner(struct ceph_connection * con)1373 static void prepare_write_banner(struct ceph_connection *con)
1374 {
1375 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1376 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1377 					&con->msgr->my_enc_addr);
1378 
1379 	con->out_more = 0;
1380 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1381 }
1382 
prepare_write_connect(struct ceph_connection * con)1383 static int prepare_write_connect(struct ceph_connection *con)
1384 {
1385 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1386 	int proto;
1387 	int auth_proto;
1388 	struct ceph_auth_handshake *auth;
1389 
1390 	switch (con->peer_name.type) {
1391 	case CEPH_ENTITY_TYPE_MON:
1392 		proto = CEPH_MONC_PROTOCOL;
1393 		break;
1394 	case CEPH_ENTITY_TYPE_OSD:
1395 		proto = CEPH_OSDC_PROTOCOL;
1396 		break;
1397 	case CEPH_ENTITY_TYPE_MDS:
1398 		proto = CEPH_MDSC_PROTOCOL;
1399 		break;
1400 	default:
1401 		BUG();
1402 	}
1403 
1404 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1405 	     con->connect_seq, global_seq, proto);
1406 
1407 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1408 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1409 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1410 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1411 	con->out_connect.protocol_version = cpu_to_le32(proto);
1412 	con->out_connect.flags = 0;
1413 
1414 	auth_proto = CEPH_AUTH_UNKNOWN;
1415 	auth = get_connect_authorizer(con, &auth_proto);
1416 	if (IS_ERR(auth))
1417 		return PTR_ERR(auth);
1418 
1419 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1420 	con->out_connect.authorizer_len = auth ?
1421 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1422 
1423 	con_out_kvec_add(con, sizeof (con->out_connect),
1424 					&con->out_connect);
1425 	if (auth && auth->authorizer_buf_len)
1426 		con_out_kvec_add(con, auth->authorizer_buf_len,
1427 					auth->authorizer_buf);
1428 
1429 	con->out_more = 0;
1430 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431 
1432 	return 0;
1433 }
1434 
1435 /*
1436  * write as much of pending kvecs to the socket as we can.
1437  *  1 -> done
1438  *  0 -> socket full, but more to do
1439  * <0 -> error
1440  */
write_partial_kvec(struct ceph_connection * con)1441 static int write_partial_kvec(struct ceph_connection *con)
1442 {
1443 	int ret;
1444 
1445 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1446 	while (con->out_kvec_bytes > 0) {
1447 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1448 				       con->out_kvec_left, con->out_kvec_bytes,
1449 				       con->out_more);
1450 		if (ret <= 0)
1451 			goto out;
1452 		con->out_kvec_bytes -= ret;
1453 		if (con->out_kvec_bytes == 0)
1454 			break;            /* done */
1455 
1456 		/* account for full iov entries consumed */
1457 		while (ret >= con->out_kvec_cur->iov_len) {
1458 			BUG_ON(!con->out_kvec_left);
1459 			ret -= con->out_kvec_cur->iov_len;
1460 			con->out_kvec_cur++;
1461 			con->out_kvec_left--;
1462 		}
1463 		/* and for a partially-consumed entry */
1464 		if (ret) {
1465 			con->out_kvec_cur->iov_len -= ret;
1466 			con->out_kvec_cur->iov_base += ret;
1467 		}
1468 	}
1469 	con->out_kvec_left = 0;
1470 	con->out_kvec_is_msg = false;
1471 	ret = 1;
1472 out:
1473 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1474 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1475 	return ret;  /* done! */
1476 }
1477 
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1478 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1479 				unsigned int page_offset,
1480 				unsigned int length)
1481 {
1482 	char *kaddr;
1483 
1484 	kaddr = kmap(page);
1485 	BUG_ON(kaddr == NULL);
1486 	crc = crc32c(crc, kaddr + page_offset, length);
1487 	kunmap(page);
1488 
1489 	return crc;
1490 }
1491 /*
1492  * Write as much message data payload as we can.  If we finish, queue
1493  * up the footer.
1494  *  1 -> done, footer is now queued in out_kvec[].
1495  *  0 -> socket full, but more to do
1496  * <0 -> error
1497  */
write_partial_message_data(struct ceph_connection * con)1498 static int write_partial_message_data(struct ceph_connection *con)
1499 {
1500 	struct ceph_msg *msg = con->out_msg;
1501 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1502 	bool do_datacrc = !con->msgr->nocrc;
1503 	u32 crc;
1504 
1505 	dout("%s %p msg %p\n", __func__, con, msg);
1506 
1507 	if (list_empty(&msg->data))
1508 		return -EINVAL;
1509 
1510 	/*
1511 	 * Iterate through each page that contains data to be
1512 	 * written, and send as much as possible for each.
1513 	 *
1514 	 * If we are calculating the data crc (the default), we will
1515 	 * need to map the page.  If we have no pages, they have
1516 	 * been revoked, so use the zero page.
1517 	 */
1518 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1519 	while (cursor->resid) {
1520 		struct page *page;
1521 		size_t page_offset;
1522 		size_t length;
1523 		bool last_piece;
1524 		bool need_crc;
1525 		int ret;
1526 
1527 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1528 							&last_piece);
1529 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1530 				      length, last_piece);
1531 		if (ret <= 0) {
1532 			if (do_datacrc)
1533 				msg->footer.data_crc = cpu_to_le32(crc);
1534 
1535 			return ret;
1536 		}
1537 		if (do_datacrc && cursor->need_crc)
1538 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1539 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1540 	}
1541 
1542 	dout("%s %p msg %p done\n", __func__, con, msg);
1543 
1544 	/* prepare and queue up footer, too */
1545 	if (do_datacrc)
1546 		msg->footer.data_crc = cpu_to_le32(crc);
1547 	else
1548 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1549 	con_out_kvec_reset(con);
1550 	prepare_write_message_footer(con);
1551 
1552 	return 1;	/* must return > 0 to indicate success */
1553 }
1554 
1555 /*
1556  * write some zeros
1557  */
write_partial_skip(struct ceph_connection * con)1558 static int write_partial_skip(struct ceph_connection *con)
1559 {
1560 	int ret;
1561 
1562 	while (con->out_skip > 0) {
1563 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1564 
1565 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1566 		if (ret <= 0)
1567 			goto out;
1568 		con->out_skip -= ret;
1569 	}
1570 	ret = 1;
1571 out:
1572 	return ret;
1573 }
1574 
1575 /*
1576  * Prepare to read connection handshake, or an ack.
1577  */
prepare_read_banner(struct ceph_connection * con)1578 static void prepare_read_banner(struct ceph_connection *con)
1579 {
1580 	dout("prepare_read_banner %p\n", con);
1581 	con->in_base_pos = 0;
1582 }
1583 
prepare_read_connect(struct ceph_connection * con)1584 static void prepare_read_connect(struct ceph_connection *con)
1585 {
1586 	dout("prepare_read_connect %p\n", con);
1587 	con->in_base_pos = 0;
1588 }
1589 
prepare_read_ack(struct ceph_connection * con)1590 static void prepare_read_ack(struct ceph_connection *con)
1591 {
1592 	dout("prepare_read_ack %p\n", con);
1593 	con->in_base_pos = 0;
1594 }
1595 
prepare_read_seq(struct ceph_connection * con)1596 static void prepare_read_seq(struct ceph_connection *con)
1597 {
1598 	dout("prepare_read_seq %p\n", con);
1599 	con->in_base_pos = 0;
1600 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1601 }
1602 
prepare_read_tag(struct ceph_connection * con)1603 static void prepare_read_tag(struct ceph_connection *con)
1604 {
1605 	dout("prepare_read_tag %p\n", con);
1606 	con->in_base_pos = 0;
1607 	con->in_tag = CEPH_MSGR_TAG_READY;
1608 }
1609 
1610 /*
1611  * Prepare to read a message.
