1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 /*
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
143 */
144 struct cgroup_root cgrp_dfl_root;
145
146 /*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150 static bool cgrp_dfl_root_visible;
151
152 /*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156 static bool cgroup_legacy_files_on_dfl;
157
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned int cgrp_dfl_root_inhibit_ss_mask;
160
161 /* The list of hierarchy roots */
162
163 static LIST_HEAD(cgroup_roots);
164 static int cgroup_root_count;
165
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr);
168
169 /*
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
175 */
176 static u64 css_serial_nr_next = 1;
177
178 /* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
182 */
183 static int need_forkexit_callback __read_mostly;
184
185 static struct cftype cgroup_dfl_base_files[];
186 static struct cftype cgroup_legacy_base_files[];
187
188 static int rebind_subsystems(struct cgroup_root *dst_root,
189 unsigned int ss_mask);
190 static int cgroup_destroy_locked(struct cgroup *cgrp);
191 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
192 bool visible);
193 static void css_release(struct percpu_ref *ref);
194 static void kill_css(struct cgroup_subsys_state *css);
195 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
197
198 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)199 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
200 gfp_t gfp_mask)
201 {
202 int ret;
203
204 idr_preload(gfp_mask);
205 spin_lock_bh(&cgroup_idr_lock);
206 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
207 spin_unlock_bh(&cgroup_idr_lock);
208 idr_preload_end();
209 return ret;
210 }
211
cgroup_idr_replace(struct idr * idr,void * ptr,int id)212 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
213 {
214 void *ret;
215
216 spin_lock_bh(&cgroup_idr_lock);
217 ret = idr_replace(idr, ptr, id);
218 spin_unlock_bh(&cgroup_idr_lock);
219 return ret;
220 }
221
cgroup_idr_remove(struct idr * idr,int id)222 static void cgroup_idr_remove(struct idr *idr, int id)
223 {
224 spin_lock_bh(&cgroup_idr_lock);
225 idr_remove(idr, id);
226 spin_unlock_bh(&cgroup_idr_lock);
227 }
228
cgroup_parent(struct cgroup * cgrp)229 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
230 {
231 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
232
233 if (parent_css)
234 return container_of(parent_css, struct cgroup, self);
235 return NULL;
236 }
237
238 /**
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
242 *
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
248 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)249 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
250 struct cgroup_subsys *ss)
251 {
252 if (ss)
253 return rcu_dereference_check(cgrp->subsys[ss->id],
254 lockdep_is_held(&cgroup_mutex));
255 else
256 return &cgrp->self;
257 }
258
259 /**
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
263 *
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
268 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)269 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
270 struct cgroup_subsys *ss)
271 {
272 lockdep_assert_held(&cgroup_mutex);
273
274 if (!ss)
275 return &cgrp->self;
276
277 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
278 return NULL;
279
280 while (cgroup_parent(cgrp) &&
281 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
282 cgrp = cgroup_parent(cgrp);
283
284 return cgroup_css(cgrp, ss);
285 }
286
287 /* convenient tests for these bits */
cgroup_is_dead(const struct cgroup * cgrp)288 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
289 {
290 return !(cgrp->self.flags & CSS_ONLINE);
291 }
292
of_css(struct kernfs_open_file * of)293 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
294 {
295 struct cgroup *cgrp = of->kn->parent->priv;
296 struct cftype *cft = of_cft(of);
297
298 /*
299 * This is open and unprotected implementation of cgroup_css().
300 * seq_css() is only called from a kernfs file operation which has
301 * an active reference on the file. Because all the subsystem
302 * files are drained before a css is disassociated with a cgroup,
303 * the matching css from the cgroup's subsys table is guaranteed to
304 * be and stay valid until the enclosing operation is complete.
305 */
306 if (cft->ss)
307 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
308 else
309 return &cgrp->self;
310 }
311 EXPORT_SYMBOL_GPL(of_css);
312
313 /**
314 * cgroup_is_descendant - test ancestry
315 * @cgrp: the cgroup to be tested
316 * @ancestor: possible ancestor of @cgrp
317 *
318 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
319 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
320 * and @ancestor are accessible.
321 */
cgroup_is_descendant(struct cgroup * cgrp,struct cgroup * ancestor)322 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
323 {
324 while (cgrp) {
325 if (cgrp == ancestor)
326 return true;
327 cgrp = cgroup_parent(cgrp);
328 }
329 return false;
330 }
331
notify_on_release(const struct cgroup * cgrp)332 static int notify_on_release(const struct cgroup *cgrp)
333 {
334 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
335 }
336
337 /**
338 * for_each_css - iterate all css's of a cgroup
339 * @css: the iteration cursor
340 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
341 * @cgrp: the target cgroup to iterate css's of
342 *
343 * Should be called under cgroup_[tree_]mutex.
344 */
345 #define for_each_css(css, ssid, cgrp) \
346 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
347 if (!((css) = rcu_dereference_check( \
348 (cgrp)->subsys[(ssid)], \
349 lockdep_is_held(&cgroup_mutex)))) { } \
350 else
351
352 /**
353 * for_each_e_css - iterate all effective css's of a cgroup
354 * @css: the iteration cursor
355 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
356 * @cgrp: the target cgroup to iterate css's of
357 *
358 * Should be called under cgroup_[tree_]mutex.
359 */
360 #define for_each_e_css(css, ssid, cgrp) \
361 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
362 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
363 ; \
364 else
365
366 /**
367 * for_each_subsys - iterate all enabled cgroup subsystems
368 * @ss: the iteration cursor
369 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
370 */
371 #define for_each_subsys(ss, ssid) \
372 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
373 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
374
375 /* iterate across the hierarchies */
376 #define for_each_root(root) \
377 list_for_each_entry((root), &cgroup_roots, root_list)
378
379 /* iterate over child cgrps, lock should be held throughout iteration */
380 #define cgroup_for_each_live_child(child, cgrp) \
381 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
382 if (({ lockdep_assert_held(&cgroup_mutex); \
383 cgroup_is_dead(child); })) \
384 ; \
385 else
386
387 static void cgroup_release_agent(struct work_struct *work);
388 static void check_for_release(struct cgroup *cgrp);
389
390 /*
391 * A cgroup can be associated with multiple css_sets as different tasks may
392 * belong to different cgroups on different hierarchies. In the other
393 * direction, a css_set is naturally associated with multiple cgroups.
394 * This M:N relationship is represented by the following link structure
395 * which exists for each association and allows traversing the associations
396 * from both sides.
397 */
398 struct cgrp_cset_link {
399 /* the cgroup and css_set this link associates */
400 struct cgroup *cgrp;
401 struct css_set *cset;
402
403 /* list of cgrp_cset_links anchored at cgrp->cset_links */
404 struct list_head cset_link;
405
406 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
407 struct list_head cgrp_link;
408 };
409
410 /*
411 * The default css_set - used by init and its children prior to any
412 * hierarchies being mounted. It contains a pointer to the root state
413 * for each subsystem. Also used to anchor the list of css_sets. Not
414 * reference-counted, to improve performance when child cgroups
415 * haven't been created.
416 */
417 struct css_set init_css_set = {
418 .refcount = ATOMIC_INIT(1),
419 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
420 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
421 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
422 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
423 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
424 };
425
426 static int css_set_count = 1; /* 1 for init_css_set */
427
428 /**
429 * cgroup_update_populated - updated populated count of a cgroup
430 * @cgrp: the target cgroup
431 * @populated: inc or dec populated count
432 *
433 * @cgrp is either getting the first task (css_set) or losing the last.
434 * Update @cgrp->populated_cnt accordingly. The count is propagated
435 * towards root so that a given cgroup's populated_cnt is zero iff the
436 * cgroup and all its descendants are empty.
437 *
438 * @cgrp's interface file "cgroup.populated" is zero if
439 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
440 * changes from or to zero, userland is notified that the content of the
441 * interface file has changed. This can be used to detect when @cgrp and
442 * its descendants become populated or empty.
443 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)444 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
445 {
446 lockdep_assert_held(&css_set_rwsem);
447
448 do {
449 bool trigger;
450
451 if (populated)
452 trigger = !cgrp->populated_cnt++;
453 else
454 trigger = !--cgrp->populated_cnt;
455
456 if (!trigger)
457 break;
458
459 if (cgrp->populated_kn)
460 kernfs_notify(cgrp->populated_kn);
461 cgrp = cgroup_parent(cgrp);
462 } while (cgrp);
463 }
464
465 /*
466 * hash table for cgroup groups. This improves the performance to find
467 * an existing css_set. This hash doesn't (currently) take into
468 * account cgroups in empty hierarchies.
469 */
470 #define CSS_SET_HASH_BITS 7
471 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472
css_set_hash(struct cgroup_subsys_state * css[])473 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
474 {
475 unsigned long key = 0UL;
476 struct cgroup_subsys *ss;
477 int i;
478
479 for_each_subsys(ss, i)
480 key += (unsigned long)css[i];
481 key = (key >> 16) ^ key;
482
483 return key;
484 }
485
put_css_set_locked(struct css_set * cset)486 static void put_css_set_locked(struct css_set *cset)
487 {
488 struct cgrp_cset_link *link, *tmp_link;
489 struct cgroup_subsys *ss;
490 int ssid;
491
492 lockdep_assert_held(&css_set_rwsem);
493
494 if (!atomic_dec_and_test(&cset->refcount))
495 return;
496
497 /* This css_set is dead. unlink it and release cgroup refcounts */
498 for_each_subsys(ss, ssid)
499 list_del(&cset->e_cset_node[ssid]);
500 hash_del(&cset->hlist);
501 css_set_count--;
502
503 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
504 struct cgroup *cgrp = link->cgrp;
505
506 list_del(&link->cset_link);
507 list_del(&link->cgrp_link);
508
509 /* @cgrp can't go away while we're holding css_set_rwsem */
510 if (list_empty(&cgrp->cset_links)) {
511 cgroup_update_populated(cgrp, false);
512 check_for_release(cgrp);
513 }
514
515 kfree(link);
516 }
517
518 kfree_rcu(cset, rcu_head);
519 }
520
put_css_set(struct css_set * cset)521 static void put_css_set(struct css_set *cset)
522 {
523 /*
524 * Ensure that the refcount doesn't hit zero while any readers
525 * can see it. Similar to atomic_dec_and_lock(), but for an
526 * rwlock
527 */
528 if (atomic_add_unless(&cset->refcount, -1, 1))
529 return;
530
531 down_write(&css_set_rwsem);
532 put_css_set_locked(cset);
533 up_write(&css_set_rwsem);
534 }
535
536 /*
537 * refcounted get/put for css_set objects
538 */
get_css_set(struct css_set * cset)539 static inline void get_css_set(struct css_set *cset)
540 {
541 atomic_inc(&cset->refcount);
542 }
543
544 /**
545 * compare_css_sets - helper function for find_existing_css_set().
546 * @cset: candidate css_set being tested
547 * @old_cset: existing css_set for a task
548 * @new_cgrp: cgroup that's being entered by the task
549 * @template: desired set of css pointers in css_set (pre-calculated)
550 *
551 * Returns true if "cset" matches "old_cset" except for the hierarchy
552 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
553 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])554 static bool compare_css_sets(struct css_set *cset,
555 struct css_set *old_cset,
556 struct cgroup *new_cgrp,
557 struct cgroup_subsys_state *template[])
558 {
559 struct list_head *l1, *l2;
560
561 /*
562 * On the default hierarchy, there can be csets which are
563 * associated with the same set of cgroups but different csses.
564 * Let's first ensure that csses match.
565 */
566 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
567 return false;
568
569 /*
570 * Compare cgroup pointers in order to distinguish between
571 * different cgroups in hierarchies. As different cgroups may
572 * share the same effective css, this comparison is always
573 * necessary.
574 */
575 l1 = &cset->cgrp_links;
576 l2 = &old_cset->cgrp_links;
577 while (1) {
578 struct cgrp_cset_link *link1, *link2;
579 struct cgroup *cgrp1, *cgrp2;
580
581 l1 = l1->next;
582 l2 = l2->next;
583 /* See if we reached the end - both lists are equal length. */
584 if (l1 == &cset->cgrp_links) {
585 BUG_ON(l2 != &old_cset->cgrp_links);
586 break;
587 } else {
588 BUG_ON(l2 == &old_cset->cgrp_links);
589 }
590 /* Locate the cgroups associated with these links. */
591 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
592 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
593 cgrp1 = link1->cgrp;
594 cgrp2 = link2->cgrp;
595 /* Hierarchies should be linked in the same order. */
596 BUG_ON(cgrp1->root != cgrp2->root);
597
598 /*
599 * If this hierarchy is the hierarchy of the cgroup
600 * that's changing, then we need to check that this
601 * css_set points to the new cgroup; if it's any other
602 * hierarchy, then this css_set should point to the
603 * same cgroup as the old css_set.
604 */
605 if (cgrp1->root == new_cgrp->root) {
606 if (cgrp1 != new_cgrp)
607 return false;
608 } else {
609 if (cgrp1 != cgrp2)
610 return false;
611 }
612 }
613 return true;
614 }
615
616 /**
617 * find_existing_css_set - init css array and find the matching css_set
618 * @old_cset: the css_set that we're using before the cgroup transition
619 * @cgrp: the cgroup that we're moving into
620 * @template: out param for the new set of csses, should be clear on entry
621 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])622 static struct css_set *find_existing_css_set(struct css_set *old_cset,
623 struct cgroup *cgrp,
624 struct cgroup_subsys_state *template[])
625 {
626 struct cgroup_root *root = cgrp->root;
627 struct cgroup_subsys *ss;
628 struct css_set *cset;
629 unsigned long key;
630 int i;
631
632 /*
633 * Build the set of subsystem state objects that we want to see in the
634 * new css_set. while subsystems can change globally, the entries here
635 * won't change, so no need for locking.
636 */
637 for_each_subsys(ss, i) {
638 if (root->subsys_mask & (1UL << i)) {
639 /*
640 * @ss is in this hierarchy, so we want the
641 * effective css from @cgrp.
642 */
643 template[i] = cgroup_e_css(cgrp, ss);
644 } else {
645 /*
646 * @ss is not in this hierarchy, so we don't want
647 * to change the css.
648 */
649 template[i] = old_cset->subsys[i];
650 }
651 }
652
653 key = css_set_hash(template);
654 hash_for_each_possible(css_set_table, cset, hlist, key) {
655 if (!compare_css_sets(cset, old_cset, cgrp, template))
656 continue;
657
658 /* This css_set matches what we need */
659 return cset;
660 }
661
662 /* No existing cgroup group matched */
663 return NULL;
664 }
665
free_cgrp_cset_links(struct list_head * links_to_free)666 static void free_cgrp_cset_links(struct list_head *links_to_free)
667 {
668 struct cgrp_cset_link *link, *tmp_link;
669
670 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
671 list_del(&link->cset_link);
672 kfree(link);
673 }
674 }
675
676 /**
677 * allocate_cgrp_cset_links - allocate cgrp_cset_links
678 * @count: the number of links to allocate
679 * @tmp_links: list_head the allocated links are put on
680 *
681 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
682 * through ->cset_link. Returns 0 on success or -errno.
683 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)684 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
685 {
686 struct cgrp_cset_link *link;
687 int i;
688
689 INIT_LIST_HEAD(tmp_links);
690
691 for (i = 0; i < count; i++) {
692 link = kzalloc(sizeof(*link), GFP_KERNEL);
693 if (!link) {
694 free_cgrp_cset_links(tmp_links);
695 return -ENOMEM;
696 }
697 list_add(&link->cset_link, tmp_links);
698 }
699 return 0;
700 }
701
702 /**
703 * link_css_set - a helper function to link a css_set to a cgroup
704 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
705 * @cset: the css_set to be linked
706 * @cgrp: the destination cgroup
707 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)708 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
709 struct cgroup *cgrp)
710 {
711 struct cgrp_cset_link *link;
712
713 BUG_ON(list_empty(tmp_links));
714
715 if (cgroup_on_dfl(cgrp))
716 cset->dfl_cgrp = cgrp;
717
718 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
719 link->cset = cset;
720 link->cgrp = cgrp;
721
722 if (list_empty(&cgrp->cset_links))
723 cgroup_update_populated(cgrp, true);
724 list_move(&link->cset_link, &cgrp->cset_links);
725
726 /*
727 * Always add links to the tail of the list so that the list
728 * is sorted by order of hierarchy creation
729 */
730 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
731 }
732
733 /**
734 * find_css_set - return a new css_set with one cgroup updated
735 * @old_cset: the baseline css_set
736 * @cgrp: the cgroup to be updated
737 *
738 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
739 * substituted into the appropriate hierarchy.
740 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)741 static struct css_set *find_css_set(struct css_set *old_cset,
742 struct cgroup *cgrp)
743 {
744 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
745 struct css_set *cset;
746 struct list_head tmp_links;
747 struct cgrp_cset_link *link;
748 struct cgroup_subsys *ss;
749 unsigned long key;
750 int ssid;
751
752 lockdep_assert_held(&cgroup_mutex);
753
754 /* First see if we already have a cgroup group that matches
755 * the desired set */
756 down_read(&css_set_rwsem);
757 cset = find_existing_css_set(old_cset, cgrp, template);
758 if (cset)
759 get_css_set(cset);
760 up_read(&css_set_rwsem);
761
762 if (cset)
763 return cset;
764
765 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
766 if (!cset)
767 return NULL;
768
769 /* Allocate all the cgrp_cset_link objects that we'll need */
770 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
771 kfree(cset);
772 return NULL;
773 }
774
775 atomic_set(&cset->refcount, 1);
776 INIT_LIST_HEAD(&cset->cgrp_links);
777 INIT_LIST_HEAD(&cset->tasks);
778 INIT_LIST_HEAD(&cset->mg_tasks);
779 INIT_LIST_HEAD(&cset->mg_preload_node);
780 INIT_LIST_HEAD(&cset->mg_node);
781 INIT_HLIST_NODE(&cset->hlist);
782
783 /* Copy the set of subsystem state objects generated in
784 * find_existing_css_set() */
785 memcpy(cset->subsys, template, sizeof(cset->subsys));
786
787 down_write(&css_set_rwsem);
788 /* Add reference counts and links from the new css_set. */
789 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
790 struct cgroup *c = link->cgrp;
791
792 if (c->root == cgrp->root)
793 c = cgrp;
794 link_css_set(&tmp_links, cset, c);
795 }
796
797 BUG_ON(!list_empty(&tmp_links));
798
799 css_set_count++;
800
801 /* Add @cset to the hash table */
802 key = css_set_hash(cset->subsys);
803 hash_add(css_set_table, &cset->hlist, key);
804
805 for_each_subsys(ss, ssid)
806 list_add_tail(&cset->e_cset_node[ssid],
807 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
808
809 up_write(&css_set_rwsem);
810
811 return cset;
812 }
813
cgroup_root_from_kf(struct kernfs_root * kf_root)814 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
815 {
816 struct cgroup *root_cgrp = kf_root->kn->priv;
817
818 return root_cgrp->root;
819 }
820
cgroup_init_root_id(struct cgroup_root * root)821 static int cgroup_init_root_id(struct cgroup_root *root)
822 {
823 int id;
824
825 lockdep_assert_held(&cgroup_mutex);
826
827 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
828 if (id < 0)
829 return id;
830
831 root->hierarchy_id = id;
832 return 0;
833 }
834
cgroup_exit_root_id(struct cgroup_root * root)835 static void cgroup_exit_root_id(struct cgroup_root *root)
836 {
837 lockdep_assert_held(&cgroup_mutex);
838
839 if (root->hierarchy_id) {
840 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
841 root->hierarchy_id = 0;
842 }
843 }
844
cgroup_free_root(struct cgroup_root * root)845 static void cgroup_free_root(struct cgroup_root *root)
846 {
847 if (root) {
848 /* hierarhcy ID shoulid already have been released */
849 WARN_ON_ONCE(root->hierarchy_id);
850
851 idr_destroy(&root->cgroup_idr);
852 kfree(root);
853 }
854 }
855
cgroup_destroy_root(struct cgroup_root * root)856 static void cgroup_destroy_root(struct cgroup_root *root)
857 {
858 struct cgroup *cgrp = &root->cgrp;
859 struct cgrp_cset_link *link, *tmp_link;
860
861 mutex_lock(&cgroup_mutex);
862
863 BUG_ON(atomic_read(&root->nr_cgrps));
864 BUG_ON(!list_empty(&cgrp->self.children));
865
866 /* Rebind all subsystems back to the default hierarchy */
867 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
868
869 /*
870 * Release all the links from cset_links to this hierarchy's
871 * root cgroup
872 */
873 down_write(&css_set_rwsem);
874
875 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
876 list_del(&link->cset_link);
877 list_del(&link->cgrp_link);
878 kfree(link);
879 }
880 up_write(&css_set_rwsem);
881
882 if (!list_empty(&root->root_list)) {
883 list_del(&root->root_list);
884 cgroup_root_count--;
885 }
886
887 cgroup_exit_root_id(root);
888
889 mutex_unlock(&cgroup_mutex);
890
891 kernfs_destroy_root(root->kf_root);
892 cgroup_free_root(root);
893 }
894
895 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)896 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
897 struct cgroup_root *root)
898 {
899 struct cgroup *res = NULL;
900
901 lockdep_assert_held(&cgroup_mutex);
902 lockdep_assert_held(&css_set_rwsem);
903
904 if (cset == &init_css_set) {
905 res = &root->cgrp;
906 } else {
907 struct cgrp_cset_link *link;
908
909 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
910 struct cgroup *c = link->cgrp;
911
912 if (c->root == root) {
913 res = c;
914 break;
915 }
916 }
917 }
918
919 BUG_ON(!res);
920 return res;
921 }
922
923 /*
924 * Return the cgroup for "task" from the given hierarchy. Must be
925 * called with cgroup_mutex and css_set_rwsem held.
