1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
con_flag_valid(unsigned long con_flag)105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
con_flag_clear(struct ceph_connection * con,unsigned long con_flag)119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
con_flag_set(struct ceph_connection * con,unsigned long con_flag)126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
con_flag_test(struct ceph_connection * con,unsigned long con_flag)133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180
181 /*
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
184 */
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192
193 static struct page *zero_page; /* used in certain error cases */
194
ceph_pr_addr(const struct sockaddr_storage * ss)195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
204
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
210
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
215
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
219 }
220
221 return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224
encode_my_addr(struct ceph_messenger * msgr)225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
229 }
230
231 /*
232 * work queue for all reading and writing to/from the socket.
233 */
234 static struct workqueue_struct *ceph_msgr_wq;
235
ceph_msgr_slab_init(void)236 static int ceph_msgr_slab_init(void)
237 {
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
242
243 if (!ceph_msg_cache)
244 return -ENOMEM;
245
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
250 0, NULL);
251 if (ceph_msg_data_cache)
252 return 0;
253
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
256
257 return -ENOMEM;
258 }
259
ceph_msgr_slab_exit(void)260 static void ceph_msgr_slab_exit(void)
261 {
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
265
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
269 }
270
_ceph_msgr_exit(void)271 static void _ceph_msgr_exit(void)
272 {
273 if (ceph_msgr_wq) {
274 destroy_workqueue(ceph_msgr_wq);
275 ceph_msgr_wq = NULL;
276 }
277
278 ceph_msgr_slab_exit();
279
280 BUG_ON(zero_page == NULL);
281 kunmap(zero_page);
282 page_cache_release(zero_page);
283 zero_page = NULL;
284 }
285
ceph_msgr_init(void)286 int ceph_msgr_init(void)
287 {
288 BUG_ON(zero_page != NULL);
289 zero_page = ZERO_PAGE(0);
290 page_cache_get(zero_page);
291
292 if (ceph_msgr_slab_init())
293 return -ENOMEM;
294
295 /*
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
298 */
299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 if (ceph_msgr_wq)
301 return 0;
302
303 pr_err("msgr_init failed to create workqueue\n");
304 _ceph_msgr_exit();
305
306 return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309
ceph_msgr_exit(void)310 void ceph_msgr_exit(void)
311 {
312 BUG_ON(ceph_msgr_wq == NULL);
313
314 _ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317
ceph_msgr_flush(void)318 void ceph_msgr_flush(void)
319 {
320 flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323
324 /* Connection socket state transition functions */
325
con_sock_state_init(struct ceph_connection * con)326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 printk("%s: unexpected old state %d\n", __func__, old_state);
333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 CON_SOCK_STATE_CLOSED);
335 }
336
con_sock_state_connecting(struct ceph_connection * con)337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 int old_state;
340
341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CONNECTING);
346 }
347
con_sock_state_connected(struct ceph_connection * con)348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 int old_state;
351
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CONNECTED);
357 }
358
con_sock_state_closing(struct ceph_connection * con)359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 int old_state;
362
363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 old_state != CON_SOCK_STATE_CONNECTED &&
366 old_state != CON_SOCK_STATE_CLOSING))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSING);
370 }
371
con_sock_state_closed(struct ceph_connection * con)372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 int old_state;
375
376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 old_state != CON_SOCK_STATE_CLOSING &&
379 old_state != CON_SOCK_STATE_CONNECTING &&
380 old_state != CON_SOCK_STATE_CLOSED))
381 printk("%s: unexpected old state %d\n", __func__, old_state);
382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 CON_SOCK_STATE_CLOSED);
384 }
385
386 /*
387 * socket callback functions
388 */
389
390 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 struct ceph_connection *con = sk->sk_user_data;
394 if (atomic_read(&con->msgr->stopping)) {
395 return;
396 }
397
398 if (sk->sk_state != TCP_CLOSE_WAIT) {
399 dout("%s on %p state = %lu, queueing work\n", __func__,
400 con, con->state);
401 queue_con(con);
402 }
403 }
404
405 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 struct ceph_connection *con = sk->sk_user_data;
409
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
416 */
417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 if (sk_stream_is_writeable(sk)) {
419 dout("%s %p queueing write work\n", __func__, con);
420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 queue_con(con);
422 }
423 } else {
424 dout("%s %p nothing to write\n", __func__, con);
425 }
426 }
427
428 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 struct ceph_connection *con = sk->sk_user_data;
432
433 dout("%s %p state = %lu sk_state = %u\n", __func__,
434 con, con->state, sk->sk_state);
435
436 switch (sk->sk_state) {
437 case TCP_CLOSE:
438 dout("%s TCP_CLOSE\n", __func__);
439 case TCP_CLOSE_WAIT:
440 dout("%s TCP_CLOSE_WAIT\n", __func__);
441 con_sock_state_closing(con);
442 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 queue_con(con);
444 break;
445 case TCP_ESTABLISHED:
446 dout("%s TCP_ESTABLISHED\n", __func__);
447 con_sock_state_connected(con);
448 queue_con(con);
449 break;
450 default: /* Everything else is uninteresting */
451 break;
452 }
453 }
454
455 /*
456 * set up socket callbacks
457 */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)458 static void set_sock_callbacks(struct socket *sock,
459 struct ceph_connection *con)
460 {
461 struct sock *sk = sock->sk;
462 sk->sk_user_data = con;
463 sk->sk_data_ready = ceph_sock_data_ready;
464 sk->sk_write_space = ceph_sock_write_space;
465 sk->sk_state_change = ceph_sock_state_change;
466 }
467
468
469 /*
470 * socket helpers
471 */
472
473 /*
474 * initiate connection to a remote socket.
475 */
ceph_tcp_connect(struct ceph_connection * con)476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 struct socket *sock;
480 int ret;
481
482 BUG_ON(con->sock);
483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 IPPROTO_TCP, &sock);
485 if (ret)
486 return ret;
487 sock->sk->sk_allocation = GFP_NOFS;
488
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492
493 set_sock_callbacks(sock, con);
494
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 O_NONBLOCK);
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
503 sock->sk->sk_state);
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 sock_release(sock);
508 con->error_msg = "connect error";
509
510 return ret;
511 }
512
513 con->sock = sock;
514 return 0;
515 }
516
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 struct kvec iov = {buf, len};
520 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 int r;
522
523 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
524 if (r == -EAGAIN)
525 r = 0;
526 return r;
527 }
528
ceph_tcp_recvpage(struct socket * sock,struct page * page,int page_offset,size_t length)529 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
530 int page_offset, size_t length)
531 {
532 void *kaddr;
533 int ret;
534
535 BUG_ON(page_offset + length > PAGE_SIZE);
536
537 kaddr = kmap(page);
538 BUG_ON(!kaddr);
539 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
540 kunmap(page);
541
542 return ret;
543 }
544
545 /*
546 * write something. @more is true if caller will be sending more data
547 * shortly.
548 */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550 size_t kvlen, size_t len, int more)
551 {
552 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553 int r;
554
555 if (more)
556 msg.msg_flags |= MSG_MORE;
557 else
558 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
559
560 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561 if (r == -EAGAIN)
562 r = 0;
563 return r;
564 }
565
__ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)566 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 int offset, size_t size, bool more)
568 {
569 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
570 int ret;
571
572 ret = kernel_sendpage(sock, page, offset, size, flags);
573 if (ret == -EAGAIN)
574 ret = 0;
575
576 return ret;
577 }
578
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)579 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
580 int offset, size_t size, bool more)
581 {
582 int ret;
583 struct kvec iov;
584
585 /* sendpage cannot properly handle pages with page_count == 0,
586 * we need to fallback to sendmsg if that's the case */
587 if (page_count(page) >= 1)
588 return __ceph_tcp_sendpage(sock, page, offset, size, more);
589
590 iov.iov_base = kmap(page) + offset;
591 iov.iov_len = size;
592 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
593 kunmap(page);
594
595 return ret;
596 }
597
598 /*
599 * Shutdown/close the socket for the given connection.
600 */
con_close_socket(struct ceph_connection * con)601 static int con_close_socket(struct ceph_connection *con)
602 {
603 int rc = 0;
604
605 dout("con_close_socket on %p sock %p\n", con, con->sock);
606 if (con->sock) {
607 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
608 sock_release(con->sock);
609 con->sock = NULL;
610 }
611
612 /*
613 * Forcibly clear the SOCK_CLOSED flag. It gets set
614 * independent of the connection mutex, and we could have
615 * received a socket close event before we had the chance to
616 * shut the socket down.
617 */
618 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
619
620 con_sock_state_closed(con);
621 return rc;
622 }
623
624 /*
625 * Reset a connection. Discard all incoming and outgoing messages
626 * and clear *_seq state.
627 */
ceph_msg_remove(struct ceph_msg * msg)628 static void ceph_msg_remove(struct ceph_msg *msg)
629 {
630 list_del_init(&msg->list_head);
631 BUG_ON(msg->con == NULL);
632 msg->con->ops->put(msg->con);
633 msg->con = NULL;
634
635 ceph_msg_put(msg);
636 }
ceph_msg_remove_list(struct list_head * head)637 static void ceph_msg_remove_list(struct list_head *head)
638 {
639 while (!list_empty(head)) {
640 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
641 list_head);
642 ceph_msg_remove(msg);
643 }
644 }
645
reset_connection(struct ceph_connection * con)646 static void reset_connection(struct ceph_connection *con)
647 {
648 /* reset connection, out_queue, msg_ and connect_seq */
649 /* discard existing out_queue and msg_seq */
650 dout("reset_connection %p\n", con);
651 ceph_msg_remove_list(&con->out_queue);
652 ceph_msg_remove_list(&con->out_sent);
653
654 if (con->in_msg) {
655 BUG_ON(con->in_msg->con != con);
656 con->in_msg->con = NULL;
657 ceph_msg_put(con->in_msg);
658 con->in_msg = NULL;
659 con->ops->put(con);
660 }
661
662 con->connect_seq = 0;
663 con->out_seq = 0;
664 if (con->out_msg) {
665 ceph_msg_put(con->out_msg);
666 con->out_msg = NULL;
667 }
668 con->in_seq = 0;
669 con->in_seq_acked = 0;
670 }
671
672 /*
673 * mark a peer down. drop any open connections.
674 */
ceph_con_close(struct ceph_connection * con)675 void ceph_con_close(struct ceph_connection *con)
676 {
677 mutex_lock(&con->mutex);
678 dout("con_close %p peer %s\n", con,
679 ceph_pr_addr(&con->peer_addr.in_addr));
680 con->state = CON_STATE_CLOSED;
681
682 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
683 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
684 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
685 con_flag_clear(con, CON_FLAG_BACKOFF);
686
687 reset_connection(con);
688 con->peer_global_seq = 0;
689 cancel_con(con);
690 con_close_socket(con);
691 mutex_unlock(&con->mutex);
692 }
693 EXPORT_SYMBOL(ceph_con_close);
694
695 /*
696 * Reopen a closed connection, with a new peer address.
697 */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)698 void ceph_con_open(struct ceph_connection *con,
699 __u8 entity_type, __u64 entity_num,
700 struct ceph_entity_addr *addr)
701 {
702 mutex_lock(&con->mutex);
703 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
704
705 WARN_ON(con->state != CON_STATE_CLOSED);
706 con->state = CON_STATE_PREOPEN;
707
708 con->peer_name.type = (__u8) entity_type;
709 con->peer_name.num = cpu_to_le64(entity_num);
710
711 memcpy(&con->peer_addr, addr, sizeof(*addr));
712 con->delay = 0; /* reset backoff memory */
713 mutex_unlock(&con->mutex);
714 queue_con(con);
715 }
716 EXPORT_SYMBOL(ceph_con_open);
717
718 /*
719 * return true if this connection ever successfully opened
720 */
ceph_con_opened(struct ceph_connection * con)721 bool ceph_con_opened(struct ceph_connection *con)
722 {
723 return con->connect_seq > 0;
724 }
725
726 /*
727 * initialize a new connection.
