1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72
73 #include <../drivers/net/bonding/bonding.h>
74
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80
81 /*
82 * Max interrupt hold-off timer value in us. Queues fall back to this value
83 * under extreme memory pressure so it's largish to give the system time to
84 * recover.
85 */
86 #define MAX_SGE_TIMERVAL 200U
87
88 enum {
89 /*
90 * Physical Function provisioning constants.
91 */
92 PFRES_NVI = 4, /* # of Virtual Interfaces */
93 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */
94 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr
95 */
96 PFRES_NEQ = 256, /* # of egress queues */
97 PFRES_NIQ = 0, /* # of ingress queues */
98 PFRES_TC = 0, /* PCI-E traffic class */
99 PFRES_NEXACTF = 128, /* # of exact MPS filters */
100
101 PFRES_R_CAPS = FW_CMD_CAP_PF,
102 PFRES_WX_CAPS = FW_CMD_CAP_PF,
103
104 #ifdef CONFIG_PCI_IOV
105 /*
106 * Virtual Function provisioning constants. We need two extra Ingress
107 * Queues with Interrupt capability to serve as the VF's Firmware
108 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 * neither will have Free Lists associated with them). For each
110 * Ethernet/Control Egress Queue and for each Free List, we need an
111 * Egress Context.
112 */
113 VFRES_NPORTS = 1, /* # of "ports" per VF */
114 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
115
116 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
117 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
118 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
120 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
121 VFRES_TC = 0, /* PCI-E traffic class */
122 VFRES_NEXACTF = 16, /* # of exact MPS filters */
123
124 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128
129 /*
130 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
131 * static and likely not to be useful in the long run. We really need to
132 * implement some form of persistent configuration which the firmware
133 * controls.
134 */
pfvfres_pmask(struct adapter * adapter,unsigned int pf,unsigned int vf)135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136 unsigned int pf, unsigned int vf)
137 {
138 unsigned int portn, portvec;
139
140 /*
141 * Give PF's access to all of the ports.
142 */
143 if (vf == 0)
144 return FW_PFVF_CMD_PMASK_MASK;
145
146 /*
147 * For VFs, we'll assign them access to the ports based purely on the
148 * PF. We assign active ports in order, wrapping around if there are
149 * fewer active ports than PFs: e.g. active port[pf % nports].
150 * Unfortunately the adapter's port_info structs haven't been
151 * initialized yet so we have to compute this.
152 */
153 if (adapter->params.nports == 0)
154 return 0;
155
156 portn = pf % adapter->params.nports;
157 portvec = adapter->params.portvec;
158 for (;;) {
159 /*
160 * Isolate the lowest set bit in the port vector. If we're at
161 * the port number that we want, return that as the pmask.
162 * otherwise mask that bit out of the port vector and
163 * decrement our port number ...
164 */
165 unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 if (portn == 0)
167 return pmask;
168 portn--;
169 portvec &= ~pmask;
170 }
171 /*NOTREACHED*/
172 }
173
174 enum {
175 MAX_TXQ_ENTRIES = 16384,
176 MAX_CTRL_TXQ_ENTRIES = 1024,
177 MAX_RSPQ_ENTRIES = 16384,
178 MAX_RX_BUFFERS = 16384,
179 MIN_TXQ_ENTRIES = 32,
180 MIN_CTRL_TXQ_ENTRIES = 32,
181 MIN_RSPQ_ENTRIES = 128,
182 MIN_FL_ENTRIES = 16
183 };
184
185 /* Host shadow copy of ingress filter entry. This is in host native format
186 * and doesn't match the ordering or bit order, etc. of the hardware of the
187 * firmware command. The use of bit-field structure elements is purely to
188 * remind ourselves of the field size limitations and save memory in the case
189 * where the filter table is large.
190 */
191 struct filter_entry {
192 /* Administrative fields for filter.
193 */
194 u32 valid:1; /* filter allocated and valid */
195 u32 locked:1; /* filter is administratively locked */
196
197 u32 pending:1; /* filter action is pending firmware reply */
198 u32 smtidx:8; /* Source MAC Table index for smac */
199 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
200
201 /* The filter itself. Most of this is a straight copy of information
202 * provided by the extended ioctl(). Some fields are translated to
203 * internal forms -- for instance the Ingress Queue ID passed in from
204 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 */
206 struct ch_filter_specification fs;
207 };
208
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216 CH_DEVICE(0xa000, 0), /* PE10K */
217 CH_DEVICE(0x4001, -1),
218 CH_DEVICE(0x4002, -1),
219 CH_DEVICE(0x4003, -1),
220 CH_DEVICE(0x4004, -1),
221 CH_DEVICE(0x4005, -1),
222 CH_DEVICE(0x4006, -1),
223 CH_DEVICE(0x4007, -1),
224 CH_DEVICE(0x4008, -1),
225 CH_DEVICE(0x4009, -1),
226 CH_DEVICE(0x400a, -1),
227 CH_DEVICE(0x400d, -1),
228 CH_DEVICE(0x400e, -1),
229 CH_DEVICE(0x4080, -1),
230 CH_DEVICE(0x4081, -1),
231 CH_DEVICE(0x4082, -1),
232 CH_DEVICE(0x4083, -1),
233 CH_DEVICE(0x4084, -1),
234 CH_DEVICE(0x4085, -1),
235 CH_DEVICE(0x4086, -1),
236 CH_DEVICE(0x4087, -1),
237 CH_DEVICE(0x4088, -1),
238 CH_DEVICE(0x4401, 4),
239 CH_DEVICE(0x4402, 4),
240 CH_DEVICE(0x4403, 4),
241 CH_DEVICE(0x4404, 4),
242 CH_DEVICE(0x4405, 4),
243 CH_DEVICE(0x4406, 4),
244 CH_DEVICE(0x4407, 4),
245 CH_DEVICE(0x4408, 4),
246 CH_DEVICE(0x4409, 4),
247 CH_DEVICE(0x440a, 4),
248 CH_DEVICE(0x440d, 4),
249 CH_DEVICE(0x440e, 4),
250 CH_DEVICE(0x4480, 4),
251 CH_DEVICE(0x4481, 4),
252 CH_DEVICE(0x4482, 4),
253 CH_DEVICE(0x4483, 4),
254 CH_DEVICE(0x4484, 4),
255 CH_DEVICE(0x4485, 4),
256 CH_DEVICE(0x4486, 4),
257 CH_DEVICE(0x4487, 4),
258 CH_DEVICE(0x4488, 4),
259 CH_DEVICE(0x5001, 4),
260 CH_DEVICE(0x5002, 4),
261 CH_DEVICE(0x5003, 4),
262 CH_DEVICE(0x5004, 4),
263 CH_DEVICE(0x5005, 4),
264 CH_DEVICE(0x5006, 4),
265 CH_DEVICE(0x5007, 4),
266 CH_DEVICE(0x5008, 4),
267 CH_DEVICE(0x5009, 4),
268 CH_DEVICE(0x500A, 4),
269 CH_DEVICE(0x500B, 4),