1612  */
prepare_read_message(struct ceph_connection * con)1613 static int prepare_read_message(struct ceph_connection *con)
1614 {
1615 	dout("prepare_read_message %p\n", con);
1616 	BUG_ON(con->in_msg != NULL);
1617 	con->in_base_pos = 0;
1618 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1619 	return 0;
1620 }
1621 
1622 
read_partial(struct ceph_connection * con,int end,int size,void * object)1623 static int read_partial(struct ceph_connection *con,
1624 			int end, int size, void *object)
1625 {
1626 	while (con->in_base_pos < end) {
1627 		int left = end - con->in_base_pos;
1628 		int have = size - left;
1629 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1630 		if (ret <= 0)
1631 			return ret;
1632 		con->in_base_pos += ret;
1633 	}
1634 	return 1;
1635 }
1636 
1637 
1638 /*
1639  * Read all or part of the connect-side handshake on a new connection
1640  */
read_partial_banner(struct ceph_connection * con)1641 static int read_partial_banner(struct ceph_connection *con)
1642 {
1643 	int size;
1644 	int end;
1645 	int ret;
1646 
1647 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1648 
1649 	/* peer's banner */
1650 	size = strlen(CEPH_BANNER);
1651 	end = size;
1652 	ret = read_partial(con, end, size, con->in_banner);
1653 	if (ret <= 0)
1654 		goto out;
1655 
1656 	size = sizeof (con->actual_peer_addr);
1657 	end += size;
1658 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1659 	if (ret <= 0)
1660 		goto out;
1661 
1662 	size = sizeof (con->peer_addr_for_me);
1663 	end += size;
1664 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1665 	if (ret <= 0)
1666 		goto out;
1667 
1668 out:
1669 	return ret;
1670 }
1671 
read_partial_connect(struct ceph_connection * con)1672 static int read_partial_connect(struct ceph_connection *con)
1673 {
1674 	int size;
1675 	int end;
1676 	int ret;
1677 
1678 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1679 
1680 	size = sizeof (con->in_reply);
1681 	end = size;
1682 	ret = read_partial(con, end, size, &con->in_reply);
1683 	if (ret <= 0)
1684 		goto out;
1685 
1686 	size = le32_to_cpu(con->in_reply.authorizer_len);
1687 	end += size;
1688 	ret = read_partial(con, end, size, con->auth_reply_buf);
1689 	if (ret <= 0)
1690 		goto out;
1691 
1692 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1693 	     con, (int)con->in_reply.tag,
1694 	     le32_to_cpu(con->in_reply.connect_seq),
1695 	     le32_to_cpu(con->in_reply.global_seq));
1696 out:
1697 	return ret;
1698 
1699 }
1700 
1701 /*
1702  * Verify the hello banner looks okay.
1703  */
verify_hello(struct ceph_connection * con)1704 static int verify_hello(struct ceph_connection *con)
1705 {
1706 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1707 		pr_err("connect to %s got bad banner\n",
1708 		       ceph_pr_addr(&con->peer_addr.in_addr));
1709 		con->error_msg = "protocol error, bad banner";
1710 		return -1;
1711 	}
1712 	return 0;
1713 }
1714 
addr_is_blank(struct sockaddr_storage * ss)1715 static bool addr_is_blank(struct sockaddr_storage *ss)
1716 {
1717 	switch (ss->ss_family) {
1718 	case AF_INET:
1719 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1720 	case AF_INET6:
1721 		return
1722 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1723 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1724 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1725 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1726 	}
1727 	return false;
1728 }
1729 
addr_port(struct sockaddr_storage * ss)1730 static int addr_port(struct sockaddr_storage *ss)
1731 {
1732 	switch (ss->ss_family) {
1733 	case AF_INET:
1734 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1735 	case AF_INET6:
1736 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1737 	}
1738 	return 0;
1739 }
1740 
addr_set_port(struct sockaddr_storage * ss,int p)1741 static void addr_set_port(struct sockaddr_storage *ss, int p)
1742 {
1743 	switch (ss->ss_family) {
1744 	case AF_INET:
1745 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1746 		break;
1747 	case AF_INET6:
1748 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1749 		break;
1750 	}
1751 }
1752 
1753 /*
1754  * Unlike other *_pton function semantics, zero indicates success.
1755  */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1756 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1757 		char delim, const char **ipend)
1758 {
1759 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1760 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1761 
1762 	memset(ss, 0, sizeof(*ss));
1763 
1764 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1765 		ss->ss_family = AF_INET;
1766 		return 0;
1767 	}
1768 
1769 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1770 		ss->ss_family = AF_INET6;
1771 		return 0;
1772 	}
1773 
1774 	return -EINVAL;
1775 }
1776 
1777 /*
1778  * Extract hostname string and resolve using kernel DNS facility.
1779  */
1780 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1781 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1782 		struct sockaddr_storage *ss, char delim, const char **ipend)
1783 {
1784 	const char *end, *delim_p;
1785 	char *colon_p, *ip_addr = NULL;
1786 	int ip_len, ret;
1787 
1788 	/*
1789 	 * The end of the hostname occurs immediately preceding the delimiter or
1790 	 * the port marker (':') where the delimiter takes precedence.
1791 	 */
1792 	delim_p = memchr(name, delim, namelen);
1793 	colon_p = memchr(name, ':', namelen);
1794 
1795 	if (delim_p && colon_p)
1796 		end = delim_p < colon_p ? delim_p : colon_p;
1797 	else if (!delim_p && colon_p)
1798 		end = colon_p;
1799 	else {
1800 		end = delim_p;
1801 		if (!end) /* case: hostname:/ */
1802 			end = name + namelen;
1803 	}
1804 
1805 	if (end <= name)
1806 		return -EINVAL;
1807 
1808 	/* do dns_resolve upcall */
1809 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1810 	if (ip_len > 0)
1811 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1812 	else
1813 		ret = -ESRCH;
1814 
1815 	kfree(ip_addr);
1816 
1817 	*ipend = end;
1818 
1819 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1820 			ret, ret ? "failed" : ceph_pr_addr(ss));
1821 
1822 	return ret;
1823 }
1824 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1825 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1826 		struct sockaddr_storage *ss, char delim, const char **ipend)
1827 {
1828 	return -EINVAL;
1829 }
1830 #endif
1831 
1832 /*
1833  * Parse a server name (IP or hostname). If a valid IP address is not found
1834  * then try to extract a hostname to resolve using userspace DNS upcall.
1835  */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1836 static int ceph_parse_server_name(const char *name, size_t namelen,
1837 			struct sockaddr_storage *ss, char delim, const char **ipend)
1838 {
1839 	int ret;
1840 
1841 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1842 	if (ret)
1843 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1844 
1845 	return ret;
1846 }
1847 
1848 /*
1849  * Parse an ip[:port] list into an addr array.  Use the default
1850  * monitor port if a port isn't specified.
1851  */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1852 int ceph_parse_ips(const char *c, const char *end,
1853 		   struct ceph_entity_addr *addr,
1854 		   int max_count, int *count)
1855 {
1856 	int i, ret = -EINVAL;
1857 	const char *p = c;
1858 
1859 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1860 	for (i = 0; i < max_count; i++) {
1861 		const char *ipend;
1862 		struct sockaddr_storage *ss = &addr[i].in_addr;
1863 		int port;
1864 		char delim = ',';
1865 
1866 		if (*p == '[') {
1867 			delim = ']';
1868 			p++;
1869 		}
1870 
1871 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1872 		if (ret)
1873 			goto bad;
1874 		ret = -EINVAL;
1875 
1876 		p = ipend;
1877 
1878 		if (delim == ']') {
1879 			if (*p != ']') {
1880 				dout("missing matching ']'\n");
1881 				goto bad;
1882 			}
1883 			p++;
1884 		}
1885 
1886 		/* port? */
1887 		if (p < end && *p == ':') {
1888 			port = 0;
1889 			p++;
1890 			while (p < end && *p >= '0' && *p <= '9') {
1891 				port = (port * 10) + (*p - '0');
1892 				p++;
1893 			}
1894 			if (port == 0)
1895 				port = CEPH_MON_PORT;
1896 			else if (port > 65535)
1897 				goto bad;
1898 		} else {
1899 			port = CEPH_MON_PORT;
1900 		}
1901 
1902 		addr_set_port(ss, port);
1903 
1904 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1905 
1906 		if (p == end)
1907 			break;
1908 		if (*p != ',')
1909 			goto bad;
1910 		p++;
1911 	}
1912 
1913 	if (p != end)
1914 		goto bad;
1915 
1916 	if (count)
1917 		*count = i + 1;
1918 	return 0;
1919 
1920 bad:
1921 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1922 	return ret;
1923 }
1924 EXPORT_SYMBOL(ceph_parse_ips);
1925 
process_banner(struct ceph_connection * con)1926 static int process_banner(struct ceph_connection *con)
1927 {
1928 	dout("process_banner on %p\n", con);
1929 
1930 	if (verify_hello(con) < 0)
1931 		return -1;
1932 
1933 	ceph_decode_addr(&con->actual_peer_addr);
1934 	ceph_decode_addr(&con->peer_addr_for_me);
1935 
1936 	/*
1937 	 * Make sure the other end is who we wanted.  note that the other
1938 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1939 	 * them the benefit of the doubt.