926 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)927 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
928 struct cgroup_root *root)
929 {
930 /*
931 * No need to lock the task - since we hold cgroup_mutex the
932 * task can't change groups, so the only thing that can happen
933 * is that it exits and its css is set back to init_css_set.
934 */
935 return cset_cgroup_from_root(task_css_set(task), root);
936 }
937
938 /*
939 * A task must hold cgroup_mutex to modify cgroups.
940 *
941 * Any task can increment and decrement the count field without lock.
942 * So in general, code holding cgroup_mutex can't rely on the count
943 * field not changing. However, if the count goes to zero, then only
944 * cgroup_attach_task() can increment it again. Because a count of zero
945 * means that no tasks are currently attached, therefore there is no
946 * way a task attached to that cgroup can fork (the other way to
947 * increment the count). So code holding cgroup_mutex can safely
948 * assume that if the count is zero, it will stay zero. Similarly, if
949 * a task holds cgroup_mutex on a cgroup with zero count, it
950 * knows that the cgroup won't be removed, as cgroup_rmdir()
951 * needs that mutex.
952 *
953 * A cgroup can only be deleted if both its 'count' of using tasks
954 * is zero, and its list of 'children' cgroups is empty. Since all
955 * tasks in the system use _some_ cgroup, and since there is always at
956 * least one task in the system (init, pid == 1), therefore, root cgroup
957 * always has either children cgroups and/or using tasks. So we don't
958 * need a special hack to ensure that root cgroup cannot be deleted.
959 *
960 * P.S. One more locking exception. RCU is used to guard the
961 * update of a tasks cgroup pointer by cgroup_attach_task()
962 */
963
964 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
965 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
966 static const struct file_operations proc_cgroupstats_operations;
967
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)968 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
969 char *buf)
970 {
971 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
972 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
973 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
974 cft->ss->name, cft->name);
975 else
976 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
977 return buf;
978 }
979
980 /**
981 * cgroup_file_mode - deduce file mode of a control file
982 * @cft: the control file in question
983 *
984 * returns cft->mode if ->mode is not 0
985 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
986 * returns S_IRUGO if it has only a read handler
987 * returns S_IWUSR if it has only a write hander
988 */
cgroup_file_mode(const struct cftype * cft)989 static umode_t cgroup_file_mode(const struct cftype *cft)
990 {
991 umode_t mode = 0;
992
993 if (cft->mode)
994 return cft->mode;
995
996 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
997 mode |= S_IRUGO;
998
999 if (cft->write_u64 || cft->write_s64 || cft->write)
1000 mode |= S_IWUSR;
1001
1002 return mode;
1003 }
1004
cgroup_get(struct cgroup * cgrp)1005 static void cgroup_get(struct cgroup *cgrp)
1006 {
1007 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1008 css_get(&cgrp->self);
1009 }
1010
cgroup_tryget(struct cgroup * cgrp)1011 static bool cgroup_tryget(struct cgroup *cgrp)
1012 {
1013 return css_tryget(&cgrp->self);
1014 }
1015
cgroup_put(struct cgroup * cgrp)1016 static void cgroup_put(struct cgroup *cgrp)
1017 {
1018 css_put(&cgrp->self);
1019 }
1020
1021 /**
1022 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1023 * @cgrp: the target cgroup
1024 *
1025 * On the default hierarchy, a subsystem may request other subsystems to be
1026 * enabled together through its ->depends_on mask. In such cases, more
1027 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1028 *
1029 * This function determines which subsystems need to be enabled given the
1030 * current @cgrp->subtree_control and records it in
1031 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1032 * @cgrp->subtree_control and follows the usual hierarchy rules.
1033 */
cgroup_refresh_child_subsys_mask(struct cgroup * cgrp)1034 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1035 {
1036 struct cgroup *parent = cgroup_parent(cgrp);
1037 unsigned int cur_ss_mask = cgrp->subtree_control;
1038 struct cgroup_subsys *ss;
1039 int ssid;
1040
1041 lockdep_assert_held(&cgroup_mutex);
1042
1043 if (!cgroup_on_dfl(cgrp)) {
1044 cgrp->child_subsys_mask = cur_ss_mask;
1045 return;
1046 }
1047
1048 while (true) {
1049 unsigned int new_ss_mask = cur_ss_mask;
1050
1051 for_each_subsys(ss, ssid)
1052 if (cur_ss_mask & (1 << ssid))
1053 new_ss_mask |= ss->depends_on;
1054
1055 /*
1056 * Mask out subsystems which aren't available. This can
1057 * happen only if some depended-upon subsystems were bound
1058 * to non-default hierarchies.
1059 */
1060 if (parent)
1061 new_ss_mask &= parent->child_subsys_mask;
1062 else
1063 new_ss_mask &= cgrp->root->subsys_mask;
1064
1065 if (new_ss_mask == cur_ss_mask)
1066 break;
1067 cur_ss_mask = new_ss_mask;
1068 }
1069
1070 cgrp->child_subsys_mask = cur_ss_mask;
1071 }
1072
1073 /**
1074 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1075 * @kn: the kernfs_node being serviced
1076 *
1077 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1078 * the method finishes if locking succeeded. Note that once this function
1079 * returns the cgroup returned by cgroup_kn_lock_live() may become
1080 * inaccessible any time. If the caller intends to continue to access the
1081 * cgroup, it should pin it before invoking this function.
1082 */
cgroup_kn_unlock(struct kernfs_node * kn)1083 static void cgroup_kn_unlock(struct kernfs_node *kn)
1084 {
1085 struct cgroup *cgrp;
1086
1087 if (kernfs_type(kn) == KERNFS_DIR)
1088 cgrp = kn->priv;
1089 else
1090 cgrp = kn->parent->priv;
1091
1092 mutex_unlock(&cgroup_mutex);
1093
1094 kernfs_unbreak_active_protection(kn);
1095 cgroup_put(cgrp);
1096 }
1097
1098 /**
1099 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1100 * @kn: the kernfs_node being serviced
1101 *
1102 * This helper is to be used by a cgroup kernfs method currently servicing
1103 * @kn. It breaks the active protection, performs cgroup locking and
1104 * verifies that the associated cgroup is alive. Returns the cgroup if
1105 * alive; otherwise, %NULL. A successful return should be undone by a
1106 * matching cgroup_kn_unlock() invocation.
1107 *
1108 * Any cgroup kernfs method implementation which requires locking the
1109 * associated cgroup should use this helper. It avoids nesting cgroup
1110 * locking under kernfs active protection and allows all kernfs operations
1111 * including self-removal.
1112 */
cgroup_kn_lock_live(struct kernfs_node * kn)1113 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1114 {
1115 struct cgroup *cgrp;
1116
1117 if (kernfs_type(kn) == KERNFS_DIR)
1118 cgrp = kn->priv;
1119 else
1120 cgrp = kn->parent->priv;
1121
1122 /*
1123 * We're gonna grab cgroup_mutex which nests outside kernfs
1124 * active_ref. cgroup liveliness check alone provides enough
1125 * protection against removal. Ensure @cgrp stays accessible and
1126 * break the active_ref protection.
1127 */
1128 if (!cgroup_tryget(cgrp))
1129 return NULL;
1130 kernfs_break_active_protection(kn);
1131
1132 mutex_lock(&cgroup_mutex);
1133
1134 if (!cgroup_is_dead(cgrp))
1135 return cgrp;
1136
1137 cgroup_kn_unlock(kn);
1138 return NULL;
1139 }
1140
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1141 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1142 {
1143 char name[CGROUP_FILE_NAME_MAX];
1144
1145 lockdep_assert_held(&cgroup_mutex);
1146 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1147 }
1148
1149 /**
1150 * cgroup_clear_dir - remove subsys files in a cgroup directory
1151 * @cgrp: target cgroup
1152 * @subsys_mask: mask of the subsystem ids whose files should be removed
1153 */
cgroup_clear_dir(struct cgroup * cgrp,unsigned int subsys_mask)1154 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1155 {
1156 struct cgroup_subsys *ss;
1157 int i;
1158
1159 for_each_subsys(ss, i) {
1160 struct cftype *cfts;
1161
1162 if (!(subsys_mask & (1 << i)))
1163 continue;
1164 list_for_each_entry(cfts, &ss->cfts, node)
1165 cgroup_addrm_files(cgrp, cfts, false);
1166 }
1167 }
1168
rebind_subsystems(struct cgroup_root * dst_root,unsigned int ss_mask)1169 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1170 {
1171 struct cgroup_subsys *ss;
1172 unsigned int tmp_ss_mask;
1173 int ssid, i, ret;
1174
1175 lockdep_assert_held(&cgroup_mutex);
1176
1177 for_each_subsys(ss, ssid) {
1178 if (!(ss_mask & (1 << ssid)))
1179 continue;
1180
1181 /* if @ss has non-root csses attached to it, can't move */
1182 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1183 return -EBUSY;
1184
1185 /* can't move between two non-dummy roots either */
1186 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1187 return -EBUSY;
1188 }
1189
1190 /* skip creating root files on dfl_root for inhibited subsystems */
1191 tmp_ss_mask = ss_mask;
1192 if (dst_root == &cgrp_dfl_root)
1193 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1194
1195 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1196 if (ret) {
1197 if (dst_root != &cgrp_dfl_root)
1198 return ret;
1199
1200 /*
1201 * Rebinding back to the default root is not allowed to
1202 * fail. Using both default and non-default roots should
1203 * be rare. Moving subsystems back and forth even more so.
1204 * Just warn about it and continue.
1205 */
1206 if (cgrp_dfl_root_visible) {
1207 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1208 ret, ss_mask);
1209 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1210 }
1211 }
1212
1213 /*
1214 * Nothing can fail from this point on. Remove files for the
1215 * removed subsystems and rebind each subsystem.
1216 */
1217 for_each_subsys(ss, ssid)
1218 if (ss_mask & (1 << ssid))
1219 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1220
1221 for_each_subsys(ss, ssid) {
1222 struct cgroup_root *src_root;
1223 struct cgroup_subsys_state *css;
1224 struct css_set *cset;
1225
1226 if (!(ss_mask & (1 << ssid)))
1227 continue;
1228
1229 src_root = ss->root;
1230 css = cgroup_css(&src_root->cgrp, ss);
1231
1232 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1233
1234 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1235 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1236 ss->root = dst_root;
1237 css->cgroup = &dst_root->cgrp;
1238
1239 down_write(&css_set_rwsem);
1240 hash_for_each(css_set_table, i, cset, hlist)
1241 list_move_tail(&cset->e_cset_node[ss->id],
1242 &dst_root->cgrp.e_csets[ss->id]);
1243 up_write(&css_set_rwsem);
1244
1245 src_root->subsys_mask &= ~(1 << ssid);
1246 src_root->cgrp.subtree_control &= ~(1 << ssid);
1247 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1248
1249 /* default hierarchy doesn't enable controllers by default */
1250 dst_root->subsys_mask |= 1 << ssid;
1251 if (dst_root != &cgrp_dfl_root) {
1252 dst_root->cgrp.subtree_control |= 1 << ssid;
1253 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1254 }
1255
1256 if (ss->bind)
1257 ss->bind(css);
1258 }
1259
1260 kernfs_activate(dst_root->cgrp.kn);
1261 return 0;
1262 }
1263
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1264 static int cgroup_show_options(struct seq_file *seq,
1265 struct kernfs_root *kf_root)
1266 {
1267 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1268 struct cgroup_subsys *ss;
1269 int ssid;
1270
1271 for_each_subsys(ss, ssid)
1272 if (root->subsys_mask & (1 << ssid))
1273 seq_printf(seq, ",%s", ss->name);
1274 if (root->flags & CGRP_ROOT_NOPREFIX)
1275 seq_puts(seq, ",noprefix");
1276 if (root->flags & CGRP_ROOT_XATTR)
1277 seq_puts(seq, ",xattr");
1278
1279 spin_lock(&release_agent_path_lock);
1280 if (strlen(root->release_agent_path))
1281 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1282 spin_unlock(&release_agent_path_lock);
1283
1284 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1285 seq_puts(seq, ",clone_children");
1286 if (strlen(root->name))
1287 seq_printf(seq, ",name=%s", root->name);
1288 return 0;
1289 }
1290
1291 struct cgroup_sb_opts {
1292 unsigned int subsys_mask;
1293 unsigned int flags;
1294 char *release_agent;
1295 bool cpuset_clone_children;
1296 char *name;
1297 /* User explicitly requested empty subsystem */
1298 bool none;
1299 };
1300
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1301 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1302 {
1303 char *token, *o = data;
1304 bool all_ss = false, one_ss = false;
1305 unsigned int mask = -1U;
1306 struct cgroup_subsys *ss;
1307 int nr_opts = 0;
1308 int i;
1309
1310 #ifdef CONFIG_CPUSETS
1311 mask = ~(1U << cpuset_cgrp_id);
1312 #endif
1313
1314 memset(opts, 0, sizeof(*opts));
1315
1316 while ((token = strsep(&o, ",")) != NULL) {
1317 nr_opts++;
1318
1319 if (!*token)
1320 return -EINVAL;
1321 if (!strcmp(token, "none")) {
1322 /* Explicitly have no subsystems */
1323 opts->none = true;
1324 continue;
1325 }
1326 if (!strcmp(token, "all")) {
1327 /* Mutually exclusive option 'all' + subsystem name */
1328 if (one_ss)
1329 return -EINVAL;
1330 all_ss = true;
1331 continue;
1332 }
1333 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1334 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1335 continue;
1336 }
1337 if (!strcmp(token, "noprefix")) {
1338 opts->flags |= CGRP_ROOT_NOPREFIX;
1339 continue;
1340 }
1341 if (!strcmp(token, "clone_children")) {
1342 opts->cpuset_clone_children = true;
1343 continue;
1344 }
1345 if (!strcmp(token, "xattr")) {
1346 opts->flags |= CGRP_ROOT_XATTR;
1347 continue;
1348 }
1349 if (!strncmp(token, "release_agent=", 14)) {
1350 /* Specifying two release agents is forbidden */
1351 if (opts->release_agent)
1352 return -EINVAL;
1353 opts->release_agent =
1354 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1355 if (!opts->release_agent)
1356 return -ENOMEM;
1357 continue;
1358 }
1359 if (!strncmp(token, "name=", 5)) {
1360 const char *name = token + 5;
1361 /* Can't specify an empty name */
1362 if (!strlen(name))
1363 return -EINVAL;
1364 /* Must match [\w.-]+ */
1365 for (i = 0; i < strlen(name); i++) {
1366 char c = name[i];
1367 if (isalnum(c))
1368 continue;
1369 if ((c == '.') || (c == '-') || (c == '_'))
1370 continue;
1371 return -EINVAL;
1372 }
1373 /* Specifying two names is forbidden */
1374 if (opts->name)
1375 return -EINVAL;
1376 opts->name = kstrndup(name,
1377 MAX_CGROUP_ROOT_NAMELEN - 1,
1378 GFP_KERNEL);
1379 if (!opts->name)
1380 return -ENOMEM;
1381
1382 continue;
1383 }
1384
1385 for_each_subsys(ss, i) {
1386 if (strcmp(token, ss->name))
1387 continue;
1388 if (ss->disabled)
1389 continue;
1390
1391 /* Mutually exclusive option 'all' + subsystem name */
1392 if (all_ss)
1393 return -EINVAL;
1394 opts->subsys_mask |= (1 << i);
1395 one_ss = true;
1396
1397 break;
1398 }
1399 if (i == CGROUP_SUBSYS_COUNT)
1400 return -ENOENT;
1401 }
1402
1403 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1404 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1405 if (nr_opts != 1) {
1406 pr_err("sane_behavior: no other mount options allowed\n");
1407 return -EINVAL;
1408 }
1409 return 0;
1410 }
1411
1412 /*
1413 * If the 'all' option was specified select all the subsystems,
1414 * otherwise if 'none', 'name=' and a subsystem name options were
1415 * not specified, let's default to 'all'
1416 */
1417 if (all_ss || (!one_ss && !opts->none && !opts->name))
1418 for_each_subsys(ss, i)
1419 if (!ss->disabled)
1420 opts->subsys_mask |= (1 << i);
1421
1422 /*
1423 * We either have to specify by name or by subsystems. (So all
1424 * empty hierarchies must have a name).
1425 */
1426 if (!opts->subsys_mask && !opts->name)
1427 return -EINVAL;
1428
1429 /*
1430 * Option noprefix was introduced just for backward compatibility
1431 * with the old cpuset, so we allow noprefix only if mounting just
1432 * the cpuset subsystem.
1433 */
1434 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1435 return -EINVAL;
1436
1437 /* Can't specify "none" and some subsystems */
1438 if (opts->subsys_mask && opts->none)
1439 return -EINVAL;
1440
1441 return 0;
1442 }
1443
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1444 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1445 {
1446 int ret = 0;
1447 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1448 struct cgroup_sb_opts opts;
1449 unsigned int added_mask, removed_mask;
1450
1451 if (root == &cgrp_dfl_root) {
1452 pr_err("remount is not allowed\n");
1453 return -EINVAL;
1454 }
1455
1456 mutex_lock(&cgroup_mutex);
1457
1458 /* See what subsystems are wanted */
1459 ret = parse_cgroupfs_options(data, &opts);
1460 if (ret)
1461 goto out_unlock;
1462
1463 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1464 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1465 task_tgid_nr(current), current->comm);
1466
1467 added_mask = opts.subsys_mask & ~root->subsys_mask;
1468 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1469
1470 /* Don't allow flags or name to change at remount */
1471 if ((opts.flags ^ root->flags) ||
1472 (opts.name && strcmp(opts.name, root->name))) {
1473 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1474 opts.flags, opts.name ?: "", root->flags, root->name);
1475 ret = -EINVAL;
1476 goto out_unlock;
1477 }
1478
1479 /* remounting is not allowed for populated hierarchies */
1480 if (!list_empty(&root->cgrp.self.children)) {
1481 ret = -EBUSY;
1482 goto out_unlock;
1483 }
1484
1485 ret = rebind_subsystems(root, added_mask);
1486 if (ret)
1487 goto out_unlock;
1488
1489 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1490
1491 if (opts.release_agent) {
1492 spin_lock(&release_agent_path_lock);
1493 strcpy(root->release_agent_path, opts.release_agent);
1494 spin_unlock(&release_agent_path_lock);
1495 }
1496 out_unlock:
1497 kfree(opts.release_agent);
1498 kfree(opts.name);
1499 mutex_unlock(&cgroup_mutex);
1500 return ret;
1501 }
1502
1503 /*
1504 * To reduce the fork() overhead for systems that are not actually using
1505 * their cgroups capability, we don't maintain the lists running through
1506 * each css_set to its tasks until we see the list actually used - in other
1507 * words after the first mount.
1508 */
1509 static bool use_task_css_set_links __read_mostly;
1510
cgroup_enable_task_cg_lists(void)1511 static void cgroup_enable_task_cg_lists(void)
1512 {
1513 struct task_struct *p, *g;
1514
1515 down_write(&css_set_rwsem);
1516
1517 if (use_task_css_set_links)
1518 goto out_unlock;
1519
1520 use_task_css_set_links = true;
1521
1522 /*
1523 * We need tasklist_lock because RCU is not safe against
1524 * while_each_thread(). Besides, a forking task that has passed
1525 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1526 * is not guaranteed to have its child immediately visible in the
1527 * tasklist if we walk through it with RCU.
1528 */
1529 read_lock(&tasklist_lock);
1530 do_each_thread(g, p) {
1531 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1532 task_css_set(p) != &init_css_set);
1533
1534 /*
1535 * We should check if the process is exiting, otherwise
1536 * it will race with cgroup_exit() in that the list
1537 * entry won't be deleted though the process has exited.
1538 * Do it while holding siglock so that we don't end up
1539 * racing against cgroup_exit().