270 CH_DEVICE(0x500C, 4),
271 CH_DEVICE(0x500D, 4),
272 CH_DEVICE(0x500E, 4),
273 CH_DEVICE(0x500F, 4),
274 CH_DEVICE(0x5010, 4),
275 CH_DEVICE(0x5011, 4),
276 CH_DEVICE(0x5012, 4),
277 CH_DEVICE(0x5013, 4),
278 CH_DEVICE(0x5014, 4),
279 CH_DEVICE(0x5015, 4),
280 CH_DEVICE(0x5080, 4),
281 CH_DEVICE(0x5081, 4),
282 CH_DEVICE(0x5082, 4),
283 CH_DEVICE(0x5083, 4),
284 CH_DEVICE(0x5084, 4),
285 CH_DEVICE(0x5085, 4),
286 CH_DEVICE(0x5086, 4),
287 CH_DEVICE(0x5087, 4),
288 CH_DEVICE(0x5088, 4),
289 CH_DEVICE(0x5401, 4),
290 CH_DEVICE(0x5402, 4),
291 CH_DEVICE(0x5403, 4),
292 CH_DEVICE(0x5404, 4),
293 CH_DEVICE(0x5405, 4),
294 CH_DEVICE(0x5406, 4),
295 CH_DEVICE(0x5407, 4),
296 CH_DEVICE(0x5408, 4),
297 CH_DEVICE(0x5409, 4),
298 CH_DEVICE(0x540A, 4),
299 CH_DEVICE(0x540B, 4),
300 CH_DEVICE(0x540C, 4),
301 CH_DEVICE(0x540D, 4),
302 CH_DEVICE(0x540E, 4),
303 CH_DEVICE(0x540F, 4),
304 CH_DEVICE(0x5410, 4),
305 CH_DEVICE(0x5411, 4),
306 CH_DEVICE(0x5412, 4),
307 CH_DEVICE(0x5413, 4),
308 CH_DEVICE(0x5414, 4),
309 CH_DEVICE(0x5415, 4),
310 CH_DEVICE(0x5480, 4),
311 CH_DEVICE(0x5481, 4),
312 CH_DEVICE(0x5482, 4),
313 CH_DEVICE(0x5483, 4),
314 CH_DEVICE(0x5484, 4),
315 CH_DEVICE(0x5485, 4),
316 CH_DEVICE(0x5486, 4),
317 CH_DEVICE(0x5487, 4),
318 CH_DEVICE(0x5488, 4),
319 { 0, }
320 };
321
322 #define FW4_FNAME "cxgb4/t4fw.bin"
323 #define FW5_FNAME "cxgb4/t5fw.bin"
324 #define FW4_CFNAME "cxgb4/t4-config.txt"
325 #define FW5_CFNAME "cxgb4/t5-config.txt"
326
327 MODULE_DESCRIPTION(DRV_DESC);
328 MODULE_AUTHOR("Chelsio Communications");
329 MODULE_LICENSE("Dual BSD/GPL");
330 MODULE_VERSION(DRV_VERSION);
331 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
332 MODULE_FIRMWARE(FW4_FNAME);
333 MODULE_FIRMWARE(FW5_FNAME);
334
335 /*
336 * Normally we're willing to become the firmware's Master PF but will be happy
337 * if another PF has already become the Master and initialized the adapter.
338 * Setting "force_init" will cause this driver to forcibly establish itself as
339 * the Master PF and initialize the adapter.
340 */
341 static uint force_init;
342
343 module_param(force_init, uint, 0644);
344 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
345
346 /*
347 * Normally if the firmware we connect to has Configuration File support, we
348 * use that and only fall back to the old Driver-based initialization if the
349 * Configuration File fails for some reason. If force_old_init is set, then
350 * we'll always use the old Driver-based initialization sequence.
351 */
352 static uint force_old_init;
353
354 module_param(force_old_init, uint, 0644);
355 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
356
357 static int dflt_msg_enable = DFLT_MSG_ENABLE;
358
359 module_param(dflt_msg_enable, int, 0644);
360 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
361
362 /*
363 * The driver uses the best interrupt scheme available on a platform in the
364 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
365 * of these schemes the driver may consider as follows:
366 *
367 * msi = 2: choose from among all three options
368 * msi = 1: only consider MSI and INTx interrupts
369 * msi = 0: force INTx interrupts
370 */
371 static int msi = 2;
372
373 module_param(msi, int, 0644);
374 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
375
376 /*
377 * Queue interrupt hold-off timer values. Queues default to the first of these
378 * upon creation.
379 */
380 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
381
382 module_param_array(intr_holdoff, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
384 "0..4 in microseconds");
385
386 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
387
388 module_param_array(intr_cnt, uint, NULL, 0644);
389 MODULE_PARM_DESC(intr_cnt,
390 "thresholds 1..3 for queue interrupt packet counters");
391
392 /*
393 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
394 * offset by 2 bytes in order to have the IP headers line up on 4-byte
395 * boundaries. This is a requirement for many architectures which will throw
396 * a machine check fault if an attempt is made to access one of the 4-byte IP
397 * header fields on a non-4-byte boundary. And it's a major performance issue
398 * even on some architectures which allow it like some implementations of the
399 * x86 ISA. However, some architectures don't mind this and for some very
400 * edge-case performance sensitive applications (like forwarding large volumes
401 * of small packets), setting this DMA offset to 0 will decrease the number of
402 * PCI-E Bus transfers enough to measurably affect performance.
403 */
404 static int rx_dma_offset = 2;
405
406 static bool vf_acls;
407
408 #ifdef CONFIG_PCI_IOV
409 module_param(vf_acls, bool, 0644);
410 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
411
412 /* Configure the number of PCI-E Virtual Function which are to be instantiated
413 * on SR-IOV Capable Physical Functions.
414 */
415 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
416
417 module_param_array(num_vf, uint, NULL, 0644);
418 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
419 #endif
420
421 /* TX Queue select used to determine what algorithm to use for selecting TX
422 * queue. Select between the kernel provided function (select_queue=0) or user
423 * cxgb_select_queue function (select_queue=1)
424 *
425 * Default: select_queue=0
426 */
427 static int select_queue;
428 module_param(select_queue, int, 0644);
429 MODULE_PARM_DESC(select_queue,
430 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
431
432 /*
433 * The filter TCAM has a fixed portion and a variable portion. The fixed
434 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
435 * ports. The variable portion is 36 bits which can include things like Exact
436 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
437 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
438 * far exceed the 36-bit budget for this "compressed" header portion of the
439 * filter. Thus, we have a scarce resource which must be carefully managed.