728 */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)729 void ceph_con_init(struct ceph_connection *con, void *private,
730 const struct ceph_connection_operations *ops,
731 struct ceph_messenger *msgr)
732 {
733 dout("con_init %p\n", con);
734 memset(con, 0, sizeof(*con));
735 con->private = private;
736 con->ops = ops;
737 con->msgr = msgr;
738
739 con_sock_state_init(con);
740
741 mutex_init(&con->mutex);
742 INIT_LIST_HEAD(&con->out_queue);
743 INIT_LIST_HEAD(&con->out_sent);
744 INIT_DELAYED_WORK(&con->work, con_work);
745
746 con->state = CON_STATE_CLOSED;
747 }
748 EXPORT_SYMBOL(ceph_con_init);
749
750
751 /*
752 * We maintain a global counter to order connection attempts. Get
753 * a unique seq greater than @gt.
754 */
get_global_seq(struct ceph_messenger * msgr,u32 gt)755 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
756 {
757 u32 ret;
758
759 spin_lock(&msgr->global_seq_lock);
760 if (msgr->global_seq < gt)
761 msgr->global_seq = gt;
762 ret = ++msgr->global_seq;
763 spin_unlock(&msgr->global_seq_lock);
764 return ret;
765 }
766
con_out_kvec_reset(struct ceph_connection * con)767 static void con_out_kvec_reset(struct ceph_connection *con)
768 {
769 con->out_kvec_left = 0;
770 con->out_kvec_bytes = 0;
771 con->out_kvec_cur = &con->out_kvec[0];
772 }
773
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)774 static void con_out_kvec_add(struct ceph_connection *con,
775 size_t size, void *data)
776 {
777 int index;
778
779 index = con->out_kvec_left;
780 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
781
782 con->out_kvec[index].iov_len = size;
783 con->out_kvec[index].iov_base = data;
784 con->out_kvec_left++;
785 con->out_kvec_bytes += size;
786 }
787
788 #ifdef CONFIG_BLOCK
789
790 /*
791 * For a bio data item, a piece is whatever remains of the next
792 * entry in the current bio iovec, or the first entry in the next
793 * bio in the list.
794 */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)795 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
796 size_t length)
797 {
798 struct ceph_msg_data *data = cursor->data;
799 struct bio *bio;
800
801 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
802
803 bio = data->bio;
804 BUG_ON(!bio);
805
806 cursor->resid = min(length, data->bio_length);
807 cursor->bio = bio;
808 cursor->bvec_iter = bio->bi_iter;
809 cursor->last_piece =
810 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
811 }
812
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)813 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
814 size_t *page_offset,
815 size_t *length)
816 {
817 struct ceph_msg_data *data = cursor->data;
818 struct bio *bio;
819 struct bio_vec bio_vec;
820
821 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
822
823 bio = cursor->bio;
824 BUG_ON(!bio);
825
826 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
827
828 *page_offset = (size_t) bio_vec.bv_offset;
829 BUG_ON(*page_offset >= PAGE_SIZE);
830 if (cursor->last_piece) /* pagelist offset is always 0 */
831 *length = cursor->resid;
832 else
833 *length = (size_t) bio_vec.bv_len;
834 BUG_ON(*length > cursor->resid);
835 BUG_ON(*page_offset + *length > PAGE_SIZE);
836
837 return bio_vec.bv_page;
838 }
839
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)840 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
841 size_t bytes)
842 {
843 struct bio *bio;
844 struct bio_vec bio_vec;
845
846 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
847
848 bio = cursor->bio;
849 BUG_ON(!bio);
850
851 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
852
853 /* Advance the cursor offset */
854
855 BUG_ON(cursor->resid < bytes);
856 cursor->resid -= bytes;
857
858 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
859
860 if (bytes < bio_vec.bv_len)
861 return false; /* more bytes to process in this segment */
862
863 /* Move on to the next segment, and possibly the next bio */
864
865 if (!cursor->bvec_iter.bi_size) {
866 bio = bio->bi_next;
867 cursor->bio = bio;
868 if (bio)
869 cursor->bvec_iter = bio->bi_iter;
870 else
871 memset(&cursor->bvec_iter, 0,
872 sizeof(cursor->bvec_iter));
873 }
874
875 if (!cursor->last_piece) {
876 BUG_ON(!cursor->resid);
877 BUG_ON(!bio);
878 /* A short read is OK, so use <= rather than == */
879 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
880 cursor->last_piece = true;
881 }
882
883 return true;
884 }
885 #endif /* CONFIG_BLOCK */
886
887 /*
888 * For a page array, a piece comes from the first page in the array
889 * that has not already been fully consumed.
890 */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)891 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
892 size_t length)
893 {
894 struct ceph_msg_data *data = cursor->data;
895 int page_count;
896
897 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
898
899 BUG_ON(!data->pages);
900 BUG_ON(!data->length);
901
902 cursor->resid = min(length, data->length);
903 page_count = calc_pages_for(data->alignment, (u64)data->length);
904 cursor->page_offset = data->alignment & ~PAGE_MASK;
905 cursor->page_index = 0;
906 BUG_ON(page_count > (int)USHRT_MAX);
907 cursor->page_count = (unsigned short)page_count;
908 BUG_ON(length > SIZE_MAX - cursor->page_offset);
909 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
910 }
911
912 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)913 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
914 size_t *page_offset, size_t *length)
915 {
916 struct ceph_msg_data *data = cursor->data;
917
918 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
919
920 BUG_ON(cursor->page_index >= cursor->page_count);
921 BUG_ON(cursor->page_offset >= PAGE_SIZE);
922
923 *page_offset = cursor->page_offset;
924 if (cursor->last_piece)
925 *length = cursor->resid;
926 else
927 *length = PAGE_SIZE - *page_offset;
928
929 return data->pages[cursor->page_index];
930 }
931
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)932 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
933 size_t bytes)
934 {
935 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
936
937 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
938
939 /* Advance the cursor page offset */
940
941 cursor->resid -= bytes;
942 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
943 if (!bytes || cursor->page_offset)
944 return false; /* more bytes to process in the current page */
945
946 if (!cursor->resid)
947 return false; /* no more data */
948
949 /* Move on to the next page; offset is already at 0 */
950
951 BUG_ON(cursor->page_index >= cursor->page_count);
952 cursor->page_index++;
953 cursor->last_piece = cursor->resid <= PAGE_SIZE;
954
955 return true;
956 }
957
958 /*
959 * For a pagelist, a piece is whatever remains to be consumed in the
960 * first page in the list, or the front of the next page.
961 */
962 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)963 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
964 size_t length)
965 {
966 struct ceph_msg_data *data = cursor->data;
967 struct ceph_pagelist *pagelist;
968 struct page *page;
969
970 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
971
972 pagelist = data->pagelist;
973 BUG_ON(!pagelist);
974
975 if (!length)
976 return; /* pagelist can be assigned but empty */
977
978 BUG_ON(list_empty(&pagelist->head));
979 page = list_first_entry(&pagelist->head, struct page, lru);
980
981 cursor->resid = min(length, pagelist->length);
982 cursor->page = page;
983 cursor->offset = 0;
984 cursor->last_piece = cursor->resid <= PAGE_SIZE;
985 }
986
987 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)988 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
989 size_t *page_offset, size_t *length)
990 {
991 struct ceph_msg_data *data = cursor->data;
992 struct ceph_pagelist *pagelist;
993
994 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
995
996 pagelist = data->pagelist;
997 BUG_ON(!pagelist);
998
999 BUG_ON(!cursor->page);
1000 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1001
1002 /* offset of first page in pagelist is always 0 */
1003 *page_offset = cursor->offset & ~PAGE_MASK;
1004 if (cursor->last_piece)
1005 *length = cursor->resid;
1006 else
1007 *length = PAGE_SIZE - *page_offset;
1008
1009 return cursor->page;
1010 }
1011
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1012 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1013 size_t bytes)
1014 {
1015 struct ceph_msg_data *data = cursor->data;
1016 struct ceph_pagelist *pagelist;
1017
1018 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1019
1020 pagelist = data->pagelist;
1021 BUG_ON(!pagelist);
1022
1023 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1024 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1025
1026 /* Advance the cursor offset */
1027
1028 cursor->resid -= bytes;
1029 cursor->offset += bytes;
1030 /* offset of first page in pagelist is always 0 */
1031 if (!bytes || cursor->offset & ~PAGE_MASK)
1032 return false; /* more bytes to process in the current page */
1033
1034 if (!cursor->resid)
1035 return false; /* no more data */
1036
1037 /* Move on to the next page */
1038
1039 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1040 cursor->page = list_entry_next(cursor->page, lru);
1041 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1042
1043 return true;
1044 }
1045
1046 /*
1047 * Message data is handled (sent or received) in pieces, where each
1048 * piece resides on a single page. The network layer might not
1049 * consume an entire piece at once. A data item's cursor keeps
1050 * track of which piece is next to process and how much remains to
1051 * be processed in that piece. It also tracks whether the current
1052 * piece is the last one in the data item.
1053 */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)1054 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1055 {
1056 size_t length = cursor->total_resid;
1057
1058 switch (cursor->data->type) {
1059 case CEPH_MSG_DATA_PAGELIST:
1060 ceph_msg_data_pagelist_cursor_init(cursor, length);
1061 break;
1062 case CEPH_MSG_DATA_PAGES:
1063 ceph_msg_data_pages_cursor_init(cursor, length);
1064 break;
1065 #ifdef CONFIG_BLOCK
1066 case CEPH_MSG_DATA_BIO:
1067 ceph_msg_data_bio_cursor_init(cursor, length);
1068 break;
1069 #endif /* CONFIG_BLOCK */
1070 case CEPH_MSG_DATA_NONE:
1071 default:
1072 /* BUG(); */
1073 break;
1074 }
1075 cursor->need_crc = true;
1076 }
1077
ceph_msg_data_cursor_init(struct ceph_msg * msg,size_t length)1078 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1079 {
1080 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1081 struct ceph_msg_data *data;
1082
1083 BUG_ON(!length);
1084 BUG_ON(length > msg->data_length);
1085 BUG_ON(list_empty(&msg->data));
1086
1087 cursor->data_head = &msg->data;
1088 cursor->total_resid = length;
1089 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1090 cursor->data = data;
1091
1092 __ceph_msg_data_cursor_init(cursor);
1093 }
1094
1095 /*
1096 * Return the page containing the next piece to process for a given
1097 * data item, and supply the page offset and length of that piece.
1098 * Indicate whether this is the last piece in this data item.
1099 */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length,bool * last_piece)1100 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1101 size_t *page_offset, size_t *length,
1102 bool *last_piece)
1103 {
1104 struct page *page;
1105
1106 switch (cursor->data->type) {
1107 case CEPH_MSG_DATA_PAGELIST:
1108 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1109 break;
1110 case CEPH_MSG_DATA_PAGES:
1111 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1112 break;
1113 #ifdef CONFIG_BLOCK
1114 case CEPH_MSG_DATA_BIO:
1115 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1116 break;
1117 #endif /* CONFIG_BLOCK */
1118 case CEPH_MSG_DATA_NONE:
1119 default:
1120 page = NULL;
1121 break;
1122 }
1123 BUG_ON(!page);
1124 BUG_ON(*page_offset + *length > PAGE_SIZE);
1125 BUG_ON(!*length);
1126 if (last_piece)
1127 *last_piece = cursor->last_piece;
1128
1129 return page;
1130 }
1131
1132 /*
1133 * Returns true if the result moves the cursor on to the next piece
1134 * of the data item.