1540 */
1541 spin_lock_irq(&p->sighand->siglock);
1542 if (!(p->flags & PF_EXITING)) {
1543 struct css_set *cset = task_css_set(p);
1544
1545 list_add(&p->cg_list, &cset->tasks);
1546 get_css_set(cset);
1547 }
1548 spin_unlock_irq(&p->sighand->siglock);
1549 } while_each_thread(g, p);
1550 read_unlock(&tasklist_lock);
1551 out_unlock:
1552 up_write(&css_set_rwsem);
1553 }
1554
init_cgroup_housekeeping(struct cgroup * cgrp)1555 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1556 {
1557 struct cgroup_subsys *ss;
1558 int ssid;
1559
1560 INIT_LIST_HEAD(&cgrp->self.sibling);
1561 INIT_LIST_HEAD(&cgrp->self.children);
1562 INIT_LIST_HEAD(&cgrp->cset_links);
1563 INIT_LIST_HEAD(&cgrp->pidlists);
1564 mutex_init(&cgrp->pidlist_mutex);
1565 cgrp->self.cgroup = cgrp;
1566 cgrp->self.flags |= CSS_ONLINE;
1567
1568 for_each_subsys(ss, ssid)
1569 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1570
1571 init_waitqueue_head(&cgrp->offline_waitq);
1572 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1573 }
1574
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1575 static void init_cgroup_root(struct cgroup_root *root,
1576 struct cgroup_sb_opts *opts)
1577 {
1578 struct cgroup *cgrp = &root->cgrp;
1579
1580 INIT_LIST_HEAD(&root->root_list);
1581 atomic_set(&root->nr_cgrps, 1);
1582 cgrp->root = root;
1583 init_cgroup_housekeeping(cgrp);
1584 idr_init(&root->cgroup_idr);
1585
1586 root->flags = opts->flags;
1587 if (opts->release_agent)
1588 strcpy(root->release_agent_path, opts->release_agent);
1589 if (opts->name)
1590 strcpy(root->name, opts->name);
1591 if (opts->cpuset_clone_children)
1592 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1593 }
1594
cgroup_setup_root(struct cgroup_root * root,unsigned int ss_mask)1595 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1596 {
1597 LIST_HEAD(tmp_links);
1598 struct cgroup *root_cgrp = &root->cgrp;
1599 struct cftype *base_files;
1600 struct css_set *cset;
1601 int i, ret;
1602
1603 lockdep_assert_held(&cgroup_mutex);
1604
1605 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1606 if (ret < 0)
1607 goto out;
1608 root_cgrp->id = ret;
1609
1610 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1611 GFP_KERNEL);
1612 if (ret)
1613 goto out;
1614
1615 /*
1616 * We're accessing css_set_count without locking css_set_rwsem here,
1617 * but that's OK - it can only be increased by someone holding
1618 * cgroup_lock, and that's us. The worst that can happen is that we
1619 * have some link structures left over
1620 */
1621 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1622 if (ret)
1623 goto cancel_ref;
1624
1625 ret = cgroup_init_root_id(root);
1626 if (ret)
1627 goto cancel_ref;
1628
1629 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1630 KERNFS_ROOT_CREATE_DEACTIVATED,
1631 root_cgrp);
1632 if (IS_ERR(root->kf_root)) {
1633 ret = PTR_ERR(root->kf_root);
1634 goto exit_root_id;
1635 }
1636 root_cgrp->kn = root->kf_root->kn;
1637
1638 if (root == &cgrp_dfl_root)
1639 base_files = cgroup_dfl_base_files;
1640 else
1641 base_files = cgroup_legacy_base_files;
1642
1643 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1644 if (ret)
1645 goto destroy_root;
1646
1647 ret = rebind_subsystems(root, ss_mask);
1648 if (ret)
1649 goto destroy_root;
1650
1651 /*
1652 * There must be no failure case after here, since rebinding takes
1653 * care of subsystems' refcounts, which are explicitly dropped in
1654 * the failure exit path.
1655 */
1656 list_add(&root->root_list, &cgroup_roots);
1657 cgroup_root_count++;
1658
1659 /*
1660 * Link the root cgroup in this hierarchy into all the css_set
1661 * objects.
1662 */
1663 down_write(&css_set_rwsem);
1664 hash_for_each(css_set_table, i, cset, hlist)
1665 link_css_set(&tmp_links, cset, root_cgrp);
1666 up_write(&css_set_rwsem);
1667
1668 BUG_ON(!list_empty(&root_cgrp->self.children));
1669 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1670
1671 kernfs_activate(root_cgrp->kn);
1672 ret = 0;
1673 goto out;
1674
1675 destroy_root:
1676 kernfs_destroy_root(root->kf_root);
1677 root->kf_root = NULL;
1678 exit_root_id:
1679 cgroup_exit_root_id(root);
1680 cancel_ref:
1681 percpu_ref_exit(&root_cgrp->self.refcnt);
1682 out:
1683 free_cgrp_cset_links(&tmp_links);
1684 return ret;
1685 }
1686
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1687 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1688 int flags, const char *unused_dev_name,
1689 void *data)
1690 {
1691 struct super_block *pinned_sb = NULL;
1692 struct cgroup_subsys *ss;
1693 struct cgroup_root *root;
1694 struct cgroup_sb_opts opts;
1695 struct dentry *dentry;
1696 int ret;
1697 int i;
1698 bool new_sb;
1699
1700 /*
1701 * The first time anyone tries to mount a cgroup, enable the list
1702 * linking each css_set to its tasks and fix up all existing tasks.
1703 */
1704 if (!use_task_css_set_links)
1705 cgroup_enable_task_cg_lists();
1706
1707 mutex_lock(&cgroup_mutex);
1708
1709 /* First find the desired set of subsystems */
1710 ret = parse_cgroupfs_options(data, &opts);
1711 if (ret)
1712 goto out_unlock;
1713
1714 /* look for a matching existing root */
1715 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1716 cgrp_dfl_root_visible = true;
1717 root = &cgrp_dfl_root;
1718 cgroup_get(&root->cgrp);
1719 ret = 0;
1720 goto out_unlock;
1721 }
1722
1723 /*
1724 * Destruction of cgroup root is asynchronous, so subsystems may
1725 * still be dying after the previous unmount. Let's drain the
1726 * dying subsystems. We just need to ensure that the ones
1727 * unmounted previously finish dying and don't care about new ones
1728 * starting. Testing ref liveliness is good enough.
1729 */
1730 for_each_subsys(ss, i) {
1731 if (!(opts.subsys_mask & (1 << i)) ||
1732 ss->root == &cgrp_dfl_root)
1733 continue;
1734
1735 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1736 mutex_unlock(&cgroup_mutex);
1737 msleep(10);
1738 ret = restart_syscall();
1739 goto out_free;
1740 }
1741 cgroup_put(&ss->root->cgrp);
1742 }
1743
1744 for_each_root(root) {
1745 bool name_match = false;
1746
1747 if (root == &cgrp_dfl_root)
1748 continue;
1749
1750 /*
1751 * If we asked for a name then it must match. Also, if
1752 * name matches but sybsys_mask doesn't, we should fail.
1753 * Remember whether name matched.
1754 */
1755 if (opts.name) {
1756 if (strcmp(opts.name, root->name))
1757 continue;
1758 name_match = true;
1759 }
1760
1761 /*
1762 * If we asked for subsystems (or explicitly for no
1763 * subsystems) then they must match.
1764 */
1765 if ((opts.subsys_mask || opts.none) &&
1766 (opts.subsys_mask != root->subsys_mask)) {
1767 if (!name_match)
1768 continue;
1769 ret = -EBUSY;
1770 goto out_unlock;
1771 }
1772
1773 if (root->flags ^ opts.flags)
1774 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1775
1776 /*
1777 * We want to reuse @root whose lifetime is governed by its
1778 * ->cgrp. Let's check whether @root is alive and keep it
1779 * that way. As cgroup_kill_sb() can happen anytime, we
1780 * want to block it by pinning the sb so that @root doesn't
1781 * get killed before mount is complete.
1782 *
1783 * With the sb pinned, tryget_live can reliably indicate
1784 * whether @root can be reused. If it's being killed,
1785 * drain it. We can use wait_queue for the wait but this
1786 * path is super cold. Let's just sleep a bit and retry.
1787 */
1788 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1789 if (IS_ERR(pinned_sb) ||
1790 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1791 mutex_unlock(&cgroup_mutex);
1792 if (!IS_ERR_OR_NULL(pinned_sb))
1793 deactivate_super(pinned_sb);
1794 msleep(10);
1795 ret = restart_syscall();
1796 goto out_free;
1797 }
1798
1799 ret = 0;
1800 goto out_unlock;
1801 }
1802
1803 /*
1804 * No such thing, create a new one. name= matching without subsys
1805 * specification is allowed for already existing hierarchies but we
1806 * can't create new one without subsys specification.
1807 */
1808 if (!opts.subsys_mask && !opts.none) {
1809 ret = -EINVAL;
1810 goto out_unlock;
1811 }
1812
1813 root = kzalloc(sizeof(*root), GFP_KERNEL);
1814 if (!root) {
1815 ret = -ENOMEM;
1816 goto out_unlock;
1817 }
1818
1819 init_cgroup_root(root, &opts);
1820
1821 ret = cgroup_setup_root(root, opts.subsys_mask);
1822 if (ret)
1823 cgroup_free_root(root);
1824
1825 out_unlock:
1826 mutex_unlock(&cgroup_mutex);
1827 out_free:
1828 kfree(opts.release_agent);
1829 kfree(opts.name);
1830
1831 if (ret)
1832 return ERR_PTR(ret);
1833
1834 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1835 CGROUP_SUPER_MAGIC, &new_sb);
1836 if (IS_ERR(dentry) || !new_sb)
1837 cgroup_put(&root->cgrp);
1838
1839 /*
1840 * If @pinned_sb, we're reusing an existing root and holding an
1841 * extra ref on its sb. Mount is complete. Put the extra ref.
1842 */
1843 if (pinned_sb) {
1844 WARN_ON(new_sb);
1845 deactivate_super(pinned_sb);
1846 }
1847
1848 return dentry;
1849 }
1850
cgroup_kill_sb(struct super_block * sb)1851 static void cgroup_kill_sb(struct super_block *sb)
1852 {
1853 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1854 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1855
1856 /*
1857 * If @root doesn't have any mounts or children, start killing it.
1858 * This prevents new mounts by disabling percpu_ref_tryget_live().
1859 * cgroup_mount() may wait for @root's release.
1860 *
1861 * And don't kill the default root.
1862 */
1863 if (css_has_online_children(&root->cgrp.self) ||
1864 root == &cgrp_dfl_root)
1865 cgroup_put(&root->cgrp);
1866 else
1867 percpu_ref_kill(&root->cgrp.self.refcnt);
1868
1869 kernfs_kill_sb(sb);
1870 }
1871
1872 static struct file_system_type cgroup_fs_type = {
1873 .name = "cgroup",
1874 .mount = cgroup_mount,
1875 .kill_sb = cgroup_kill_sb,
1876 };
1877
1878 static struct kobject *cgroup_kobj;
1879
1880 /**
1881 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1882 * @task: target task
1883 * @buf: the buffer to write the path into
1884 * @buflen: the length of the buffer
1885 *
1886 * Determine @task's cgroup on the first (the one with the lowest non-zero
1887 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1888 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1889 * cgroup controller callbacks.
1890 *
1891 * Return value is the same as kernfs_path().
1892 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)1893 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1894 {
1895 struct cgroup_root *root;
1896 struct cgroup *cgrp;
1897 int hierarchy_id = 1;
1898 char *path = NULL;
1899
1900 mutex_lock(&cgroup_mutex);
1901 down_read(&css_set_rwsem);
1902
1903 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1904
1905 if (root) {
1906 cgrp = task_cgroup_from_root(task, root);
1907 path = cgroup_path(cgrp, buf, buflen);
1908 } else {
1909 /* if no hierarchy exists, everyone is in "/" */
1910 if (strlcpy(buf, "/", buflen) < buflen)
1911 path = buf;
1912 }
1913
1914 up_read(&css_set_rwsem);
1915 mutex_unlock(&cgroup_mutex);
1916 return path;
1917 }
1918 EXPORT_SYMBOL_GPL(task_cgroup_path);
1919
1920 /* used to track tasks and other necessary states during migration */
1921 struct cgroup_taskset {
1922 /* the src and dst cset list running through cset->mg_node */
1923 struct list_head src_csets;
1924 struct list_head dst_csets;
1925
1926 /*
1927 * Fields for cgroup_taskset_*() iteration.
1928 *
1929 * Before migration is committed, the target migration tasks are on
1930 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1931 * the csets on ->dst_csets. ->csets point to either ->src_csets
1932 * or ->dst_csets depending on whether migration is committed.
1933 *
1934 * ->cur_csets and ->cur_task point to the current task position
1935 * during iteration.
1936 */
1937 struct list_head *csets;
1938 struct css_set *cur_cset;
1939 struct task_struct *cur_task;
1940 };
1941
1942 /**
1943 * cgroup_taskset_first - reset taskset and return the first task
1944 * @tset: taskset of interest
1945 *
1946 * @tset iteration is initialized and the first task is returned.
1947 */
cgroup_taskset_first(struct cgroup_taskset * tset)1948 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1949 {
1950 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1951 tset->cur_task = NULL;
1952
1953 return cgroup_taskset_next(tset);
1954 }
1955
1956 /**
1957 * cgroup_taskset_next - iterate to the next task in taskset
1958 * @tset: taskset of interest
1959 *
1960 * Return the next task in @tset. Iteration must have been initialized
1961 * with cgroup_taskset_first().
1962 */
cgroup_taskset_next(struct cgroup_taskset * tset)1963 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1964 {
1965 struct css_set *cset = tset->cur_cset;
1966 struct task_struct *task = tset->cur_task;
1967
1968 while (&cset->mg_node != tset->csets) {
1969 if (!task)
1970 task = list_first_entry(&cset->mg_tasks,
1971 struct task_struct, cg_list);
1972 else
1973 task = list_next_entry(task, cg_list);
1974
1975 if (&task->cg_list != &cset->mg_tasks) {
1976 tset->cur_cset = cset;
1977 tset->cur_task = task;
1978 return task;
1979 }
1980
1981 cset = list_next_entry(cset, mg_node);
1982 task = NULL;
1983 }
1984
1985 return NULL;
1986 }
1987
1988 /**
1989 * cgroup_task_migrate - move a task from one cgroup to another.
1990 * @old_cgrp: the cgroup @tsk is being migrated from
1991 * @tsk: the task being migrated
1992 * @new_cset: the new css_set @tsk is being attached to
1993 *
1994 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1995 */
cgroup_task_migrate(struct cgroup * old_cgrp,struct task_struct * tsk,struct css_set * new_cset)1996 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1997 struct task_struct *tsk,
1998 struct css_set *new_cset)
1999 {
2000 struct css_set *old_cset;
2001
2002 lockdep_assert_held(&cgroup_mutex);
2003 lockdep_assert_held(&css_set_rwsem);
2004
2005 /*
2006 * We are synchronized through threadgroup_lock() against PF_EXITING
2007 * setting such that we can't race against cgroup_exit() changing the
2008 * css_set to init_css_set and dropping the old one.
2009 */
2010 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2011 old_cset = task_css_set(tsk);
2012
2013 get_css_set(new_cset);
2014 rcu_assign_pointer(tsk->cgroups, new_cset);
2015
2016 /*
2017 * Use move_tail so that cgroup_taskset_first() still returns the
2018 * leader after migration. This works because cgroup_migrate()
2019 * ensures that the dst_cset of the leader is the first on the
2020 * tset's dst_csets list.
2021 */
2022 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2023
2024 /*
2025 * We just gained a reference on old_cset by taking it from the
2026 * task. As trading it for new_cset is protected by cgroup_mutex,
2027 * we're safe to drop it here; it will be freed under RCU.
2028 */
2029 put_css_set_locked(old_cset);
2030 }
2031
2032 /**
2033 * cgroup_migrate_finish - cleanup after attach
2034 * @preloaded_csets: list of preloaded css_sets
2035 *
2036 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2037 * those functions for details.
2038 */
cgroup_migrate_finish(struct list_head * preloaded_csets)2039 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2040 {
2041 struct css_set *cset, *tmp_cset;
2042
2043 lockdep_assert_held(&cgroup_mutex);
2044
2045 down_write(&css_set_rwsem);
2046 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2047 cset->mg_src_cgrp = NULL;
2048 cset->mg_dst_cset = NULL;
2049 list_del_init(&cset->mg_preload_node);
2050 put_css_set_locked(cset);
2051 }
2052 up_write(&css_set_rwsem);
2053 }
2054
2055 /**
2056 * cgroup_migrate_add_src - add a migration source css_set
2057 * @src_cset: the source css_set to add
2058 * @dst_cgrp: the destination cgroup
2059 * @preloaded_csets: list of preloaded css_sets
2060 *
2061 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2062 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2063 * up by cgroup_migrate_finish().
2064 *
2065 * This function may be called without holding threadgroup_lock even if the
2066 * target is a process. Threads may be created and destroyed but as long
2067 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2068 * the preloaded css_sets are guaranteed to cover all migrations.
2069 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2070 static void cgroup_migrate_add_src(struct css_set *src_cset,
2071 struct cgroup *dst_cgrp,
2072 struct list_head *preloaded_csets)
2073 {
2074 struct cgroup *src_cgrp;
2075
2076 lockdep_assert_held(&cgroup_mutex);
2077 lockdep_assert_held(&css_set_rwsem);
2078
2079 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2080
2081 if (!list_empty(&src_cset->mg_preload_node))
2082 return;
2083
2084 WARN_ON(src_cset->mg_src_cgrp);
2085 WARN_ON(!list_empty(&src_cset->mg_tasks));
2086 WARN_ON(!list_empty(&src_cset->mg_node));
2087
2088 src_cset->mg_src_cgrp = src_cgrp;
2089 get_css_set(src_cset);
2090 list_add(&src_cset->mg_preload_node, preloaded_csets);
2091 }
2092
2093 /**
2094 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2095 * @dst_cgrp: the destination cgroup (may be %NULL)
2096 * @preloaded_csets: list of preloaded source css_sets
2097 *
2098 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2099 * have been preloaded to @preloaded_csets. This function looks up and
2100 * pins all destination css_sets, links each to its source, and append them
2101 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2102 * source css_set is assumed to be its cgroup on the default hierarchy.
2103 *
2104 * This function must be called after cgroup_migrate_add_src() has been
2105 * called on each migration source css_set. After migration is performed
2106 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2107 * @preloaded_csets.
2108 */
cgroup_migrate_prepare_dst(struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2109 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2110 struct list_head *preloaded_csets)
2111 {
2112 LIST_HEAD(csets);
2113 struct css_set *src_cset, *tmp_cset;
2114
2115 lockdep_assert_held(&cgroup_mutex);
2116
2117 /*
2118 * Except for the root, child_subsys_mask must be zero for a cgroup
2119 * with tasks so that child cgroups don't compete against tasks.
2120 */
2121 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2122 dst_cgrp->child_subsys_mask)
2123 return -EBUSY;
2124
2125 /* look up the dst cset for each src cset and link it to src */
2126 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2127 struct css_set *dst_cset;
2128
2129 dst_cset = find_css_set(src_cset,
2130 dst_cgrp ?: src_cset->dfl_cgrp);
2131 if (!dst_cset)
2132 goto err;
2133
2134 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2135
2136 /*
2137 * If src cset equals dst, it's noop. Drop the src.
2138 * cgroup_migrate() will skip the cset too. Note that we
2139 * can't handle src == dst as some nodes are used by both.
2140 */
2141 if (src_cset == dst_cset) {
2142 src_cset->mg_src_cgrp = NULL;
2143 list_del_init(&src_cset->mg_preload_node);
2144 put_css_set(src_cset);
2145 put_css_set(dst_cset);
2146 continue;
2147 }
2148
2149 src_cset->mg_dst_cset = dst_cset;
2150
2151 if (list_empty(&dst_cset->mg_preload_node))
2152 list_add(&dst_cset->mg_preload_node, &csets);
2153 else
2154 put_css_set(dst_cset);
2155 }
2156
2157 list_splice_tail(&csets, preloaded_csets);
2158 return 0;
2159 err:
2160 cgroup_migrate_finish(&csets);
2161 return -ENOMEM;
2162 }
2163
2164 /**
2165 * cgroup_migrate - migrate a process or task to a cgroup
2166 * @cgrp: the destination cgroup
2167 * @leader: the leader of the process or the task to migrate
2168 * @threadgroup: whether @leader points to the whole process or a single task
2169 *
2170 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2171 * process, the caller must be holding threadgroup_lock of @leader. The
2172 * caller is also responsible for invoking cgroup_migrate_add_src() and
2173 * cgroup_migrate_prepare_dst() on the targets before invoking this
2174 * function and following up with cgroup_migrate_finish().
2175 *
2176 * As long as a controller's ->can_attach() doesn't fail, this function is
2177 * guaranteed to succeed. This means that, excluding ->can_attach()
2178 * failure, when migrating multiple targets, the success or failure can be
2179 * decided for all targets by invoking group_migrate_prepare_dst() before
2180 * actually starting migrating.