440 *
441 * By default we set this up to mostly match the set of filter matching
442 * capabilities of T3 but with accommodations for some of T4's more
443 * interesting features:
444 *
445 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
446 * [Inner] VLAN (17), Port (3), FCoE (1) }
447 */
448 enum {
449 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
450 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
451 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
452 };
453
454 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
455
456 module_param(tp_vlan_pri_map, uint, 0644);
457 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
458
459 static struct dentry *cxgb4_debugfs_root;
460
461 static LIST_HEAD(adapter_list);
462 static DEFINE_MUTEX(uld_mutex);
463 /* Adapter list to be accessed from atomic context */
464 static LIST_HEAD(adap_rcu_list);
465 static DEFINE_SPINLOCK(adap_rcu_lock);
466 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
467 static const char *uld_str[] = { "RDMA", "iSCSI" };
468
link_report(struct net_device * dev)469 static void link_report(struct net_device *dev)
470 {
471 if (!netif_carrier_ok(dev))
472 netdev_info(dev, "link down\n");
473 else {
474 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
475
476 const char *s = "10Mbps";
477 const struct port_info *p = netdev_priv(dev);
478
479 switch (p->link_cfg.speed) {
480 case 10000:
481 s = "10Gbps";
482 break;
483 case 1000:
484 s = "1000Mbps";
485 break;
486 case 100:
487 s = "100Mbps";
488 break;
489 case 40000:
490 s = "40Gbps";
491 break;
492 }
493
494 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
495 fc[p->link_cfg.fc]);
496 }
497 }
498
499 #ifdef CONFIG_CHELSIO_T4_DCB
500 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)501 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
502 {
503 struct port_info *pi = netdev_priv(dev);
504 struct adapter *adap = pi->adapter;
505 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
506 int i;
507
508 /* We use a simple mapping of Port TX Queue Index to DCB
509 * Priority when we're enabling DCB.
510 */
511 for (i = 0; i < pi->nqsets; i++, txq++) {
512 u32 name, value;
513 int err;
514
515 name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
516 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
517 FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
518 value = enable ? i : 0xffffffff;
519
520 /* Since we can be called while atomic (from "interrupt
521 * level") we need to issue the Set Parameters Commannd
522 * without sleeping (timeout < 0).
523 */
524 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
525 &name, &value);
526
527 if (err)
528 dev_err(adap->pdev_dev,
529 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
530 enable ? "set" : "unset", pi->port_id, i, -err);
531 else
532 txq->dcb_prio = value;
533 }
534 }
535 #endif /* CONFIG_CHELSIO_T4_DCB */
536
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)537 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
538 {
539 struct net_device *dev = adapter->port[port_id];
540
541 /* Skip changes from disabled ports. */
542 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
543 if (link_stat)
544 netif_carrier_on(dev);
545 else {
546 #ifdef CONFIG_CHELSIO_T4_DCB
547 cxgb4_dcb_state_init(dev);
548 dcb_tx_queue_prio_enable(dev, false);
549 #endif /* CONFIG_CHELSIO_T4_DCB */
550 netif_carrier_off(dev);
551 }
552
553 link_report(dev);
554 }
555 }
556
t4_os_portmod_changed(const struct adapter * adap,int port_id)557 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
558 {
559 static const char *mod_str[] = {
560 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
561 };
562
563 const struct net_device *dev = adap->port[port_id];
564 const struct port_info *pi = netdev_priv(dev);
565
566 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
567 netdev_info(dev, "port module unplugged\n");
568 else if (pi->mod_type < ARRAY_SIZE(mod_str))
569 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
570 }
571
572 /*
573 * Configure the exact and hash address filters to handle a port's multicast
574 * and secondary unicast MAC addresses.
575 */
set_addr_filters(const struct net_device * dev,bool sleep)576 static int set_addr_filters(const struct net_device *dev, bool sleep)
577 {
578 u64 mhash = 0;
579 u64 uhash = 0;
580 bool free = true;
581 u16 filt_idx[7];
582 const u8 *addr[7];
583 int ret, naddr = 0;
584 const struct netdev_hw_addr *ha;
585 int uc_cnt = netdev_uc_count(dev);
586 int mc_cnt = netdev_mc_count(dev);
587 const struct port_info *pi = netdev_priv(dev);
588 unsigned int mb = pi->adapter->fn;
589
590 /* first do the secondary unicast addresses */
591 netdev_for_each_uc_addr(ha, dev) {
592 addr[naddr++] = ha->addr;
593 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
594 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
595 naddr, addr, filt_idx, &uhash, sleep);
596 if (ret < 0)
597 return ret;
598
599 free = false;
600 naddr = 0;
601 }
602 }
603
604 /* next set up the multicast addresses */
605 netdev_for_each_mc_addr(ha, dev) {
606 addr[naddr++] = ha->addr;
607 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
608 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
609 naddr, addr, filt_idx, &mhash, sleep);
610 if (ret < 0)
611 return ret;
612
613 free = false;
614 naddr = 0;
615 }
616 }
617
618 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
619 uhash | mhash, sleep);
620 }
621
622 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
623 module_param(dbfifo_int_thresh, int, 0644);
624 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
625
626 /*
627 * usecs to sleep while draining the dbfifo
628 */
629 static int dbfifo_drain_delay = 1000;
630 module_param(dbfifo_drain_delay, int, 0644);
631 MODULE_PARM_DESC(dbfifo_drain_delay,
632 "usecs to sleep while draining the dbfifo");
633
634 /*
635 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
636 * If @mtu is -1 it is left unchanged.
637 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)638 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
639 {
640 int ret;
641 struct port_info *pi = netdev_priv(dev);
642
643 ret = set_addr_filters(dev, sleep_ok);
644 if (ret == 0)
645 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
646 (dev->flags & IFF_PROMISC) ? 1 : 0,
647 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
648 sleep_ok);
649 return ret;
650 }
651
652 /**
653 * link_start - enable a port
654 * @dev: the port to enable
655 *
656 * Performs the MAC and PHY actions needed to enable a port.
657 */
link_start(struct net_device * dev)658 static int link_start(struct net_device *dev)
659 {
660 int ret;
661 struct port_info *pi = netdev_priv(dev);
662 unsigned int mb = pi->adapter->fn;
663
664 /*
665 * We do not set address filters and promiscuity here, the stack does
666 * that step explicitly.
667 */
668 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
669 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
670 if (ret == 0) {
671 ret = t4_change_mac(pi->adapter, mb, pi->viid,
672 pi->xact_addr_filt, dev->dev_addr, true,
673 true);
674 if (ret >= 0) {
675 pi->xact_addr_filt = ret;
676 ret = 0;
677 }
678 }
679 if (ret == 0)
680 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
681 &pi->link_cfg);
682 if (ret == 0) {
683 local_bh_disable();
684 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
685 true, CXGB4_DCB_ENABLED);
686 local_bh_enable();
687 }
688
689 return ret;
690 }
691
cxgb4_dcb_enabled(const struct net_device * dev)692 int cxgb4_dcb_enabled(const struct net_device *dev)
693 {
694 #ifdef CONFIG_CHELSIO_T4_DCB
695 struct port_info *pi = netdev_priv(dev);
696
697 if (!pi->dcb.enabled)
698 return 0;
699
700 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
701 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
702 #else
703 return 0;
704 #endif
705 }
706 EXPORT_SYMBOL(cxgb4_dcb_enabled);
707
708 #ifdef CONFIG_CHELSIO_T4_DCB
709 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)710 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
711 {
712 int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
713 struct net_device *dev = adap->port[port];
714 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
715 int new_dcb_enabled;
716
717 cxgb4_dcb_handle_fw_update(adap, pcmd);
718 new_dcb_enabled = cxgb4_dcb_enabled(dev);
719
720 /* If the DCB has become enabled or disabled on the port then we're
721 * going to need to set up/tear down DCB Priority parameters for the
722 * TX Queues associated with the port.