1940 	 */
1941 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1942 		   sizeof(con->peer_addr)) != 0 &&
1943 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1944 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1945 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1946 			ceph_pr_addr(&con->peer_addr.in_addr),
1947 			(int)le32_to_cpu(con->peer_addr.nonce),
1948 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1949 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1950 		con->error_msg = "wrong peer at address";
1951 		return -1;
1952 	}
1953 
1954 	/*
1955 	 * did we learn our address?
1956 	 */
1957 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1958 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1959 
1960 		memcpy(&con->msgr->inst.addr.in_addr,
1961 		       &con->peer_addr_for_me.in_addr,
1962 		       sizeof(con->peer_addr_for_me.in_addr));
1963 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1964 		encode_my_addr(con->msgr);
1965 		dout("process_banner learned my addr is %s\n",
1966 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1967 	}
1968 
1969 	return 0;
1970 }
1971 
process_connect(struct ceph_connection * con)1972 static int process_connect(struct ceph_connection *con)
1973 {
1974 	u64 sup_feat = con->msgr->supported_features;
1975 	u64 req_feat = con->msgr->required_features;
1976 	u64 server_feat = ceph_sanitize_features(
1977 				le64_to_cpu(con->in_reply.features));
1978 	int ret;
1979 
1980 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1981 
1982 	if (con->auth_reply_buf) {
1983 		/*
1984 		 * Any connection that defines ->get_authorizer()
1985 		 * should also define ->verify_authorizer_reply().
1986 		 * See get_connect_authorizer().
1987 		 */
1988 		ret = con->ops->verify_authorizer_reply(con, 0);
1989 		if (ret < 0) {
1990 			con->error_msg = "bad authorize reply";
1991 			return ret;
1992 		}
1993 	}
1994 
1995 	switch (con->in_reply.tag) {
1996 	case CEPH_MSGR_TAG_FEATURES:
1997 		pr_err("%s%lld %s feature set mismatch,"
1998 		       " my %llx < server's %llx, missing %llx\n",
1999 		       ENTITY_NAME(con->peer_name),
2000 		       ceph_pr_addr(&con->peer_addr.in_addr),
2001 		       sup_feat, server_feat, server_feat & ~sup_feat);
2002 		con->error_msg = "missing required protocol features";
2003 		reset_connection(con);
2004 		return -1;
2005 
2006 	case CEPH_MSGR_TAG_BADPROTOVER:
2007 		pr_err("%s%lld %s protocol version mismatch,"
2008 		       " my %d != server's %d\n",
2009 		       ENTITY_NAME(con->peer_name),
2010 		       ceph_pr_addr(&con->peer_addr.in_addr),
2011 		       le32_to_cpu(con->out_connect.protocol_version),
2012 		       le32_to_cpu(con->in_reply.protocol_version));
2013 		con->error_msg = "protocol version mismatch";
2014 		reset_connection(con);
2015 		return -1;
2016 
2017 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2018 		con->auth_retry++;
2019 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2020 		     con->auth_retry);
2021 		if (con->auth_retry == 2) {
2022 			con->error_msg = "connect authorization failure";
2023 			return -1;
2024 		}
2025 		con_out_kvec_reset(con);
2026 		ret = prepare_write_connect(con);
2027 		if (ret < 0)
2028 			return ret;
2029 		prepare_read_connect(con);
2030 		break;
2031 
2032 	case CEPH_MSGR_TAG_RESETSESSION:
2033 		/*
2034 		 * If we connected with a large connect_seq but the peer
2035 		 * has no record of a session with us (no connection, or
2036 		 * connect_seq == 0), they will send RESETSESION to indicate
2037 		 * that they must have reset their session, and may have
2038 		 * dropped messages.
2039 		 */
2040 		dout("process_connect got RESET peer seq %u\n",
2041 		     le32_to_cpu(con->in_reply.connect_seq));
2042 		pr_err("%s%lld %s connection reset\n",
2043 		       ENTITY_NAME(con->peer_name),
2044 		       ceph_pr_addr(&con->peer_addr.in_addr));
2045 		reset_connection(con);
2046 		con_out_kvec_reset(con);
2047 		ret = prepare_write_connect(con);
2048 		if (ret < 0)
2049 			return ret;
2050 		prepare_read_connect(con);
2051 
2052 		/* Tell ceph about it. */
2053 		mutex_unlock(&con->mutex);
2054 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2055 		if (con->ops->peer_reset)
2056 			con->ops->peer_reset(con);
2057 		mutex_lock(&con->mutex);
2058 		if (con->state != CON_STATE_NEGOTIATING)
2059 			return -EAGAIN;
2060 		break;
2061 
2062 	case CEPH_MSGR_TAG_RETRY_SESSION:
2063 		/*
2064 		 * If we sent a smaller connect_seq than the peer has, try
2065 		 * again with a larger value.
2066 		 */
2067 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2068 		     le32_to_cpu(con->out_connect.connect_seq),
2069 		     le32_to_cpu(con->in_reply.connect_seq));
2070 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2071 		con_out_kvec_reset(con);
2072 		ret = prepare_write_connect(con);
2073 		if (ret < 0)
2074 			return ret;
2075 		prepare_read_connect(con);
2076 		break;
2077 
2078 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2079 		/*
2080 		 * If we sent a smaller global_seq than the peer has, try
2081 		 * again with a larger value.
2082 		 */
2083 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2084 		     con->peer_global_seq,
2085 		     le32_to_cpu(con->in_reply.global_seq));
2086 		get_global_seq(con->msgr,
2087 			       le32_to_cpu(con->in_reply.global_seq));
2088 		con_out_kvec_reset(con);
2089 		ret = prepare_write_connect(con);
2090 		if (ret < 0)
2091 			return ret;
2092 		prepare_read_connect(con);
2093 		break;
2094 
2095 	case CEPH_MSGR_TAG_SEQ:
2096 	case CEPH_MSGR_TAG_READY:
2097 		if (req_feat & ~server_feat) {
2098 			pr_err("%s%lld %s protocol feature mismatch,"
2099 			       " my required %llx > server's %llx, need %llx\n",
2100 			       ENTITY_NAME(con->peer_name),
2101 			       ceph_pr_addr(&con->peer_addr.in_addr),
2102 			       req_feat, server_feat, req_feat & ~server_feat);
2103 			con->error_msg = "missing required protocol features";
2104 			reset_connection(con);
2105 			return -1;
2106 		}
2107 
2108 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2109 		con->state = CON_STATE_OPEN;
2110 		con->auth_retry = 0;    /* we authenticated; clear flag */
2111 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2112 		con->connect_seq++;
2113 		con->peer_features = server_feat;
2114 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2115 		     con->peer_global_seq,
2116 		     le32_to_cpu(con->in_reply.connect_seq),
2117 		     con->connect_seq);
2118 		WARN_ON(con->connect_seq !=
2119 			le32_to_cpu(con->in_reply.connect_seq));
2120 
2121 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2122 			con_flag_set(con, CON_FLAG_LOSSYTX);
2123 
2124 		con->delay = 0;      /* reset backoff memory */
2125 
2126 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2127 			prepare_write_seq(con);
2128 			prepare_read_seq(con);
2129 		} else {
2130 			prepare_read_tag(con);
2131 		}
2132 		break;
2133 
2134 	case CEPH_MSGR_TAG_WAIT:
2135 		/*
2136 		 * If there is a connection race (we are opening
2137 		 * connections to each other), one of us may just have
2138 		 * to WAIT.  This shouldn't happen if we are the
2139 		 * client.
