1 /*
2 * linux/kernel/time/clockevents.c
3 *
4 * This file contains functions which manage clock event devices.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 *
10 * This code is licenced under the GPL version 2. For details see
11 * kernel-base/COPYING.
12 */
13
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20
21 #include "tick-internal.h"
22
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30
31 struct ce_unbind {
32 struct clock_event_device *ce;
33 int res;
34 };
35
cev_delta2ns(unsigned long latch,struct clock_event_device * evt,bool ismax)36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 bool ismax)
38 {
39 u64 clc = (u64) latch << evt->shift;
40 u64 rnd;
41
42 if (unlikely(!evt->mult)) {
43 evt->mult = 1;
44 WARN_ON(1);
45 }
46 rnd = (u64) evt->mult - 1;
47
48 /*
49 * Upper bound sanity check. If the backwards conversion is
50 * not equal latch, we know that the above shift overflowed.
51 */
52 if ((clc >> evt->shift) != (u64)latch)
53 clc = ~0ULL;
54
55 /*
56 * Scaled math oddities:
57 *
58 * For mult <= (1 << shift) we can safely add mult - 1 to
59 * prevent integer rounding loss. So the backwards conversion
60 * from nsec to device ticks will be correct.
61 *
62 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 * need to be careful. Adding mult - 1 will result in a value
64 * which when converted back to device ticks can be larger
65 * than latch by up to (mult - 1) >> shift. For the min_delta
66 * calculation we still want to apply this in order to stay
67 * above the minimum device ticks limit. For the upper limit
68 * we would end up with a latch value larger than the upper
69 * limit of the device, so we omit the add to stay below the
70 * device upper boundary.
71 *
72 * Also omit the add if it would overflow the u64 boundary.
73 */
74 if ((~0ULL - clc > rnd) &&
75 (!ismax || evt->mult <= (1ULL << evt->shift)))
76 clc += rnd;
77
78 do_div(clc, evt->mult);
79
80 /* Deltas less than 1usec are pointless noise */
81 return clc > 1000 ? clc : 1000;
82 }
83
84 /**
85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86 * @latch: value to convert
87 * @evt: pointer to clock event device descriptor
88 *
89 * Math helper, returns latch value converted to nanoseconds (bound checked)
90 */
clockevent_delta2ns(unsigned long latch,struct clock_event_device * evt)91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96
97 /**
98 * clockevents_set_mode - set the operating mode of a clock event device
99 * @dev: device to modify
100 * @mode: new mode
101 *
102 * Must be called with interrupts disabled !
103 */
clockevents_set_mode(struct clock_event_device * dev,enum clock_event_mode mode)104 void clockevents_set_mode(struct clock_event_device *dev,
105 enum clock_event_mode mode)
106 {
107 if (dev->mode != mode) {
108 dev->set_mode(mode, dev);
109 dev->mode = mode;
110
111 /*
112 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
113 * on it, so fix it up and emit a warning:
114 */
115 if (mode == CLOCK_EVT_MODE_ONESHOT) {
116 if (unlikely(!dev->mult)) {
117 dev->mult = 1;
118 WARN_ON(1);
119 }
120 }
121 }
122 }
123
124 /**
125 * clockevents_shutdown - shutdown the device and clear next_event
126 * @dev: device to shutdown
127 */
clockevents_shutdown(struct clock_event_device * dev)128 void clockevents_shutdown(struct clock_event_device *dev)
129 {
130 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
131 dev->next_event.tv64 = KTIME_MAX;
132 }
133
134 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
135
136 /* Limit min_delta to a jiffie */
137 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
138
139 /**
140 * clockevents_increase_min_delta - raise minimum delta of a clock event device
141 * @dev: device to increase the minimum delta
142 *
143 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
144 */
clockevents_increase_min_delta(struct clock_event_device * dev)145 static int clockevents_increase_min_delta(struct clock_event_device *dev)
146 {
147 /* Nothing to do if we already reached the limit */
148 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
149 printk_deferred(KERN_WARNING
150 "CE: Reprogramming failure. Giving up\n");
151 dev->next_event.tv64 = KTIME_MAX;
152 return -ETIME;
153 }
154
155 if (dev->min_delta_ns < 5000)
156 dev->min_delta_ns = 5000;
157 else
158 dev->min_delta_ns += dev->min_delta_ns >> 1;
159
160 if (dev->min_delta_ns > MIN_DELTA_LIMIT)
161 dev->min_delta_ns = MIN_DELTA_LIMIT;
162
163 printk_deferred(KERN_WARNING
164 "CE: %s increased min_delta_ns to %llu nsec\n",
165 dev->name ? dev->name : "?",
166 (unsigned long long) dev->min_delta_ns);
167 return 0;
168 }
169
170 /**
171 * clockevents_program_min_delta - Set clock event device to the minimum delay.