723 */
724 if (new_dcb_enabled != old_dcb_enabled)
725 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
726 }
727 #endif /* CONFIG_CHELSIO_T4_DCB */
728
729 /* Clear a filter and release any of its resources that we own. This also
730 * clears the filter's "pending" status.
731 */
clear_filter(struct adapter * adap,struct filter_entry * f)732 static void clear_filter(struct adapter *adap, struct filter_entry *f)
733 {
734 /* If the new or old filter have loopback rewriteing rules then we'll
735 * need to free any existing Layer Two Table (L2T) entries of the old
736 * filter rule. The firmware will handle freeing up any Source MAC
737 * Table (SMT) entries used for rewriting Source MAC Addresses in
738 * loopback rules.
739 */
740 if (f->l2t)
741 cxgb4_l2t_release(f->l2t);
742
743 /* The zeroing of the filter rule below clears the filter valid,
744 * pending, locked flags, l2t pointer, etc. so it's all we need for
745 * this operation.
746 */
747 memset(f, 0, sizeof(*f));
748 }
749
750 /* Handle a filter write/deletion reply.
751 */
filter_rpl(struct adapter * adap,const struct cpl_set_tcb_rpl * rpl)752 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
753 {
754 unsigned int idx = GET_TID(rpl);
755 unsigned int nidx = idx - adap->tids.ftid_base;
756 unsigned int ret;
757 struct filter_entry *f;
758
759 if (idx >= adap->tids.ftid_base && nidx <
760 (adap->tids.nftids + adap->tids.nsftids)) {
761 idx = nidx;
762 ret = GET_TCB_COOKIE(rpl->cookie);
763 f = &adap->tids.ftid_tab[idx];
764
765 if (ret == FW_FILTER_WR_FLT_DELETED) {
766 /* Clear the filter when we get confirmation from the
767 * hardware that the filter has been deleted.
768 */
769 clear_filter(adap, f);
770 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
771 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
772 idx);
773 clear_filter(adap, f);
774 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
775 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
776 f->pending = 0; /* asynchronous setup completed */
777 f->valid = 1;
778 } else {
779 /* Something went wrong. Issue a warning about the
780 * problem and clear everything out.
781 */
782 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
783 idx, ret);
784 clear_filter(adap, f);
785 }
786 }
787 }
788
789 /* Response queue handler for the FW event queue.
790 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)791 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
792 const struct pkt_gl *gl)
793 {
794 u8 opcode = ((const struct rss_header *)rsp)->opcode;
795
796 rsp++; /* skip RSS header */
797
798 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
799 */
800 if (unlikely(opcode == CPL_FW4_MSG &&
801 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
802 rsp++;
803 opcode = ((const struct rss_header *)rsp)->opcode;
804 rsp++;
805 if (opcode != CPL_SGE_EGR_UPDATE) {
806 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
807 , opcode);
808 goto out;
809 }
810 }
811
812 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
813 const struct cpl_sge_egr_update *p = (void *)rsp;
814 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
815 struct sge_txq *txq;
816
817 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
818 txq->restarts++;
819 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
820 struct sge_eth_txq *eq;
821
822 eq = container_of(txq, struct sge_eth_txq, q);
823 netif_tx_wake_queue(eq->txq);
824 } else {
825 struct sge_ofld_txq *oq;
826
827 oq = container_of(txq, struct sge_ofld_txq, q);
828 tasklet_schedule(&oq->qresume_tsk);
829 }
830 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
831 const struct cpl_fw6_msg *p = (void *)rsp;
832
833 #ifdef CONFIG_CHELSIO_T4_DCB
834 const struct fw_port_cmd *pcmd = (const void *)p->data;
835 unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
836 unsigned int action =
837 FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
838
839 if (cmd == FW_PORT_CMD &&
840 action == FW_PORT_ACTION_GET_PORT_INFO) {
841 int port = FW_PORT_CMD_PORTID_GET(
842 be32_to_cpu(pcmd->op_to_portid));
843 struct net_device *dev = q->adap->port[port];
844 int state_input = ((pcmd->u.info.dcbxdis_pkd &
845 FW_PORT_CMD_DCBXDIS)
846 ? CXGB4_DCB_INPUT_FW_DISABLED
847 : CXGB4_DCB_INPUT_FW_ENABLED);
848
849 cxgb4_dcb_state_fsm(dev, state_input);
850 }
851
852 if (cmd == FW_PORT_CMD &&
853 action == FW_PORT_ACTION_L2_DCB_CFG)
854 dcb_rpl(q->adap, pcmd);
855 else
856 #endif
857 if (p->type == 0)
858 t4_handle_fw_rpl(q->adap, p->data);
859 } else if (opcode == CPL_L2T_WRITE_RPL) {
860 const struct cpl_l2t_write_rpl *p = (void *)rsp;
861
862 do_l2t_write_rpl(q->adap, p);
863 } else if (opcode == CPL_SET_TCB_RPL) {
864 const struct cpl_set_tcb_rpl *p = (void *)rsp;
865
866 filter_rpl(q->adap, p);
867 } else
868 dev_err(q->adap->pdev_dev,
869 "unexpected CPL %#x on FW event queue\n", opcode);
870 out:
871 return 0;
872 }
873
874 /**
875 * uldrx_handler - response queue handler for ULD queues
876 * @q: the response queue that received the packet
877 * @rsp: the response queue descriptor holding the offload message
878 * @gl: the gather list of packet fragments
879 *
880 * Deliver an ingress offload packet to a ULD. All processing is done by
881 * the ULD, we just maintain statistics.
882 */
uldrx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)883 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
884 const struct pkt_gl *gl)
885 {
886 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
887
888 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
889 */
890 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
891 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
892 rsp += 2;
893
894 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
895 rxq->stats.nomem++;
896 return -1;
897 }
898 if (gl == NULL)
899 rxq->stats.imm++;
900 else if (gl == CXGB4_MSG_AN)
901 rxq->stats.an++;
902 else
903 rxq->stats.pkts++;
904 return 0;
905 }
906
disable_msi(struct adapter * adapter)907 static void disable_msi(struct adapter *adapter)
908 {
909 if (adapter->flags & USING_MSIX) {
910 pci_disable_msix(adapter->pdev);
911 adapter->flags &= ~USING_MSIX;
912 } else if (adapter->flags & USING_MSI) {
913 pci_disable_msi(adapter->pdev);
914 adapter->flags &= ~USING_MSI;
915 }
916 }
917
918 /*
919 * Interrupt handler for non-data events used with MSI-X.