2140 		 */
2141 		pr_err("process_connect got WAIT as client\n");
2142 		con->error_msg = "protocol error, got WAIT as client";
2143 		return -1;
2144 
2145 	default:
2146 		pr_err("connect protocol error, will retry\n");
2147 		con->error_msg = "protocol error, garbage tag during connect";
2148 		return -1;
2149 	}
2150 	return 0;
2151 }
2152 
2153 
2154 /*
2155  * read (part of) an ack
2156  */
read_partial_ack(struct ceph_connection * con)2157 static int read_partial_ack(struct ceph_connection *con)
2158 {
2159 	int size = sizeof (con->in_temp_ack);
2160 	int end = size;
2161 
2162 	return read_partial(con, end, size, &con->in_temp_ack);
2163 }
2164 
2165 /*
2166  * We can finally discard anything that's been acked.
2167  */
process_ack(struct ceph_connection * con)2168 static void process_ack(struct ceph_connection *con)
2169 {
2170 	struct ceph_msg *m;
2171 	u64 ack = le64_to_cpu(con->in_temp_ack);
2172 	u64 seq;
2173 
2174 	while (!list_empty(&con->out_sent)) {
2175 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2176 				     list_head);
2177 		seq = le64_to_cpu(m->hdr.seq);
2178 		if (seq > ack)
2179 			break;
2180 		dout("got ack for seq %llu type %d at %p\n", seq,
2181 		     le16_to_cpu(m->hdr.type), m);
2182 		m->ack_stamp = jiffies;
2183 		ceph_msg_remove(m);
2184 	}
2185 	prepare_read_tag(con);
2186 }
2187 
2188 
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)2189 static int read_partial_message_section(struct ceph_connection *con,
2190 					struct kvec *section,
2191 					unsigned int sec_len, u32 *crc)
2192 {
2193 	int ret, left;
2194 
2195 	BUG_ON(!section);
2196 
2197 	while (section->iov_len < sec_len) {
2198 		BUG_ON(section->iov_base == NULL);
2199 		left = sec_len - section->iov_len;
2200 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2201 				       section->iov_len, left);
2202 		if (ret <= 0)
2203 			return ret;
2204 		section->iov_len += ret;
2205 	}
2206 	if (section->iov_len == sec_len)
2207 		*crc = crc32c(0, section->iov_base, section->iov_len);
2208 
2209 	return 1;
2210 }
2211 
read_partial_msg_data(struct ceph_connection * con)2212 static int read_partial_msg_data(struct ceph_connection *con)
2213 {
2214 	struct ceph_msg *msg = con->in_msg;
2215 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2216 	const bool do_datacrc = !con->msgr->nocrc;
2217 	struct page *page;
2218 	size_t page_offset;
2219 	size_t length;
2220 	u32 crc = 0;
2221 	int ret;
2222 
2223 	BUG_ON(!msg);
2224 	if (list_empty(&msg->data))
2225 		return -EIO;
2226 
2227 	if (do_datacrc)
2228 		crc = con->in_data_crc;
2229 	while (cursor->resid) {
2230 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2231 							NULL);
2232 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2233 		if (ret <= 0) {
2234 			if (do_datacrc)
2235 				con->in_data_crc = crc;
2236 
2237 			return ret;
2238 		}
2239 
2240 		if (do_datacrc)
2241 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2242 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2243 	}
2244 	if (do_datacrc)
2245 		con->in_data_crc = crc;
2246 
2247 	return 1;	/* must return > 0 to indicate success */
2248 }
2249 
2250 /*
2251  * read (part of) a message.
2252  */
2253 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2254 
read_partial_message(struct ceph_connection * con)2255 static int read_partial_message(struct ceph_connection *con)
2256 {
2257 	struct ceph_msg *m = con->in_msg;
2258 	int size;
2259 	int end;
2260 	int ret;
2261 	unsigned int front_len, middle_len, data_len;
2262 	bool do_datacrc = !con->msgr->nocrc;
2263 	u64 seq;
2264 	u32 crc;
2265 
2266 	dout("read_partial_message con %p msg %p\n", con, m);
2267 
2268 	/* header */
2269 	size = sizeof (con->in_hdr);
2270 	end = size;
2271 	ret = read_partial(con, end, size, &con->in_hdr);
2272 	if (ret <= 0)
2273 		return ret;
2274 
2275 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2276 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2277 		pr_err("read_partial_message bad hdr "
2278 		       " crc %u != expected %u\n",
2279 		       crc, con->in_hdr.crc);
2280 		return -EBADMSG;
2281 	}
2282 
2283 	front_len = le32_to_cpu(con->in_hdr.front_len);
2284 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2285 		return -EIO;
2286 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2287 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2288 		return -EIO;
2289 	data_len = le32_to_cpu(con->in_hdr.data_len);
2290 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2291 		return -EIO;
2292 
2293 	/* verify seq# */
2294 	seq = le64_to_cpu(con->in_hdr.seq);
2295 	if ((s64)seq - (s64)con->in_seq < 1) {
2296 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2297 			ENTITY_NAME(con->peer_name),
2298 			ceph_pr_addr(&con->peer_addr.in_addr),
2299 			seq, con->in_seq + 1);
2300 		con->in_base_pos = -front_len - middle_len - data_len -
2301 			sizeof(m->footer);
2302 		con->in_tag = CEPH_MSGR_TAG_READY;
2303 		return 1;
2304 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2305 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2306 		       seq, con->in_seq + 1);
2307 		con->error_msg = "bad message sequence # for incoming message";
2308 		return -EBADMSG;
2309 	}
2310 
2311 	/* allocate message? */
2312 	if (!con->in_msg) {
2313 		int skip = 0;
2314 
2315 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2316 		     front_len, data_len);
2317 		ret = ceph_con_in_msg_alloc(con, &skip);
2318 		if (ret < 0)
2319 			return ret;
2320 
2321 		BUG_ON(!con->in_msg ^ skip);
2322 		if (con->in_msg && data_len > con->in_msg->data_length) {
2323 			pr_warn("%s skipping long message (%u > %zd)\n",
2324 				__func__, data_len, con->in_msg->data_length);
2325 			ceph_msg_put(con->in_msg);
2326 			con->in_msg = NULL;
2327 			skip = 1;
2328 		}
2329 		if (skip) {
2330 			/* skip this message */
2331 			dout("alloc_msg said skip message\n");
2332 			con->in_base_pos = -front_len - middle_len - data_len -
2333 				sizeof(m->footer);
2334 			con->in_tag = CEPH_MSGR_TAG_READY;
2335 			con->in_seq++;
2336 			return 1;
2337 		}
2338 
2339 		BUG_ON(!con->in_msg);
2340 		BUG_ON(con->in_msg->con != con);
2341 		m = con->in_msg;
2342 		m->front.iov_len = 0;    /* haven't read it yet */
2343 		if (m->middle)
2344 			m->middle->vec.iov_len = 0;
2345 
2346 		/* prepare for data payload, if any */
2347 
2348 		if (data_len)
2349 			prepare_message_data(con->in_msg, data_len);
2350 	}
2351 
2352 	/* front */
2353 	ret = read_partial_message_section(con, &m->front, front_len,
2354 					   &con->in_front_crc);
2355 	if (ret <= 0)
2356 		return ret;
2357 
2358 	/* middle */
2359 	if (m->middle) {
2360 		ret = read_partial_message_section(con, &m->middle->vec,
2361 						   middle_len,
2362 						   &con->in_middle_crc);
2363 		if (ret <= 0)
2364 			return ret;
2365 	}
2366 
2367 	/* (page) data */
2368 	if (data_len) {
2369 		ret = read_partial_msg_data(con);
2370 		if (ret <= 0)
2371 			return ret;
2372 	}
2373 
2374 	/* footer */
2375 	size = sizeof (m->footer);
2376 	end += size;
2377 	ret = read_partial(con, end, size, &m->footer);
2378 	if (ret <= 0)
2379 		return ret;
2380 
2381 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2382 	     m, front_len, m->footer.front_crc, middle_len,
2383 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2384 
2385 	/* crc ok? */
2386 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2387 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2388 		       m, con->in_front_crc, m->footer.front_crc);
2389 		return -EBADMSG;
2390 	}
2391 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2392 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2393 		       m, con->in_middle_crc, m->footer.middle_crc);
2394 		return -EBADMSG;
2395 	}
2396 	if (do_datacrc &&
2397 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2398 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2399 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2400 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2401 		return -EBADMSG;
2402 	}
2403 
2404 	return 1; /* done! */
2405 }
2406 
2407 /*
2408  * Process message.  This happens in the worker thread.  The callback should
2409  * be careful not to do anything that waits on other incoming messages or it
2410  * may deadlock.