2181 */
cgroup_migrate(struct cgroup * cgrp,struct task_struct * leader,bool threadgroup)2182 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2183 bool threadgroup)
2184 {
2185 struct cgroup_taskset tset = {
2186 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2187 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2188 .csets = &tset.src_csets,
2189 };
2190 struct cgroup_subsys_state *css, *failed_css = NULL;
2191 struct css_set *cset, *tmp_cset;
2192 struct task_struct *task, *tmp_task;
2193 int i, ret;
2194
2195 /*
2196 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2197 * already PF_EXITING could be freed from underneath us unless we
2198 * take an rcu_read_lock.
2199 */
2200 down_write(&css_set_rwsem);
2201 rcu_read_lock();
2202 task = leader;
2203 do {
2204 /* @task either already exited or can't exit until the end */
2205 if (task->flags & PF_EXITING)
2206 goto next;
2207
2208 /* leave @task alone if post_fork() hasn't linked it yet */
2209 if (list_empty(&task->cg_list))
2210 goto next;
2211
2212 cset = task_css_set(task);
2213 if (!cset->mg_src_cgrp)
2214 goto next;
2215
2216 /*
2217 * cgroup_taskset_first() must always return the leader.
2218 * Take care to avoid disturbing the ordering.
2219 */
2220 list_move_tail(&task->cg_list, &cset->mg_tasks);
2221 if (list_empty(&cset->mg_node))
2222 list_add_tail(&cset->mg_node, &tset.src_csets);
2223 if (list_empty(&cset->mg_dst_cset->mg_node))
2224 list_move_tail(&cset->mg_dst_cset->mg_node,
2225 &tset.dst_csets);
2226 next:
2227 if (!threadgroup)
2228 break;
2229 } while_each_thread(leader, task);
2230 rcu_read_unlock();
2231 up_write(&css_set_rwsem);
2232
2233 /* methods shouldn't be called if no task is actually migrating */
2234 if (list_empty(&tset.src_csets))
2235 return 0;
2236
2237 /* check that we can legitimately attach to the cgroup */
2238 for_each_e_css(css, i, cgrp) {
2239 if (css->ss->can_attach) {
2240 ret = css->ss->can_attach(css, &tset);
2241 if (ret) {
2242 failed_css = css;
2243 goto out_cancel_attach;
2244 }
2245 }
2246 }
2247
2248 /*
2249 * Now that we're guaranteed success, proceed to move all tasks to
2250 * the new cgroup. There are no failure cases after here, so this
2251 * is the commit point.
2252 */
2253 down_write(&css_set_rwsem);
2254 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2255 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2256 cgroup_task_migrate(cset->mg_src_cgrp, task,
2257 cset->mg_dst_cset);
2258 }
2259 up_write(&css_set_rwsem);
2260
2261 /*
2262 * Migration is committed, all target tasks are now on dst_csets.
2263 * Nothing is sensitive to fork() after this point. Notify
2264 * controllers that migration is complete.
2265 */
2266 tset.csets = &tset.dst_csets;
2267
2268 for_each_e_css(css, i, cgrp)
2269 if (css->ss->attach)
2270 css->ss->attach(css, &tset);
2271
2272 ret = 0;
2273 goto out_release_tset;
2274
2275 out_cancel_attach:
2276 for_each_e_css(css, i, cgrp) {
2277 if (css == failed_css)
2278 break;
2279 if (css->ss->cancel_attach)
2280 css->ss->cancel_attach(css, &tset);
2281 }
2282 out_release_tset:
2283 down_write(&css_set_rwsem);
2284 list_splice_init(&tset.dst_csets, &tset.src_csets);
2285 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2286 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2287 list_del_init(&cset->mg_node);
2288 }
2289 up_write(&css_set_rwsem);
2290 return ret;
2291 }
2292
2293 /**
2294 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2295 * @dst_cgrp: the cgroup to attach to
2296 * @leader: the task or the leader of the threadgroup to be attached
2297 * @threadgroup: attach the whole threadgroup?
2298 *
2299 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2300 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2301 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2302 struct task_struct *leader, bool threadgroup)
2303 {
2304 LIST_HEAD(preloaded_csets);
2305 struct task_struct *task;
2306 int ret;
2307
2308 /* look up all src csets */
2309 down_read(&css_set_rwsem);
2310 rcu_read_lock();
2311 task = leader;
2312 do {
2313 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2314 &preloaded_csets);
2315 if (!threadgroup)
2316 break;
2317 } while_each_thread(leader, task);
2318 rcu_read_unlock();
2319 up_read(&css_set_rwsem);
2320
2321 /* prepare dst csets and commit */
2322 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2323 if (!ret)
2324 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2325
2326 cgroup_migrate_finish(&preloaded_csets);
2327 return ret;
2328 }
2329
2330 /*
2331 * Find the task_struct of the task to attach by vpid and pass it along to the
2332 * function to attach either it or all tasks in its threadgroup. Will lock
2333 * cgroup_mutex and threadgroup.
2334 */
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)2335 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2336 size_t nbytes, loff_t off, bool threadgroup)
2337 {
2338 struct task_struct *tsk;
2339 const struct cred *cred = current_cred(), *tcred;
2340 struct cgroup *cgrp;
2341 pid_t pid;
2342 int ret;
2343
2344 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2345 return -EINVAL;
2346
2347 cgrp = cgroup_kn_lock_live(of->kn);
2348 if (!cgrp)
2349 return -ENODEV;
2350
2351 retry_find_task:
2352 rcu_read_lock();
2353 if (pid) {
2354 tsk = find_task_by_vpid(pid);
2355 if (!tsk) {
2356 rcu_read_unlock();
2357 ret = -ESRCH;
2358 goto out_unlock_cgroup;
2359 }
2360 /*
2361 * even if we're attaching all tasks in the thread group, we
2362 * only need to check permissions on one of them.
2363 */
2364 tcred = __task_cred(tsk);
2365 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2366 !uid_eq(cred->euid, tcred->uid) &&
2367 !uid_eq(cred->euid, tcred->suid) &&
2368 !ns_capable(tcred->user_ns, CAP_SYS_NICE)) {
2369 rcu_read_unlock();
2370 ret = -EACCES;
2371 goto out_unlock_cgroup;
2372 }
2373 } else
2374 tsk = current;
2375
2376 if (threadgroup)
2377 tsk = tsk->group_leader;
2378
2379 /*
2380 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2381 * trapped in a cpuset, or RT worker may be born in a cgroup
2382 * with no rt_runtime allocated. Just say no.
2383 */
2384 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2385 ret = -EINVAL;
2386 rcu_read_unlock();
2387 goto out_unlock_cgroup;
2388 }
2389
2390 get_task_struct(tsk);
2391 rcu_read_unlock();
2392
2393 threadgroup_lock(tsk);
2394 if (threadgroup) {
2395 if (!thread_group_leader(tsk)) {
2396 /*
2397 * a race with de_thread from another thread's exec()
2398 * may strip us of our leadership, if this happens,
2399 * there is no choice but to throw this task away and
2400 * try again; this is
2401 * "double-double-toil-and-trouble-check locking".
2402 */
2403 threadgroup_unlock(tsk);
2404 put_task_struct(tsk);
2405 goto retry_find_task;
2406 }
2407 }
2408
2409 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2410
2411 threadgroup_unlock(tsk);
2412
2413 put_task_struct(tsk);
2414 out_unlock_cgroup:
2415 cgroup_kn_unlock(of->kn);
2416 return ret ?: nbytes;
2417 }
2418
2419 /**
2420 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2421 * @from: attach to all cgroups of a given task
2422 * @tsk: the task to be attached
2423 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)2424 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2425 {
2426 struct cgroup_root *root;
2427 int retval = 0;
2428
2429 mutex_lock(&cgroup_mutex);
2430 for_each_root(root) {
2431 struct cgroup *from_cgrp;
2432
2433 if (root == &cgrp_dfl_root)
2434 continue;
2435
2436 down_read(&css_set_rwsem);
2437 from_cgrp = task_cgroup_from_root(from, root);
2438 up_read(&css_set_rwsem);
2439
2440 retval = cgroup_attach_task(from_cgrp, tsk, false);
2441 if (retval)
2442 break;
2443 }
2444 mutex_unlock(&cgroup_mutex);
2445
2446 return retval;
2447 }
2448 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2449
cgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2450 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2451 char *buf, size_t nbytes, loff_t off)
2452 {
2453 return __cgroup_procs_write(of, buf, nbytes, off, false);
2454 }
2455
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2456 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2457 char *buf, size_t nbytes, loff_t off)
2458 {
2459 return __cgroup_procs_write(of, buf, nbytes, off, true);
2460 }
2461
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2462 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2463 char *buf, size_t nbytes, loff_t off)
2464 {
2465 struct cgroup *cgrp;
2466
2467 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2468
2469 cgrp = cgroup_kn_lock_live(of->kn);
2470 if (!cgrp)
2471 return -ENODEV;
2472 spin_lock(&release_agent_path_lock);
2473 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2474 sizeof(cgrp->root->release_agent_path));
2475 spin_unlock(&release_agent_path_lock);
2476 cgroup_kn_unlock(of->kn);
2477 return nbytes;
2478 }
2479
cgroup_release_agent_show(struct seq_file * seq,void * v)2480 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2481 {
2482 struct cgroup *cgrp = seq_css(seq)->cgroup;
2483
2484 spin_lock(&release_agent_path_lock);
2485 seq_puts(seq, cgrp->root->release_agent_path);
2486 spin_unlock(&release_agent_path_lock);
2487 seq_putc(seq, '\n');
2488 return 0;
2489 }
2490
cgroup_sane_behavior_show(struct seq_file * seq,void * v)2491 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2492 {
2493 seq_puts(seq, "0\n");
2494 return 0;
2495 }
2496
cgroup_print_ss_mask(struct seq_file * seq,unsigned int ss_mask)2497 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2498 {
2499 struct cgroup_subsys *ss;
2500 bool printed = false;
2501 int ssid;
2502
2503 for_each_subsys(ss, ssid) {
2504 if (ss_mask & (1 << ssid)) {
2505 if (printed)
2506 seq_putc(seq, ' ');
2507 seq_printf(seq, "%s", ss->name);
2508 printed = true;
2509 }
2510 }
2511 if (printed)
2512 seq_putc(seq, '\n');
2513 }
2514
2515 /* show controllers which are currently attached to the default hierarchy */
cgroup_root_controllers_show(struct seq_file * seq,void * v)2516 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2517 {
2518 struct cgroup *cgrp = seq_css(seq)->cgroup;
2519
2520 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2521 ~cgrp_dfl_root_inhibit_ss_mask);
2522 return 0;
2523 }
2524
2525 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2526 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2527 {
2528 struct cgroup *cgrp = seq_css(seq)->cgroup;
2529
2530 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2531 return 0;
2532 }
2533
2534 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2535 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2536 {
2537 struct cgroup *cgrp = seq_css(seq)->cgroup;
2538
2539 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2540 return 0;
2541 }
2542
2543 /**
2544 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2545 * @cgrp: root of the subtree to update csses for
2546 *
2547 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2548 * css associations need to be updated accordingly. This function looks up
2549 * all css_sets which are attached to the subtree, creates the matching
2550 * updated css_sets and migrates the tasks to the new ones.
2551 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2552 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2553 {
2554 LIST_HEAD(preloaded_csets);
2555 struct cgroup_subsys_state *css;
2556 struct css_set *src_cset;
2557 int ret;
2558
2559 lockdep_assert_held(&cgroup_mutex);
2560
2561 /* look up all csses currently attached to @cgrp's subtree */
2562 down_read(&css_set_rwsem);
2563 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2564 struct cgrp_cset_link *link;
2565
2566 /* self is not affected by child_subsys_mask change */
2567 if (css->cgroup == cgrp)
2568 continue;
2569
2570 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2571 cgroup_migrate_add_src(link->cset, cgrp,
2572 &preloaded_csets);
2573 }
2574 up_read(&css_set_rwsem);
2575
2576 /* NULL dst indicates self on default hierarchy */
2577 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2578 if (ret)
2579 goto out_finish;
2580
2581 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2582 struct task_struct *last_task = NULL, *task;
2583
2584 /* src_csets precede dst_csets, break on the first dst_cset */
2585 if (!src_cset->mg_src_cgrp)
2586 break;
2587
2588 /*
2589 * All tasks in src_cset need to be migrated to the
2590 * matching dst_cset. Empty it process by process. We
2591 * walk tasks but migrate processes. The leader might even
2592 * belong to a different cset but such src_cset would also
2593 * be among the target src_csets because the default
2594 * hierarchy enforces per-process membership.
2595 */
2596 while (true) {
2597 down_read(&css_set_rwsem);
2598 task = list_first_entry_or_null(&src_cset->tasks,
2599 struct task_struct, cg_list);
2600 if (task) {
2601 task = task->group_leader;
2602 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2603 get_task_struct(task);
2604 }
2605 up_read(&css_set_rwsem);
2606
2607 if (!task)
2608 break;
2609
2610 /* guard against possible infinite loop */
2611 if (WARN(last_task == task,
2612 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2613 goto out_finish;
2614 last_task = task;
2615
2616 threadgroup_lock(task);
2617 /* raced against de_thread() from another thread? */
2618 if (!thread_group_leader(task)) {
2619 threadgroup_unlock(task);
2620 put_task_struct(task);
2621 continue;
2622 }
2623
2624 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2625
2626 threadgroup_unlock(task);
2627 put_task_struct(task);
2628
2629 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2630 goto out_finish;
2631 }
2632 }
2633
2634 out_finish:
2635 cgroup_migrate_finish(&preloaded_csets);
2636 return ret;
2637 }
2638
2639 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2640 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2641 char *buf, size_t nbytes,
2642 loff_t off)
2643 {
2644 unsigned int enable = 0, disable = 0;
2645 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
2646 struct cgroup *cgrp, *child;
2647 struct cgroup_subsys *ss;
2648 char *tok;
2649 int ssid, ret;
2650
2651 /*
2652 * Parse input - space separated list of subsystem names prefixed
2653 * with either + or -.
2654 */
2655 buf = strstrip(buf);
2656 while ((tok = strsep(&buf, " "))) {
2657 if (tok[0] == '\0')
2658 continue;
2659 for_each_subsys(ss, ssid) {
2660 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2661 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2662 continue;
2663
2664 if (*tok == '+') {
2665 enable |= 1 << ssid;
2666 disable &= ~(1 << ssid);
2667 } else if (*tok == '-') {
2668 disable |= 1 << ssid;
2669 enable &= ~(1 << ssid);
2670 } else {
2671 return -EINVAL;
2672 }
2673 break;
2674 }
2675 if (ssid == CGROUP_SUBSYS_COUNT)
2676 return -EINVAL;
2677 }
2678
2679 cgrp = cgroup_kn_lock_live(of->kn);
2680 if (!cgrp)
2681 return -ENODEV;
2682
2683 for_each_subsys(ss, ssid) {
2684 if (enable & (1 << ssid)) {
2685 if (cgrp->subtree_control & (1 << ssid)) {
2686 enable &= ~(1 << ssid);
2687 continue;
2688 }
2689
2690 /* unavailable or not enabled on the parent? */
2691 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2692 (cgroup_parent(cgrp) &&
2693 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2694 ret = -ENOENT;
2695 goto out_unlock;
2696 }
2697
2698 /*
2699 * @ss is already enabled through dependency and
2700 * we'll just make it visible. Skip draining.
2701 */
2702 if (cgrp->child_subsys_mask & (1 << ssid))
2703 continue;
2704
2705 /*
2706 * Because css offlining is asynchronous, userland
2707 * might try to re-enable the same controller while
2708 * the previous instance is still around. In such
2709 * cases, wait till it's gone using offline_waitq.
2710 */
2711 cgroup_for_each_live_child(child, cgrp) {
2712 DEFINE_WAIT(wait);
2713
2714 if (!cgroup_css(child, ss))
2715 continue;
2716
2717 cgroup_get(child);
2718 prepare_to_wait(&child->offline_waitq, &wait,
2719 TASK_UNINTERRUPTIBLE);
2720 cgroup_kn_unlock(of->kn);
2721 schedule();
2722 finish_wait(&child->offline_waitq, &wait);
2723 cgroup_put(child);
2724
2725 return restart_syscall();
2726 }
2727 } else if (disable & (1 << ssid)) {
2728 if (!(cgrp->subtree_control & (1 << ssid))) {
2729 disable &= ~(1 << ssid);
2730 continue;
2731 }
2732
2733 /* a child has it enabled? */
2734 cgroup_for_each_live_child(child, cgrp) {
2735 if (child->subtree_control & (1 << ssid)) {
2736 ret = -EBUSY;
2737 goto out_unlock;
2738 }
2739 }
2740 }
2741 }
2742
2743 if (!enable && !disable) {
2744 ret = 0;
2745 goto out_unlock;
2746 }
2747
2748 /*
2749 * Except for the root, subtree_control must be zero for a cgroup
2750 * with tasks so that child cgroups don't compete against tasks.
2751 */
2752 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2753 ret = -EBUSY;
2754 goto out_unlock;
2755 }
2756
2757 /*
2758 * Update subsys masks and calculate what needs to be done. More
2759 * subsystems than specified may need to be enabled or disabled
2760 * depending on subsystem dependencies.
2761 */
2762 cgrp->subtree_control |= enable;
2763 cgrp->subtree_control &= ~disable;
2764
2765 old_ctrl = cgrp->child_subsys_mask;
2766 cgroup_refresh_child_subsys_mask(cgrp);
2767 new_ctrl = cgrp->child_subsys_mask;
2768
2769 css_enable = ~old_ctrl & new_ctrl;
2770 css_disable = old_ctrl & ~new_ctrl;
2771 enable |= css_enable;
2772 disable |= css_disable;
2773
2774 /*
2775 * Create new csses or make the existing ones visible. A css is
2776 * created invisible if it's being implicitly enabled through
2777 * dependency. An invisible css is made visible when the userland
2778 * explicitly enables it.
2779 */
2780 for_each_subsys(ss, ssid) {
2781 if (!(enable & (1 << ssid)))
2782 continue;
2783
2784 cgroup_for_each_live_child(child, cgrp) {
2785 if (css_enable & (1 << ssid))
2786 ret = create_css(child, ss,
2787 cgrp->subtree_control & (1 << ssid));
2788 else
2789 ret = cgroup_populate_dir(child, 1 << ssid);
2790 if (ret)
2791 goto err_undo_css;
2792 }
2793 }
2794
2795 /*
2796 * At this point, cgroup_e_css() results reflect the new csses
2797 * making the following cgroup_update_dfl_csses() properly update
2798 * css associations of all tasks in the subtree.
2799 */
2800 ret = cgroup_update_dfl_csses(cgrp);
2801 if (ret)
2802 goto err_undo_css;
2803
2804 /*
2805 * All tasks are migrated out of disabled csses. Kill or hide
2806 * them. A css is hidden when the userland requests it to be
2807 * disabled while other subsystems are still depending on it. The
2808 * css must not actively control resources and be in the vanilla
2809 * state if it's made visible again later. Controllers which may
2810 * be depended upon should provide ->css_reset() for this purpose.
2811 */
2812 for_each_subsys(ss, ssid) {
2813 if (!(disable & (1 << ssid)))
2814 continue;
2815
2816 cgroup_for_each_live_child(child, cgrp) {
2817 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2818
2819 if (css_disable & (1 << ssid)) {
2820 kill_css(css);
2821 } else {
2822 cgroup_clear_dir(child, 1 << ssid);
2823 if (ss->css_reset)
2824 ss->css_reset(css);
2825 }
2826 }
2827 }
2828
2829 kernfs_activate(cgrp->kn);
2830 ret = 0;
2831 out_unlock:
2832 cgroup_kn_unlock(of->kn);
2833 return ret ?: nbytes;
2834
2835 err_undo_css:
2836 cgrp->subtree_control &= ~enable;
2837 cgrp->subtree_control |= disable;
2838 cgroup_refresh_child_subsys_mask(cgrp);
2839
2840 for_each_subsys(ss, ssid) {
2841 if (!(enable & (1 << ssid)))
2842 continue;
2843
2844 cgroup_for_each_live_child(child, cgrp) {
2845 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2846
2847 if (!css)
2848 continue;
2849
2850 if (css_enable & (1 << ssid))
2851 kill_css(css);
2852 else
2853 cgroup_clear_dir(child, 1 << ssid);
2854 }
2855 }
2856 goto out_unlock;
2857 }
2858
cgroup_populated_show(struct seq_file * seq,void * v)2859 static int cgroup_populated_show(struct seq_file *seq, void *v)
2860 {
2861 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2862 return 0;
2863 }
2864
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2865 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2866 size_t nbytes, loff_t off)
2867 {
2868 struct cgroup *cgrp = of->kn->parent->priv;
2869 struct cftype *cft = of->kn->priv;
2870 struct cgroup_subsys_state *css;
2871 int ret;
2872
2873 if (cft->write)
2874 return cft->write(of, buf, nbytes, off);
2875
2876 /*
2877 * kernfs guarantees that a file isn't deleted with operations in
2878 * flight, which means that the matching css is and stays alive and
2879 * doesn't need to be pinned. The RCU locking is not necessary
2880 * either. It's just for the convenience of using cgroup_css().