920 */
t4_nondata_intr(int irq,void * cookie)921 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
922 {
923 struct adapter *adap = cookie;
924
925 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
926 if (v & PFSW) {
927 adap->swintr = 1;
928 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
929 }
930 t4_slow_intr_handler(adap);
931 return IRQ_HANDLED;
932 }
933
934 /*
935 * Name the MSI-X interrupts.
936 */
name_msix_vecs(struct adapter * adap)937 static void name_msix_vecs(struct adapter *adap)
938 {
939 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
940
941 /* non-data interrupts */
942 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
943
944 /* FW events */
945 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
946 adap->port[0]->name);
947
948 /* Ethernet queues */
949 for_each_port(adap, j) {
950 struct net_device *d = adap->port[j];
951 const struct port_info *pi = netdev_priv(d);
952
953 for (i = 0; i < pi->nqsets; i++, msi_idx++)
954 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
955 d->name, i);
956 }
957
958 /* offload queues */
959 for_each_ofldrxq(&adap->sge, i)
960 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
961 adap->port[0]->name, i);
962
963 for_each_rdmarxq(&adap->sge, i)
964 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
965 adap->port[0]->name, i);
966
967 for_each_rdmaciq(&adap->sge, i)
968 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
969 adap->port[0]->name, i);
970 }
971
request_msix_queue_irqs(struct adapter * adap)972 static int request_msix_queue_irqs(struct adapter *adap)
973 {
974 struct sge *s = &adap->sge;
975 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
976 int msi_index = 2;
977
978 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
979 adap->msix_info[1].desc, &s->fw_evtq);
980 if (err)
981 return err;
982
983 for_each_ethrxq(s, ethqidx) {
984 err = request_irq(adap->msix_info[msi_index].vec,
985 t4_sge_intr_msix, 0,
986 adap->msix_info[msi_index].desc,
987 &s->ethrxq[ethqidx].rspq);
988 if (err)
989 goto unwind;
990 msi_index++;
991 }
992 for_each_ofldrxq(s, ofldqidx) {
993 err = request_irq(adap->msix_info[msi_index].vec,
994 t4_sge_intr_msix, 0,
995 adap->msix_info[msi_index].desc,
996 &s->ofldrxq[ofldqidx].rspq);
997 if (err)
998 goto unwind;
999 msi_index++;
1000 }
1001 for_each_rdmarxq(s, rdmaqidx) {
1002 err = request_irq(adap->msix_info[msi_index].vec,
1003 t4_sge_intr_msix, 0,
1004 adap->msix_info[msi_index].desc,
1005 &s->rdmarxq[rdmaqidx].rspq);
1006 if (err)
1007 goto unwind;
1008 msi_index++;
1009 }
1010 for_each_rdmaciq(s, rdmaciqqidx) {
1011 err = request_irq(adap->msix_info[msi_index].vec,
1012 t4_sge_intr_msix, 0,
1013 adap->msix_info[msi_index].desc,
1014 &s->rdmaciq[rdmaciqqidx].rspq);
1015 if (err)
1016 goto unwind;
1017 msi_index++;
1018 }
1019 return 0;
1020
1021 unwind:
1022 while (--rdmaciqqidx >= 0)
1023 free_irq(adap->msix_info[--msi_index].vec,
1024 &s->rdmaciq[rdmaciqqidx].rspq);
1025 while (--rdmaqidx >= 0)
1026 free_irq(adap->msix_info[--msi_index].vec,
1027 &s->rdmarxq[rdmaqidx].rspq);
1028 while (--ofldqidx >= 0)
1029 free_irq(adap->msix_info[--msi_index].vec,
1030 &s->ofldrxq[ofldqidx].rspq);
1031 while (--ethqidx >= 0)
1032 free_irq(adap->msix_info[--msi_index].vec,
1033 &s->ethrxq[ethqidx].rspq);
1034 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1035 return err;
1036 }
1037
free_msix_queue_irqs(struct adapter * adap)1038 static void free_msix_queue_irqs(struct adapter *adap)
1039 {
1040 int i, msi_index = 2;
1041 struct sge *s = &adap->sge;
1042
1043 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1044 for_each_ethrxq(s, i)
1045 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1046 for_each_ofldrxq(s, i)
1047 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1048 for_each_rdmarxq(s, i)
1049 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1050 for_each_rdmaciq(s, i)
1051 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1052 }
1053
1054 /**
1055 * write_rss - write the RSS table for a given port
1056 * @pi: the port
1057 * @queues: array of queue indices for RSS
1058 *
1059 * Sets up the portion of the HW RSS table for the port's VI to distribute
1060 * packets to the Rx queues in @queues.
1061 */
write_rss(const struct port_info * pi,const u16 * queues)1062 static int write_rss(const struct port_info *pi, const u16 *queues)
1063 {
1064 u16 *rss;
1065 int i, err;
1066 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1067
1068 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1069 if (!rss)
1070 return -ENOMEM;
1071
1072 /* map the queue indices to queue ids */
1073 for (i = 0; i < pi->rss_size; i++, queues++)
1074 rss[i] = q[*queues].rspq.abs_id;
1075
1076 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1077 pi->rss_size, rss, pi->rss_size);
1078 kfree(rss);
1079 return err;
1080 }
1081
1082 /**
1083 * setup_rss - configure RSS
1084 * @adap: the adapter
1085 *
1086 * Sets up RSS for each port.
1087 */
setup_rss(struct adapter * adap)1088 static int setup_rss(struct adapter *adap)
1089 {
1090 int i, err;
1091
1092 for_each_port(adap, i) {
1093 const struct port_info *pi = adap2pinfo(adap, i);
1094
1095 err = write_rss(pi, pi->rss);
1096 if (err)
1097 return err;
1098 }
1099 return 0;
1100 }
1101
1102 /*
1103 * Return the channel of the ingress queue with the given qid.
1104 */
rxq_to_chan(const struct sge * p,unsigned int qid)1105 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1106 {
1107 qid -= p->ingr_start;
1108 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1109 }
1110
1111 /*
1112 * Wait until all NAPI handlers are descheduled.
1113 */
quiesce_rx(struct adapter * adap)1114 static void quiesce_rx(struct adapter *adap)
1115 {
1116 int i;
1117
1118 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1119 struct sge_rspq *q = adap->sge.ingr_map[i];
1120
1121 if (q && q->handler)
1122 napi_disable(&q->napi);
1123 }
1124 }
1125
1126 /*
1127 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1128 */
enable_rx(struct adapter * adap)1129 static void enable_rx(struct adapter *adap)
1130 {
1131 int i;
1132
1133 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1134 struct sge_rspq *q = adap->sge.ingr_map[i];
1135
1136 if (!q)
1137 continue;
1138 if (q->handler)
1139 napi_enable(&q->napi);
1140 /* 0-increment GTS to start the timer and enable interrupts */
1141 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1142 SEINTARM(q->intr_params) |
1143 INGRESSQID(q->cntxt_id));
1144 }
1145 }
1146
1147 /**
1148 * setup_sge_queues - configure SGE Tx/Rx/response queues
1149 * @adap: the adapter
1150 *
1151 * Determines how many sets of SGE queues to use and initializes them.