2411  */
process_message(struct ceph_connection * con)2412 static void process_message(struct ceph_connection *con)
2413 {
2414 	struct ceph_msg *msg;
2415 
2416 	BUG_ON(con->in_msg->con != con);
2417 	con->in_msg->con = NULL;
2418 	msg = con->in_msg;
2419 	con->in_msg = NULL;
2420 	con->ops->put(con);
2421 
2422 	/* if first message, set peer_name */
2423 	if (con->peer_name.type == 0)
2424 		con->peer_name = msg->hdr.src;
2425 
2426 	con->in_seq++;
2427 	mutex_unlock(&con->mutex);
2428 
2429 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2430 	     msg, le64_to_cpu(msg->hdr.seq),
2431 	     ENTITY_NAME(msg->hdr.src),
2432 	     le16_to_cpu(msg->hdr.type),
2433 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2434 	     le32_to_cpu(msg->hdr.front_len),
2435 	     le32_to_cpu(msg->hdr.data_len),
2436 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2437 	con->ops->dispatch(con, msg);
2438 
2439 	mutex_lock(&con->mutex);
2440 }
2441 
2442 
2443 /*
2444  * Write something to the socket.  Called in a worker thread when the
2445  * socket appears to be writeable and we have something ready to send.
2446  */
try_write(struct ceph_connection * con)2447 static int try_write(struct ceph_connection *con)
2448 {
2449 	int ret = 1;
2450 
2451 	dout("try_write start %p state %lu\n", con, con->state);
2452 
2453 more:
2454 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2455 
2456 	/* open the socket first? */
2457 	if (con->state == CON_STATE_PREOPEN) {
2458 		BUG_ON(con->sock);
2459 		con->state = CON_STATE_CONNECTING;
2460 
2461 		con_out_kvec_reset(con);
2462 		prepare_write_banner(con);
2463 		prepare_read_banner(con);
2464 
2465 		BUG_ON(con->in_msg);
2466 		con->in_tag = CEPH_MSGR_TAG_READY;
2467 		dout("try_write initiating connect on %p new state %lu\n",
2468 		     con, con->state);
2469 		ret = ceph_tcp_connect(con);
2470 		if (ret < 0) {
2471 			con->error_msg = "connect error";
2472 			goto out;
2473 		}
2474 	}
2475 
2476 more_kvec:
2477 	/* kvec data queued? */
2478 	if (con->out_skip) {
2479 		ret = write_partial_skip(con);
2480 		if (ret <= 0)
2481 			goto out;
2482 	}
2483 	if (con->out_kvec_left) {
2484 		ret = write_partial_kvec(con);
2485 		if (ret <= 0)
2486 			goto out;
2487 	}
2488 
2489 	/* msg pages? */
2490 	if (con->out_msg) {
2491 		if (con->out_msg_done) {
2492 			ceph_msg_put(con->out_msg);
2493 			con->out_msg = NULL;   /* we're done with this one */
2494 			goto do_next;
2495 		}
2496 
2497 		ret = write_partial_message_data(con);
2498 		if (ret == 1)
2499 			goto more_kvec;  /* we need to send the footer, too! */
2500 		if (ret == 0)
2501 			goto out;
2502 		if (ret < 0) {
2503 			dout("try_write write_partial_message_data err %d\n",
2504 			     ret);
2505 			goto out;
2506 		}
2507 	}
2508 
2509 do_next:
2510 	if (con->state == CON_STATE_OPEN) {
2511 		/* is anything else pending? */
2512 		if (!list_empty(&con->out_queue)) {
2513 			prepare_write_message(con);
2514 			goto more;
2515 		}
2516 		if (con->in_seq > con->in_seq_acked) {
2517 			prepare_write_ack(con);
2518 			goto more;
2519 		}
2520 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2521 			prepare_write_keepalive(con);
2522 			goto more;
2523 		}
2524 	}
2525 
2526 	/* Nothing to do! */
2527 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2528 	dout("try_write nothing else to write.\n");
2529 	ret = 0;
2530 out:
2531 	dout("try_write done on %p ret %d\n", con, ret);
2532 	return ret;
2533 }
2534 
2535 
2536 
2537 /*
2538  * Read what we can from the socket.
2539  */
try_read(struct ceph_connection * con)2540 static int try_read(struct ceph_connection *con)
2541 {
2542 	int ret = -1;
2543 
2544 more:
2545 	dout("try_read start on %p state %lu\n", con, con->state);
2546 	if (con->state != CON_STATE_CONNECTING &&
2547 	    con->state != CON_STATE_NEGOTIATING &&
2548 	    con->state != CON_STATE_OPEN)
2549 		return 0;
2550 
2551 	BUG_ON(!con->sock);
2552 
2553 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2554 	     con->in_base_pos);
2555 
2556 	if (con->state == CON_STATE_CONNECTING) {
2557 		dout("try_read connecting\n");
2558 		ret = read_partial_banner(con);
2559 		if (ret <= 0)
2560 			goto out;
2561 		ret = process_banner(con);
2562 		if (ret < 0)
2563 			goto out;
2564 
2565 		con->state = CON_STATE_NEGOTIATING;
2566 
2567 		/*
2568 		 * Received banner is good, exchange connection info.
2569 		 * Do not reset out_kvec, as sending our banner raced
2570 		 * with receiving peer banner after connect completed.
2571 		 */
2572 		ret = prepare_write_connect(con);
2573 		if (ret < 0)
2574 			goto out;
2575 		prepare_read_connect(con);
2576 
2577 		/* Send connection info before awaiting response */
2578 		goto out;
2579 	}
2580 
2581 	if (con->state == CON_STATE_NEGOTIATING) {
2582 		dout("try_read negotiating\n");
2583 		ret = read_partial_connect(con);
2584 		if (ret <= 0)
2585 			goto out;
2586 		ret = process_connect(con);
2587 		if (ret < 0)
2588 			goto out;
2589 		goto more;
2590 	}
2591 
2592 	WARN_ON(con->state != CON_STATE_OPEN);
2593 
2594 	if (con->in_base_pos < 0) {
2595 		/*
2596 		 * skipping + discarding content.
2597 		 *
2598 		 * FIXME: there must be a better way to do this!
2599 		 */
2600 		static char buf[SKIP_BUF_SIZE];
2601 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2602 
2603 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2604 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2605 		if (ret <= 0)
2606 			goto out;
2607 		con->in_base_pos += ret;
2608 		if (con->in_base_pos)
2609 			goto more;
2610 	}
2611 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2612 		/*
2613 		 * what's next?