172 * @dev: device to program
173 *
174 * Returns 0 on success, -ETIME when the retry loop failed.
175 */
clockevents_program_min_delta(struct clock_event_device * dev)176 static int clockevents_program_min_delta(struct clock_event_device *dev)
177 {
178 unsigned long long clc;
179 int64_t delta;
180 int i;
181
182 for (i = 0;;) {
183 delta = dev->min_delta_ns;
184 dev->next_event = ktime_add_ns(ktime_get(), delta);
185
186 if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
187 return 0;
188
189 dev->retries++;
190 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
191 if (dev->set_next_event((unsigned long) clc, dev) == 0)
192 return 0;
193
194 if (++i > 2) {
195 /*
196 * We tried 3 times to program the device with the
197 * given min_delta_ns. Try to increase the minimum
198 * delta, if that fails as well get out of here.
199 */
200 if (clockevents_increase_min_delta(dev))
201 return -ETIME;
202 i = 0;
203 }
204 }
205 }
206
207 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
208
209 /**
210 * clockevents_program_min_delta - Set clock event device to the minimum delay.
211 * @dev: device to program
212 *
213 * Returns 0 on success, -ETIME when the retry loop failed.
214 */
clockevents_program_min_delta(struct clock_event_device * dev)215 static int clockevents_program_min_delta(struct clock_event_device *dev)
216 {
217 unsigned long long clc;
218 int64_t delta;
219
220 delta = dev->min_delta_ns;
221 dev->next_event = ktime_add_ns(ktime_get(), delta);
222
223 if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
224 return 0;
225
226 dev->retries++;
227 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
228 return dev->set_next_event((unsigned long) clc, dev);
229 }
230
231 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
232
233 /**
234 * clockevents_program_event - Reprogram the clock event device.
235 * @dev: device to program
236 * @expires: absolute expiry time (monotonic clock)
237 * @force: program minimum delay if expires can not be set
238 *
239 * Returns 0 on success, -ETIME when the event is in the past.
240 */
clockevents_program_event(struct clock_event_device * dev,ktime_t expires,bool force)241 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
242 bool force)
243 {
244 unsigned long long clc;
245 int64_t delta;
246 int rc;
247
248 if (unlikely(expires.tv64 < 0)) {
249 WARN_ON_ONCE(1);
250 return -ETIME;
251 }
252
253 dev->next_event = expires;
254
255 if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
256 return 0;
257
258 /* Shortcut for clockevent devices that can deal with ktime. */
259 if (dev->features & CLOCK_EVT_FEAT_KTIME)
260 return dev->set_next_ktime(expires, dev);
261
262 delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
263 if (delta <= 0)
264 return force ? clockevents_program_min_delta(dev) : -ETIME;
265
266 delta = min(delta, (int64_t) dev->max_delta_ns);
267 delta = max(delta, (int64_t) dev->min_delta_ns);
268
269 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
270 rc = dev->set_next_event((unsigned long) clc, dev);
271
272 return (rc && force) ? clockevents_program_min_delta(dev) : rc;
273 }
274
275 /*
276 * Called after a notify add to make devices available which were
277 * released from the notifier call.