1152 * We support multiple queue sets per port if we have MSI-X, otherwise
1153 * just one queue set per port.
1154 */
setup_sge_queues(struct adapter * adap)1155 static int setup_sge_queues(struct adapter *adap)
1156 {
1157 int err, msi_idx, i, j;
1158 struct sge *s = &adap->sge;
1159
1160 bitmap_zero(s->starving_fl, MAX_EGRQ);
1161 bitmap_zero(s->txq_maperr, MAX_EGRQ);
1162
1163 if (adap->flags & USING_MSIX)
1164 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1165 else {
1166 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1167 NULL, NULL);
1168 if (err)
1169 return err;
1170 msi_idx = -((int)s->intrq.abs_id + 1);
1171 }
1172
1173 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1174 msi_idx, NULL, fwevtq_handler);
1175 if (err) {
1176 freeout: t4_free_sge_resources(adap);
1177 return err;
1178 }
1179
1180 for_each_port(adap, i) {
1181 struct net_device *dev = adap->port[i];
1182 struct port_info *pi = netdev_priv(dev);
1183 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1184 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1185
1186 for (j = 0; j < pi->nqsets; j++, q++) {
1187 if (msi_idx > 0)
1188 msi_idx++;
1189 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1190 msi_idx, &q->fl,
1191 t4_ethrx_handler);
1192 if (err)
1193 goto freeout;
1194 q->rspq.idx = j;
1195 memset(&q->stats, 0, sizeof(q->stats));
1196 }
1197 for (j = 0; j < pi->nqsets; j++, t++) {
1198 err = t4_sge_alloc_eth_txq(adap, t, dev,
1199 netdev_get_tx_queue(dev, j),
1200 s->fw_evtq.cntxt_id);
1201 if (err)
1202 goto freeout;
1203 }
1204 }
1205
1206 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1207 for_each_ofldrxq(s, i) {
1208 struct sge_ofld_rxq *q = &s->ofldrxq[i];
1209 struct net_device *dev = adap->port[i / j];
1210
1211 if (msi_idx > 0)
1212 msi_idx++;
1213 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1214 q->fl.size ? &q->fl : NULL,
1215 uldrx_handler);
1216 if (err)
1217 goto freeout;
1218 memset(&q->stats, 0, sizeof(q->stats));
1219 s->ofld_rxq[i] = q->rspq.abs_id;
1220 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1221 s->fw_evtq.cntxt_id);
1222 if (err)
1223 goto freeout;
1224 }
1225
1226 for_each_rdmarxq(s, i) {
1227 struct sge_ofld_rxq *q = &s->rdmarxq[i];
1228
1229 if (msi_idx > 0)
1230 msi_idx++;
1231 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1232 msi_idx, q->fl.size ? &q->fl : NULL,
1233 uldrx_handler);
1234 if (err)
1235 goto freeout;
1236 memset(&q->stats, 0, sizeof(q->stats));
1237 s->rdma_rxq[i] = q->rspq.abs_id;
1238 }
1239
1240 for_each_rdmaciq(s, i) {
1241 struct sge_ofld_rxq *q = &s->rdmaciq[i];
1242
1243 if (msi_idx > 0)
1244 msi_idx++;
1245 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1246 msi_idx, q->fl.size ? &q->fl : NULL,
1247 uldrx_handler);
1248 if (err)
1249 goto freeout;
1250 memset(&q->stats, 0, sizeof(q->stats));
1251 s->rdma_ciq[i] = q->rspq.abs_id;
1252 }
1253
1254 for_each_port(adap, i) {
1255 /*
1256 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1257 * have RDMA queues, and that's the right value.
1258 */
1259 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1260 s->fw_evtq.cntxt_id,
1261 s->rdmarxq[i].rspq.cntxt_id);
1262 if (err)
1263 goto freeout;
1264 }
1265
1266 t4_write_reg(adap, is_t4(adap->params.chip) ?
1267 MPS_TRC_RSS_CONTROL :
1268 MPS_T5_TRC_RSS_CONTROL,
1269 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1270 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1271 return 0;
1272 }
1273
1274 /*
1275 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1276 * The allocated memory is cleared.
1277 */
t4_alloc_mem(size_t size)1278 void *t4_alloc_mem(size_t size)
1279 {
1280 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1281
1282 if (!p)
1283 p = vzalloc(size);
1284 return p;
1285 }
1286
1287 /*
1288 * Free memory allocated through alloc_mem().
1289 */
t4_free_mem(void * addr)1290 static void t4_free_mem(void *addr)
1291 {
1292 if (is_vmalloc_addr(addr))
1293 vfree(addr);
1294 else
1295 kfree(addr);
1296 }
1297
1298 /* Send a Work Request to write the filter at a specified index. We construct
1299 * a Firmware Filter Work Request to have the work done and put the indicated
1300 * filter into "pending" mode which will prevent any further actions against
1301 * it till we get a reply from the firmware on the completion status of the
1302 * request.
1303 */
set_filter_wr(struct adapter * adapter,int fidx)1304 static int set_filter_wr(struct adapter *adapter, int fidx)
1305 {
1306 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1307 struct sk_buff *skb;
1308 struct fw_filter_wr *fwr;
1309 unsigned int ftid;
1310
1311 /* If the new filter requires loopback Destination MAC and/or VLAN
1312 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1313 * the filter.
1314 */
1315 if (f->fs.newdmac || f->fs.newvlan) {
1316 /* allocate L2T entry for new filter */
1317 f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1318 if (f->l2t == NULL)
1319 return -EAGAIN;
1320 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1321 f->fs.eport, f->fs.dmac)) {
1322 cxgb4_l2t_release(f->l2t);
1323 f->l2t = NULL;
1324 return -ENOMEM;
1325 }
1326 }
1327
1328 ftid = adapter->tids.ftid_base + fidx;
1329
1330 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1331 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1332 memset(fwr, 0, sizeof(*fwr));
1333
1334 /* It would be nice to put most of the following in t4_hw.c but most
1335 * of the work is translating the cxgbtool ch_filter_specification
1336 * into the Work Request and the definition of that structure is
1337 * currently in cxgbtool.h which isn't appropriate to pull into the
1338 * common code. We may eventually try to come up with a more neutral
1339 * filter specification structure but for now it's easiest to simply
1340 * put this fairly direct code in line ...