2614 		 */
2615 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2616 		if (ret <= 0)
2617 			goto out;
2618 		dout("try_read got tag %d\n", (int)con->in_tag);
2619 		switch (con->in_tag) {
2620 		case CEPH_MSGR_TAG_MSG:
2621 			prepare_read_message(con);
2622 			break;
2623 		case CEPH_MSGR_TAG_ACK:
2624 			prepare_read_ack(con);
2625 			break;
2626 		case CEPH_MSGR_TAG_CLOSE:
2627 			con_close_socket(con);
2628 			con->state = CON_STATE_CLOSED;
2629 			goto out;
2630 		default:
2631 			goto bad_tag;
2632 		}
2633 	}
2634 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2635 		ret = read_partial_message(con);
2636 		if (ret <= 0) {
2637 			switch (ret) {
2638 			case -EBADMSG:
2639 				con->error_msg = "bad crc";
2640 				ret = -EIO;
2641 				break;
2642 			case -EIO:
2643 				con->error_msg = "io error";
2644 				break;
2645 			}
2646 			goto out;
2647 		}
2648 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2649 			goto more;
2650 		process_message(con);
2651 		if (con->state == CON_STATE_OPEN)
2652 			prepare_read_tag(con);
2653 		goto more;
2654 	}
2655 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2656 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2657 		/*
2658 		 * the final handshake seq exchange is semantically
2659 		 * equivalent to an ACK
2660 		 */
2661 		ret = read_partial_ack(con);
2662 		if (ret <= 0)
2663 			goto out;
2664 		process_ack(con);
2665 		goto more;
2666 	}
2667 
2668 out:
2669 	dout("try_read done on %p ret %d\n", con, ret);
2670 	return ret;
2671 
2672 bad_tag:
2673 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2674 	con->error_msg = "protocol error, garbage tag";
2675 	ret = -1;
2676 	goto out;
2677 }
2678 
2679 
2680 /*
2681  * Atomically queue work on a connection after the specified delay.
2682  * Bump @con reference to avoid races with connection teardown.
2683  * Returns 0 if work was queued, or an error code otherwise.
2684  */
queue_con_delay(struct ceph_connection * con,unsigned long delay)2685 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2686 {
2687 	if (!con->ops->get(con)) {
2688 		dout("%s %p ref count 0\n", __func__, con);
2689 		return -ENOENT;
2690 	}
2691 
2692 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2693 		dout("%s %p - already queued\n", __func__, con);
2694 		con->ops->put(con);
2695 		return -EBUSY;
2696 	}
2697 
2698 	dout("%s %p %lu\n", __func__, con, delay);
2699 	return 0;
2700 }
2701 
queue_con(struct ceph_connection * con)2702 static void queue_con(struct ceph_connection *con)
2703 {
2704 	(void) queue_con_delay(con, 0);
2705 }
2706 
cancel_con(struct ceph_connection * con)2707 static void cancel_con(struct ceph_connection *con)
2708 {
2709 	if (cancel_delayed_work(&con->work)) {
2710 		dout("%s %p\n", __func__, con);
2711 		con->ops->put(con);
2712 	}
2713 }
2714 
con_sock_closed(struct ceph_connection * con)2715 static bool con_sock_closed(struct ceph_connection *con)
2716 {
2717 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2718 		return false;
2719 
2720 #define CASE(x)								\
2721 	case CON_STATE_ ## x:						\
2722 		con->error_msg = "socket closed (con state " #x ")";	\
2723 		break;
2724 
2725 	switch (con->state) {
2726 	CASE(CLOSED);
2727 	CASE(PREOPEN);
2728 	CASE(CONNECTING);
2729 	CASE(NEGOTIATING);
2730 	CASE(OPEN);
2731 	CASE(STANDBY);
2732 	default:
2733 		pr_warn("%s con %p unrecognized state %lu\n",
2734 			__func__, con, con->state);
2735 		con->error_msg = "unrecognized con state";
2736 		BUG();
2737 		break;
2738 	}
2739 #undef CASE
2740 
2741 	return true;
2742 }
2743 
con_backoff(struct ceph_connection * con)2744 static bool con_backoff(struct ceph_connection *con)
2745 {
2746 	int ret;
2747 
2748 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2749 		return false;
2750 
2751 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2752 	if (ret) {
2753 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2754 			con, con->delay);
2755 		BUG_ON(ret == -ENOENT);
2756 		con_flag_set(con, CON_FLAG_BACKOFF);
2757 	}
2758 
2759 	return true;
2760 }
2761 
2762 /* Finish fault handling; con->mutex must *not* be held here */
2763 
con_fault_finish(struct ceph_connection * con)2764 static void con_fault_finish(struct ceph_connection *con)
2765 {
2766 	/*
2767 	 * in case we faulted due to authentication, invalidate our
2768 	 * current tickets so that we can get new ones.
2769 	 */
2770 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2771 		dout("calling invalidate_authorizer()\n");
2772 		con->ops->invalidate_authorizer(con);
2773 	}
2774 
2775 	if (con->ops->fault)
2776 		con->ops->fault(con);
2777 }
2778 
2779 /*
2780  * Do some work on a connection.  Drop a connection ref when we're done.
2781  */
con_work(struct work_struct * work)2782 static void con_work(struct work_struct *work)
2783 {
2784 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2785 						   work.work);
2786 	bool fault;
2787 
2788 	mutex_lock(&con->mutex);
2789 	while (true) {
2790 		int ret;
2791 
2792 		if ((fault = con_sock_closed(con))) {
2793 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2794 			break;
2795 		}
2796 		if (con_backoff(con)) {
2797 			dout("%s: con %p BACKOFF\n", __func__, con);
2798 			break;
2799 		}
2800 		if (con->state == CON_STATE_STANDBY) {
2801 			dout("%s: con %p STANDBY\n", __func__, con);
2802 			break;
2803 		}
2804 		if (con->state == CON_STATE_CLOSED) {
2805 			dout("%s: con %p CLOSED\n", __func__, con);
2806 			BUG_ON(con->sock);
2807 			break;
2808 		}
2809 		if (con->state == CON_STATE_PREOPEN) {
2810 			dout("%s: con %p PREOPEN\n", __func__, con);
2811 			BUG_ON(con->sock);
2812 		}
2813 
2814 		ret = try_read(con);
2815 		if (ret < 0) {
2816 			if (ret == -EAGAIN)
2817 				continue;
2818 			con->error_msg = "socket error on read";
2819 			fault = true;
2820 			break;
2821 		}
2822 
2823 		ret = try_write(con);
2824 		if (ret < 0) {
2825 			if (ret == -EAGAIN)
2826 				continue;
2827 			con->error_msg = "socket error on write";
2828 			fault = true;
2829 		}
2830 
2831 		break;	/* If we make it to here, we're done */
2832 	}
2833 	if (fault)
2834 		con_fault(con);
2835 	mutex_unlock(&con->mutex);
2836 
2837 	if (fault)
2838 		con_fault_finish(con);
2839 
2840 	con->ops->put(con);
2841 }
2842 
2843 /*
2844  * Generic error/fault handler.  A retry mechanism is used with
2845  * exponential backoff
2846  */
con_fault(struct ceph_connection * con)2847 static void con_fault(struct ceph_connection *con)
2848 {
2849 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2850 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2851 	dout("fault %p state %lu to peer %s\n",
2852 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2853 
2854 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2855 	       con->state != CON_STATE_NEGOTIATING &&
2856 	       con->state != CON_STATE_OPEN);
2857 
2858 	con_close_socket(con);
2859 
2860 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2861 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2862 		con->state = CON_STATE_CLOSED;
2863 		return;
2864 	}
2865 
2866 	if (con->in_msg) {
2867 		BUG_ON(con->in_msg->con != con);
2868 		con->in_msg->con = NULL;
2869 		ceph_msg_put(con->in_msg);
2870 		con->in_msg = NULL;
2871 		con->ops->put(con);
2872 	}
2873 
2874 	/* Requeue anything that hasn't been acked */
2875 	list_splice_init(&con->out_sent, &con->out_queue);
2876 
2877 	/* If there are no messages queued or keepalive pending, place
2878 	 * the connection in a STANDBY state */
2879 	if (list_empty(&con->out_queue) &&
2880 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2881 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2882 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2883 		con->state = CON_STATE_STANDBY;
2884 	} else {
2885 		/* retry after a delay. */
2886 		con->state = CON_STATE_PREOPEN;
2887 		if (con->delay == 0)
2888 			con->delay = BASE_DELAY_INTERVAL;
2889 		else if (con->delay < MAX_DELAY_INTERVAL)
2890 			con->delay *= 2;
2891 		con_flag_set(con, CON_FLAG_BACKOFF);
2892 		queue_con(con);
2893 	}
2894 }
2895 
2896 
2897 
2898 /*
2899  * initialize a new messenger instance
2900  */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr,u64 supported_features,u64 required_features,bool nocrc)2901 void ceph_messenger_init(struct ceph_messenger *msgr,
2902 			struct ceph_entity_addr *myaddr,
2903 			u64 supported_features,
2904 			u64 required_features,
2905 			bool nocrc)
2906 {
2907 	msgr->supported_features = supported_features;
2908 	msgr->required_features = required_features;
2909 
2910 	spin_lock_init(&msgr->global_seq_lock);
2911 
2912 	if (myaddr)
2913 		msgr->inst.addr = *myaddr;
2914 
2915 	/* select a random nonce */
2916 	msgr->inst.addr.type = 0;
2917 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2918 	encode_my_addr(msgr);
2919 	msgr->nocrc = nocrc;
2920 
2921 	atomic_set(&msgr->stopping, 0);
2922 
2923 	dout("%s %p\n", __func__, msgr);
2924 }
2925 EXPORT_SYMBOL(ceph_messenger_init);
2926 
clear_standby(struct ceph_connection * con)2927 static void clear_standby(struct ceph_connection *con)
2928 {
2929 	/* come back from STANDBY? */
2930 	if (con->state == CON_STATE_STANDBY) {
2931 		dout("clear_standby %p and ++connect_seq\n", con);
2932 		con->state = CON_STATE_PREOPEN;
2933 		con->connect_seq++;
2934 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2935 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2936 	}
2937 }
2938 
2939 /*
2940  * Queue up an outgoing message on the given connection.