2881 */
2882 rcu_read_lock();
2883 css = cgroup_css(cgrp, cft->ss);
2884 rcu_read_unlock();
2885
2886 if (cft->write_u64) {
2887 unsigned long long v;
2888 ret = kstrtoull(buf, 0, &v);
2889 if (!ret)
2890 ret = cft->write_u64(css, cft, v);
2891 } else if (cft->write_s64) {
2892 long long v;
2893 ret = kstrtoll(buf, 0, &v);
2894 if (!ret)
2895 ret = cft->write_s64(css, cft, v);
2896 } else {
2897 ret = -EINVAL;
2898 }
2899
2900 return ret ?: nbytes;
2901 }
2902
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)2903 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2904 {
2905 return seq_cft(seq)->seq_start(seq, ppos);
2906 }
2907
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)2908 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2909 {
2910 return seq_cft(seq)->seq_next(seq, v, ppos);
2911 }
2912
cgroup_seqfile_stop(struct seq_file * seq,void * v)2913 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2914 {
2915 seq_cft(seq)->seq_stop(seq, v);
2916 }
2917
cgroup_seqfile_show(struct seq_file * m,void * arg)2918 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2919 {
2920 struct cftype *cft = seq_cft(m);
2921 struct cgroup_subsys_state *css = seq_css(m);
2922
2923 if (cft->seq_show)
2924 return cft->seq_show(m, arg);
2925
2926 if (cft->read_u64)
2927 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2928 else if (cft->read_s64)
2929 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2930 else
2931 return -EINVAL;
2932 return 0;
2933 }
2934
2935 static struct kernfs_ops cgroup_kf_single_ops = {
2936 .atomic_write_len = PAGE_SIZE,
2937 .write = cgroup_file_write,
2938 .seq_show = cgroup_seqfile_show,
2939 };
2940
2941 static struct kernfs_ops cgroup_kf_ops = {
2942 .atomic_write_len = PAGE_SIZE,
2943 .write = cgroup_file_write,
2944 .seq_start = cgroup_seqfile_start,
2945 .seq_next = cgroup_seqfile_next,
2946 .seq_stop = cgroup_seqfile_stop,
2947 .seq_show = cgroup_seqfile_show,
2948 };
2949
2950 /*
2951 * cgroup_rename - Only allow simple rename of directories in place.
2952 */
cgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)2953 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2954 const char *new_name_str)
2955 {
2956 struct cgroup *cgrp = kn->priv;
2957 int ret;
2958
2959 if (kernfs_type(kn) != KERNFS_DIR)
2960 return -ENOTDIR;
2961 if (kn->parent != new_parent)
2962 return -EIO;
2963
2964 /*
2965 * This isn't a proper migration and its usefulness is very
2966 * limited. Disallow on the default hierarchy.
2967 */
2968 if (cgroup_on_dfl(cgrp))
2969 return -EPERM;
2970
2971 /*
2972 * We're gonna grab cgroup_mutex which nests outside kernfs
2973 * active_ref. kernfs_rename() doesn't require active_ref
2974 * protection. Break them before grabbing cgroup_mutex.
2975 */
2976 kernfs_break_active_protection(new_parent);
2977 kernfs_break_active_protection(kn);
2978
2979 mutex_lock(&cgroup_mutex);
2980
2981 ret = kernfs_rename(kn, new_parent, new_name_str);
2982
2983 mutex_unlock(&cgroup_mutex);
2984
2985 kernfs_unbreak_active_protection(kn);
2986 kernfs_unbreak_active_protection(new_parent);
2987 return ret;
2988 }
2989
2990 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)2991 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2992 {
2993 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2994 .ia_uid = current_fsuid(),
2995 .ia_gid = current_fsgid(), };
2996
2997 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2998 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2999 return 0;
3000
3001 return kernfs_setattr(kn, &iattr);
3002 }
3003
cgroup_add_file(struct cgroup * cgrp,struct cftype * cft)3004 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3005 {
3006 char name[CGROUP_FILE_NAME_MAX];
3007 struct kernfs_node *kn;
3008 struct lock_class_key *key = NULL;
3009 int ret;
3010
3011 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3012 key = &cft->lockdep_key;
3013 #endif
3014 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3015 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3016 NULL, false, key);
3017 if (IS_ERR(kn))
3018 return PTR_ERR(kn);
3019
3020 ret = cgroup_kn_set_ugid(kn);
3021 if (ret) {
3022 kernfs_remove(kn);
3023 return ret;
3024 }
3025
3026 if (cft->seq_show == cgroup_populated_show)
3027 cgrp->populated_kn = kn;
3028 return 0;
3029 }
3030
3031 /**
3032 * cgroup_addrm_files - add or remove files to a cgroup directory
3033 * @cgrp: the target cgroup
3034 * @cfts: array of cftypes to be added
3035 * @is_add: whether to add or remove
3036 *
3037 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3038 * For removals, this function never fails. If addition fails, this
3039 * function doesn't remove files already added. The caller is responsible
3040 * for cleaning up.
3041 */
cgroup_addrm_files(struct cgroup * cgrp,struct cftype cfts[],bool is_add)3042 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3043 bool is_add)
3044 {
3045 struct cftype *cft;
3046 int ret;
3047
3048 lockdep_assert_held(&cgroup_mutex);
3049
3050 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3051 /* does cft->flags tell us to skip this file on @cgrp? */
3052 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3053 continue;
3054 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3055 continue;
3056 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3057 continue;
3058 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3059 continue;
3060
3061 if (is_add) {
3062 ret = cgroup_add_file(cgrp, cft);
3063 if (ret) {
3064 pr_warn("%s: failed to add %s, err=%d\n",
3065 __func__, cft->name, ret);
3066 return ret;
3067 }
3068 } else {
3069 cgroup_rm_file(cgrp, cft);
3070 }
3071 }
3072 return 0;
3073 }
3074
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3075 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3076 {
3077 LIST_HEAD(pending);
3078 struct cgroup_subsys *ss = cfts[0].ss;
3079 struct cgroup *root = &ss->root->cgrp;
3080 struct cgroup_subsys_state *css;
3081 int ret = 0;
3082
3083 lockdep_assert_held(&cgroup_mutex);
3084
3085 /* add/rm files for all cgroups created before */
3086 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3087 struct cgroup *cgrp = css->cgroup;
3088
3089 if (cgroup_is_dead(cgrp))
3090 continue;
3091
3092 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3093 if (ret)
3094 break;
3095 }
3096
3097 if (is_add && !ret)
3098 kernfs_activate(root->kn);
3099 return ret;
3100 }
3101
cgroup_exit_cftypes(struct cftype * cfts)3102 static void cgroup_exit_cftypes(struct cftype *cfts)
3103 {
3104 struct cftype *cft;
3105
3106 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3107 /* free copy for custom atomic_write_len, see init_cftypes() */
3108 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3109 kfree(cft->kf_ops);
3110 cft->kf_ops = NULL;
3111 cft->ss = NULL;
3112
3113 /* revert flags set by cgroup core while adding @cfts */
3114 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3115 }
3116 }
3117
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3118 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3119 {
3120 struct cftype *cft;
3121
3122 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3123 struct kernfs_ops *kf_ops;
3124
3125 WARN_ON(cft->ss || cft->kf_ops);
3126
3127 if (cft->seq_start)
3128 kf_ops = &cgroup_kf_ops;
3129 else
3130 kf_ops = &cgroup_kf_single_ops;
3131
3132 /*
3133 * Ugh... if @cft wants a custom max_write_len, we need to
3134 * make a copy of kf_ops to set its atomic_write_len.
3135 */
3136 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3137 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3138 if (!kf_ops) {
3139 cgroup_exit_cftypes(cfts);
3140 return -ENOMEM;
3141 }
3142 kf_ops->atomic_write_len = cft->max_write_len;
3143 }
3144
3145 cft->kf_ops = kf_ops;
3146 cft->ss = ss;
3147 }
3148
3149 return 0;
3150 }
3151
cgroup_rm_cftypes_locked(struct cftype * cfts)3152 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3153 {
3154 lockdep_assert_held(&cgroup_mutex);
3155
3156 if (!cfts || !cfts[0].ss)
3157 return -ENOENT;
3158
3159 list_del(&cfts->node);
3160 cgroup_apply_cftypes(cfts, false);
3161 cgroup_exit_cftypes(cfts);
3162 return 0;
3163 }
3164
3165 /**
3166 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3167 * @cfts: zero-length name terminated array of cftypes
3168 *
3169 * Unregister @cfts. Files described by @cfts are removed from all
3170 * existing cgroups and all future cgroups won't have them either. This
3171 * function can be called anytime whether @cfts' subsys is attached or not.
3172 *
3173 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3174 * registered.
3175 */
cgroup_rm_cftypes(struct cftype * cfts)3176 int cgroup_rm_cftypes(struct cftype *cfts)
3177 {
3178 int ret;
3179
3180 mutex_lock(&cgroup_mutex);
3181 ret = cgroup_rm_cftypes_locked(cfts);
3182 mutex_unlock(&cgroup_mutex);
3183 return ret;
3184 }
3185
3186 /**
3187 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3188 * @ss: target cgroup subsystem
3189 * @cfts: zero-length name terminated array of cftypes
3190 *
3191 * Register @cfts to @ss. Files described by @cfts are created for all
3192 * existing cgroups to which @ss is attached and all future cgroups will
3193 * have them too. This function can be called anytime whether @ss is
3194 * attached or not.
3195 *
3196 * Returns 0 on successful registration, -errno on failure. Note that this
3197 * function currently returns 0 as long as @cfts registration is successful
3198 * even if some file creation attempts on existing cgroups fail.
3199 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3200 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3201 {
3202 int ret;
3203
3204 if (ss->disabled)
3205 return 0;
3206
3207 if (!cfts || cfts[0].name[0] == '\0')
3208 return 0;
3209
3210 ret = cgroup_init_cftypes(ss, cfts);
3211 if (ret)
3212 return ret;
3213
3214 mutex_lock(&cgroup_mutex);
3215
3216 list_add_tail(&cfts->node, &ss->cfts);
3217 ret = cgroup_apply_cftypes(cfts, true);
3218 if (ret)
3219 cgroup_rm_cftypes_locked(cfts);
3220
3221 mutex_unlock(&cgroup_mutex);
3222 return ret;
3223 }
3224
3225 /**
3226 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3227 * @ss: target cgroup subsystem
3228 * @cfts: zero-length name terminated array of cftypes
3229 *
3230 * Similar to cgroup_add_cftypes() but the added files are only used for
3231 * the default hierarchy.
3232 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3233 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3234 {
3235 struct cftype *cft;
3236
3237 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3238 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3239 return cgroup_add_cftypes(ss, cfts);
3240 }
3241
3242 /**
3243 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3244 * @ss: target cgroup subsystem
3245 * @cfts: zero-length name terminated array of cftypes
3246 *
3247 * Similar to cgroup_add_cftypes() but the added files are only used for
3248 * the legacy hierarchies.
3249 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3250 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3251 {
3252 struct cftype *cft;
3253
3254 /*
3255 * If legacy_flies_on_dfl, we want to show the legacy files on the
3256 * dfl hierarchy but iff the target subsystem hasn't been updated
3257 * for the dfl hierarchy yet.
3258 */
3259 if (!cgroup_legacy_files_on_dfl ||
3260 ss->dfl_cftypes != ss->legacy_cftypes) {
3261 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3262 cft->flags |= __CFTYPE_NOT_ON_DFL;
3263 }
3264
3265 return cgroup_add_cftypes(ss, cfts);
3266 }
3267
3268 /**
3269 * cgroup_task_count - count the number of tasks in a cgroup.
3270 * @cgrp: the cgroup in question
3271 *
3272 * Return the number of tasks in the cgroup.
3273 */
cgroup_task_count(const struct cgroup * cgrp)3274 static int cgroup_task_count(const struct cgroup *cgrp)
3275 {
3276 int count = 0;
3277 struct cgrp_cset_link *link;
3278
3279 down_read(&css_set_rwsem);
3280 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3281 count += atomic_read(&link->cset->refcount);
3282 up_read(&css_set_rwsem);
3283 return count;
3284 }
3285
3286 /**
3287 * css_next_child - find the next child of a given css
3288 * @pos: the current position (%NULL to initiate traversal)
3289 * @parent: css whose children to walk
3290 *
3291 * This function returns the next child of @parent and should be called
3292 * under either cgroup_mutex or RCU read lock. The only requirement is
3293 * that @parent and @pos are accessible. The next sibling is guaranteed to
3294 * be returned regardless of their states.
3295 *
3296 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3297 * css which finished ->css_online() is guaranteed to be visible in the
3298 * future iterations and will stay visible until the last reference is put.
3299 * A css which hasn't finished ->css_online() or already finished
3300 * ->css_offline() may show up during traversal. It's each subsystem's
3301 * responsibility to synchronize against on/offlining.
3302 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3303 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3304 struct cgroup_subsys_state *parent)
3305 {
3306 struct cgroup_subsys_state *next;
3307
3308 cgroup_assert_mutex_or_rcu_locked();
3309
3310 /*
3311 * @pos could already have been unlinked from the sibling list.
3312 * Once a cgroup is removed, its ->sibling.next is no longer
3313 * updated when its next sibling changes. CSS_RELEASED is set when
3314 * @pos is taken off list, at which time its next pointer is valid,
3315 * and, as releases are serialized, the one pointed to by the next
3316 * pointer is guaranteed to not have started release yet. This
3317 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3318 * critical section, the one pointed to by its next pointer is
3319 * guaranteed to not have finished its RCU grace period even if we
3320 * have dropped rcu_read_lock() inbetween iterations.
3321 *
3322 * If @pos has CSS_RELEASED set, its next pointer can't be
3323 * dereferenced; however, as each css is given a monotonically
3324 * increasing unique serial number and always appended to the
3325 * sibling list, the next one can be found by walking the parent's
3326 * children until the first css with higher serial number than
3327 * @pos's. While this path can be slower, it happens iff iteration
3328 * races against release and the race window is very small.
3329 */
3330 if (!pos) {
3331 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3332 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3333 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3334 } else {
3335 list_for_each_entry_rcu(next, &parent->children, sibling)
3336 if (next->serial_nr > pos->serial_nr)
3337 break;
3338 }
3339
3340 /*
3341 * @next, if not pointing to the head, can be dereferenced and is
3342 * the next sibling.
3343 */
3344 if (&next->sibling != &parent->children)
3345 return next;
3346 return NULL;
3347 }
3348
3349 /**
3350 * css_next_descendant_pre - find the next descendant for pre-order walk
3351 * @pos: the current position (%NULL to initiate traversal)
3352 * @root: css whose descendants to walk
3353 *
3354 * To be used by css_for_each_descendant_pre(). Find the next descendant
3355 * to visit for pre-order traversal of @root's descendants. @root is
3356 * included in the iteration and the first node to be visited.
3357 *
3358 * While this function requires cgroup_mutex or RCU read locking, it
3359 * doesn't require the whole traversal to be contained in a single critical
3360 * section. This function will return the correct next descendant as long
3361 * as both @pos and @root are accessible and @pos is a descendant of @root.
3362 *
3363 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3364 * css which finished ->css_online() is guaranteed to be visible in the
3365 * future iterations and will stay visible until the last reference is put.
3366 * A css which hasn't finished ->css_online() or already finished
3367 * ->css_offline() may show up during traversal. It's each subsystem's
3368 * responsibility to synchronize against on/offlining.
3369 */
3370 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3371 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3372 struct cgroup_subsys_state *root)
3373 {
3374 struct cgroup_subsys_state *next;
3375
3376 cgroup_assert_mutex_or_rcu_locked();
3377
3378 /* if first iteration, visit @root */
3379 if (!pos)
3380 return root;
3381
3382 /* visit the first child if exists */
3383 next = css_next_child(NULL, pos);
3384 if (next)
3385 return next;
3386
3387 /* no child, visit my or the closest ancestor's next sibling */
3388 while (pos != root) {
3389 next = css_next_child(pos, pos->parent);
3390 if (next)
3391 return next;
3392 pos = pos->parent;
3393 }
3394
3395 return NULL;
3396 }
3397
3398 /**
3399 * css_rightmost_descendant - return the rightmost descendant of a css
3400 * @pos: css of interest
3401 *
3402 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3403 * is returned. This can be used during pre-order traversal to skip
3404 * subtree of @pos.
3405 *
3406 * While this function requires cgroup_mutex or RCU read locking, it
3407 * doesn't require the whole traversal to be contained in a single critical
3408 * section. This function will return the correct rightmost descendant as
3409 * long as @pos is accessible.
3410 */
3411 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)3412 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3413 {
3414 struct cgroup_subsys_state *last, *tmp;
3415
3416 cgroup_assert_mutex_or_rcu_locked();
3417
3418 do {
3419 last = pos;
3420 /* ->prev isn't RCU safe, walk ->next till the end */
3421 pos = NULL;
3422 css_for_each_child(tmp, last)
3423 pos = tmp;
3424 } while (pos);
3425
3426 return last;
3427 }
3428
3429 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)3430 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3431 {
3432 struct cgroup_subsys_state *last;
3433
3434 do {
3435 last = pos;
3436 pos = css_next_child(NULL, pos);
3437 } while (pos);
3438
3439 return last;
3440 }
3441
3442 /**
3443 * css_next_descendant_post - find the next descendant for post-order walk
3444 * @pos: the current position (%NULL to initiate traversal)
3445 * @root: css whose descendants to walk
3446 *
3447 * To be used by css_for_each_descendant_post(). Find the next descendant
3448 * to visit for post-order traversal of @root's descendants. @root is
3449 * included in the iteration and the last node to be visited.
3450 *
3451 * While this function requires cgroup_mutex or RCU read locking, it
3452 * doesn't require the whole traversal to be contained in a single critical
3453 * section. This function will return the correct next descendant as long
3454 * as both @pos and @cgroup are accessible and @pos is a descendant of
3455 * @cgroup.
3456 *
3457 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3458 * css which finished ->css_online() is guaranteed to be visible in the
3459 * future iterations and will stay visible until the last reference is put.
3460 * A css which hasn't finished ->css_online() or already finished
3461 * ->css_offline() may show up during traversal. It's each subsystem's
3462 * responsibility to synchronize against on/offlining.
3463 */
3464 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3465 css_next_descendant_post(struct cgroup_subsys_state *pos,
3466 struct cgroup_subsys_state *root)
3467 {
3468 struct cgroup_subsys_state *next;
3469
3470 cgroup_assert_mutex_or_rcu_locked();
3471
3472 /* if first iteration, visit leftmost descendant which may be @root */
3473 if (!pos)
3474 return css_leftmost_descendant(root);
3475
3476 /* if we visited @root, we're done */
3477 if (pos == root)
3478 return NULL;
3479
3480 /* if there's an unvisited sibling, visit its leftmost descendant */
3481 next = css_next_child(pos, pos->parent);
3482 if (next)
3483 return css_leftmost_descendant(next);
3484
3485 /* no sibling left, visit parent */
3486 return pos->parent;
3487 }
3488
3489 /**
3490 * css_has_online_children - does a css have online children
3491 * @css: the target css
3492 *
3493 * Returns %true if @css has any online children; otherwise, %false. This
3494 * function can be called from any context but the caller is responsible
3495 * for synchronizing against on/offlining as necessary.
3496 */
css_has_online_children(struct cgroup_subsys_state * css)3497 bool css_has_online_children(struct cgroup_subsys_state *css)
3498 {
3499 struct cgroup_subsys_state *child;
3500 bool ret = false;
3501
3502 rcu_read_lock();
3503 css_for_each_child(child, css) {
3504 if (child->flags & CSS_ONLINE) {
3505 ret = true;
3506 break;
3507 }
3508 }
3509 rcu_read_unlock();
3510 return ret;
3511 }
3512
3513 /**
3514 * css_advance_task_iter - advance a task itererator to the next css_set
3515 * @it: the iterator to advance
3516 *
3517 * Advance @it to the next css_set to walk.