1135 */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1136 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1137 size_t bytes)
1138 {
1139 bool new_piece;
1140
1141 BUG_ON(bytes > cursor->resid);
1142 switch (cursor->data->type) {
1143 case CEPH_MSG_DATA_PAGELIST:
1144 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1145 break;
1146 case CEPH_MSG_DATA_PAGES:
1147 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1148 break;
1149 #ifdef CONFIG_BLOCK
1150 case CEPH_MSG_DATA_BIO:
1151 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1152 break;
1153 #endif /* CONFIG_BLOCK */
1154 case CEPH_MSG_DATA_NONE:
1155 default:
1156 BUG();
1157 break;
1158 }
1159 cursor->total_resid -= bytes;
1160
1161 if (!cursor->resid && cursor->total_resid) {
1162 WARN_ON(!cursor->last_piece);
1163 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1164 cursor->data = list_entry_next(cursor->data, links);
1165 __ceph_msg_data_cursor_init(cursor);
1166 new_piece = true;
1167 }
1168 cursor->need_crc = new_piece;
1169
1170 return new_piece;
1171 }
1172
prepare_message_data(struct ceph_msg * msg,u32 data_len)1173 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1174 {
1175 BUG_ON(!msg);
1176 BUG_ON(!data_len);
1177
1178 /* Initialize data cursor */
1179
1180 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1181 }
1182
1183 /*
1184 * Prepare footer for currently outgoing message, and finish things
1185 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1186 */
prepare_write_message_footer(struct ceph_connection * con)1187 static void prepare_write_message_footer(struct ceph_connection *con)
1188 {
1189 struct ceph_msg *m = con->out_msg;
1190 int v = con->out_kvec_left;
1191
1192 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1193
1194 dout("prepare_write_message_footer %p\n", con);
1195 con->out_kvec_is_msg = true;
1196 con->out_kvec[v].iov_base = &m->footer;
1197 con->out_kvec[v].iov_len = sizeof(m->footer);
1198 con->out_kvec_bytes += sizeof(m->footer);
1199 con->out_kvec_left++;
1200 con->out_more = m->more_to_follow;
1201 con->out_msg_done = true;
1202 }
1203
1204 /*
1205 * Prepare headers for the next outgoing message.
1206 */
prepare_write_message(struct ceph_connection * con)1207 static void prepare_write_message(struct ceph_connection *con)
1208 {
1209 struct ceph_msg *m;
1210 u32 crc;
1211
1212 con_out_kvec_reset(con);
1213 con->out_kvec_is_msg = true;
1214 con->out_msg_done = false;
1215
1216 /* Sneak an ack in there first? If we can get it into the same
1217 * TCP packet that's a good thing. */
1218 if (con->in_seq > con->in_seq_acked) {
1219 con->in_seq_acked = con->in_seq;
1220 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1221 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1222 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1223 &con->out_temp_ack);
1224 }
1225
1226 BUG_ON(list_empty(&con->out_queue));
1227 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1228 con->out_msg = m;
1229 BUG_ON(m->con != con);
1230
1231 /* put message on sent list */
1232 ceph_msg_get(m);
1233 list_move_tail(&m->list_head, &con->out_sent);
1234
1235 /*
1236 * only assign outgoing seq # if we haven't sent this message
1237 * yet. if it is requeued, resend with it's original seq.
1238 */
1239 if (m->needs_out_seq) {
1240 m->hdr.seq = cpu_to_le64(++con->out_seq);
1241 m->needs_out_seq = false;
1242 }
1243 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1244
1245 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1246 m, con->out_seq, le16_to_cpu(m->hdr.type),
1247 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1248 m->data_length);
1249 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1250
1251 /* tag + hdr + front + middle */
1252 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1253 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1254 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1255
1256 if (m->middle)
1257 con_out_kvec_add(con, m->middle->vec.iov_len,
1258 m->middle->vec.iov_base);
1259
1260 /* fill in crc (except data pages), footer */
1261 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1262 con->out_msg->hdr.crc = cpu_to_le32(crc);
1263 con->out_msg->footer.flags = 0;
1264
1265 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1266 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1267 if (m->middle) {
1268 crc = crc32c(0, m->middle->vec.iov_base,
1269 m->middle->vec.iov_len);
1270 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1271 } else
1272 con->out_msg->footer.middle_crc = 0;
1273 dout("%s front_crc %u middle_crc %u\n", __func__,
1274 le32_to_cpu(con->out_msg->footer.front_crc),
1275 le32_to_cpu(con->out_msg->footer.middle_crc));
1276
1277 /* is there a data payload? */
1278 con->out_msg->footer.data_crc = 0;
1279 if (m->data_length) {
1280 prepare_message_data(con->out_msg, m->data_length);
1281 con->out_more = 1; /* data + footer will follow */
1282 } else {
1283 /* no, queue up footer too and be done */
1284 prepare_write_message_footer(con);
1285 }
1286
1287 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1288 }
1289
1290 /*
1291 * Prepare an ack.
1292 */
prepare_write_ack(struct ceph_connection * con)1293 static void prepare_write_ack(struct ceph_connection *con)
1294 {
1295 dout("prepare_write_ack %p %llu -> %llu\n", con,
1296 con->in_seq_acked, con->in_seq);
1297 con->in_seq_acked = con->in_seq;
1298
1299 con_out_kvec_reset(con);
1300
1301 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1302
1303 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1304 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1305 &con->out_temp_ack);
1306
1307 con->out_more = 1; /* more will follow.. eventually.. */
1308 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1309 }
1310
1311 /*
1312 * Prepare to share the seq during handshake
1313 */
prepare_write_seq(struct ceph_connection * con)1314 static void prepare_write_seq(struct ceph_connection *con)
1315 {
1316 dout("prepare_write_seq %p %llu -> %llu\n", con,
1317 con->in_seq_acked, con->in_seq);
1318 con->in_seq_acked = con->in_seq;
1319
1320 con_out_kvec_reset(con);
1321
1322 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1323 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1324 &con->out_temp_ack);
1325
1326 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1327 }
1328
1329 /*
1330 * Prepare to write keepalive byte.
1331 */
prepare_write_keepalive(struct ceph_connection * con)1332 static void prepare_write_keepalive(struct ceph_connection *con)
1333 {
1334 dout("prepare_write_keepalive %p\n", con);
1335 con_out_kvec_reset(con);
1336 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1337 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1338 }
1339
1340 /*
1341 * Connection negotiation.
1342 */
1343
get_connect_authorizer(struct ceph_connection * con,int * auth_proto)1344 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1345 int *auth_proto)
1346 {
1347 struct ceph_auth_handshake *auth;
1348
1349 if (!con->ops->get_authorizer) {
1350 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1351 con->out_connect.authorizer_len = 0;
1352 return NULL;
1353 }
1354
1355 /* Can't hold the mutex while getting authorizer */
1356 mutex_unlock(&con->mutex);
1357 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1358 mutex_lock(&con->mutex);
1359
1360 if (IS_ERR(auth))
1361 return auth;
1362 if (con->state != CON_STATE_NEGOTIATING)
1363 return ERR_PTR(-EAGAIN);
1364
1365 con->auth_reply_buf = auth->authorizer_reply_buf;
1366 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1367 return auth;
1368 }
1369
1370 /*
1371 * We connected to a peer and are saying hello.
1372 */
prepare_write_banner(struct ceph_connection * con)1373 static void prepare_write_banner(struct ceph_connection *con)
1374 {
1375 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1376 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1377 &con->msgr->my_enc_addr);
1378
1379 con->out_more = 0;
1380 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1381 }
1382
prepare_write_connect(struct ceph_connection * con)1383 static int prepare_write_connect(struct ceph_connection *con)
1384 {
1385 unsigned int global_seq = get_global_seq(con->msgr, 0);
1386 int proto;
1387 int auth_proto;
1388 struct ceph_auth_handshake *auth;
1389
1390 switch (con->peer_name.type) {
1391 case CEPH_ENTITY_TYPE_MON:
1392 proto = CEPH_MONC_PROTOCOL;
1393 break;
1394 case CEPH_ENTITY_TYPE_OSD:
1395 proto = CEPH_OSDC_PROTOCOL;
1396 break;
1397 case CEPH_ENTITY_TYPE_MDS:
1398 proto = CEPH_MDSC_PROTOCOL;
1399 break;
1400 default:
1401 BUG();
1402 }
1403
1404 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1405 con->connect_seq, global_seq, proto);
1406
1407 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1408 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1409 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1410 con->out_connect.global_seq = cpu_to_le32(global_seq);
1411 con->out_connect.protocol_version = cpu_to_le32(proto);
1412 con->out_connect.flags = 0;
1413
1414 auth_proto = CEPH_AUTH_UNKNOWN;
1415 auth = get_connect_authorizer(con, &auth_proto);
1416 if (IS_ERR(auth))
1417 return PTR_ERR(auth);
1418
1419 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1420 con->out_connect.authorizer_len = auth ?
1421 cpu_to_le32(auth->authorizer_buf_len) : 0;
1422
1423 con_out_kvec_add(con, sizeof (con->out_connect),
1424 &con->out_connect);
1425 if (auth && auth->authorizer_buf_len)
1426 con_out_kvec_add(con, auth->authorizer_buf_len,
1427 auth->authorizer_buf);
1428
1429 con->out_more = 0;
1430 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431
1432 return 0;
1433 }
1434
1435 /*
1436 * write as much of pending kvecs to the socket as we can.
1437 * 1 -> done
1438 * 0 -> socket full, but more to do
1439 * <0 -> error
1440 */
write_partial_kvec(struct ceph_connection * con)1441 static int write_partial_kvec(struct ceph_connection *con)
1442 {
1443 int ret;
1444
1445 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1446 while (con->out_kvec_bytes > 0) {
1447 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1448 con->out_kvec_left, con->out_kvec_bytes,
1449 con->out_more);
1450 if (ret <= 0)
1451 goto out;
1452 con->out_kvec_bytes -= ret;
1453 if (con->out_kvec_bytes == 0)
1454 break; /* done */
1455
1456 /* account for full iov entries consumed */
1457 while (ret >= con->out_kvec_cur->iov_len) {
1458 BUG_ON(!con->out_kvec_left);
1459 ret -= con->out_kvec_cur->iov_len;
1460 con->out_kvec_cur++;
1461 con->out_kvec_left--;
1462 }
1463 /* and for a partially-consumed entry */
1464 if (ret) {
1465 con->out_kvec_cur->iov_len -= ret;
1466 con->out_kvec_cur->iov_base += ret;
1467 }
1468 }
1469 con->out_kvec_left = 0;
1470 con->out_kvec_is_msg = false;
1471 ret = 1;
1472 out:
1473 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1474 con->out_kvec_bytes, con->out_kvec_left, ret);
1475 return ret; /* done! */
1476 }
1477
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1478 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1479 unsigned int page_offset,
1480 unsigned int length)
1481 {
1482 char *kaddr;
1483
1484 kaddr = kmap(page);
1485 BUG_ON(kaddr == NULL);
1486 crc = crc32c(crc, kaddr + page_offset, length);
1487 kunmap(page);
1488
1489 return crc;
1490 }
1491 /*
1492 * Write as much message data payload as we can. If we finish, queue
1493 * up the footer.