2941  */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)2942 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2943 {
2944 	/* set src+dst */
2945 	msg->hdr.src = con->msgr->inst.name;
2946 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2947 	msg->needs_out_seq = true;
2948 
2949 	mutex_lock(&con->mutex);
2950 
2951 	if (con->state == CON_STATE_CLOSED) {
2952 		dout("con_send %p closed, dropping %p\n", con, msg);
2953 		ceph_msg_put(msg);
2954 		mutex_unlock(&con->mutex);
2955 		return;
2956 	}
2957 
2958 	BUG_ON(msg->con != NULL);
2959 	msg->con = con->ops->get(con);
2960 	BUG_ON(msg->con == NULL);
2961 
2962 	BUG_ON(!list_empty(&msg->list_head));
2963 	list_add_tail(&msg->list_head, &con->out_queue);
2964 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2965 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2966 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2967 	     le32_to_cpu(msg->hdr.front_len),
2968 	     le32_to_cpu(msg->hdr.middle_len),
2969 	     le32_to_cpu(msg->hdr.data_len));
2970 
2971 	clear_standby(con);
2972 	mutex_unlock(&con->mutex);
2973 
2974 	/* if there wasn't anything waiting to send before, queue
2975 	 * new work */
2976 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2977 		queue_con(con);
2978 }
2979 EXPORT_SYMBOL(ceph_con_send);
2980 
2981 /*
2982  * Revoke a message that was previously queued for send
2983  */
ceph_msg_revoke(struct ceph_msg * msg)2984 void ceph_msg_revoke(struct ceph_msg *msg)
2985 {
2986 	struct ceph_connection *con = msg->con;
2987 
2988 	if (!con)
2989 		return;		/* Message not in our possession */
2990 
2991 	mutex_lock(&con->mutex);
2992 	if (!list_empty(&msg->list_head)) {
2993 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2994 		list_del_init(&msg->list_head);
2995 		BUG_ON(msg->con == NULL);
2996 		msg->con->ops->put(msg->con);
2997 		msg->con = NULL;
2998 		msg->hdr.seq = 0;
2999 
3000 		ceph_msg_put(msg);
3001 	}
3002 	if (con->out_msg == msg) {
3003 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
3004 		con->out_msg = NULL;
3005 		if (con->out_kvec_is_msg) {
3006 			con->out_skip = con->out_kvec_bytes;
3007 			con->out_kvec_is_msg = false;
3008 		}
3009 		msg->hdr.seq = 0;
3010 
3011 		ceph_msg_put(msg);
3012 	}
3013 	mutex_unlock(&con->mutex);
3014 }
3015 
3016 /*
3017  * Revoke a message that we may be reading data into
3018  */
ceph_msg_revoke_incoming(struct ceph_msg * msg)3019 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3020 {
3021 	struct ceph_connection *con;
3022 
3023 	BUG_ON(msg == NULL);
3024 	if (!msg->con) {
3025 		dout("%s msg %p null con\n", __func__, msg);
3026 
3027 		return;		/* Message not in our possession */
3028 	}
3029 
3030 	con = msg->con;
3031 	mutex_lock(&con->mutex);
3032 	if (con->in_msg == msg) {
3033 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3034 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3035 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3036 
3037 		/* skip rest of message */
3038 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3039 		con->in_base_pos = con->in_base_pos -
3040 				sizeof(struct ceph_msg_header) -
3041 				front_len -
3042 				middle_len -
3043 				data_len -
3044 				sizeof(struct ceph_msg_footer);
3045 		ceph_msg_put(con->in_msg);
3046 		con->in_msg = NULL;
3047 		con->in_tag = CEPH_MSGR_TAG_READY;
3048 		con->in_seq++;
3049 	} else {
3050 		dout("%s %p in_msg %p msg %p no-op\n",
3051 		     __func__, con, con->in_msg, msg);
3052 	}
3053 	mutex_unlock(&con->mutex);
3054 }
3055 
3056 /*
3057  * Queue a keepalive byte to ensure the tcp connection is alive.
3058  */
ceph_con_keepalive(struct ceph_connection * con)3059 void ceph_con_keepalive(struct ceph_connection *con)
3060 {
3061 	dout("con_keepalive %p\n", con);
3062 	mutex_lock(&con->mutex);
3063 	clear_standby(con);
3064 	mutex_unlock(&con->mutex);
3065 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3066 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3067 		queue_con(con);
3068 }
3069 EXPORT_SYMBOL(ceph_con_keepalive);
3070 
ceph_msg_data_create(enum ceph_msg_data_type type)3071 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3072 {
3073 	struct ceph_msg_data *data;
3074 
3075 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3076 		return NULL;
3077 
3078 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3079 	if (data)
3080 		data->type = type;
3081 	INIT_LIST_HEAD(&data->links);
3082 
3083 	return data;
3084 }
3085 
ceph_msg_data_destroy(struct ceph_msg_data * data)3086 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3087 {
3088 	if (!data)
3089 		return;
3090 
3091 	WARN_ON(!list_empty(&data->links));
3092 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3093 		ceph_pagelist_release(data->pagelist);
3094 	kmem_cache_free(ceph_msg_data_cache, data);
3095 }
3096 
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment)3097 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3098 		size_t length, size_t alignment)
3099 {
3100 	struct ceph_msg_data *data;
3101 
3102 	BUG_ON(!pages);
3103 	BUG_ON(!length);
3104 
3105 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3106 	BUG_ON(!data);
3107 	data->pages = pages;
3108 	data->length = length;
3109 	data->alignment = alignment & ~PAGE_MASK;
3110 
3111 	list_add_tail(&data->links, &msg->data);
3112 	msg->data_length += length;
3113 }
3114 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3115 
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)3116 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3117 				struct ceph_pagelist *pagelist)
3118 {
3119 	struct ceph_msg_data *data;
3120 
3121 	BUG_ON(!pagelist);
3122 	BUG_ON(!pagelist->length);
3123 
3124 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3125 	BUG_ON(!data);
3126 	data->pagelist = pagelist;
3127 
3128 	list_add_tail(&data->links, &msg->data);
3129 	msg->data_length += pagelist->length;
3130 }
3131 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3132 
3133 #ifdef	CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct bio * bio,size_t length)3134 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3135 		size_t length)
3136 {
3137 	struct ceph_msg_data *data;
3138 
3139 	BUG_ON(!bio);
3140 
3141 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3142 	BUG_ON(!data);
3143 	data->bio = bio;
3144 	data->bio_length = length;
3145 
3146 	list_add_tail(&data->links, &msg->data);
3147 	msg->data_length += length;
3148 }
3149 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3150 #endif	/* CONFIG_BLOCK */
3151 
3152 /*
3153  * construct a new message with given type, size
3154  * the new msg has a ref count of 1.