278 */
clockevents_notify_released(void)279 static void clockevents_notify_released(void)
280 {
281 struct clock_event_device *dev;
282
283 while (!list_empty(&clockevents_released)) {
284 dev = list_entry(clockevents_released.next,
285 struct clock_event_device, list);
286 list_del(&dev->list);
287 list_add(&dev->list, &clockevent_devices);
288 tick_check_new_device(dev);
289 }
290 }
291
292 /*
293 * Try to install a replacement clock event device
294 */
clockevents_replace(struct clock_event_device * ced)295 static int clockevents_replace(struct clock_event_device *ced)
296 {
297 struct clock_event_device *dev, *newdev = NULL;
298
299 list_for_each_entry(dev, &clockevent_devices, list) {
300 if (dev == ced || dev->mode != CLOCK_EVT_MODE_UNUSED)
301 continue;
302
303 if (!tick_check_replacement(newdev, dev))
304 continue;
305
306 if (!try_module_get(dev->owner))
307 continue;
308
309 if (newdev)
310 module_put(newdev->owner);
311 newdev = dev;
312 }
313 if (newdev) {
314 tick_install_replacement(newdev);
315 list_del_init(&ced->list);
316 }
317 return newdev ? 0 : -EBUSY;
318 }
319
320 /*
321 * Called with clockevents_mutex and clockevents_lock held
322 */
__clockevents_try_unbind(struct clock_event_device * ced,int cpu)323 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
324 {
325 /* Fast track. Device is unused */
326 if (ced->mode == CLOCK_EVT_MODE_UNUSED) {
327 list_del_init(&ced->list);
328 return 0;
329 }
330
331 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
332 }
333
334 /*
335 * SMP function call to unbind a device
336 */
__clockevents_unbind(void * arg)337 static void __clockevents_unbind(void *arg)
338 {
339 struct ce_unbind *cu = arg;
340 int res;
341
342 raw_spin_lock(&clockevents_lock);
343 res = __clockevents_try_unbind(cu->ce, smp_processor_id());
344 if (res == -EAGAIN)
345 res = clockevents_replace(cu->ce);
346 cu->res = res;
347 raw_spin_unlock(&clockevents_lock);
348 }
349
350 /*
351 * Issues smp function call to unbind a per cpu device. Called with
352 * clockevents_mutex held.
353 */
clockevents_unbind(struct clock_event_device * ced,int cpu)354 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
355 {
356 struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
357
358 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
359 return cu.res;
360 }
361
362 /*
363 * Unbind a clockevents device.
364 */
clockevents_unbind_device(struct clock_event_device * ced,int cpu)365 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
366 {
367 int ret;
368
369 mutex_lock(&clockevents_mutex);
370 ret = clockevents_unbind(ced, cpu);
371 mutex_unlock(&clockevents_mutex);
372 return ret;
373 }
374 EXPORT_SYMBOL_GPL(clockevents_unbind);
375
376 /**
377 * clockevents_register_device - register a clock event device
378 * @dev: device to register
379 */
clockevents_register_device(struct clock_event_device * dev)380 void clockevents_register_device(struct clock_event_device *dev)
381 {
382 unsigned long flags;
383
384 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
385 if (!dev->cpumask) {
386 WARN_ON(num_possible_cpus() > 1);
387 dev->cpumask = cpumask_of(smp_processor_id());
388 }
389
390 raw_spin_lock_irqsave(&clockevents_lock, flags);
391
392 list_add(&dev->list, &clockevent_devices);
393 tick_check_new_device(dev);
394 clockevents_notify_released();
395
396 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
397 }
398 EXPORT_SYMBOL_GPL(clockevents_register_device);
399
clockevents_config(struct clock_event_device * dev,u32 freq)400 void clockevents_config(struct clock_event_device *dev, u32 freq)
401 {
402 u64 sec;
403
404 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
405 return;
406
407 /*
408 * Calculate the maximum number of seconds we can sleep. Limit
409 * to 10 minutes for hardware which can program more than
410 * 32bit ticks so we still get reasonable conversion values.
411 */
412 sec = dev->max_delta_ticks;
413 do_div(sec, freq);
414 if (!sec)
415 sec = 1;
416 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
417 sec = 600;
418
419 clockevents_calc_mult_shift(dev, freq, sec);
420 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
421 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
422 }
423
424 /**
425 * clockevents_config_and_register - Configure and register a clock event device
426 * @dev: device to register
427 * @freq: The clock frequency
428 * @min_delta: The minimum clock ticks to program in oneshot mode
429 * @max_delta: The maximum clock ticks to program in oneshot mode
430 *
431 * min/max_delta can be 0 for devices which do not support oneshot mode.
432 */
clockevents_config_and_register(struct clock_event_device * dev,u32 freq,unsigned long min_delta,unsigned long max_delta)433 void clockevents_config_and_register(struct clock_event_device *dev,
434 u32 freq, unsigned long min_delta,
435 unsigned long max_delta)
436 {
437 dev->min_delta_ticks = min_delta;
438 dev->max_delta_ticks = max_delta;
439 clockevents_config(dev, freq);
440 clockevents_register_device(dev);
441 }
442 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
443
__clockevents_update_freq(struct clock_event_device * dev,u32 freq)444 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
445 {
446 clockevents_config(dev, freq);
447
448 if (dev->mode == CLOCK_EVT_MODE_ONESHOT)
449 return clockevents_program_event(dev, dev->next_event, false);
450
451 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
452 dev->set_mode(CLOCK_EVT_MODE_PERIODIC, dev);
453
454 return 0;
455 }
456
457 /**
458 * clockevents_update_freq - Update frequency and reprogram a clock event device.