1494 * 1 -> done, footer is now queued in out_kvec[].
1495 * 0 -> socket full, but more to do
1496 * <0 -> error
1497 */
write_partial_message_data(struct ceph_connection * con)1498 static int write_partial_message_data(struct ceph_connection *con)
1499 {
1500 struct ceph_msg *msg = con->out_msg;
1501 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1502 bool do_datacrc = !con->msgr->nocrc;
1503 u32 crc;
1504
1505 dout("%s %p msg %p\n", __func__, con, msg);
1506
1507 if (list_empty(&msg->data))
1508 return -EINVAL;
1509
1510 /*
1511 * Iterate through each page that contains data to be
1512 * written, and send as much as possible for each.
1513 *
1514 * If we are calculating the data crc (the default), we will
1515 * need to map the page. If we have no pages, they have
1516 * been revoked, so use the zero page.
1517 */
1518 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1519 while (cursor->resid) {
1520 struct page *page;
1521 size_t page_offset;
1522 size_t length;
1523 bool last_piece;
1524 bool need_crc;
1525 int ret;
1526
1527 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1528 &last_piece);
1529 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1530 length, last_piece);
1531 if (ret <= 0) {
1532 if (do_datacrc)
1533 msg->footer.data_crc = cpu_to_le32(crc);
1534
1535 return ret;
1536 }
1537 if (do_datacrc && cursor->need_crc)
1538 crc = ceph_crc32c_page(crc, page, page_offset, length);
1539 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1540 }
1541
1542 dout("%s %p msg %p done\n", __func__, con, msg);
1543
1544 /* prepare and queue up footer, too */
1545 if (do_datacrc)
1546 msg->footer.data_crc = cpu_to_le32(crc);
1547 else
1548 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1549 con_out_kvec_reset(con);
1550 prepare_write_message_footer(con);
1551
1552 return 1; /* must return > 0 to indicate success */
1553 }
1554
1555 /*
1556 * write some zeros
1557 */
write_partial_skip(struct ceph_connection * con)1558 static int write_partial_skip(struct ceph_connection *con)
1559 {
1560 int ret;
1561
1562 while (con->out_skip > 0) {
1563 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1564
1565 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1566 if (ret <= 0)
1567 goto out;
1568 con->out_skip -= ret;
1569 }
1570 ret = 1;
1571 out:
1572 return ret;
1573 }
1574
1575 /*
1576 * Prepare to read connection handshake, or an ack.
1577 */
prepare_read_banner(struct ceph_connection * con)1578 static void prepare_read_banner(struct ceph_connection *con)
1579 {
1580 dout("prepare_read_banner %p\n", con);
1581 con->in_base_pos = 0;
1582 }
1583
prepare_read_connect(struct ceph_connection * con)1584 static void prepare_read_connect(struct ceph_connection *con)
1585 {
1586 dout("prepare_read_connect %p\n", con);
1587 con->in_base_pos = 0;
1588 }
1589
prepare_read_ack(struct ceph_connection * con)1590 static void prepare_read_ack(struct ceph_connection *con)
1591 {
1592 dout("prepare_read_ack %p\n", con);
1593 con->in_base_pos = 0;
1594 }
1595
prepare_read_seq(struct ceph_connection * con)1596 static void prepare_read_seq(struct ceph_connection *con)
1597 {
1598 dout("prepare_read_seq %p\n", con);
1599 con->in_base_pos = 0;
1600 con->in_tag = CEPH_MSGR_TAG_SEQ;
1601 }
1602
prepare_read_tag(struct ceph_connection * con)1603 static void prepare_read_tag(struct ceph_connection *con)
1604 {
1605 dout("prepare_read_tag %p\n", con);
1606 con->in_base_pos = 0;
1607 con->in_tag = CEPH_MSGR_TAG_READY;
1608 }
1609
1610 /*
1611 * Prepare to read a message.
1612 */
prepare_read_message(struct ceph_connection * con)1613 static int prepare_read_message(struct ceph_connection *con)
1614 {
1615 dout("prepare_read_message %p\n", con);
1616 BUG_ON(con->in_msg != NULL);
1617 con->in_base_pos = 0;
1618 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1619 return 0;
1620 }
1621
1622
read_partial(struct ceph_connection * con,int end,int size,void * object)1623 static int read_partial(struct ceph_connection *con,
1624 int end, int size, void *object)
1625 {
1626 while (con->in_base_pos < end) {
1627 int left = end - con->in_base_pos;
1628 int have = size - left;
1629 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1630 if (ret <= 0)
1631 return ret;
1632 con->in_base_pos += ret;
1633 }
1634 return 1;
1635 }
1636
1637
1638 /*
1639 * Read all or part of the connect-side handshake on a new connection
1640 */
read_partial_banner(struct ceph_connection * con)1641 static int read_partial_banner(struct ceph_connection *con)
1642 {
1643 int size;
1644 int end;
1645 int ret;
1646
1647 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1648
1649 /* peer's banner */
1650 size = strlen(CEPH_BANNER);
1651 end = size;
1652 ret = read_partial(con, end, size, con->in_banner);
1653 if (ret <= 0)
1654 goto out;
1655
1656 size = sizeof (con->actual_peer_addr);
1657 end += size;
1658 ret = read_partial(con, end, size, &con->actual_peer_addr);
1659 if (ret <= 0)
1660 goto out;
1661
1662 size = sizeof (con->peer_addr_for_me);
1663 end += size;
1664 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1665 if (ret <= 0)
1666 goto out;
1667
1668 out:
1669 return ret;
1670 }
1671
read_partial_connect(struct ceph_connection * con)1672 static int read_partial_connect(struct ceph_connection *con)
1673 {
1674 int size;
1675 int end;
1676 int ret;
1677
1678 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1679
1680 size = sizeof (con->in_reply);
1681 end = size;
1682 ret = read_partial(con, end, size, &con->in_reply);
1683 if (ret <= 0)
1684 goto out;
1685
1686 size = le32_to_cpu(con->in_reply.authorizer_len);
1687 end += size;
1688 ret = read_partial(con, end, size, con->auth_reply_buf);
1689 if (ret <= 0)
1690 goto out;
1691
1692 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1693 con, (int)con->in_reply.tag,
1694 le32_to_cpu(con->in_reply.connect_seq),
1695 le32_to_cpu(con->in_reply.global_seq));
1696 out:
1697 return ret;
1698
1699 }
1700
1701 /*
1702 * Verify the hello banner looks okay.
1703 */
verify_hello(struct ceph_connection * con)1704 static int verify_hello(struct ceph_connection *con)
1705 {
1706 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1707 pr_err("connect to %s got bad banner\n",
1708 ceph_pr_addr(&con->peer_addr.in_addr));
1709 con->error_msg = "protocol error, bad banner";
1710 return -1;
1711 }
1712 return 0;
1713 }
1714
addr_is_blank(struct sockaddr_storage * ss)1715 static bool addr_is_blank(struct sockaddr_storage *ss)
1716 {
1717 switch (ss->ss_family) {
1718 case AF_INET:
1719 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1720 case AF_INET6:
1721 return
1722 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1723 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1724 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1725 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1726 }
1727 return false;
1728 }
1729
addr_port(struct sockaddr_storage * ss)1730 static int addr_port(struct sockaddr_storage *ss)
1731 {
1732 switch (ss->ss_family) {
1733 case AF_INET:
1734 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1735 case AF_INET6:
1736 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1737 }
1738 return 0;
1739 }
1740
addr_set_port(struct sockaddr_storage * ss,int p)1741 static void addr_set_port(struct sockaddr_storage *ss, int p)
1742 {
1743 switch (ss->ss_family) {
1744 case AF_INET:
1745 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1746 break;
1747 case AF_INET6:
1748 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1749 break;
1750 }
1751 }
1752
1753 /*
1754 * Unlike other *_pton function semantics, zero indicates success.
1755 */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1756 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1757 char delim, const char **ipend)
1758 {
1759 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1760 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1761
1762 memset(ss, 0, sizeof(*ss));
1763
1764 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1765 ss->ss_family = AF_INET;
1766 return 0;
1767 }
1768
1769 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1770 ss->ss_family = AF_INET6;
1771 return 0;
1772 }
1773
1774 return -EINVAL;
1775 }
1776
1777 /*
1778 * Extract hostname string and resolve using kernel DNS facility.
1779 */
1780 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1781 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1782 struct sockaddr_storage *ss, char delim, const char **ipend)
1783 {
1784 const char *end, *delim_p;
1785 char *colon_p, *ip_addr = NULL;
1786 int ip_len, ret;
1787
1788 /*
1789 * The end of the hostname occurs immediately preceding the delimiter or
1790 * the port marker (':') where the delimiter takes precedence.
1791 */
1792 delim_p = memchr(name, delim, namelen);
1793 colon_p = memchr(name, ':', namelen);
1794
1795 if (delim_p && colon_p)
1796 end = delim_p < colon_p ? delim_p : colon_p;
1797 else if (!delim_p && colon_p)
1798 end = colon_p;
1799 else {
1800 end = delim_p;
1801 if (!end) /* case: hostname:/ */
1802 end = name + namelen;
1803 }
1804
1805 if (end <= name)
1806 return -EINVAL;
1807
1808 /* do dns_resolve upcall */
1809 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1810 if (ip_len > 0)
1811 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1812 else
1813 ret = -ESRCH;
1814
1815 kfree(ip_addr);
1816
1817 *ipend = end;
1818
1819 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1820 ret, ret ? "failed" : ceph_pr_addr(ss));
1821
1822 return ret;
1823 }
1824 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1825 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1826 struct sockaddr_storage *ss, char delim, const char **ipend)
1827 {
1828 return -EINVAL;
1829 }
1830 #endif
1831
1832 /*
1833 * Parse a server name (IP or hostname). If a valid IP address is not found
1834 * then try to extract a hostname to resolve using userspace DNS upcall.
1835 */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1836 static int ceph_parse_server_name(const char *name, size_t namelen,
1837 struct sockaddr_storage *ss, char delim, const char **ipend)
1838 {
1839 int ret;
1840
1841 ret = ceph_pton(name, namelen, ss, delim, ipend);
1842 if (ret)
1843 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1844
1845 return ret;
1846 }
1847
1848 /*
1849 * Parse an ip[:port] list into an addr array. Use the default
1850 * monitor port if a port isn't specified.
1851 */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1852 int ceph_parse_ips(const char *c, const char *end,
1853 struct ceph_entity_addr *addr,
1854 int max_count, int *count)
1855 {
1856 int i, ret = -EINVAL;
1857 const char *p = c;
1858
1859 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1860 for (i = 0; i < max_count; i++) {
1861 const char *ipend;
1862 struct sockaddr_storage *ss = &addr[i].in_addr;
1863 int port;
1864 char delim = ',';
1865
1866 if (*p == '[') {
1867 delim = ']';
1868 p++;
1869 }
1870
1871 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1872 if (ret)
1873 goto bad;
1874 ret = -EINVAL;
1875
1876 p = ipend;
1877
1878 if (delim == ']') {
1879 if (*p != ']') {
1880 dout("missing matching ']'\n");
1881 goto bad;
1882 }
1883 p++;
1884 }
1885
1886 /* port? */
1887 if (p < end && *p == ':') {
1888 port = 0;
1889 p++;
1890 while (p < end && *p >= '0' && *p <= '9') {
1891 port = (port * 10) + (*p - '0');
1892 p++;
1893 }
1894 if (port == 0)
1895 port = CEPH_MON_PORT;
1896 else if (port > 65535)
1897 goto bad;
1898 } else {
1899 port = CEPH_MON_PORT;
1900 }
1901
1902 addr_set_port(ss, port);
1903
1904 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1905
1906 if (p == end)
1907 break;
1908 if (*p != ',')
1909 goto bad;
1910 p++;
1911 }
1912
1913 if (p != end)
1914 goto bad;
1915
1916 if (count)
1917 *count = i + 1;
1918 return 0;
1919
1920 bad:
1921 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1922 return ret;
1923 }
1924 EXPORT_SYMBOL(ceph_parse_ips);
1925
process_banner(struct ceph_connection * con)1926 static int process_banner(struct ceph_connection *con)
1927 {
1928 dout("process_banner on %p\n", con);
1929
1930 if (verify_hello(con) < 0)
1931 return -1;
1932
1933 ceph_decode_addr(&con->actual_peer_addr);
1934 ceph_decode_addr(&con->peer_addr_for_me);
1935
1936 /*
1937 * Make sure the other end is who we wanted. note that the other
1938 * end may not yet know their ip address, so if it's 0.0.0.0, give
1939 * them the benefit of the doubt.