3518 */
css_advance_task_iter(struct css_task_iter * it)3519 static void css_advance_task_iter(struct css_task_iter *it)
3520 {
3521 struct list_head *l = it->cset_pos;
3522 struct cgrp_cset_link *link;
3523 struct css_set *cset;
3524
3525 /* Advance to the next non-empty css_set */
3526 do {
3527 l = l->next;
3528 if (l == it->cset_head) {
3529 it->cset_pos = NULL;
3530 return;
3531 }
3532
3533 if (it->ss) {
3534 cset = container_of(l, struct css_set,
3535 e_cset_node[it->ss->id]);
3536 } else {
3537 link = list_entry(l, struct cgrp_cset_link, cset_link);
3538 cset = link->cset;
3539 }
3540 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3541
3542 it->cset_pos = l;
3543
3544 if (!list_empty(&cset->tasks))
3545 it->task_pos = cset->tasks.next;
3546 else
3547 it->task_pos = cset->mg_tasks.next;
3548
3549 it->tasks_head = &cset->tasks;
3550 it->mg_tasks_head = &cset->mg_tasks;
3551 }
3552
3553 /**
3554 * css_task_iter_start - initiate task iteration
3555 * @css: the css to walk tasks of
3556 * @it: the task iterator to use
3557 *
3558 * Initiate iteration through the tasks of @css. The caller can call
3559 * css_task_iter_next() to walk through the tasks until the function
3560 * returns NULL. On completion of iteration, css_task_iter_end() must be
3561 * called.
3562 *
3563 * Note that this function acquires a lock which is released when the
3564 * iteration finishes. The caller can't sleep while iteration is in
3565 * progress.
3566 */
css_task_iter_start(struct cgroup_subsys_state * css,struct css_task_iter * it)3567 void css_task_iter_start(struct cgroup_subsys_state *css,
3568 struct css_task_iter *it)
3569 __acquires(css_set_rwsem)
3570 {
3571 /* no one should try to iterate before mounting cgroups */
3572 WARN_ON_ONCE(!use_task_css_set_links);
3573
3574 down_read(&css_set_rwsem);
3575
3576 it->ss = css->ss;
3577
3578 if (it->ss)
3579 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3580 else
3581 it->cset_pos = &css->cgroup->cset_links;
3582
3583 it->cset_head = it->cset_pos;
3584
3585 css_advance_task_iter(it);
3586 }
3587
3588 /**
3589 * css_task_iter_next - return the next task for the iterator
3590 * @it: the task iterator being iterated
3591 *
3592 * The "next" function for task iteration. @it should have been
3593 * initialized via css_task_iter_start(). Returns NULL when the iteration
3594 * reaches the end.
3595 */
css_task_iter_next(struct css_task_iter * it)3596 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3597 {
3598 struct task_struct *res;
3599 struct list_head *l = it->task_pos;
3600
3601 /* If the iterator cg is NULL, we have no tasks */
3602 if (!it->cset_pos)
3603 return NULL;
3604 res = list_entry(l, struct task_struct, cg_list);
3605
3606 /*
3607 * Advance iterator to find next entry. cset->tasks is consumed
3608 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3609 * next cset.
3610 */
3611 l = l->next;
3612
3613 if (l == it->tasks_head)
3614 l = it->mg_tasks_head->next;
3615
3616 if (l == it->mg_tasks_head)
3617 css_advance_task_iter(it);
3618 else
3619 it->task_pos = l;
3620
3621 return res;
3622 }
3623
3624 /**
3625 * css_task_iter_end - finish task iteration
3626 * @it: the task iterator to finish
3627 *
3628 * Finish task iteration started by css_task_iter_start().
3629 */
css_task_iter_end(struct css_task_iter * it)3630 void css_task_iter_end(struct css_task_iter *it)
3631 __releases(css_set_rwsem)
3632 {
3633 up_read(&css_set_rwsem);
3634 }
3635
3636 /**
3637 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3638 * @to: cgroup to which the tasks will be moved
3639 * @from: cgroup in which the tasks currently reside
3640 *
3641 * Locking rules between cgroup_post_fork() and the migration path
3642 * guarantee that, if a task is forking while being migrated, the new child
3643 * is guaranteed to be either visible in the source cgroup after the
3644 * parent's migration is complete or put into the target cgroup. No task
3645 * can slip out of migration through forking.
3646 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)3647 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3648 {
3649 LIST_HEAD(preloaded_csets);
3650 struct cgrp_cset_link *link;
3651 struct css_task_iter it;
3652 struct task_struct *task;
3653 int ret;
3654
3655 mutex_lock(&cgroup_mutex);
3656
3657 /* all tasks in @from are being moved, all csets are source */
3658 down_read(&css_set_rwsem);
3659 list_for_each_entry(link, &from->cset_links, cset_link)
3660 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3661 up_read(&css_set_rwsem);
3662
3663 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3664 if (ret)
3665 goto out_err;
3666
3667 /*
3668 * Migrate tasks one-by-one until @form is empty. This fails iff
3669 * ->can_attach() fails.
3670 */
3671 do {
3672 css_task_iter_start(&from->self, &it);
3673 task = css_task_iter_next(&it);
3674 if (task)
3675 get_task_struct(task);
3676 css_task_iter_end(&it);
3677
3678 if (task) {
3679 ret = cgroup_migrate(to, task, false);
3680 put_task_struct(task);
3681 }
3682 } while (task && !ret);
3683 out_err:
3684 cgroup_migrate_finish(&preloaded_csets);
3685 mutex_unlock(&cgroup_mutex);
3686 return ret;
3687 }
3688
3689 /*
3690 * Stuff for reading the 'tasks'/'procs' files.
3691 *
3692 * Reading this file can return large amounts of data if a cgroup has
3693 * *lots* of attached tasks. So it may need several calls to read(),
3694 * but we cannot guarantee that the information we produce is correct
3695 * unless we produce it entirely atomically.
3696 *
3697 */
3698
3699 /* which pidlist file are we talking about? */
3700 enum cgroup_filetype {
3701 CGROUP_FILE_PROCS,
3702 CGROUP_FILE_TASKS,
3703 };
3704
3705 /*
3706 * A pidlist is a list of pids that virtually represents the contents of one
3707 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3708 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3709 * to the cgroup.
3710 */
3711 struct cgroup_pidlist {
3712 /*
3713 * used to find which pidlist is wanted. doesn't change as long as
3714 * this particular list stays in the list.
3715 */
3716 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3717 /* array of xids */
3718 pid_t *list;
3719 /* how many elements the above list has */
3720 int length;
3721 /* each of these stored in a list by its cgroup */
3722 struct list_head links;
3723 /* pointer to the cgroup we belong to, for list removal purposes */
3724 struct cgroup *owner;
3725 /* for delayed destruction */
3726 struct delayed_work destroy_dwork;
3727 };
3728
3729 /*
3730 * The following two functions "fix" the issue where there are more pids
3731 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3732 * TODO: replace with a kernel-wide solution to this problem
3733 */
3734 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)3735 static void *pidlist_allocate(int count)
3736 {
3737 if (PIDLIST_TOO_LARGE(count))
3738 return vmalloc(count * sizeof(pid_t));
3739 else
3740 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3741 }
3742
pidlist_free(void * p)3743 static void pidlist_free(void *p)
3744 {
3745 if (is_vmalloc_addr(p))
3746 vfree(p);
3747 else
3748 kfree(p);
3749 }
3750
3751 /*
3752 * Used to destroy all pidlists lingering waiting for destroy timer. None
3753 * should be left afterwards.
3754 */
cgroup_pidlist_destroy_all(struct cgroup * cgrp)3755 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3756 {
3757 struct cgroup_pidlist *l, *tmp_l;
3758
3759 mutex_lock(&cgrp->pidlist_mutex);
3760 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3761 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3762 mutex_unlock(&cgrp->pidlist_mutex);
3763
3764 flush_workqueue(cgroup_pidlist_destroy_wq);
3765 BUG_ON(!list_empty(&cgrp->pidlists));
3766 }
3767
cgroup_pidlist_destroy_work_fn(struct work_struct * work)3768 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3769 {
3770 struct delayed_work *dwork = to_delayed_work(work);
3771 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3772 destroy_dwork);
3773 struct cgroup_pidlist *tofree = NULL;
3774
3775 mutex_lock(&l->owner->pidlist_mutex);
3776
3777 /*
3778 * Destroy iff we didn't get queued again. The state won't change
3779 * as destroy_dwork can only be queued while locked.
3780 */
3781 if (!delayed_work_pending(dwork)) {
3782 list_del(&l->links);
3783 pidlist_free(l->list);
3784 put_pid_ns(l->key.ns);
3785 tofree = l;
3786 }
3787
3788 mutex_unlock(&l->owner->pidlist_mutex);
3789 kfree(tofree);
3790 }
3791
3792 /*
3793 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3794 * Returns the number of unique elements.
3795 */
pidlist_uniq(pid_t * list,int length)3796 static int pidlist_uniq(pid_t *list, int length)
3797 {
3798 int src, dest = 1;
3799
3800 /*
3801 * we presume the 0th element is unique, so i starts at 1. trivial
3802 * edge cases first; no work needs to be done for either
3803 */
3804 if (length == 0 || length == 1)
3805 return length;
3806 /* src and dest walk down the list; dest counts unique elements */
3807 for (src = 1; src < length; src++) {
3808 /* find next unique element */
3809 while (list[src] == list[src-1]) {
3810 src++;
3811 if (src == length)
3812 goto after;
3813 }
3814 /* dest always points to where the next unique element goes */
3815 list[dest] = list[src];
3816 dest++;
3817 }
3818 after:
3819 return dest;
3820 }
3821
3822 /*
3823 * The two pid files - task and cgroup.procs - guaranteed that the result
3824 * is sorted, which forced this whole pidlist fiasco. As pid order is
3825 * different per namespace, each namespace needs differently sorted list,
3826 * making it impossible to use, for example, single rbtree of member tasks
3827 * sorted by task pointer. As pidlists can be fairly large, allocating one
3828 * per open file is dangerous, so cgroup had to implement shared pool of
3829 * pidlists keyed by cgroup and namespace.
3830 *
3831 * All this extra complexity was caused by the original implementation
3832 * committing to an entirely unnecessary property. In the long term, we
3833 * want to do away with it. Explicitly scramble sort order if on the
3834 * default hierarchy so that no such expectation exists in the new
3835 * interface.
3836 *
3837 * Scrambling is done by swapping every two consecutive bits, which is
3838 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3839 */
pid_fry(pid_t pid)3840 static pid_t pid_fry(pid_t pid)
3841 {
3842 unsigned a = pid & 0x55555555;
3843 unsigned b = pid & 0xAAAAAAAA;
3844
3845 return (a << 1) | (b >> 1);
3846 }
3847
cgroup_pid_fry(struct cgroup * cgrp,pid_t pid)3848 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3849 {
3850 if (cgroup_on_dfl(cgrp))
3851 return pid_fry(pid);
3852 else
3853 return pid;
3854 }
3855
cmppid(const void * a,const void * b)3856 static int cmppid(const void *a, const void *b)
3857 {
3858 return *(pid_t *)a - *(pid_t *)b;
3859 }
3860
fried_cmppid(const void * a,const void * b)3861 static int fried_cmppid(const void *a, const void *b)
3862 {
3863 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3864 }
3865
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)3866 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3867 enum cgroup_filetype type)
3868 {
3869 struct cgroup_pidlist *l;
3870 /* don't need task_nsproxy() if we're looking at ourself */
3871 struct pid_namespace *ns = task_active_pid_ns(current);
3872
3873 lockdep_assert_held(&cgrp->pidlist_mutex);
3874
3875 list_for_each_entry(l, &cgrp->pidlists, links)
3876 if (l->key.type == type && l->key.ns == ns)
3877 return l;
3878 return NULL;
3879 }
3880
3881 /*
3882 * find the appropriate pidlist for our purpose (given procs vs tasks)
3883 * returns with the lock on that pidlist already held, and takes care
3884 * of the use count, or returns NULL with no locks held if we're out of
3885 * memory.
3886 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)3887 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3888 enum cgroup_filetype type)
3889 {
3890 struct cgroup_pidlist *l;
3891
3892 lockdep_assert_held(&cgrp->pidlist_mutex);
3893
3894 l = cgroup_pidlist_find(cgrp, type);
3895 if (l)
3896 return l;
3897
3898 /* entry not found; create a new one */
3899 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3900 if (!l)
3901 return l;
3902
3903 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3904 l->key.type = type;
3905 /* don't need task_nsproxy() if we're looking at ourself */
3906 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3907 l->owner = cgrp;
3908 list_add(&l->links, &cgrp->pidlists);
3909 return l;
3910 }
3911
3912 /*
3913 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3914 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)3915 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3916 struct cgroup_pidlist **lp)
3917 {
3918 pid_t *array;
3919 int length;
3920 int pid, n = 0; /* used for populating the array */
3921 struct css_task_iter it;
3922 struct task_struct *tsk;
3923 struct cgroup_pidlist *l;
3924
3925 lockdep_assert_held(&cgrp->pidlist_mutex);
3926
3927 /*
3928 * If cgroup gets more users after we read count, we won't have
3929 * enough space - tough. This race is indistinguishable to the
3930 * caller from the case that the additional cgroup users didn't
3931 * show up until sometime later on.
3932 */
3933 length = cgroup_task_count(cgrp);
3934 array = pidlist_allocate(length);
3935 if (!array)
3936 return -ENOMEM;
3937 /* now, populate the array */
3938 css_task_iter_start(&cgrp->self, &it);
3939 while ((tsk = css_task_iter_next(&it))) {
3940 if (unlikely(n == length))
3941 break;
3942 /* get tgid or pid for procs or tasks file respectively */
3943 if (type == CGROUP_FILE_PROCS)
3944 pid = task_tgid_vnr(tsk);
3945 else
3946 pid = task_pid_vnr(tsk);
3947 if (pid > 0) /* make sure to only use valid results */
3948 array[n++] = pid;
3949 }
3950 css_task_iter_end(&it);
3951 length = n;
3952 /* now sort & (if procs) strip out duplicates */
3953 if (cgroup_on_dfl(cgrp))
3954 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3955 else
3956 sort(array, length, sizeof(pid_t), cmppid, NULL);
3957 if (type == CGROUP_FILE_PROCS)
3958 length = pidlist_uniq(array, length);
3959
3960 l = cgroup_pidlist_find_create(cgrp, type);
3961 if (!l) {
3962 pidlist_free(array);
3963 return -ENOMEM;
3964 }
3965
3966 /* store array, freeing old if necessary */
3967 pidlist_free(l->list);
3968 l->list = array;
3969 l->length = length;
3970 *lp = l;
3971 return 0;
3972 }
3973
3974 /**
3975 * cgroupstats_build - build and fill cgroupstats
3976 * @stats: cgroupstats to fill information into
3977 * @dentry: A dentry entry belonging to the cgroup for which stats have
3978 * been requested.
3979 *
3980 * Build and fill cgroupstats so that taskstats can export it to user
3981 * space.
3982 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)3983 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3984 {
3985 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3986 struct cgroup *cgrp;
3987 struct css_task_iter it;
3988 struct task_struct *tsk;
3989
3990 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3991 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3992 kernfs_type(kn) != KERNFS_DIR)
3993 return -EINVAL;
3994
3995 mutex_lock(&cgroup_mutex);
3996
3997 /*
3998 * We aren't being called from kernfs and there's no guarantee on
3999 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4000 * @kn->priv is RCU safe. Let's do the RCU dancing.
4001 */
4002 rcu_read_lock();
4003 cgrp = rcu_dereference(kn->priv);
4004 if (!cgrp || cgroup_is_dead(cgrp)) {
4005 rcu_read_unlock();
4006 mutex_unlock(&cgroup_mutex);
4007 return -ENOENT;
4008 }
4009 rcu_read_unlock();
4010
4011 css_task_iter_start(&cgrp->self, &it);
4012 while ((tsk = css_task_iter_next(&it))) {
4013 switch (tsk->state) {
4014 case TASK_RUNNING:
4015 stats->nr_running++;
4016 break;
4017 case TASK_INTERRUPTIBLE:
4018 stats->nr_sleeping++;
4019 break;
4020 case TASK_UNINTERRUPTIBLE:
4021 stats->nr_uninterruptible++;
4022 break;
4023 case TASK_STOPPED:
4024 stats->nr_stopped++;
4025 break;
4026 default:
4027 if (delayacct_is_task_waiting_on_io(tsk))
4028 stats->nr_io_wait++;
4029 break;
4030 }
4031 }
4032 css_task_iter_end(&it);
4033
4034 mutex_unlock(&cgroup_mutex);
4035 return 0;
4036 }
4037
4038
4039 /*
4040 * seq_file methods for the tasks/procs files. The seq_file position is the
4041 * next pid to display; the seq_file iterator is a pointer to the pid
4042 * in the cgroup->l->list array.
4043 */
4044
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)4045 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4046 {
4047 /*
4048 * Initially we receive a position value that corresponds to
4049 * one more than the last pid shown (or 0 on the first call or
4050 * after a seek to the start). Use a binary-search to find the
4051 * next pid to display, if any
4052 */
4053 struct kernfs_open_file *of = s->private;
4054 struct cgroup *cgrp = seq_css(s)->cgroup;
4055 struct cgroup_pidlist *l;
4056 enum cgroup_filetype type = seq_cft(s)->private;
4057 int index = 0, pid = *pos;
4058 int *iter, ret;
4059
4060 mutex_lock(&cgrp->pidlist_mutex);
4061
4062 /*
4063 * !NULL @of->priv indicates that this isn't the first start()
4064 * after open. If the matching pidlist is around, we can use that.
4065 * Look for it. Note that @of->priv can't be used directly. It
4066 * could already have been destroyed.
4067 */
4068 if (of->priv)
4069 of->priv = cgroup_pidlist_find(cgrp, type);
4070
4071 /*
4072 * Either this is the first start() after open or the matching
4073 * pidlist has been destroyed inbetween. Create a new one.
4074 */
4075 if (!of->priv) {
4076 ret = pidlist_array_load(cgrp, type,
4077 (struct cgroup_pidlist **)&of->priv);
4078 if (ret)
4079 return ERR_PTR(ret);
4080 }
4081 l = of->priv;
4082
4083 if (pid) {
4084 int end = l->length;
4085
4086 while (index < end) {
4087 int mid = (index + end) / 2;
4088 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4089 index = mid;
4090 break;
4091 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4092 index = mid + 1;
4093 else
4094 end = mid;
4095 }
4096 }
4097 /* If we're off the end of the array, we're done */
4098 if (index >= l->length)
4099 return NULL;
4100 /* Update the abstract position to be the actual pid that we found */
4101 iter = l->list + index;
4102 *pos = cgroup_pid_fry(cgrp, *iter);
4103 return iter;
4104 }
4105
cgroup_pidlist_stop(struct seq_file * s,void * v)4106 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4107 {
4108 struct kernfs_open_file *of = s->private;
4109 struct cgroup_pidlist *l = of->priv;
4110
4111 if (l)
4112 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4113 CGROUP_PIDLIST_DESTROY_DELAY);
4114 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4115 }
4116
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)4117 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4118 {
4119 struct kernfs_open_file *of = s->private;
4120 struct cgroup_pidlist *l = of->priv;
4121 pid_t *p = v;
4122 pid_t *end = l->list + l->length;
4123 /*
4124 * Advance to the next pid in the array. If this goes off the
4125 * end, we're done
4126 */
4127 p++;
4128 if (p >= end) {
4129 return NULL;
4130 } else {
4131 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4132 return p;
4133 }
4134 }
4135
cgroup_pidlist_show(struct seq_file * s,void * v)4136 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4137 {
4138 return seq_printf(s, "%d\n", *(int *)v);
4139 }
4140
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)4141 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4142 struct cftype *cft)
4143 {
4144 return notify_on_release(css->cgroup);
4145 }
4146
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4147 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4148 struct cftype *cft, u64 val)
4149 {
4150 if (val)
4151 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4152 else
4153 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4154 return 0;
4155 }
4156
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)4157 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4158 struct cftype *cft)
4159 {
4160 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4161 }
4162
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4163 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4164 struct cftype *cft, u64 val)
4165 {
4166 if (val)
4167 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4168 else
4169 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4170 return 0;
4171 }
4172
4173 /* cgroup core interface files for the default hierarchy */
4174 static struct cftype cgroup_dfl_base_files[] = {
4175 {
4176 .name = "cgroup.procs",
4177 .seq_start = cgroup_pidlist_start,
4178 .seq_next = cgroup_pidlist_next,
4179 .seq_stop = cgroup_pidlist_stop,
4180 .seq_show = cgroup_pidlist_show,
4181 .private = CGROUP_FILE_PROCS,
4182 .write = cgroup_procs_write,
4183 .mode = S_IRUGO | S_IWUSR,
4184 },
4185 {
4186 .name = "cgroup.controllers",
4187 .flags = CFTYPE_ONLY_ON_ROOT,
4188 .seq_show = cgroup_root_controllers_show,
4189 },
4190 {
4191 .name = "cgroup.controllers",
4192 .flags = CFTYPE_NOT_ON_ROOT,
4193 .seq_show = cgroup_controllers_show,
4194 },
4195 {
4196 .name = "cgroup.subtree_control",
4197 .seq_show = cgroup_subtree_control_show,
4198 .write = cgroup_subtree_control_write,
4199 },
4200 {
4201 .name = "cgroup.populated",
4202 .flags = CFTYPE_NOT_ON_ROOT,
4203 .seq_show = cgroup_populated_show,
4204 },
4205 { } /* terminate */
4206 };
4207
4208 /* cgroup core interface files for the legacy hierarchies */
4209 static struct cftype cgroup_legacy_base_files[] = {
4210 {
4211 .name = "cgroup.procs",
4212 .seq_start = cgroup_pidlist_start,
4213 .seq_next = cgroup_pidlist_next,
4214 .seq_stop = cgroup_pidlist_stop,
4215 .seq_show = cgroup_pidlist_show,
4216 .private = CGROUP_FILE_PROCS,
4217 .write = cgroup_procs_write,
4218 .mode = S_IRUGO | S_IWUSR,
4219 },
4220 {
4221 .name = "cgroup.clone_children",
4222 .read_u64 = cgroup_clone_children_read,
4223 .write_u64 = cgroup_clone_children_write,
4224 },
4225 {
4226 .name = "cgroup.sane_behavior",
4227 .flags = CFTYPE_ONLY_ON_ROOT,
4228 .seq_show = cgroup_sane_behavior_show,
4229 },
4230 {
4231 .name = "tasks",
4232 .seq_start = cgroup_pidlist_start,
4233 .seq_next = cgroup_pidlist_next,
4234 .seq_stop = cgroup_pidlist_stop,
4235 .seq_show = cgroup_pidlist_show,
4236 .private = CGROUP_FILE_TASKS,
4237 .write = cgroup_tasks_write,
4238 .mode = S_IRUGO | S_IWUSR,
4239 },
4240 {
4241 .name = "notify_on_release",
4242 .read_u64 = cgroup_read_notify_on_release,
4243 .write_u64 = cgroup_write_notify_on_release,
4244 },
4245 {
4246 .name = "release_agent",
4247 .flags = CFTYPE_ONLY_ON_ROOT,
4248 .seq_show = cgroup_release_agent_show,
4249 .write = cgroup_release_agent_write,
4250 .max_write_len = PATH_MAX - 1,
4251 },
4252 { } /* terminate */
4253 };
4254
4255 /**
4256 * cgroup_populate_dir - create subsys files in a cgroup directory
4257 * @cgrp: target cgroup
4258 * @subsys_mask: mask of the subsystem ids whose files should be added
4259 *
4260 * On failure, no file is added.