1341 */
1342 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1343 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1344 fwr->tid_to_iq =
1345 htonl(V_FW_FILTER_WR_TID(ftid) |
1346 V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1347 V_FW_FILTER_WR_NOREPLY(0) |
1348 V_FW_FILTER_WR_IQ(f->fs.iq));
1349 fwr->del_filter_to_l2tix =
1350 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1351 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1352 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1353 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1354 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1355 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1356 V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1357 V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1358 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1359 f->fs.newvlan == VLAN_REWRITE) |
1360 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1361 f->fs.newvlan == VLAN_REWRITE) |
1362 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1363 V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1364 V_FW_FILTER_WR_PRIO(f->fs.prio) |
1365 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1366 fwr->ethtype = htons(f->fs.val.ethtype);
1367 fwr->ethtypem = htons(f->fs.mask.ethtype);
1368 fwr->frag_to_ovlan_vldm =
1369 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1370 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1371 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1372 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1373 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1374 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1375 fwr->smac_sel = 0;
1376 fwr->rx_chan_rx_rpl_iq =
1377 htons(V_FW_FILTER_WR_RX_CHAN(0) |
1378 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1379 fwr->maci_to_matchtypem =
1380 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1381 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1382 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1383 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1384 V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1385 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1386 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1387 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1388 fwr->ptcl = f->fs.val.proto;
1389 fwr->ptclm = f->fs.mask.proto;
1390 fwr->ttyp = f->fs.val.tos;
1391 fwr->ttypm = f->fs.mask.tos;
1392 fwr->ivlan = htons(f->fs.val.ivlan);
1393 fwr->ivlanm = htons(f->fs.mask.ivlan);
1394 fwr->ovlan = htons(f->fs.val.ovlan);
1395 fwr->ovlanm = htons(f->fs.mask.ovlan);
1396 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1397 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1398 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1399 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1400 fwr->lp = htons(f->fs.val.lport);
1401 fwr->lpm = htons(f->fs.mask.lport);
1402 fwr->fp = htons(f->fs.val.fport);
1403 fwr->fpm = htons(f->fs.mask.fport);
1404 if (f->fs.newsmac)
1405 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1406
1407 /* Mark the filter as "pending" and ship off the Filter Work Request.
1408 * When we get the Work Request Reply we'll clear the pending status.
1409 */
1410 f->pending = 1;
1411 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1412 t4_ofld_send(adapter, skb);
1413 return 0;
1414 }
1415
1416 /* Delete the filter at a specified index.
1417 */
del_filter_wr(struct adapter * adapter,int fidx)1418 static int del_filter_wr(struct adapter *adapter, int fidx)
1419 {
1420 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1421 struct sk_buff *skb;
1422 struct fw_filter_wr *fwr;
1423 unsigned int len, ftid;
1424
1425 len = sizeof(*fwr);
1426 ftid = adapter->tids.ftid_base + fidx;
1427
1428 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1429 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1430 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1431
1432 /* Mark the filter as "pending" and ship off the Filter Work Request.
1433 * When we get the Work Request Reply we'll clear the pending status.
1434 */
1435 f->pending = 1;
1436 t4_mgmt_tx(adapter, skb);
1437 return 0;
1438 }
1439
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)1440 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1441 void *accel_priv, select_queue_fallback_t fallback)
1442 {
1443 int txq;
1444
1445 #ifdef CONFIG_CHELSIO_T4_DCB
1446 /* If a Data Center Bridging has been successfully negotiated on this
1447 * link then we'll use the skb's priority to map it to a TX Queue.
1448 * The skb's priority is determined via the VLAN Tag Priority Code
1449 * Point field.
1450 */
1451 if (cxgb4_dcb_enabled(dev)) {
1452 u16 vlan_tci;
1453 int err;
1454
1455 err = vlan_get_tag(skb, &vlan_tci);
1456 if (unlikely(err)) {
1457 if (net_ratelimit())
1458 netdev_warn(dev,
1459 "TX Packet without VLAN Tag on DCB Link\n");
1460 txq = 0;
1461 } else {
1462 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1463 }
1464 return txq;
1465 }
1466 #endif /* CONFIG_CHELSIO_T4_DCB */
1467
1468 if (select_queue) {
1469 txq = (skb_rx_queue_recorded(skb)
1470 ? skb_get_rx_queue(skb)
1471 : smp_processor_id());
1472
1473 while (unlikely(txq >= dev->real_num_tx_queues))
1474 txq -= dev->real_num_tx_queues;
1475
1476 return txq;
1477 }
1478
1479 return fallback(dev, skb) % dev->real_num_tx_queues;
1480 }
1481
is_offload(const struct adapter * adap)1482 static inline int is_offload(const struct adapter *adap)
1483 {
1484 return adap->params.offload;
1485 }
1486
1487 /*
1488 * Implementation of ethtool operations.
1489 */
1490
get_msglevel(struct net_device * dev)1491 static u32 get_msglevel(struct net_device *dev)
1492 {
1493 return netdev2adap(dev)->msg_enable;
1494 }
1495
set_msglevel(struct net_device * dev,u32 val)1496 static void set_msglevel(struct net_device *dev, u32 val)
1497 {
1498 netdev2adap(dev)->msg_enable = val;
1499 }
1500
1501 static char stats_strings[][ETH_GSTRING_LEN] = {
1502 "TxOctetsOK ",
1503 "TxFramesOK ",
1504 "TxBroadcastFrames ",
1505 "TxMulticastFrames ",
1506 "TxUnicastFrames ",
1507 "TxErrorFrames ",
1508
1509 "TxFrames64 ",
1510 "TxFrames65To127 ",
1511 "TxFrames128To255 ",
1512 "TxFrames256To511 ",
1513 "TxFrames512To1023 ",
1514 "TxFrames1024To1518 ",
1515 "TxFrames1519ToMax ",
1516
1517 "TxFramesDropped ",
1518 "TxPauseFrames ",
1519 "TxPPP0Frames ",
1520 "TxPPP1Frames ",
1521 "TxPPP2Frames ",
1522 "TxPPP3Frames ",
1523 "TxPPP4Frames ",
1524 "TxPPP5Frames ",
1525 "TxPPP6Frames ",
1526 "TxPPP7Frames ",
1527
1528 "RxOctetsOK ",
1529 "RxFramesOK ",
1530 "RxBroadcastFrames ",
1531 "RxMulticastFrames ",
1532 "RxUnicastFrames ",
1533
1534 "RxFramesTooLong ",
1535 "RxJabberErrors ",