1940 */
1941 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1942 sizeof(con->peer_addr)) != 0 &&
1943 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1944 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1945 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1946 ceph_pr_addr(&con->peer_addr.in_addr),
1947 (int)le32_to_cpu(con->peer_addr.nonce),
1948 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1949 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1950 con->error_msg = "wrong peer at address";
1951 return -1;
1952 }
1953
1954 /*
1955 * did we learn our address?
1956 */
1957 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1958 int port = addr_port(&con->msgr->inst.addr.in_addr);
1959
1960 memcpy(&con->msgr->inst.addr.in_addr,
1961 &con->peer_addr_for_me.in_addr,
1962 sizeof(con->peer_addr_for_me.in_addr));
1963 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1964 encode_my_addr(con->msgr);
1965 dout("process_banner learned my addr is %s\n",
1966 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1967 }
1968
1969 return 0;
1970 }
1971
process_connect(struct ceph_connection * con)1972 static int process_connect(struct ceph_connection *con)
1973 {
1974 u64 sup_feat = con->msgr->supported_features;
1975 u64 req_feat = con->msgr->required_features;
1976 u64 server_feat = ceph_sanitize_features(
1977 le64_to_cpu(con->in_reply.features));
1978 int ret;
1979
1980 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1981
1982 if (con->auth_reply_buf) {
1983 /*
1984 * Any connection that defines ->get_authorizer()
1985 * should also define ->verify_authorizer_reply().
1986 * See get_connect_authorizer().
1987 */
1988 ret = con->ops->verify_authorizer_reply(con, 0);
1989 if (ret < 0) {
1990 con->error_msg = "bad authorize reply";
1991 return ret;
1992 }
1993 }
1994
1995 switch (con->in_reply.tag) {
1996 case CEPH_MSGR_TAG_FEATURES:
1997 pr_err("%s%lld %s feature set mismatch,"
1998 " my %llx < server's %llx, missing %llx\n",
1999 ENTITY_NAME(con->peer_name),
2000 ceph_pr_addr(&con->peer_addr.in_addr),
2001 sup_feat, server_feat, server_feat & ~sup_feat);
2002 con->error_msg = "missing required protocol features";
2003 reset_connection(con);
2004 return -1;
2005
2006 case CEPH_MSGR_TAG_BADPROTOVER:
2007 pr_err("%s%lld %s protocol version mismatch,"
2008 " my %d != server's %d\n",
2009 ENTITY_NAME(con->peer_name),
2010 ceph_pr_addr(&con->peer_addr.in_addr),
2011 le32_to_cpu(con->out_connect.protocol_version),
2012 le32_to_cpu(con->in_reply.protocol_version));
2013 con->error_msg = "protocol version mismatch";
2014 reset_connection(con);
2015 return -1;
2016
2017 case CEPH_MSGR_TAG_BADAUTHORIZER:
2018 con->auth_retry++;
2019 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2020 con->auth_retry);
2021 if (con->auth_retry == 2) {
2022 con->error_msg = "connect authorization failure";
2023 return -1;
2024 }
2025 con_out_kvec_reset(con);
2026 ret = prepare_write_connect(con);
2027 if (ret < 0)
2028 return ret;
2029 prepare_read_connect(con);
2030 break;
2031
2032 case CEPH_MSGR_TAG_RESETSESSION:
2033 /*
2034 * If we connected with a large connect_seq but the peer
2035 * has no record of a session with us (no connection, or
2036 * connect_seq == 0), they will send RESETSESION to indicate
2037 * that they must have reset their session, and may have
2038 * dropped messages.
2039 */
2040 dout("process_connect got RESET peer seq %u\n",
2041 le32_to_cpu(con->in_reply.connect_seq));
2042 pr_err("%s%lld %s connection reset\n",
2043 ENTITY_NAME(con->peer_name),
2044 ceph_pr_addr(&con->peer_addr.in_addr));
2045 reset_connection(con);
2046 con_out_kvec_reset(con);
2047 ret = prepare_write_connect(con);
2048 if (ret < 0)
2049 return ret;
2050 prepare_read_connect(con);
2051
2052 /* Tell ceph about it. */
2053 mutex_unlock(&con->mutex);
2054 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2055 if (con->ops->peer_reset)
2056 con->ops->peer_reset(con);
2057 mutex_lock(&con->mutex);
2058 if (con->state != CON_STATE_NEGOTIATING)
2059 return -EAGAIN;
2060 break;
2061
2062 case CEPH_MSGR_TAG_RETRY_SESSION:
2063 /*
2064 * If we sent a smaller connect_seq than the peer has, try
2065 * again with a larger value.
2066 */
2067 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2068 le32_to_cpu(con->out_connect.connect_seq),
2069 le32_to_cpu(con->in_reply.connect_seq));
2070 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2071 con_out_kvec_reset(con);
2072 ret = prepare_write_connect(con);
2073 if (ret < 0)
2074 return ret;
2075 prepare_read_connect(con);
2076 break;
2077
2078 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2079 /*
2080 * If we sent a smaller global_seq than the peer has, try
2081 * again with a larger value.
2082 */
2083 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2084 con->peer_global_seq,
2085 le32_to_cpu(con->in_reply.global_seq));
2086 get_global_seq(con->msgr,
2087 le32_to_cpu(con->in_reply.global_seq));
2088 con_out_kvec_reset(con);
2089 ret = prepare_write_connect(con);
2090 if (ret < 0)
2091 return ret;
2092 prepare_read_connect(con);
2093 break;
2094
2095 case CEPH_MSGR_TAG_SEQ:
2096 case CEPH_MSGR_TAG_READY:
2097 if (req_feat & ~server_feat) {
2098 pr_err("%s%lld %s protocol feature mismatch,"
2099 " my required %llx > server's %llx, need %llx\n",
2100 ENTITY_NAME(con->peer_name),
2101 ceph_pr_addr(&con->peer_addr.in_addr),
2102 req_feat, server_feat, req_feat & ~server_feat);
2103 con->error_msg = "missing required protocol features";
2104 reset_connection(con);
2105 return -1;
2106 }
2107
2108 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2109 con->state = CON_STATE_OPEN;
2110 con->auth_retry = 0; /* we authenticated; clear flag */
2111 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2112 con->connect_seq++;
2113 con->peer_features = server_feat;
2114 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2115 con->peer_global_seq,
2116 le32_to_cpu(con->in_reply.connect_seq),
2117 con->connect_seq);
2118 WARN_ON(con->connect_seq !=
2119 le32_to_cpu(con->in_reply.connect_seq));
2120
2121 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2122 con_flag_set(con, CON_FLAG_LOSSYTX);
2123
2124 con->delay = 0; /* reset backoff memory */
2125
2126 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2127 prepare_write_seq(con);
2128 prepare_read_seq(con);
2129 } else {
2130 prepare_read_tag(con);
2131 }
2132 break;
2133
2134 case CEPH_MSGR_TAG_WAIT:
2135 /*
2136 * If there is a connection race (we are opening
2137 * connections to each other), one of us may just have
2138 * to WAIT. This shouldn't happen if we are the
2139 * client.
2140 */
2141 pr_err("process_connect got WAIT as client\n");
2142 con->error_msg = "protocol error, got WAIT as client";
2143 return -1;
2144
2145 default:
2146 pr_err("connect protocol error, will retry\n");
2147 con->error_msg = "protocol error, garbage tag during connect";
2148 return -1;
2149 }
2150 return 0;
2151 }
2152
2153
2154 /*
2155 * read (part of) an ack
2156 */
read_partial_ack(struct ceph_connection * con)2157 static int read_partial_ack(struct ceph_connection *con)
2158 {
2159 int size = sizeof (con->in_temp_ack);
2160 int end = size;
2161
2162 return read_partial(con, end, size, &con->in_temp_ack);
2163 }
2164
2165 /*
2166 * We can finally discard anything that's been acked.
2167 */
process_ack(struct ceph_connection * con)2168 static void process_ack(struct ceph_connection *con)
2169 {
2170 struct ceph_msg *m;
2171 u64 ack = le64_to_cpu(con->in_temp_ack);
2172 u64 seq;
2173
2174 while (!list_empty(&con->out_sent)) {
2175 m = list_first_entry(&con->out_sent, struct ceph_msg,
2176 list_head);
2177 seq = le64_to_cpu(m->hdr.seq);
2178 if (seq > ack)
2179 break;
2180 dout("got ack for seq %llu type %d at %p\n", seq,
2181 le16_to_cpu(m->hdr.type), m);
2182 m->ack_stamp = jiffies;
2183 ceph_msg_remove(m);
2184 }
2185 prepare_read_tag(con);
2186 }
2187
2188
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)2189 static int read_partial_message_section(struct ceph_connection *con,
2190 struct kvec *section,
2191 unsigned int sec_len, u32 *crc)
2192 {
2193 int ret, left;
2194
2195 BUG_ON(!section);
2196
2197 while (section->iov_len < sec_len) {
2198 BUG_ON(section->iov_base == NULL);
2199 left = sec_len - section->iov_len;
2200 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2201 section->iov_len, left);
2202 if (ret <= 0)
2203 return ret;
2204 section->iov_len += ret;
2205 }
2206 if (section->iov_len == sec_len)
2207 *crc = crc32c(0, section->iov_base, section->iov_len);
2208
2209 return 1;
2210 }
2211
read_partial_msg_data(struct ceph_connection * con)2212 static int read_partial_msg_data(struct ceph_connection *con)
2213 {
2214 struct ceph_msg *msg = con->in_msg;
2215 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2216 const bool do_datacrc = !con->msgr->nocrc;
2217 struct page *page;
2218 size_t page_offset;
2219 size_t length;
2220 u32 crc = 0;
2221 int ret;
2222
2223 BUG_ON(!msg);
2224 if (list_empty(&msg->data))
2225 return -EIO;
2226
2227 if (do_datacrc)
2228 crc = con->in_data_crc;
2229 while (cursor->resid) {
2230 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2231 NULL);
2232 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2233 if (ret <= 0) {
2234 if (do_datacrc)
2235 con->in_data_crc = crc;
2236
2237 return ret;
2238 }
2239
2240 if (do_datacrc)
2241 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2242 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2243 }
2244 if (do_datacrc)
2245 con->in_data_crc = crc;
2246
2247 return 1; /* must return > 0 to indicate success */
2248 }
2249
2250 /*
2251 * read (part of) a message.