4261 */
cgroup_populate_dir(struct cgroup * cgrp,unsigned int subsys_mask)4262 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4263 {
4264 struct cgroup_subsys *ss;
4265 int i, ret = 0;
4266
4267 /* process cftsets of each subsystem */
4268 for_each_subsys(ss, i) {
4269 struct cftype *cfts;
4270
4271 if (!(subsys_mask & (1 << i)))
4272 continue;
4273
4274 list_for_each_entry(cfts, &ss->cfts, node) {
4275 ret = cgroup_addrm_files(cgrp, cfts, true);
4276 if (ret < 0)
4277 goto err;
4278 }
4279 }
4280 return 0;
4281 err:
4282 cgroup_clear_dir(cgrp, subsys_mask);
4283 return ret;
4284 }
4285
4286 /*
4287 * css destruction is four-stage process.
4288 *
4289 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4290 * Implemented in kill_css().
4291 *
4292 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4293 * and thus css_tryget_online() is guaranteed to fail, the css can be
4294 * offlined by invoking offline_css(). After offlining, the base ref is
4295 * put. Implemented in css_killed_work_fn().
4296 *
4297 * 3. When the percpu_ref reaches zero, the only possible remaining
4298 * accessors are inside RCU read sections. css_release() schedules the
4299 * RCU callback.
4300 *
4301 * 4. After the grace period, the css can be freed. Implemented in
4302 * css_free_work_fn().
4303 *
4304 * It is actually hairier because both step 2 and 4 require process context
4305 * and thus involve punting to css->destroy_work adding two additional
4306 * steps to the already complex sequence.
4307 */
css_free_work_fn(struct work_struct * work)4308 static void css_free_work_fn(struct work_struct *work)
4309 {
4310 struct cgroup_subsys_state *css =
4311 container_of(work, struct cgroup_subsys_state, destroy_work);
4312 struct cgroup *cgrp = css->cgroup;
4313
4314 percpu_ref_exit(&css->refcnt);
4315
4316 if (css->ss) {
4317 /* css free path */
4318 if (css->parent)
4319 css_put(css->parent);
4320
4321 css->ss->css_free(css);
4322 cgroup_put(cgrp);
4323 } else {
4324 /* cgroup free path */
4325 atomic_dec(&cgrp->root->nr_cgrps);
4326 cgroup_pidlist_destroy_all(cgrp);
4327 cancel_work_sync(&cgrp->release_agent_work);
4328
4329 if (cgroup_parent(cgrp)) {
4330 /*
4331 * We get a ref to the parent, and put the ref when
4332 * this cgroup is being freed, so it's guaranteed
4333 * that the parent won't be destroyed before its
4334 * children.
4335 */
4336 cgroup_put(cgroup_parent(cgrp));
4337 kernfs_put(cgrp->kn);
4338 kfree(cgrp);
4339 } else {
4340 /*
4341 * This is root cgroup's refcnt reaching zero,
4342 * which indicates that the root should be
4343 * released.
4344 */
4345 cgroup_destroy_root(cgrp->root);
4346 }
4347 }
4348 }
4349
css_free_rcu_fn(struct rcu_head * rcu_head)4350 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4351 {
4352 struct cgroup_subsys_state *css =
4353 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4354
4355 INIT_WORK(&css->destroy_work, css_free_work_fn);
4356 queue_work(cgroup_destroy_wq, &css->destroy_work);
4357 }
4358
css_release_work_fn(struct work_struct * work)4359 static void css_release_work_fn(struct work_struct *work)
4360 {
4361 struct cgroup_subsys_state *css =
4362 container_of(work, struct cgroup_subsys_state, destroy_work);
4363 struct cgroup_subsys *ss = css->ss;
4364 struct cgroup *cgrp = css->cgroup;
4365
4366 mutex_lock(&cgroup_mutex);
4367
4368 css->flags |= CSS_RELEASED;
4369 list_del_rcu(&css->sibling);
4370
4371 if (ss) {
4372 /* css release path */
4373 cgroup_idr_remove(&ss->css_idr, css->id);
4374 } else {
4375 /* cgroup release path */
4376 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4377 cgrp->id = -1;
4378
4379 /*
4380 * There are two control paths which try to determine
4381 * cgroup from dentry without going through kernfs -
4382 * cgroupstats_build() and css_tryget_online_from_dir().
4383 * Those are supported by RCU protecting clearing of
4384 * cgrp->kn->priv backpointer.
4385 */
4386 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4387 }
4388
4389 mutex_unlock(&cgroup_mutex);
4390
4391 call_rcu(&css->rcu_head, css_free_rcu_fn);
4392 }
4393
css_release(struct percpu_ref * ref)4394 static void css_release(struct percpu_ref *ref)
4395 {
4396 struct cgroup_subsys_state *css =
4397 container_of(ref, struct cgroup_subsys_state, refcnt);
4398
4399 INIT_WORK(&css->destroy_work, css_release_work_fn);
4400 queue_work(cgroup_destroy_wq, &css->destroy_work);
4401 }
4402
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4403 static void init_and_link_css(struct cgroup_subsys_state *css,
4404 struct cgroup_subsys *ss, struct cgroup *cgrp)
4405 {
4406 lockdep_assert_held(&cgroup_mutex);
4407
4408 cgroup_get(cgrp);
4409
4410 memset(css, 0, sizeof(*css));
4411 css->cgroup = cgrp;
4412 css->ss = ss;
4413 INIT_LIST_HEAD(&css->sibling);
4414 INIT_LIST_HEAD(&css->children);
4415 css->serial_nr = css_serial_nr_next++;
4416
4417 if (cgroup_parent(cgrp)) {
4418 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4419 css_get(css->parent);
4420 }
4421
4422 BUG_ON(cgroup_css(cgrp, ss));
4423 }
4424
4425 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)4426 static int online_css(struct cgroup_subsys_state *css)
4427 {
4428 struct cgroup_subsys *ss = css->ss;
4429 int ret = 0;
4430
4431 lockdep_assert_held(&cgroup_mutex);
4432
4433 if (ss->css_online)
4434 ret = ss->css_online(css);
4435 if (!ret) {
4436 css->flags |= CSS_ONLINE;
4437 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4438 }
4439 return ret;
4440 }
4441
4442 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)4443 static void offline_css(struct cgroup_subsys_state *css)
4444 {
4445 struct cgroup_subsys *ss = css->ss;
4446
4447 lockdep_assert_held(&cgroup_mutex);
4448
4449 if (!(css->flags & CSS_ONLINE))
4450 return;
4451
4452 if (ss->css_offline)
4453 ss->css_offline(css);
4454
4455 css->flags &= ~CSS_ONLINE;
4456 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4457
4458 wake_up_all(&css->cgroup->offline_waitq);
4459 }
4460
4461 /**
4462 * create_css - create a cgroup_subsys_state
4463 * @cgrp: the cgroup new css will be associated with
4464 * @ss: the subsys of new css
4465 * @visible: whether to create control knobs for the new css or not
4466 *
4467 * Create a new css associated with @cgrp - @ss pair. On success, the new
4468 * css is online and installed in @cgrp with all interface files created if
4469 * @visible. Returns 0 on success, -errno on failure.
4470 */
create_css(struct cgroup * cgrp,struct cgroup_subsys * ss,bool visible)4471 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4472 bool visible)
4473 {
4474 struct cgroup *parent = cgroup_parent(cgrp);
4475 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4476 struct cgroup_subsys_state *css;
4477 int err;
4478
4479 lockdep_assert_held(&cgroup_mutex);
4480
4481 css = ss->css_alloc(parent_css);
4482 if (IS_ERR(css))
4483 return PTR_ERR(css);
4484
4485 init_and_link_css(css, ss, cgrp);
4486
4487 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4488 if (err)
4489 goto err_free_css;
4490
4491 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4492 if (err < 0)
4493 goto err_free_css;
4494 css->id = err;
4495
4496 if (visible) {
4497 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4498 if (err)
4499 goto err_free_id;
4500 }
4501
4502 /* @css is ready to be brought online now, make it visible */
4503 list_add_tail_rcu(&css->sibling, &parent_css->children);
4504 cgroup_idr_replace(&ss->css_idr, css, css->id);
4505
4506 err = online_css(css);
4507 if (err)
4508 goto err_list_del;
4509
4510 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4511 cgroup_parent(parent)) {
4512 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4513 current->comm, current->pid, ss->name);
4514 if (!strcmp(ss->name, "memory"))
4515 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4516 ss->warned_broken_hierarchy = true;
4517 }
4518
4519 return 0;
4520
4521 err_list_del:
4522 list_del_rcu(&css->sibling);
4523 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4524 err_free_id:
4525 err_free_css:
4526 call_rcu(&css->rcu_head, css_free_rcu_fn);
4527 return err;
4528 }
4529
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)4530 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4531 umode_t mode)
4532 {
4533 struct cgroup *parent, *cgrp;
4534 struct cgroup_root *root;
4535 struct cgroup_subsys *ss;
4536 struct kernfs_node *kn;
4537 struct cftype *base_files;
4538 int ssid, ret;
4539
4540 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4541 */
4542 if (strchr(name, '\n'))
4543 return -EINVAL;
4544
4545 parent = cgroup_kn_lock_live(parent_kn);
4546 if (!parent)
4547 return -ENODEV;
4548 root = parent->root;
4549
4550 /* allocate the cgroup and its ID, 0 is reserved for the root */
4551 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4552 if (!cgrp) {
4553 ret = -ENOMEM;
4554 goto out_unlock;
4555 }
4556
4557 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4558 if (ret)
4559 goto out_free_cgrp;
4560
4561 /*
4562 * Temporarily set the pointer to NULL, so idr_find() won't return
4563 * a half-baked cgroup.
4564 */
4565 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4566 if (cgrp->id < 0) {
4567 ret = -ENOMEM;
4568 goto out_cancel_ref;
4569 }
4570
4571 init_cgroup_housekeeping(cgrp);
4572
4573 cgrp->self.parent = &parent->self;
4574 cgrp->root = root;
4575
4576 if (notify_on_release(parent))
4577 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4578
4579 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4580 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4581
4582 /* create the directory */
4583 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4584 if (IS_ERR(kn)) {
4585 ret = PTR_ERR(kn);
4586 goto out_free_id;
4587 }
4588 cgrp->kn = kn;
4589
4590 /*
4591 * This extra ref will be put in cgroup_free_fn() and guarantees
4592 * that @cgrp->kn is always accessible.
4593 */
4594 kernfs_get(kn);
4595
4596 cgrp->self.serial_nr = css_serial_nr_next++;
4597
4598 /* allocation complete, commit to creation */
4599 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4600 atomic_inc(&root->nr_cgrps);
4601 cgroup_get(parent);
4602
4603 /*
4604 * @cgrp is now fully operational. If something fails after this
4605 * point, it'll be released via the normal destruction path.
4606 */
4607 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4608
4609 ret = cgroup_kn_set_ugid(kn);
4610 if (ret)
4611 goto out_destroy;
4612
4613 if (cgroup_on_dfl(cgrp))
4614 base_files = cgroup_dfl_base_files;
4615 else
4616 base_files = cgroup_legacy_base_files;
4617
4618 ret = cgroup_addrm_files(cgrp, base_files, true);
4619 if (ret)
4620 goto out_destroy;
4621
4622 /* let's create and online css's */
4623 for_each_subsys(ss, ssid) {
4624 if (parent->child_subsys_mask & (1 << ssid)) {
4625 ret = create_css(cgrp, ss,
4626 parent->subtree_control & (1 << ssid));
4627 if (ret)
4628 goto out_destroy;
4629 }
4630 }
4631
4632 /*
4633 * On the default hierarchy, a child doesn't automatically inherit
4634 * subtree_control from the parent. Each is configured manually.
4635 */
4636 if (!cgroup_on_dfl(cgrp)) {
4637 cgrp->subtree_control = parent->subtree_control;
4638 cgroup_refresh_child_subsys_mask(cgrp);
4639 }
4640
4641 kernfs_activate(kn);
4642
4643 ret = 0;
4644 goto out_unlock;
4645
4646 out_free_id:
4647 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4648 out_cancel_ref:
4649 percpu_ref_exit(&cgrp->self.refcnt);
4650 out_free_cgrp:
4651 kfree(cgrp);
4652 out_unlock:
4653 cgroup_kn_unlock(parent_kn);
4654 return ret;
4655
4656 out_destroy:
4657 cgroup_destroy_locked(cgrp);
4658 goto out_unlock;
4659 }
4660
4661 /*
4662 * This is called when the refcnt of a css is confirmed to be killed.
4663 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4664 * initate destruction and put the css ref from kill_css().
4665 */
css_killed_work_fn(struct work_struct * work)4666 static void css_killed_work_fn(struct work_struct *work)
4667 {
4668 struct cgroup_subsys_state *css =
4669 container_of(work, struct cgroup_subsys_state, destroy_work);
4670
4671 mutex_lock(&cgroup_mutex);
4672 offline_css(css);
4673 mutex_unlock(&cgroup_mutex);
4674
4675 css_put(css);
4676 }
4677
4678 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)4679 static void css_killed_ref_fn(struct percpu_ref *ref)
4680 {
4681 struct cgroup_subsys_state *css =
4682 container_of(ref, struct cgroup_subsys_state, refcnt);
4683
4684 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4685 queue_work(cgroup_destroy_wq, &css->destroy_work);
4686 }
4687
4688 /**
4689 * kill_css - destroy a css
4690 * @css: css to destroy
4691 *
4692 * This function initiates destruction of @css by removing cgroup interface
4693 * files and putting its base reference. ->css_offline() will be invoked
4694 * asynchronously once css_tryget_online() is guaranteed to fail and when
4695 * the reference count reaches zero, @css will be released.
4696 */
kill_css(struct cgroup_subsys_state * css)4697 static void kill_css(struct cgroup_subsys_state *css)
4698 {
4699 lockdep_assert_held(&cgroup_mutex);
4700
4701 /*
4702 * This must happen before css is disassociated with its cgroup.
4703 * See seq_css() for details.
4704 */
4705 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4706
4707 /*
4708 * Killing would put the base ref, but we need to keep it alive
4709 * until after ->css_offline().
4710 */
4711 css_get(css);
4712
4713 /*
4714 * cgroup core guarantees that, by the time ->css_offline() is
4715 * invoked, no new css reference will be given out via
4716 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4717 * proceed to offlining css's because percpu_ref_kill() doesn't
4718 * guarantee that the ref is seen as killed on all CPUs on return.
4719 *
4720 * Use percpu_ref_kill_and_confirm() to get notifications as each
4721 * css is confirmed to be seen as killed on all CPUs.
4722 */
4723 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4724 }
4725
4726 /**
4727 * cgroup_destroy_locked - the first stage of cgroup destruction
4728 * @cgrp: cgroup to be destroyed
4729 *
4730 * css's make use of percpu refcnts whose killing latency shouldn't be
4731 * exposed to userland and are RCU protected. Also, cgroup core needs to
4732 * guarantee that css_tryget_online() won't succeed by the time
4733 * ->css_offline() is invoked. To satisfy all the requirements,
4734 * destruction is implemented in the following two steps.
4735 *
4736 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4737 * userland visible parts and start killing the percpu refcnts of
4738 * css's. Set up so that the next stage will be kicked off once all
4739 * the percpu refcnts are confirmed to be killed.
4740 *
4741 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4742 * rest of destruction. Once all cgroup references are gone, the
4743 * cgroup is RCU-freed.
4744 *
4745 * This function implements s1. After this step, @cgrp is gone as far as
4746 * the userland is concerned and a new cgroup with the same name may be
4747 * created. As cgroup doesn't care about the names internally, this
4748 * doesn't cause any problem.
4749 */
cgroup_destroy_locked(struct cgroup * cgrp)4750 static int cgroup_destroy_locked(struct cgroup *cgrp)
4751 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4752 {
4753 struct cgroup_subsys_state *css;
4754 bool empty;
4755 int ssid;
4756
4757 lockdep_assert_held(&cgroup_mutex);
4758
4759 /*
4760 * css_set_rwsem synchronizes access to ->cset_links and prevents
4761 * @cgrp from being removed while put_css_set() is in progress.
4762 */
4763 down_read(&css_set_rwsem);
4764 empty = list_empty(&cgrp->cset_links);
4765 up_read(&css_set_rwsem);
4766 if (!empty)
4767 return -EBUSY;
4768
4769 /*
4770 * Make sure there's no live children. We can't test emptiness of
4771 * ->self.children as dead children linger on it while being
4772 * drained; otherwise, "rmdir parent/child parent" may fail.
4773 */
4774 if (css_has_online_children(&cgrp->self))
4775 return -EBUSY;
4776
4777 /*
4778 * Mark @cgrp dead. This prevents further task migration and child
4779 * creation by disabling cgroup_lock_live_group().
4780 */
4781 cgrp->self.flags &= ~CSS_ONLINE;
4782
4783 /* initiate massacre of all css's */
4784 for_each_css(css, ssid, cgrp)
4785 kill_css(css);
4786
4787 /*
4788 * Remove @cgrp directory along with the base files. @cgrp has an
4789 * extra ref on its kn.
4790 */
4791 kernfs_remove(cgrp->kn);
4792
4793 check_for_release(cgroup_parent(cgrp));
4794
4795 /* put the base reference */
4796 percpu_ref_kill(&cgrp->self.refcnt);
4797
4798 return 0;
4799 };
4800
cgroup_rmdir(struct kernfs_node * kn)4801 static int cgroup_rmdir(struct kernfs_node *kn)
4802 {
4803 struct cgroup *cgrp;
4804 int ret = 0;
4805
4806 cgrp = cgroup_kn_lock_live(kn);
4807 if (!cgrp)
4808 return 0;
4809
4810 ret = cgroup_destroy_locked(cgrp);
4811
4812 cgroup_kn_unlock(kn);
4813 return ret;
4814 }
4815
4816 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4817 .remount_fs = cgroup_remount,
4818 .show_options = cgroup_show_options,
4819 .mkdir = cgroup_mkdir,
4820 .rmdir = cgroup_rmdir,
4821 .rename = cgroup_rename,
4822 };
4823
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)4824 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4825 {
4826 struct cgroup_subsys_state *css;
4827
4828 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4829
4830 mutex_lock(&cgroup_mutex);
4831
4832 idr_init(&ss->css_idr);
4833 INIT_LIST_HEAD(&ss->cfts);
4834
4835 /* Create the root cgroup state for this subsystem */
4836 ss->root = &cgrp_dfl_root;
4837 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4838 /* We don't handle early failures gracefully */
4839 BUG_ON(IS_ERR(css));
4840 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4841
4842 /*
4843 * Root csses are never destroyed and we can't initialize
4844 * percpu_ref during early init. Disable refcnting.