459 * @dev: device to modify
460 * @freq: new device frequency
461 *
462 * Reconfigure and reprogram a clock event device in oneshot
463 * mode. Must be called on the cpu for which the device delivers per
464 * cpu timer events. If called for the broadcast device the core takes
465 * care of serialization.
466 *
467 * Returns 0 on success, -ETIME when the event is in the past.
468 */
clockevents_update_freq(struct clock_event_device * dev,u32 freq)469 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
470 {
471 unsigned long flags;
472 int ret;
473
474 local_irq_save(flags);
475 ret = tick_broadcast_update_freq(dev, freq);
476 if (ret == -ENODEV)
477 ret = __clockevents_update_freq(dev, freq);
478 local_irq_restore(flags);
479 return ret;
480 }
481
482 /*
483 * Noop handler when we shut down an event device
484 */
clockevents_handle_noop(struct clock_event_device * dev)485 void clockevents_handle_noop(struct clock_event_device *dev)
486 {
487 }
488
489 /**
490 * clockevents_exchange_device - release and request clock devices
491 * @old: device to release (can be NULL)
492 * @new: device to request (can be NULL)
493 *
494 * Called from the notifier chain. clockevents_lock is held already
495 */
clockevents_exchange_device(struct clock_event_device * old,struct clock_event_device * new)496 void clockevents_exchange_device(struct clock_event_device *old,
497 struct clock_event_device *new)
498 {
499 unsigned long flags;
500
501 local_irq_save(flags);
502 /*
503 * Caller releases a clock event device. We queue it into the
504 * released list and do a notify add later.
505 */
506 if (old) {
507 module_put(old->owner);
508 clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
509 list_del(&old->list);
510 list_add(&old->list, &clockevents_released);
511 }
512
513 if (new) {
514 BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
515 clockevents_shutdown(new);
516 }
517 local_irq_restore(flags);
518 }
519
520 /**
521 * clockevents_suspend - suspend clock devices
522 */
clockevents_suspend(void)523 void clockevents_suspend(void)
524 {
525 struct clock_event_device *dev;
526
527 list_for_each_entry_reverse(dev, &clockevent_devices, list)
528 if (dev->suspend)
529 dev->suspend(dev);
530 }
531
532 /**
533 * clockevents_resume - resume clock devices
534 */
clockevents_resume(void)535 void clockevents_resume(void)
536 {
537 struct clock_event_device *dev;
538
539 list_for_each_entry(dev, &clockevent_devices, list)
540 if (dev->resume)
541 dev->resume(dev);
542 }
543
544 #ifdef CONFIG_GENERIC_CLOCKEVENTS
545 /**
546 * clockevents_notify - notification about relevant events
547 * Returns 0 on success, any other value on error
548 */
clockevents_notify(unsigned long reason,void * arg)549 int clockevents_notify(unsigned long reason, void *arg)
550 {
551 struct clock_event_device *dev, *tmp;
552 unsigned long flags;
553 int cpu, ret = 0;
554
555 raw_spin_lock_irqsave(&clockevents_lock, flags);
556
557 switch (reason) {
558 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
559 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
560 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
561 tick_broadcast_on_off(reason, arg);
562 break;
563
564 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
565 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
566 ret = tick_broadcast_oneshot_control(reason);
567 break;
568
569 case CLOCK_EVT_NOTIFY_CPU_DYING:
570 tick_handover_do_timer(arg);
571 break;
572
573 case CLOCK_EVT_NOTIFY_SUSPEND:
574 tick_suspend();
575 tick_suspend_broadcast();
576 break;
577
578 case CLOCK_EVT_NOTIFY_RESUME:
579 tick_resume();
580 break;
581
582 case CLOCK_EVT_NOTIFY_CPU_DEAD:
583 tick_shutdown_broadcast_oneshot(arg);
584 tick_shutdown_broadcast(arg);
585 tick_shutdown(arg);
586 /*
587 * Unregister the clock event devices which were
588 * released from the users in the notify chain.