2252 */
2253 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2254
read_partial_message(struct ceph_connection * con)2255 static int read_partial_message(struct ceph_connection *con)
2256 {
2257 struct ceph_msg *m = con->in_msg;
2258 int size;
2259 int end;
2260 int ret;
2261 unsigned int front_len, middle_len, data_len;
2262 bool do_datacrc = !con->msgr->nocrc;
2263 u64 seq;
2264 u32 crc;
2265
2266 dout("read_partial_message con %p msg %p\n", con, m);
2267
2268 /* header */
2269 size = sizeof (con->in_hdr);
2270 end = size;
2271 ret = read_partial(con, end, size, &con->in_hdr);
2272 if (ret <= 0)
2273 return ret;
2274
2275 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2276 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2277 pr_err("read_partial_message bad hdr "
2278 " crc %u != expected %u\n",
2279 crc, con->in_hdr.crc);
2280 return -EBADMSG;
2281 }
2282
2283 front_len = le32_to_cpu(con->in_hdr.front_len);
2284 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2285 return -EIO;
2286 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2287 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2288 return -EIO;
2289 data_len = le32_to_cpu(con->in_hdr.data_len);
2290 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2291 return -EIO;
2292
2293 /* verify seq# */
2294 seq = le64_to_cpu(con->in_hdr.seq);
2295 if ((s64)seq - (s64)con->in_seq < 1) {
2296 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2297 ENTITY_NAME(con->peer_name),
2298 ceph_pr_addr(&con->peer_addr.in_addr),
2299 seq, con->in_seq + 1);
2300 con->in_base_pos = -front_len - middle_len - data_len -
2301 sizeof(m->footer);
2302 con->in_tag = CEPH_MSGR_TAG_READY;
2303 return 1;
2304 } else if ((s64)seq - (s64)con->in_seq > 1) {
2305 pr_err("read_partial_message bad seq %lld expected %lld\n",
2306 seq, con->in_seq + 1);
2307 con->error_msg = "bad message sequence # for incoming message";
2308 return -EBADMSG;
2309 }
2310
2311 /* allocate message? */
2312 if (!con->in_msg) {
2313 int skip = 0;
2314
2315 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2316 front_len, data_len);
2317 ret = ceph_con_in_msg_alloc(con, &skip);
2318 if (ret < 0)
2319 return ret;
2320
2321 BUG_ON(!con->in_msg ^ skip);
2322 if (con->in_msg && data_len > con->in_msg->data_length) {
2323 pr_warn("%s skipping long message (%u > %zd)\n",
2324 __func__, data_len, con->in_msg->data_length);
2325 ceph_msg_put(con->in_msg);
2326 con->in_msg = NULL;
2327 skip = 1;
2328 }
2329 if (skip) {
2330 /* skip this message */
2331 dout("alloc_msg said skip message\n");
2332 con->in_base_pos = -front_len - middle_len - data_len -
2333 sizeof(m->footer);
2334 con->in_tag = CEPH_MSGR_TAG_READY;
2335 con->in_seq++;
2336 return 1;
2337 }
2338
2339 BUG_ON(!con->in_msg);
2340 BUG_ON(con->in_msg->con != con);
2341 m = con->in_msg;
2342 m->front.iov_len = 0; /* haven't read it yet */
2343 if (m->middle)
2344 m->middle->vec.iov_len = 0;
2345
2346 /* prepare for data payload, if any */
2347
2348 if (data_len)
2349 prepare_message_data(con->in_msg, data_len);
2350 }
2351
2352 /* front */
2353 ret = read_partial_message_section(con, &m->front, front_len,
2354 &con->in_front_crc);
2355 if (ret <= 0)
2356 return ret;
2357
2358 /* middle */
2359 if (m->middle) {
2360 ret = read_partial_message_section(con, &m->middle->vec,
2361 middle_len,
2362 &con->in_middle_crc);
2363 if (ret <= 0)
2364 return ret;
2365 }
2366
2367 /* (page) data */
2368 if (data_len) {
2369 ret = read_partial_msg_data(con);
2370 if (ret <= 0)
2371 return ret;
2372 }
2373
2374 /* footer */
2375 size = sizeof (m->footer);
2376 end += size;
2377 ret = read_partial(con, end, size, &m->footer);
2378 if (ret <= 0)
2379 return ret;
2380
2381 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2382 m, front_len, m->footer.front_crc, middle_len,
2383 m->footer.middle_crc, data_len, m->footer.data_crc);
2384
2385 /* crc ok? */
2386 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2387 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2388 m, con->in_front_crc, m->footer.front_crc);
2389 return -EBADMSG;
2390 }
2391 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2392 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2393 m, con->in_middle_crc, m->footer.middle_crc);
2394 return -EBADMSG;
2395 }
2396 if (do_datacrc &&
2397 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2398 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2399 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2400 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2401 return -EBADMSG;
2402 }
2403
2404 return 1; /* done! */
2405 }
2406
2407 /*
2408 * Process message. This happens in the worker thread. The callback should
2409 * be careful not to do anything that waits on other incoming messages or it
2410 * may deadlock.
2411 */
process_message(struct ceph_connection * con)2412 static void process_message(struct ceph_connection *con)
2413 {
2414 struct ceph_msg *msg;
2415
2416 BUG_ON(con->in_msg->con != con);
2417 con->in_msg->con = NULL;
2418 msg = con->in_msg;
2419 con->in_msg = NULL;
2420 con->ops->put(con);
2421
2422 /* if first message, set peer_name */
2423 if (con->peer_name.type == 0)
2424 con->peer_name = msg->hdr.src;
2425
2426 con->in_seq++;
2427 mutex_unlock(&con->mutex);
2428
2429 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2430 msg, le64_to_cpu(msg->hdr.seq),
2431 ENTITY_NAME(msg->hdr.src),
2432 le16_to_cpu(msg->hdr.type),
2433 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2434 le32_to_cpu(msg->hdr.front_len),
2435 le32_to_cpu(msg->hdr.data_len),
2436 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2437 con->ops->dispatch(con, msg);
2438
2439 mutex_lock(&con->mutex);
2440 }
2441
2442
2443 /*
2444 * Write something to the socket. Called in a worker thread when the
2445 * socket appears to be writeable and we have something ready to send.
2446 */
try_write(struct ceph_connection * con)2447 static int try_write(struct ceph_connection *con)
2448 {
2449 int ret = 1;
2450
2451 dout("try_write start %p state %lu\n", con, con->state);
2452
2453 more:
2454 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2455
2456 /* open the socket first? */
2457 if (con->state == CON_STATE_PREOPEN) {
2458 BUG_ON(con->sock);
2459 con->state = CON_STATE_CONNECTING;
2460
2461 con_out_kvec_reset(con);
2462 prepare_write_banner(con);
2463 prepare_read_banner(con);
2464
2465 BUG_ON(con->in_msg);
2466 con->in_tag = CEPH_MSGR_TAG_READY;
2467 dout("try_write initiating connect on %p new state %lu\n",
2468 con, con->state);
2469 ret = ceph_tcp_connect(con);
2470 if (ret < 0) {
2471 con->error_msg = "connect error";
2472 goto out;
2473 }
2474 }
2475
2476 more_kvec:
2477 /* kvec data queued? */
2478 if (con->out_skip) {
2479 ret = write_partial_skip(con);
2480 if (ret <= 0)
2481 goto out;
2482 }
2483 if (con->out_kvec_left) {
2484 ret = write_partial_kvec(con);
2485 if (ret <= 0)
2486 goto out;
2487 }
2488
2489 /* msg pages? */
2490 if (con->out_msg) {
2491 if (con->out_msg_done) {
2492 ceph_msg_put(con->out_msg);
2493 con->out_msg = NULL; /* we're done with this one */
2494 goto do_next;
2495 }
2496
2497 ret = write_partial_message_data(con);
2498 if (ret == 1)
2499 goto more_kvec; /* we need to send the footer, too! */
2500 if (ret == 0)
2501 goto out;
2502 if (ret < 0) {
2503 dout("try_write write_partial_message_data err %d\n",
2504 ret);
2505 goto out;
2506 }
2507 }
2508
2509 do_next:
2510 if (con->state == CON_STATE_OPEN) {
2511 /* is anything else pending? */
2512 if (!list_empty(&con->out_queue)) {
2513 prepare_write_message(con);
2514 goto more;
2515 }
2516 if (con->in_seq > con->in_seq_acked) {
2517 prepare_write_ack(con);
2518 goto more;
2519 }
2520 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2521 prepare_write_keepalive(con);
2522 goto more;
2523 }
2524 }
2525
2526 /* Nothing to do! */
2527 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2528 dout("try_write nothing else to write.\n");
2529 ret = 0;
2530 out:
2531 dout("try_write done on %p ret %d\n", con, ret);
2532 return ret;
2533 }
2534
2535
2536
2537 /*
2538 * Read what we can from the socket.
2539 */
try_read(struct ceph_connection * con)2540 static int try_read(struct ceph_connection *con)
2541 {
2542 int ret = -1;
2543
2544 more:
2545 dout("try_read start on %p state %lu\n", con, con->state);
2546 if (con->state != CON_STATE_CONNECTING &&
2547 con->state != CON_STATE_NEGOTIATING &&
2548 con->state != CON_STATE_OPEN)
2549 return 0;
2550
2551 BUG_ON(!con->sock);
2552
2553 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2554 con->in_base_pos);
2555
2556 if (con->state == CON_STATE_CONNECTING) {
2557 dout("try_read connecting\n");
2558 ret = read_partial_banner(con);
2559 if (ret <= 0)
2560 goto out;
2561 ret = process_banner(con);
2562 if (ret < 0)
2563 goto out;
2564
2565 con->state = CON_STATE_NEGOTIATING;
2566
2567 /*
2568 * Received banner is good, exchange connection info.
2569 * Do not reset out_kvec, as sending our banner raced
2570 * with receiving peer banner after connect completed.
2571 */
2572 ret = prepare_write_connect(con);
2573 if (ret < 0)
2574 goto out;
2575 prepare_read_connect(con);
2576
2577 /* Send connection info before awaiting response */
2578 goto out;
2579 }
2580
2581 if (con->state == CON_STATE_NEGOTIATING) {
2582 dout("try_read negotiating\n");
2583 ret = read_partial_connect(con);
2584 if (ret <= 0)
2585 goto out;
2586 ret = process_connect(con);
2587 if (ret < 0)
2588 goto out;
2589 goto more;
2590 }
2591
2592 WARN_ON(con->state != CON_STATE_OPEN);
2593
2594 if (con->in_base_pos < 0) {
2595 /*
2596 * skipping + discarding content.
2597 *
2598 * FIXME: there must be a better way to do this!
2599 */
2600 static char buf[SKIP_BUF_SIZE];
2601 int skip = min((int) sizeof (buf), -con->in_base_pos);
2602
2603 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2604 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2605 if (ret <= 0)
2606 goto out;
2607 con->in_base_pos += ret;
2608 if (con->in_base_pos)
2609 goto more;
2610 }
2611 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2612 /*
2613 * what's next?