3155  */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)3156 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3157 			      bool can_fail)
3158 {
3159 	struct ceph_msg *m;
3160 
3161 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3162 	if (m == NULL)
3163 		goto out;
3164 
3165 	m->hdr.type = cpu_to_le16(type);
3166 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3167 	m->hdr.front_len = cpu_to_le32(front_len);
3168 
3169 	INIT_LIST_HEAD(&m->list_head);
3170 	kref_init(&m->kref);
3171 	INIT_LIST_HEAD(&m->data);
3172 
3173 	/* front */
3174 	if (front_len) {
3175 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3176 		if (m->front.iov_base == NULL) {
3177 			dout("ceph_msg_new can't allocate %d bytes\n",
3178 			     front_len);
3179 			goto out2;
3180 		}
3181 	} else {
3182 		m->front.iov_base = NULL;
3183 	}
3184 	m->front_alloc_len = m->front.iov_len = front_len;
3185 
3186 	dout("ceph_msg_new %p front %d\n", m, front_len);
3187 	return m;
3188 
3189 out2:
3190 	ceph_msg_put(m);
3191 out:
3192 	if (!can_fail) {
3193 		pr_err("msg_new can't create type %d front %d\n", type,
3194 		       front_len);
3195 		WARN_ON(1);
3196 	} else {
3197 		dout("msg_new can't create type %d front %d\n", type,
3198 		     front_len);
3199 	}
3200 	return NULL;
3201 }
3202 EXPORT_SYMBOL(ceph_msg_new);
3203 
3204 /*
3205  * Allocate "middle" portion of a message, if it is needed and wasn't
3206  * allocated by alloc_msg.  This allows us to read a small fixed-size
3207  * per-type header in the front and then gracefully fail (i.e.,
3208  * propagate the error to the caller based on info in the front) when
3209  * the middle is too large.
3210  */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)3211 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3212 {
3213 	int type = le16_to_cpu(msg->hdr.type);
3214 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3215 
3216 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3217 	     ceph_msg_type_name(type), middle_len);
3218 	BUG_ON(!middle_len);
3219 	BUG_ON(msg->middle);
3220 
3221 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3222 	if (!msg->middle)
3223 		return -ENOMEM;
3224 	return 0;
3225 }
3226 
3227 /*
3228  * Allocate a message for receiving an incoming message on a
3229  * connection, and save the result in con->in_msg.  Uses the
3230  * connection's private alloc_msg op if available.
3231  *
3232  * Returns 0 on success, or a negative error code.
3233  *
3234  * On success, if we set *skip = 1:
3235  *  - the next message should be skipped and ignored.
3236  *  - con->in_msg == NULL
3237  * or if we set *skip = 0:
3238  *  - con->in_msg is non-null.
3239  * On error (ENOMEM, EAGAIN, ...),
3240  *  - con->in_msg == NULL
3241  */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)3242 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3243 {
3244 	struct ceph_msg_header *hdr = &con->in_hdr;
3245 	int middle_len = le32_to_cpu(hdr->middle_len);
3246 	struct ceph_msg *msg;
3247 	int ret = 0;
3248 
3249 	BUG_ON(con->in_msg != NULL);
3250 	BUG_ON(!con->ops->alloc_msg);
3251 
3252 	mutex_unlock(&con->mutex);
3253 	msg = con->ops->alloc_msg(con, hdr, skip);
3254 	mutex_lock(&con->mutex);
3255 	if (con->state != CON_STATE_OPEN) {
3256 		if (msg)
3257 			ceph_msg_put(msg);
3258 		return -EAGAIN;
3259 	}
3260 	if (msg) {
3261 		BUG_ON(*skip);
3262 		con->in_msg = msg;
3263 		con->in_msg->con = con->ops->get(con);
3264 		BUG_ON(con->in_msg->con == NULL);
3265 	} else {
3266 		/*
3267 		 * Null message pointer means either we should skip
3268 		 * this message or we couldn't allocate memory.  The
3269 		 * former is not an error.
3270 		 */
3271 		if (*skip)
3272 			return 0;
3273 		con->error_msg = "error allocating memory for incoming message";
3274 
3275 		return -ENOMEM;
3276 	}
3277 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3278 
3279 	if (middle_len && !con->in_msg->middle) {
3280 		ret = ceph_alloc_middle(con, con->in_msg);
3281 		if (ret < 0) {
3282 			ceph_msg_put(con->in_msg);
3283 			con->in_msg = NULL;
3284 		}
3285 	}
3286 
3287 	return ret;
3288 }
3289 
3290 
3291 /*
3292  * Free a generically kmalloc'd message.
3293  */
ceph_msg_free(struct ceph_msg * m)3294 static void ceph_msg_free(struct ceph_msg *m)
3295 {
3296 	dout("%s %p\n", __func__, m);
3297 	ceph_kvfree(m->front.iov_base);
3298 	kmem_cache_free(ceph_msg_cache, m);
3299 }
3300 
ceph_msg_release(struct kref * kref)3301 static void ceph_msg_release(struct kref *kref)
3302 {
3303 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3304 	LIST_HEAD(data);
3305 	struct list_head *links;
3306 	struct list_head *next;
3307 
3308 	dout("%s %p\n", __func__, m);
3309 	WARN_ON(!list_empty(&m->list_head));
3310 
3311 	/* drop middle, data, if any */
3312 	if (m->middle) {
3313 		ceph_buffer_put(m->middle);
3314 		m->middle = NULL;
3315 	}
3316 
3317 	list_splice_init(&m->data, &data);
3318 	list_for_each_safe(links, next, &data) {
3319 		struct ceph_msg_data *data;
3320 
3321 		data = list_entry(links, struct ceph_msg_data, links);
3322 		list_del_init(links);
3323 		ceph_msg_data_destroy(data);
3324 	}
3325 	m->data_length = 0;
3326 
3327 	if (m->pool)
3328 		ceph_msgpool_put(m->pool, m);
3329 	else
3330 		ceph_msg_free(m);
3331 }
3332 
ceph_msg_get(struct ceph_msg * msg)3333 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3334 {
3335 	dout("%s %p (was %d)\n", __func__, msg,
3336 	     atomic_read(&msg->kref.refcount));
3337 	kref_get(&msg->kref);
3338 	return msg;
3339 }
3340 EXPORT_SYMBOL(ceph_msg_get);
3341 
ceph_msg_put(struct ceph_msg * msg)3342 void ceph_msg_put(struct ceph_msg *msg)
3343 {
3344 	dout("%s %p (was %d)\n", __func__, msg,
3345 	     atomic_read(&msg->kref.refcount));
3346 	kref_put(&msg->kref, ceph_msg_release);
3347 }
3348 EXPORT_SYMBOL(ceph_msg_put);
3349 
ceph_msg_dump(struct ceph_msg * msg)3350 void ceph_msg_dump(struct ceph_msg *msg)
3351 {
3352 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3353 		 msg->front_alloc_len, msg->data_length);
3354 	print_hex_dump(KERN_DEBUG, "header: ",
3355 		       DUMP_PREFIX_OFFSET, 16, 1,
3356 		       &msg->hdr, sizeof(msg->hdr), true);
3357 	print_hex_dump(KERN_DEBUG, " front: ",
3358 		       DUMP_PREFIX_OFFSET, 16, 1,
3359 		       msg->front.iov_base, msg->front.iov_len, true);
3360 	if (msg->middle)
3361 		print_hex_dump(KERN_DEBUG, "middle: ",
3362 			       DUMP_PREFIX_OFFSET, 16, 1,
3363 			       msg->middle->vec.iov_base,
3364 			       msg->middle->vec.iov_len, true);
3365 	print_hex_dump(KERN_DEBUG, "footer: ",
3366 		       DUMP_PREFIX_OFFSET, 16, 1,
3367 		       &msg->footer, sizeof(msg->footer), true);
3368 }
3369 EXPORT_SYMBOL(ceph_msg_dump);
3370