589 */
590 list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
591 list_del(&dev->list);
592 /*
593 * Now check whether the CPU has left unused per cpu devices
594 */
595 cpu = *((int *)arg);
596 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
597 if (cpumask_test_cpu(cpu, dev->cpumask) &&
598 cpumask_weight(dev->cpumask) == 1 &&
599 !tick_is_broadcast_device(dev)) {
600 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
601 list_del(&dev->list);
602 }
603 }
604 break;
605 default:
606 break;
607 }
608 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
609 return ret;
610 }
611 EXPORT_SYMBOL_GPL(clockevents_notify);
612
613 #ifdef CONFIG_SYSFS
614 struct bus_type clockevents_subsys = {
615 .name = "clockevents",
616 .dev_name = "clockevent",
617 };
618
619 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
620 static struct tick_device *tick_get_tick_dev(struct device *dev);
621
sysfs_show_current_tick_dev(struct device * dev,struct device_attribute * attr,char * buf)622 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
623 struct device_attribute *attr,
624 char *buf)
625 {
626 struct tick_device *td;
627 ssize_t count = 0;
628
629 raw_spin_lock_irq(&clockevents_lock);
630 td = tick_get_tick_dev(dev);
631 if (td && td->evtdev)
632 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
633 raw_spin_unlock_irq(&clockevents_lock);
634 return count;
635 }
636 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
637
638 /* We don't support the abomination of removable broadcast devices */
sysfs_unbind_tick_dev(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)639 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
640 struct device_attribute *attr,
641 const char *buf, size_t count)
642 {
643 char name[CS_NAME_LEN];
644 ssize_t ret = sysfs_get_uname(buf, name, count);
645 struct clock_event_device *ce;
646
647 if (ret < 0)
648 return ret;
649
650 ret = -ENODEV;
651 mutex_lock(&clockevents_mutex);
652 raw_spin_lock_irq(&clockevents_lock);
653 list_for_each_entry(ce, &clockevent_devices, list) {
654 if (!strcmp(ce->name, name)) {
655 ret = __clockevents_try_unbind(ce, dev->id);
656 break;
657 }
658 }
659 raw_spin_unlock_irq(&clockevents_lock);
660 /*
661 * We hold clockevents_mutex, so ce can't go away
662 */
663 if (ret == -EAGAIN)
664 ret = clockevents_unbind(ce, dev->id);
665 mutex_unlock(&clockevents_mutex);
666 return ret ? ret : count;
667 }
668 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
669
670 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
671 static struct device tick_bc_dev = {
672 .init_name = "broadcast",
673 .id = 0,
674 .bus = &clockevents_subsys,
675 };
676
tick_get_tick_dev(struct device * dev)677 static struct tick_device *tick_get_tick_dev(struct device *dev)
678 {
679 return dev == &tick_bc_dev ? tick_get_broadcast_device() :
680 &per_cpu(tick_cpu_device, dev->id);
681 }
682
tick_broadcast_init_sysfs(void)683 static __init int tick_broadcast_init_sysfs(void)
684 {
685 int err = device_register(&tick_bc_dev);
686
687 if (!err)
688 err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
689 return err;
690 }
691 #else
tick_get_tick_dev(struct device * dev)692 static struct tick_device *tick_get_tick_dev(struct device *dev)
693 {
694 return &per_cpu(tick_cpu_device, dev->id);
695 }
tick_broadcast_init_sysfs(void)696 static inline int tick_broadcast_init_sysfs(void) { return 0; }
697 #endif
698
tick_init_sysfs(void)699 static int __init tick_init_sysfs(void)
700 {
701 int cpu;
702
703 for_each_possible_cpu(cpu) {
704 struct device *dev = &per_cpu(tick_percpu_dev, cpu);
705 int err;
706
707 dev->id = cpu;
708 dev->bus = &clockevents_subsys;
709 err = device_register(dev);
710 if (!err)
711 err = device_create_file(dev, &dev_attr_current_device);
712 if (!err)
713 err = device_create_file(dev, &dev_attr_unbind_device);
714 if (err)
715 return err;
716 }
717 return tick_broadcast_init_sysfs();
718 }
719
clockevents_init_sysfs(void)720 static int __init clockevents_init_sysfs(void)
721 {
722 int err = subsys_system_register(&clockevents_subsys, NULL);
723
724 if (!err)
725 err = tick_init_sysfs();
726 return err;
727 }
728 device_initcall(clockevents_init_sysfs);
729 #endif /* SYSFS */
730
731 #endif /* GENERIC_CLOCK_EVENTS */
732