2614 */
2615 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2616 if (ret <= 0)
2617 goto out;
2618 dout("try_read got tag %d\n", (int)con->in_tag);
2619 switch (con->in_tag) {
2620 case CEPH_MSGR_TAG_MSG:
2621 prepare_read_message(con);
2622 break;
2623 case CEPH_MSGR_TAG_ACK:
2624 prepare_read_ack(con);
2625 break;
2626 case CEPH_MSGR_TAG_CLOSE:
2627 con_close_socket(con);
2628 con->state = CON_STATE_CLOSED;
2629 goto out;
2630 default:
2631 goto bad_tag;
2632 }
2633 }
2634 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2635 ret = read_partial_message(con);
2636 if (ret <= 0) {
2637 switch (ret) {
2638 case -EBADMSG:
2639 con->error_msg = "bad crc";
2640 ret = -EIO;
2641 break;
2642 case -EIO:
2643 con->error_msg = "io error";
2644 break;
2645 }
2646 goto out;
2647 }
2648 if (con->in_tag == CEPH_MSGR_TAG_READY)
2649 goto more;
2650 process_message(con);
2651 if (con->state == CON_STATE_OPEN)
2652 prepare_read_tag(con);
2653 goto more;
2654 }
2655 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2656 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2657 /*
2658 * the final handshake seq exchange is semantically
2659 * equivalent to an ACK
2660 */
2661 ret = read_partial_ack(con);
2662 if (ret <= 0)
2663 goto out;
2664 process_ack(con);
2665 goto more;
2666 }
2667
2668 out:
2669 dout("try_read done on %p ret %d\n", con, ret);
2670 return ret;
2671
2672 bad_tag:
2673 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2674 con->error_msg = "protocol error, garbage tag";
2675 ret = -1;
2676 goto out;
2677 }
2678
2679
2680 /*
2681 * Atomically queue work on a connection after the specified delay.
2682 * Bump @con reference to avoid races with connection teardown.
2683 * Returns 0 if work was queued, or an error code otherwise.
2684 */
queue_con_delay(struct ceph_connection * con,unsigned long delay)2685 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2686 {
2687 if (!con->ops->get(con)) {
2688 dout("%s %p ref count 0\n", __func__, con);
2689 return -ENOENT;
2690 }
2691
2692 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2693 dout("%s %p - already queued\n", __func__, con);
2694 con->ops->put(con);
2695 return -EBUSY;
2696 }
2697
2698 dout("%s %p %lu\n", __func__, con, delay);
2699 return 0;
2700 }
2701
queue_con(struct ceph_connection * con)2702 static void queue_con(struct ceph_connection *con)
2703 {
2704 (void) queue_con_delay(con, 0);
2705 }
2706
cancel_con(struct ceph_connection * con)2707 static void cancel_con(struct ceph_connection *con)
2708 {
2709 if (cancel_delayed_work(&con->work)) {
2710 dout("%s %p\n", __func__, con);
2711 con->ops->put(con);
2712 }
2713 }
2714
con_sock_closed(struct ceph_connection * con)2715 static bool con_sock_closed(struct ceph_connection *con)
2716 {
2717 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2718 return false;
2719
2720 #define CASE(x) \
2721 case CON_STATE_ ## x: \
2722 con->error_msg = "socket closed (con state " #x ")"; \
2723 break;
2724
2725 switch (con->state) {
2726 CASE(CLOSED);
2727 CASE(PREOPEN);
2728 CASE(CONNECTING);
2729 CASE(NEGOTIATING);
2730 CASE(OPEN);
2731 CASE(STANDBY);
2732 default:
2733 pr_warn("%s con %p unrecognized state %lu\n",
2734 __func__, con, con->state);
2735 con->error_msg = "unrecognized con state";
2736 BUG();
2737 break;
2738 }
2739 #undef CASE
2740
2741 return true;
2742 }
2743
con_backoff(struct ceph_connection * con)2744 static bool con_backoff(struct ceph_connection *con)
2745 {
2746 int ret;
2747
2748 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2749 return false;
2750
2751 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2752 if (ret) {
2753 dout("%s: con %p FAILED to back off %lu\n", __func__,
2754 con, con->delay);
2755 BUG_ON(ret == -ENOENT);
2756 con_flag_set(con, CON_FLAG_BACKOFF);
2757 }
2758
2759 return true;
2760 }
2761
2762 /* Finish fault handling; con->mutex must *not* be held here */
2763
con_fault_finish(struct ceph_connection * con)2764 static void con_fault_finish(struct ceph_connection *con)
2765 {
2766 /*
2767 * in case we faulted due to authentication, invalidate our
2768 * current tickets so that we can get new ones.
2769 */
2770 if (con->auth_retry && con->ops->invalidate_authorizer) {
2771 dout("calling invalidate_authorizer()\n");
2772 con->ops->invalidate_authorizer(con);
2773 }
2774
2775 if (con->ops->fault)
2776 con->ops->fault(con);
2777 }
2778
2779 /*
2780 * Do some work on a connection. Drop a connection ref when we're done.
2781 */
con_work(struct work_struct * work)2782 static void con_work(struct work_struct *work)
2783 {
2784 struct ceph_connection *con = container_of(work, struct ceph_connection,
2785 work.work);
2786 bool fault;
2787
2788 mutex_lock(&con->mutex);
2789 while (true) {
2790 int ret;
2791
2792 if ((fault = con_sock_closed(con))) {
2793 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2794 break;
2795 }
2796 if (con_backoff(con)) {
2797 dout("%s: con %p BACKOFF\n", __func__, con);
2798 break;
2799 }
2800 if (con->state == CON_STATE_STANDBY) {
2801 dout("%s: con %p STANDBY\n", __func__, con);
2802 break;
2803 }
2804 if (con->state == CON_STATE_CLOSED) {
2805 dout("%s: con %p CLOSED\n", __func__, con);
2806 BUG_ON(con->sock);
2807 break;
2808 }
2809 if (con->state == CON_STATE_PREOPEN) {
2810 dout("%s: con %p PREOPEN\n", __func__, con);
2811 BUG_ON(con->sock);
2812 }
2813
2814 ret = try_read(con);
2815 if (ret < 0) {
2816 if (ret == -EAGAIN)
2817 continue;
2818 con->error_msg = "socket error on read";
2819 fault = true;
2820 break;
2821 }
2822
2823 ret = try_write(con);
2824 if (ret < 0) {
2825 if (ret == -EAGAIN)
2826 continue;
2827 con->error_msg = "socket error on write";
2828 fault = true;
2829 }
2830
2831 break; /* If we make it to here, we're done */
2832 }
2833 if (fault)
2834 con_fault(con);
2835 mutex_unlock(&con->mutex);
2836
2837 if (fault)
2838 con_fault_finish(con);
2839
2840 con->ops->put(con);
2841 }
2842
2843 /*
2844 * Generic error/fault handler. A retry mechanism is used with
2845 * exponential backoff
2846 */
con_fault(struct ceph_connection * con)2847 static void con_fault(struct ceph_connection *con)
2848 {
2849 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2850 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2851 dout("fault %p state %lu to peer %s\n",
2852 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2853
2854 WARN_ON(con->state != CON_STATE_CONNECTING &&
2855 con->state != CON_STATE_NEGOTIATING &&
2856 con->state != CON_STATE_OPEN);
2857
2858 con_close_socket(con);
2859
2860 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2861 dout("fault on LOSSYTX channel, marking CLOSED\n");
2862 con->state = CON_STATE_CLOSED;
2863 return;
2864 }
2865
2866 if (con->in_msg) {
2867 BUG_ON(con->in_msg->con != con);
2868 con->in_msg->con = NULL;
2869 ceph_msg_put(con->in_msg);
2870 con->in_msg = NULL;
2871 con->ops->put(con);
2872 }
2873
2874 /* Requeue anything that hasn't been acked */
2875 list_splice_init(&con->out_sent, &con->out_queue);
2876
2877 /* If there are no messages queued or keepalive pending, place
2878 * the connection in a STANDBY state */
2879 if (list_empty(&con->out_queue) &&
2880 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2881 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2882 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2883 con->state = CON_STATE_STANDBY;
2884 } else {
2885 /* retry after a delay. */
2886 con->state = CON_STATE_PREOPEN;
2887 if (con->delay == 0)
2888 con->delay = BASE_DELAY_INTERVAL;
2889 else if (con->delay < MAX_DELAY_INTERVAL)
2890 con->delay *= 2;
2891 con_flag_set(con, CON_FLAG_BACKOFF);
2892 queue_con(con);
2893 }
2894 }
2895
2896
2897
2898 /*
2899 * initialize a new messenger instance
2900 */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr,u64 supported_features,u64 required_features,bool nocrc)2901 void ceph_messenger_init(struct ceph_messenger *msgr,
2902 struct ceph_entity_addr *myaddr,
2903 u64 supported_features,
2904 u64 required_features,
2905 bool nocrc)
2906 {
2907 msgr->supported_features = supported_features;
2908 msgr->required_features = required_features;
2909
2910 spin_lock_init(&msgr->global_seq_lock);
2911
2912 if (myaddr)
2913 msgr->inst.addr = *myaddr;
2914
2915 /* select a random nonce */
2916 msgr->inst.addr.type = 0;
2917 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2918 encode_my_addr(msgr);
2919 msgr->nocrc = nocrc;
2920
2921 atomic_set(&msgr->stopping, 0);
2922
2923 dout("%s %p\n", __func__, msgr);
2924 }
2925 EXPORT_SYMBOL(ceph_messenger_init);
2926
clear_standby(struct ceph_connection * con)2927 static void clear_standby(struct ceph_connection *con)
2928 {
2929 /* come back from STANDBY? */
2930 if (con->state == CON_STATE_STANDBY) {
2931 dout("clear_standby %p and ++connect_seq\n", con);
2932 con->state = CON_STATE_PREOPEN;
2933 con->connect_seq++;
2934 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2935 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2936 }
2937 }
2938
2939 /*
2940 * Queue up an outgoing message on the given connection.
2941 */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)2942 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2943 {
2944 /* set src+dst */
2945 msg->hdr.src = con->msgr->inst.name;
2946 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2947 msg->needs_out_seq = true;
2948
2949 mutex_lock(&con->mutex);
2950
2951 if (con->state == CON_STATE_CLOSED) {
2952 dout("con_send %p closed, dropping %p\n", con, msg);
2953 ceph_msg_put(msg);
2954 mutex_unlock(&con->mutex);
2955 return;
2956 }
2957
2958 BUG_ON(msg->con != NULL);
2959 msg->con = con->ops->get(con);
2960 BUG_ON(msg->con == NULL);
2961
2962 BUG_ON(!list_empty(&msg->list_head));
2963 list_add_tail(&msg->list_head, &con->out_queue);
2964 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2965 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2966 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2967 le32_to_cpu(msg->hdr.front_len),
2968 le32_to_cpu(msg->hdr.middle_len),
2969 le32_to_cpu(msg->hdr.data_len));
2970
2971 clear_standby(con);
2972 mutex_unlock(&con->mutex);
2973
2974 /* if there wasn't anything waiting to send before, queue
2975 * new work */
2976 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2977 queue_con(con);
2978 }
2979 EXPORT_SYMBOL(ceph_con_send);
2980
2981 /*
2982 * Revoke a message that was previously queued for send
2983 */
ceph_msg_revoke(struct ceph_msg * msg)2984 void ceph_msg_revoke(struct ceph_msg *msg)
2985 {
2986 struct ceph_connection *con = msg->con;
2987
2988 if (!con)
2989 return; /* Message not in our possession */
2990
2991 mutex_lock(&con->mutex);
2992 if (!list_empty(&msg->list_head)) {
2993 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2994 list_del_init(&msg->list_head);
2995 BUG_ON(msg->con == NULL);
2996 msg->con->ops->put(msg->con);
2997 msg->con = NULL;
2998 msg->hdr.seq = 0;
2999
3000 ceph_msg_put(msg);
3001 }
3002 if (con->out_msg == msg) {
3003 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3004 con->out_msg = NULL;
3005 if (con->out_kvec_is_msg) {
3006 con->out_skip = con->out_kvec_bytes;
3007 con->out_kvec_is_msg = false;
3008 }
3009 msg->hdr.seq = 0;
3010
3011 ceph_msg_put(msg);
3012 }
3013 mutex_unlock(&con->mutex);
3014 }
3015
3016 /*
3017 * Revoke a message that we may be reading data into
3018 */
ceph_msg_revoke_incoming(struct ceph_msg * msg)3019 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3020 {
3021 struct ceph_connection *con;
3022
3023 BUG_ON(msg == NULL);
3024 if (!msg->con) {
3025 dout("%s msg %p null con\n", __func__, msg);
3026
3027 return; /* Message not in our possession */
3028 }
3029
3030 con = msg->con;
3031 mutex_lock(&con->mutex);
3032 if (con->in_msg == msg) {
3033 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3034 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3035 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3036
3037 /* skip rest of message */
3038 dout("%s %p msg %p revoked\n", __func__, con, msg);
3039 con->in_base_pos = con->in_base_pos -
3040 sizeof(struct ceph_msg_header) -
3041 front_len -
3042 middle_len -
3043 data_len -
3044 sizeof(struct ceph_msg_footer);
3045 ceph_msg_put(con->in_msg);
3046 con->in_msg = NULL;
3047 con->in_tag = CEPH_MSGR_TAG_READY;
3048 con->in_seq++;
3049 } else {
3050 dout("%s %p in_msg %p msg %p no-op\n",
3051 __func__, con, con->in_msg, msg);
3052 }
3053 mutex_unlock(&con->mutex);
3054 }
3055
3056 /*
3057 * Queue a keepalive byte to ensure the tcp connection is alive.