4845 */
4846 css->flags |= CSS_NO_REF;
4847
4848 if (early) {
4849 /* allocation can't be done safely during early init */
4850 css->id = 1;
4851 } else {
4852 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4853 BUG_ON(css->id < 0);
4854 }
4855
4856 /* Update the init_css_set to contain a subsys
4857 * pointer to this state - since the subsystem is
4858 * newly registered, all tasks and hence the
4859 * init_css_set is in the subsystem's root cgroup. */
4860 init_css_set.subsys[ss->id] = css;
4861
4862 need_forkexit_callback |= ss->fork || ss->exit;
4863
4864 /* At system boot, before all subsystems have been
4865 * registered, no tasks have been forked, so we don't
4866 * need to invoke fork callbacks here. */
4867 BUG_ON(!list_empty(&init_task.tasks));
4868
4869 BUG_ON(online_css(css));
4870
4871 mutex_unlock(&cgroup_mutex);
4872 }
4873
4874 /**
4875 * cgroup_init_early - cgroup initialization at system boot
4876 *
4877 * Initialize cgroups at system boot, and initialize any
4878 * subsystems that request early init.
4879 */
cgroup_init_early(void)4880 int __init cgroup_init_early(void)
4881 {
4882 static struct cgroup_sb_opts __initdata opts;
4883 struct cgroup_subsys *ss;
4884 int i;
4885
4886 init_cgroup_root(&cgrp_dfl_root, &opts);
4887 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4888
4889 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4890
4891 for_each_subsys(ss, i) {
4892 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4893 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4894 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4895 ss->id, ss->name);
4896 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4897 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4898
4899 ss->id = i;
4900 ss->name = cgroup_subsys_name[i];
4901
4902 if (ss->early_init)
4903 cgroup_init_subsys(ss, true);
4904 }
4905 return 0;
4906 }
4907
4908 /**
4909 * cgroup_init - cgroup initialization
4910 *
4911 * Register cgroup filesystem and /proc file, and initialize
4912 * any subsystems that didn't request early init.
4913 */
cgroup_init(void)4914 int __init cgroup_init(void)
4915 {
4916 struct cgroup_subsys *ss;
4917 unsigned long key;
4918 int ssid, err;
4919
4920 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4921 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4922
4923 mutex_lock(&cgroup_mutex);
4924
4925 /* Add init_css_set to the hash table */
4926 key = css_set_hash(init_css_set.subsys);
4927 hash_add(css_set_table, &init_css_set.hlist, key);
4928
4929 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4930
4931 mutex_unlock(&cgroup_mutex);
4932
4933 for_each_subsys(ss, ssid) {
4934 if (ss->early_init) {
4935 struct cgroup_subsys_state *css =
4936 init_css_set.subsys[ss->id];
4937
4938 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4939 GFP_KERNEL);
4940 BUG_ON(css->id < 0);
4941 } else {
4942 cgroup_init_subsys(ss, false);
4943 }
4944
4945 list_add_tail(&init_css_set.e_cset_node[ssid],
4946 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4947
4948 /*
4949 * Setting dfl_root subsys_mask needs to consider the
4950 * disabled flag and cftype registration needs kmalloc,
4951 * both of which aren't available during early_init.
4952 */
4953 if (ss->disabled)
4954 continue;
4955
4956 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4957
4958 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4959 ss->dfl_cftypes = ss->legacy_cftypes;
4960
4961 if (!ss->dfl_cftypes)
4962 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4963
4964 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4965 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4966 } else {
4967 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4968 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4969 }
4970 }
4971
4972 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4973 if (!cgroup_kobj)
4974 return -ENOMEM;
4975
4976 err = register_filesystem(&cgroup_fs_type);
4977 if (err < 0) {
4978 kobject_put(cgroup_kobj);
4979 return err;
4980 }
4981
4982 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4983 return 0;
4984 }
4985
cgroup_wq_init(void)4986 static int __init cgroup_wq_init(void)
4987 {
4988 /*
4989 * There isn't much point in executing destruction path in
4990 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4991 * Use 1 for @max_active.
4992 *
4993 * We would prefer to do this in cgroup_init() above, but that
4994 * is called before init_workqueues(): so leave this until after.
4995 */
4996 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4997 BUG_ON(!cgroup_destroy_wq);
4998
4999 /*
5000 * Used to destroy pidlists and separate to serve as flush domain.
5001 * Cap @max_active to 1 too.
5002 */
5003 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5004 0, 1);
5005 BUG_ON(!cgroup_pidlist_destroy_wq);
5006
5007 return 0;
5008 }
5009 core_initcall(cgroup_wq_init);
5010
5011 /*
5012 * proc_cgroup_show()
5013 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5014 * - Used for /proc/<pid>/cgroup.
5015 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5016 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5017 struct pid *pid, struct task_struct *tsk)
5018 {
5019 char *buf, *path;
5020 int retval;
5021 struct cgroup_root *root;
5022
5023 retval = -ENOMEM;
5024 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5025 if (!buf)
5026 goto out;
5027
5028 mutex_lock(&cgroup_mutex);
5029 down_read(&css_set_rwsem);
5030
5031 for_each_root(root) {
5032 struct cgroup_subsys *ss;
5033 struct cgroup *cgrp;
5034 int ssid, count = 0;
5035
5036 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5037 continue;
5038
5039 seq_printf(m, "%d:", root->hierarchy_id);
5040 for_each_subsys(ss, ssid)
5041 if (root->subsys_mask & (1 << ssid))
5042 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5043 if (strlen(root->name))
5044 seq_printf(m, "%sname=%s", count ? "," : "",
5045 root->name);
5046 seq_putc(m, ':');
5047 cgrp = task_cgroup_from_root(tsk, root);
5048 path = cgroup_path(cgrp, buf, PATH_MAX);
5049 if (!path) {
5050 retval = -ENAMETOOLONG;
5051 goto out_unlock;
5052 }
5053 seq_puts(m, path);
5054 seq_putc(m, '\n');
5055 }
5056
5057 retval = 0;
5058 out_unlock:
5059 up_read(&css_set_rwsem);
5060 mutex_unlock(&cgroup_mutex);
5061 kfree(buf);
5062 out:
5063 return retval;
5064 }
5065
5066 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)5067 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5068 {
5069 struct cgroup_subsys *ss;
5070 int i;
5071
5072 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5073 /*
5074 * ideally we don't want subsystems moving around while we do this.
5075 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5076 * subsys/hierarchy state.
5077 */
5078 mutex_lock(&cgroup_mutex);
5079
5080 for_each_subsys(ss, i)
5081 seq_printf(m, "%s\t%d\t%d\t%d\n",
5082 ss->name, ss->root->hierarchy_id,
5083 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5084
5085 mutex_unlock(&cgroup_mutex);
5086 return 0;
5087 }
5088
cgroupstats_open(struct inode * inode,struct file * file)5089 static int cgroupstats_open(struct inode *inode, struct file *file)
5090 {
5091 return single_open(file, proc_cgroupstats_show, NULL);
5092 }
5093
5094 static const struct file_operations proc_cgroupstats_operations = {
5095 .open = cgroupstats_open,
5096 .read = seq_read,
5097 .llseek = seq_lseek,
5098 .release = single_release,
5099 };
5100
5101 /**
5102 * cgroup_fork - initialize cgroup related fields during copy_process()
5103 * @child: pointer to task_struct of forking parent process.
5104 *
5105 * A task is associated with the init_css_set until cgroup_post_fork()
5106 * attaches it to the parent's css_set. Empty cg_list indicates that
5107 * @child isn't holding reference to its css_set.
5108 */
cgroup_fork(struct task_struct * child)5109 void cgroup_fork(struct task_struct *child)
5110 {
5111 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5112 INIT_LIST_HEAD(&child->cg_list);
5113 }
5114
5115 /**
5116 * cgroup_post_fork - called on a new task after adding it to the task list
5117 * @child: the task in question
5118 *
5119 * Adds the task to the list running through its css_set if necessary and
5120 * call the subsystem fork() callbacks. Has to be after the task is
5121 * visible on the task list in case we race with the first call to
5122 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5123 * list.
5124 */
cgroup_post_fork(struct task_struct * child)5125 void cgroup_post_fork(struct task_struct *child)
5126 {
5127 struct cgroup_subsys *ss;
5128 int i;
5129
5130 /*
5131 * This may race against cgroup_enable_task_cg_lists(). As that
5132 * function sets use_task_css_set_links before grabbing
5133 * tasklist_lock and we just went through tasklist_lock to add
5134 * @child, it's guaranteed that either we see the set
5135 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5136 * @child during its iteration.
5137 *
5138 * If we won the race, @child is associated with %current's
5139 * css_set. Grabbing css_set_rwsem guarantees both that the
5140 * association is stable, and, on completion of the parent's
5141 * migration, @child is visible in the source of migration or
5142 * already in the destination cgroup. This guarantee is necessary
5143 * when implementing operations which need to migrate all tasks of
5144 * a cgroup to another.
5145 *
5146 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5147 * will remain in init_css_set. This is safe because all tasks are
5148 * in the init_css_set before cg_links is enabled and there's no
5149 * operation which transfers all tasks out of init_css_set.
5150 */
5151 if (use_task_css_set_links) {
5152 struct css_set *cset;
5153
5154 down_write(&css_set_rwsem);
5155 cset = task_css_set(current);
5156 if (list_empty(&child->cg_list)) {
5157 rcu_assign_pointer(child->cgroups, cset);
5158 list_add(&child->cg_list, &cset->tasks);
5159 get_css_set(cset);
5160 }
5161 up_write(&css_set_rwsem);
5162 }
5163
5164 /*
5165 * Call ss->fork(). This must happen after @child is linked on
5166 * css_set; otherwise, @child might change state between ->fork()
5167 * and addition to css_set.
5168 */
5169 if (need_forkexit_callback) {
5170 for_each_subsys(ss, i)
5171 if (ss->fork)
5172 ss->fork(child);
5173 }
5174 }
5175
5176 /**
5177 * cgroup_exit - detach cgroup from exiting task
5178 * @tsk: pointer to task_struct of exiting process
5179 *
5180 * Description: Detach cgroup from @tsk and release it.
5181 *
5182 * Note that cgroups marked notify_on_release force every task in
5183 * them to take the global cgroup_mutex mutex when exiting.
5184 * This could impact scaling on very large systems. Be reluctant to
5185 * use notify_on_release cgroups where very high task exit scaling
5186 * is required on large systems.
5187 *
5188 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5189 * call cgroup_exit() while the task is still competent to handle
5190 * notify_on_release(), then leave the task attached to the root cgroup in
5191 * each hierarchy for the remainder of its exit. No need to bother with
5192 * init_css_set refcnting. init_css_set never goes away and we can't race
5193 * with migration path - PF_EXITING is visible to migration path.
5194 */
cgroup_exit(struct task_struct * tsk)5195 void cgroup_exit(struct task_struct *tsk)
5196 {
5197 struct cgroup_subsys *ss;
5198 struct css_set *cset;
5199 bool put_cset = false;
5200 int i;
5201
5202 /*
5203 * Unlink from @tsk from its css_set. As migration path can't race
5204 * with us, we can check cg_list without grabbing css_set_rwsem.
5205 */
5206 if (!list_empty(&tsk->cg_list)) {
5207 down_write(&css_set_rwsem);
5208 list_del_init(&tsk->cg_list);
5209 up_write(&css_set_rwsem);
5210 put_cset = true;
5211 }
5212
5213 /* Reassign the task to the init_css_set. */
5214 cset = task_css_set(tsk);
5215 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5216
5217 if (need_forkexit_callback) {
5218 /* see cgroup_post_fork() for details */
5219 for_each_subsys(ss, i) {
5220 if (ss->exit) {
5221 struct cgroup_subsys_state *old_css = cset->subsys[i];
5222 struct cgroup_subsys_state *css = task_css(tsk, i);
5223
5224 ss->exit(css, old_css, tsk);
5225 }
5226 }
5227 }
5228
5229 if (put_cset)
5230 put_css_set(cset);
5231 }
5232
check_for_release(struct cgroup * cgrp)5233 static void check_for_release(struct cgroup *cgrp)
5234 {
5235 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5236 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5237 schedule_work(&cgrp->release_agent_work);
5238 }
5239
5240 /*
5241 * Notify userspace when a cgroup is released, by running the
5242 * configured release agent with the name of the cgroup (path
5243 * relative to the root of cgroup file system) as the argument.
5244 *
5245 * Most likely, this user command will try to rmdir this cgroup.
5246 *
5247 * This races with the possibility that some other task will be
5248 * attached to this cgroup before it is removed, or that some other
5249 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5250 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5251 * unused, and this cgroup will be reprieved from its death sentence,
5252 * to continue to serve a useful existence. Next time it's released,
5253 * we will get notified again, if it still has 'notify_on_release' set.
5254 *
5255 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5256 * means only wait until the task is successfully execve()'d. The
5257 * separate release agent task is forked by call_usermodehelper(),
5258 * then control in this thread returns here, without waiting for the
5259 * release agent task. We don't bother to wait because the caller of
5260 * this routine has no use for the exit status of the release agent
5261 * task, so no sense holding our caller up for that.
5262 */
cgroup_release_agent(struct work_struct * work)5263 static void cgroup_release_agent(struct work_struct *work)
5264 {
5265 struct cgroup *cgrp =
5266 container_of(work, struct cgroup, release_agent_work);
5267 char *pathbuf = NULL, *agentbuf = NULL, *path;
5268 char *argv[3], *envp[3];
5269
5270 mutex_lock(&cgroup_mutex);
5271
5272 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5273 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5274 if (!pathbuf || !agentbuf)
5275 goto out;
5276
5277 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5278 if (!path)
5279 goto out;
5280
5281 argv[0] = agentbuf;
5282 argv[1] = path;
5283 argv[2] = NULL;
5284
5285 /* minimal command environment */
5286 envp[0] = "HOME=/";
5287 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5288 envp[2] = NULL;
5289
5290 mutex_unlock(&cgroup_mutex);
5291 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5292 goto out_free;
5293 out:
5294 mutex_unlock(&cgroup_mutex);
5295 out_free:
5296 kfree(agentbuf);
5297 kfree(pathbuf);
5298 }
5299
cgroup_disable(char * str)5300 static int __init cgroup_disable(char *str)
5301 {
5302 struct cgroup_subsys *ss;
5303 char *token;
5304 int i;
5305
5306 while ((token = strsep(&str, ",")) != NULL) {
5307 if (!*token)
5308 continue;
5309
5310 for_each_subsys(ss, i) {
5311 if (!strcmp(token, ss->name)) {
5312 ss->disabled = 1;
5313 printk(KERN_INFO "Disabling %s control group"
5314 " subsystem\n", ss->name);
5315 break;
5316 }
5317 }
5318 }
5319 return 1;
5320 }
5321 __setup("cgroup_disable=", cgroup_disable);
5322
cgroup_set_legacy_files_on_dfl(char * str)5323 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5324 {
5325 printk("cgroup: using legacy files on the default hierarchy\n");
5326 cgroup_legacy_files_on_dfl = true;
5327 return 0;
5328 }
5329 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5330
5331 /**
5332 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5333 * @dentry: directory dentry of interest
5334 * @ss: subsystem of interest
5335 *
5336 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5337 * to get the corresponding css and return it. If such css doesn't exist
5338 * or can't be pinned, an ERR_PTR value is returned.
5339 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)5340 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5341 struct cgroup_subsys *ss)
5342 {
5343 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5344 struct cgroup_subsys_state *css = NULL;
5345 struct cgroup *cgrp;
5346
5347 /* is @dentry a cgroup dir? */
5348 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5349 kernfs_type(kn) != KERNFS_DIR)
5350 return ERR_PTR(-EBADF);
5351
5352 rcu_read_lock();
5353
5354 /*
5355 * This path doesn't originate from kernfs and @kn could already
5356 * have been or be removed at any point. @kn->priv is RCU
5357 * protected for this access. See css_release_work_fn() for details.
5358 */
5359 cgrp = rcu_dereference(kn->priv);
5360 if (cgrp)
5361 css = cgroup_css(cgrp, ss);
5362
5363 if (!css || !css_tryget_online(css))
5364 css = ERR_PTR(-ENOENT);
5365
5366 rcu_read_unlock();
5367 return css;
5368 }
5369
5370 /**
5371 * css_from_id - lookup css by id
5372 * @id: the cgroup id
5373 * @ss: cgroup subsys to be looked into
5374 *
5375 * Returns the css if there's valid one with @id, otherwise returns NULL.
5376 * Should be called under rcu_read_lock().
5377 */
css_from_id(int id,struct cgroup_subsys * ss)5378 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5379 {
5380 WARN_ON_ONCE(!rcu_read_lock_held());
5381 return idr_find(&ss->css_idr, id);
5382 }
5383
5384 #ifdef CONFIG_CGROUP_DEBUG
5385 static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state * parent_css)5386 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5387 {
5388 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5389
5390 if (!css)
5391 return ERR_PTR(-ENOMEM);
5392
5393 return css;
5394 }
5395
debug_css_free(struct cgroup_subsys_state * css)5396 static void debug_css_free(struct cgroup_subsys_state *css)
5397 {
5398 kfree(css);
5399 }
5400
debug_taskcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5401 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5402 struct cftype *cft)
5403 {
5404 return cgroup_task_count(css->cgroup);
5405 }
5406
current_css_set_read(struct cgroup_subsys_state * css,struct cftype * cft)5407 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5408 struct cftype *cft)
5409 {
5410 return (u64)(unsigned long)current->cgroups;
5411 }
5412
current_css_set_refcount_read(struct cgroup_subsys_state * css,struct cftype * cft)5413 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5414 struct cftype *cft)
5415 {
5416 u64 count;
5417
5418 rcu_read_lock();
5419 count = atomic_read(&task_css_set(current)->refcount);
5420 rcu_read_unlock();
5421 return count;
5422 }
5423
current_css_set_cg_links_read(struct seq_file * seq,void * v)5424 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5425 {
5426 struct cgrp_cset_link *link;
5427 struct css_set *cset;
5428 char *name_buf;
5429
5430 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5431 if (!name_buf)
5432 return -ENOMEM;
5433
5434 down_read(&css_set_rwsem);
5435 rcu_read_lock();
5436 cset = rcu_dereference(current->cgroups);
5437 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5438 struct cgroup *c = link->cgrp;
5439
5440 cgroup_name(c, name_buf, NAME_MAX + 1);
5441 seq_printf(seq, "Root %d group %s\n",
5442 c->root->hierarchy_id, name_buf);
5443 }
5444 rcu_read_unlock();
5445 up_read(&css_set_rwsem);
5446 kfree(name_buf);
5447 return 0;
5448 }
5449
5450 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct seq_file * seq,void * v)5451 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5452 {
5453 struct cgroup_subsys_state *css = seq_css(seq);
5454 struct cgrp_cset_link *link;
5455
5456 down_read(&css_set_rwsem);
5457 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5458 struct css_set *cset = link->cset;
5459 struct task_struct *task;
5460 int count = 0;
5461
5462 seq_printf(seq, "css_set %p\n", cset);
5463
5464 list_for_each_entry(task, &cset->tasks, cg_list) {
5465 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5466 goto overflow;
5467 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5468 }
5469
5470 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5471 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5472 goto overflow;
5473 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5474 }
5475 continue;
5476 overflow:
5477 seq_puts(seq, " ...\n");
5478 }
5479 up_read(&css_set_rwsem);
5480 return 0;
5481 }
5482
releasable_read(struct cgroup_subsys_state * css,struct cftype * cft)5483 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5484 {
5485 return (!cgroup_has_tasks(css->cgroup) &&
5486 !css_has_online_children(&css->cgroup->self));
5487 }
5488
5489 static struct cftype debug_files[] = {
5490 {
5491 .name = "taskcount",
5492 .read_u64 = debug_taskcount_read,
5493 },
5494
5495 {
5496 .name = "current_css_set",
5497 .read_u64 = current_css_set_read,
5498 },
5499
5500 {
5501 .name = "current_css_set_refcount",
5502 .read_u64 = current_css_set_refcount_read,
5503 },
5504
5505 {
5506 .name = "current_css_set_cg_links",
5507 .seq_show = current_css_set_cg_links_read,
5508 },
5509
5510 {
5511 .name = "cgroup_css_links",
5512 .seq_show = cgroup_css_links_read,
5513 },
5514
5515 {
5516 .name = "releasable",
5517 .read_u64 = releasable_read,
5518 },
5519
5520 { } /* terminate */
5521 };
5522
5523 struct cgroup_subsys debug_cgrp_subsys = {
5524 .css_alloc = debug_css_alloc,
5525 .css_free = debug_css_free,
5526 .legacy_cftypes = debug_files,
5527 };
5528 #endif /* CONFIG_CGROUP_DEBUG */
5529