3058 */
ceph_con_keepalive(struct ceph_connection * con)3059 void ceph_con_keepalive(struct ceph_connection *con)
3060 {
3061 dout("con_keepalive %p\n", con);
3062 mutex_lock(&con->mutex);
3063 clear_standby(con);
3064 mutex_unlock(&con->mutex);
3065 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3066 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3067 queue_con(con);
3068 }
3069 EXPORT_SYMBOL(ceph_con_keepalive);
3070
ceph_msg_data_create(enum ceph_msg_data_type type)3071 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3072 {
3073 struct ceph_msg_data *data;
3074
3075 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3076 return NULL;
3077
3078 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3079 if (data)
3080 data->type = type;
3081 INIT_LIST_HEAD(&data->links);
3082
3083 return data;
3084 }
3085
ceph_msg_data_destroy(struct ceph_msg_data * data)3086 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3087 {
3088 if (!data)
3089 return;
3090
3091 WARN_ON(!list_empty(&data->links));
3092 if (data->type == CEPH_MSG_DATA_PAGELIST)
3093 ceph_pagelist_release(data->pagelist);
3094 kmem_cache_free(ceph_msg_data_cache, data);
3095 }
3096
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment)3097 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3098 size_t length, size_t alignment)
3099 {
3100 struct ceph_msg_data *data;
3101
3102 BUG_ON(!pages);
3103 BUG_ON(!length);
3104
3105 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3106 BUG_ON(!data);
3107 data->pages = pages;
3108 data->length = length;
3109 data->alignment = alignment & ~PAGE_MASK;
3110
3111 list_add_tail(&data->links, &msg->data);
3112 msg->data_length += length;
3113 }
3114 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3115
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)3116 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3117 struct ceph_pagelist *pagelist)
3118 {
3119 struct ceph_msg_data *data;
3120
3121 BUG_ON(!pagelist);
3122 BUG_ON(!pagelist->length);
3123
3124 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3125 BUG_ON(!data);
3126 data->pagelist = pagelist;
3127
3128 list_add_tail(&data->links, &msg->data);
3129 msg->data_length += pagelist->length;
3130 }
3131 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3132
3133 #ifdef CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct bio * bio,size_t length)3134 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3135 size_t length)
3136 {
3137 struct ceph_msg_data *data;
3138
3139 BUG_ON(!bio);
3140
3141 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3142 BUG_ON(!data);
3143 data->bio = bio;
3144 data->bio_length = length;
3145
3146 list_add_tail(&data->links, &msg->data);
3147 msg->data_length += length;
3148 }
3149 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3150 #endif /* CONFIG_BLOCK */
3151
3152 /*
3153 * construct a new message with given type, size
3154 * the new msg has a ref count of 1.
3155 */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)3156 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3157 bool can_fail)
3158 {
3159 struct ceph_msg *m;
3160
3161 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3162 if (m == NULL)
3163 goto out;
3164
3165 m->hdr.type = cpu_to_le16(type);
3166 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3167 m->hdr.front_len = cpu_to_le32(front_len);
3168
3169 INIT_LIST_HEAD(&m->list_head);
3170 kref_init(&m->kref);
3171 INIT_LIST_HEAD(&m->data);
3172
3173 /* front */
3174 if (front_len) {
3175 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3176 if (m->front.iov_base == NULL) {
3177 dout("ceph_msg_new can't allocate %d bytes\n",
3178 front_len);
3179 goto out2;
3180 }
3181 } else {
3182 m->front.iov_base = NULL;
3183 }
3184 m->front_alloc_len = m->front.iov_len = front_len;
3185
3186 dout("ceph_msg_new %p front %d\n", m, front_len);
3187 return m;
3188
3189 out2:
3190 ceph_msg_put(m);
3191 out:
3192 if (!can_fail) {
3193 pr_err("msg_new can't create type %d front %d\n", type,
3194 front_len);
3195 WARN_ON(1);
3196 } else {
3197 dout("msg_new can't create type %d front %d\n", type,
3198 front_len);
3199 }
3200 return NULL;
3201 }
3202 EXPORT_SYMBOL(ceph_msg_new);
3203
3204 /*
3205 * Allocate "middle" portion of a message, if it is needed and wasn't
3206 * allocated by alloc_msg. This allows us to read a small fixed-size
3207 * per-type header in the front and then gracefully fail (i.e.,
3208 * propagate the error to the caller based on info in the front) when
3209 * the middle is too large.
3210 */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)3211 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3212 {
3213 int type = le16_to_cpu(msg->hdr.type);
3214 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3215
3216 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3217 ceph_msg_type_name(type), middle_len);
3218 BUG_ON(!middle_len);
3219 BUG_ON(msg->middle);
3220
3221 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3222 if (!msg->middle)
3223 return -ENOMEM;
3224 return 0;
3225 }
3226
3227 /*
3228 * Allocate a message for receiving an incoming message on a
3229 * connection, and save the result in con->in_msg. Uses the
3230 * connection's private alloc_msg op if available.
3231 *
3232 * Returns 0 on success, or a negative error code.
3233 *
3234 * On success, if we set *skip = 1:
3235 * - the next message should be skipped and ignored.
3236 * - con->in_msg == NULL
3237 * or if we set *skip = 0:
3238 * - con->in_msg is non-null.
3239 * On error (ENOMEM, EAGAIN, ...),
3240 * - con->in_msg == NULL
3241 */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)3242 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3243 {
3244 struct ceph_msg_header *hdr = &con->in_hdr;
3245 int middle_len = le32_to_cpu(hdr->middle_len);
3246 struct ceph_msg *msg;
3247 int ret = 0;
3248
3249 BUG_ON(con->in_msg != NULL);
3250 BUG_ON(!con->ops->alloc_msg);
3251
3252 mutex_unlock(&con->mutex);
3253 msg = con->ops->alloc_msg(con, hdr, skip);
3254 mutex_lock(&con->mutex);
3255 if (con->state != CON_STATE_OPEN) {
3256 if (msg)
3257 ceph_msg_put(msg);
3258 return -EAGAIN;
3259 }
3260 if (msg) {
3261 BUG_ON(*skip);
3262 con->in_msg = msg;
3263 con->in_msg->con = con->ops->get(con);
3264 BUG_ON(con->in_msg->con == NULL);
3265 } else {
3266 /*
3267 * Null message pointer means either we should skip
3268 * this message or we couldn't allocate memory. The
3269 * former is not an error.
3270 */
3271 if (*skip)
3272 return 0;
3273 con->error_msg = "error allocating memory for incoming message";
3274
3275 return -ENOMEM;
3276 }
3277 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3278
3279 if (middle_len && !con->in_msg->middle) {
3280 ret = ceph_alloc_middle(con, con->in_msg);
3281 if (ret < 0) {
3282 ceph_msg_put(con->in_msg);
3283 con->in_msg = NULL;
3284 }
3285 }
3286
3287 return ret;
3288 }
3289
3290
3291 /*
3292 * Free a generically kmalloc'd message.
3293 */
ceph_msg_free(struct ceph_msg * m)3294 static void ceph_msg_free(struct ceph_msg *m)
3295 {
3296 dout("%s %p\n", __func__, m);
3297 ceph_kvfree(m->front.iov_base);
3298 kmem_cache_free(ceph_msg_cache, m);
3299 }
3300
ceph_msg_release(struct kref * kref)3301 static void ceph_msg_release(struct kref *kref)
3302 {
3303 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3304 LIST_HEAD(data);
3305 struct list_head *links;
3306 struct list_head *next;
3307
3308 dout("%s %p\n", __func__, m);
3309 WARN_ON(!list_empty(&m->list_head));
3310
3311 /* drop middle, data, if any */
3312 if (m->middle) {
3313 ceph_buffer_put(m->middle);
3314 m->middle = NULL;
3315 }
3316
3317 list_splice_init(&m->data, &data);
3318 list_for_each_safe(links, next, &data) {
3319 struct ceph_msg_data *data;
3320
3321 data = list_entry(links, struct ceph_msg_data, links);
3322 list_del_init(links);
3323 ceph_msg_data_destroy(data);
3324 }
3325 m->data_length = 0;
3326
3327 if (m->pool)
3328 ceph_msgpool_put(m->pool, m);
3329 else
3330 ceph_msg_free(m);
3331 }
3332
ceph_msg_get(struct ceph_msg * msg)3333 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3334 {
3335 dout("%s %p (was %d)\n", __func__, msg,
3336 atomic_read(&msg->kref.refcount));
3337 kref_get(&msg->kref);
3338 return msg;
3339 }
3340 EXPORT_SYMBOL(ceph_msg_get);
3341
ceph_msg_put(struct ceph_msg * msg)3342 void ceph_msg_put(struct ceph_msg *msg)
3343 {
3344 dout("%s %p (was %d)\n", __func__, msg,
3345 atomic_read(&msg->kref.refcount));
3346 kref_put(&msg->kref, ceph_msg_release);
3347 }
3348 EXPORT_SYMBOL(ceph_msg_put);
3349
ceph_msg_dump(struct ceph_msg * msg)3350 void ceph_msg_dump(struct ceph_msg *msg)
3351 {
3352 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3353 msg->front_alloc_len, msg->data_length);
3354 print_hex_dump(KERN_DEBUG, "header: ",
3355 DUMP_PREFIX_OFFSET, 16, 1,
3356 &msg->hdr, sizeof(msg->hdr), true);
3357 print_hex_dump(KERN_DEBUG, " front: ",
3358 DUMP_PREFIX_OFFSET, 16, 1,
3359 msg->front.iov_base, msg->front.iov_len, true);
3360 if (msg->middle)
3361 print_hex_dump(KERN_DEBUG, "middle: ",
3362 DUMP_PREFIX_OFFSET, 16, 1,
3363 msg->middle->vec.iov_base,
3364 msg->middle->vec.iov_len, true);
3365 print_hex_dump(KERN_DEBUG, "footer: ",
3366 DUMP_PREFIX_OFFSET, 16, 1,
3367 &msg->footer, sizeof(msg->footer), true);
3368 }
3369 EXPORT_SYMBOL(ceph_msg_dump);
3370