1536 "RxFCSErrors ",
1537 "RxLengthErrors ",
1538 "RxSymbolErrors ",
1539 "RxRuntFrames ",
1540
1541 "RxFrames64 ",
1542 "RxFrames65To127 ",
1543 "RxFrames128To255 ",
1544 "RxFrames256To511 ",
1545 "RxFrames512To1023 ",
1546 "RxFrames1024To1518 ",
1547 "RxFrames1519ToMax ",
1548
1549 "RxPauseFrames ",
1550 "RxPPP0Frames ",
1551 "RxPPP1Frames ",
1552 "RxPPP2Frames ",
1553 "RxPPP3Frames ",
1554 "RxPPP4Frames ",
1555 "RxPPP5Frames ",
1556 "RxPPP6Frames ",
1557 "RxPPP7Frames ",
1558
1559 "RxBG0FramesDropped ",
1560 "RxBG1FramesDropped ",
1561 "RxBG2FramesDropped ",
1562 "RxBG3FramesDropped ",
1563 "RxBG0FramesTrunc ",
1564 "RxBG1FramesTrunc ",
1565 "RxBG2FramesTrunc ",
1566 "RxBG3FramesTrunc ",
1567
1568 "TSO ",
1569 "TxCsumOffload ",
1570 "RxCsumGood ",
1571 "VLANextractions ",
1572 "VLANinsertions ",
1573 "GROpackets ",
1574 "GROmerged ",
1575 "WriteCoalSuccess ",
1576 "WriteCoalFail ",
1577 };
1578
get_sset_count(struct net_device * dev,int sset)1579 static int get_sset_count(struct net_device *dev, int sset)
1580 {
1581 switch (sset) {
1582 case ETH_SS_STATS:
1583 return ARRAY_SIZE(stats_strings);
1584 default:
1585 return -EOPNOTSUPP;
1586 }
1587 }
1588
1589 #define T4_REGMAP_SIZE (160 * 1024)
1590 #define T5_REGMAP_SIZE (332 * 1024)
1591
get_regs_len(struct net_device * dev)1592 static int get_regs_len(struct net_device *dev)
1593 {
1594 struct adapter *adap = netdev2adap(dev);
1595 if (is_t4(adap->params.chip))
1596 return T4_REGMAP_SIZE;
1597 else
1598 return T5_REGMAP_SIZE;
1599 }
1600
get_eeprom_len(struct net_device * dev)1601 static int get_eeprom_len(struct net_device *dev)
1602 {
1603 return EEPROMSIZE;
1604 }
1605
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1606 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1607 {
1608 struct adapter *adapter = netdev2adap(dev);
1609
1610 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1611 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1612 strlcpy(info->bus_info, pci_name(adapter->pdev),
1613 sizeof(info->bus_info));
1614
1615 if (adapter->params.fw_vers)
1616 snprintf(info->fw_version, sizeof(info->fw_version),
1617 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1618 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1619 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1620 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1621 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1622 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1623 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1624 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1625 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1626 }
1627
get_strings(struct net_device * dev,u32 stringset,u8 * data)1628 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1629 {
1630 if (stringset == ETH_SS_STATS)
1631 memcpy(data, stats_strings, sizeof(stats_strings));
1632 }
1633
1634 /*
1635 * port stats maintained per queue of the port. They should be in the same
1636 * order as in stats_strings above.
1637 */
1638 struct queue_port_stats {
1639 u64 tso;
1640 u64 tx_csum;
1641 u64 rx_csum;
1642 u64 vlan_ex;
1643 u64 vlan_ins;
1644 u64 gro_pkts;
1645 u64 gro_merged;
1646 };
1647
collect_sge_port_stats(const struct adapter * adap,const struct port_info * p,struct queue_port_stats * s)1648 static void collect_sge_port_stats(const struct adapter *adap,
1649 const struct port_info *p, struct queue_port_stats *s)
1650 {
1651 int i;
1652 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1653 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1654
1655 memset(s, 0, sizeof(*s));
1656 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1657 s->tso += tx->tso;
1658 s->tx_csum += tx->tx_cso;
1659 s->rx_csum += rx->stats.rx_cso;
1660 s->vlan_ex += rx->stats.vlan_ex;
1661 s->vlan_ins += tx->vlan_ins;
1662 s->gro_pkts += rx->stats.lro_pkts;
1663 s->gro_merged += rx->stats.lro_merged;
1664 }
1665 }
1666
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1667 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1668 u64 *data)
1669 {
1670 struct port_info *pi = netdev_priv(dev);
1671 struct adapter *adapter = pi->adapter;
1672 u32 val1, val2;
1673
1674 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1675
1676 data += sizeof(struct port_stats) / sizeof(u64);
1677 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1678 data += sizeof(struct queue_port_stats) / sizeof(u64);
1679 if (!is_t4(adapter->params.chip)) {
1680 t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1681 val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1682 val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1683 *data = val1 - val2;
1684 data++;
1685 *data = val2;
1686 data++;
1687 } else {
1688 memset(data, 0, 2 * sizeof(u64));
1689 *data += 2;
1690 }
1691 }
1692
1693 /*
1694 * Return a version number to identify the type of adapter. The scheme is:
1695 * - bits 0..9: chip version
1696 * - bits 10..15: chip revision
1697 * - bits 16..23: register dump version
1698 */
mk_adap_vers(const struct adapter * ap)1699 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1700 {
1701 return CHELSIO_CHIP_VERSION(ap->params.chip) |
1702 (CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1703 }
1704
reg_block_dump(struct adapter * ap,void * buf,unsigned int start,unsigned int end)1705 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1706 unsigned int end)
1707 {
1708 u32 *p = buf + start;
1709
1710 for ( ; start <= end; start += sizeof(u32))
1711 *p++ = t4_read_reg(ap, start);
1712 }
1713
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)1714 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1715 void *buf)
1716 {
1717 static const unsigned int t4_reg_ranges[] = {
1718 0x1008, 0x1108,
1719 0x1180, 0x11b4,
1720 0x11fc, 0x123c,
1721 0x1300, 0x173c,
1722 0x1800, 0x18fc,
1723 0x3000, 0x30d8,
1724 0x30e0, 0x5924,
1725 0x5960, 0x59d4,
1726 0x5a00, 0x5af8,
1727 0x6000, 0x6098,
1728 0x6100, 0x6150,
1729 0x6200, 0x6208,
1730 0x6240, 0x6248,
1731 0x6280, 0x6338,
1732 0x6370, 0x638c,
1733 0x6400, 0x643c,
1734 0x6500, 0x6524,
1735 0x6a00, 0x6a38,
1736 0x6a60, 0x6a78,
1737 0x6b00, 0x6b84,
1738 0x6bf0, 0x6c84,
1739 0x6cf0, 0x6d84,
1740 0x6df0, 0x6e84,
1741 0x6ef0, 0x6f84,
1742 0x6ff0, 0x7084,
1743 0x70f0, 0x7184,
1744 0x71f0, 0x7284,
1745 0x72f0, 0x7384,
1746 0x73f0, 0x7450,
1747 0x7500, 0x7530,
1748 0x7600, 0x761c,
1749 0x7680, 0x76cc,
1750 0x7700, 0x7798,
1751 0x77c0, 0x77fc,
1752 0x7900, 0x79fc,
1753 0x7b00, 0x7c38,
1754 0x7d00, 0x7efc,
1755 0x8dc0, 0x8e1c,
1756 0x8e30, 0x8e78,
1757 0x8ea0, 0x8f6c,
1758 0x8fc0, 0x9074,
1759 0x90fc, 0x90fc,
1760 0x9400, 0x9458,
1761 0x9600, 0x96bc,
1762 0x9800, 0x9808,
1763 0x9820, 0x983c,
1764 0x9850, 0x9864,
1765 0x9c00, 0x9c6c,
1766 0x9c80, 0x9cec,
1767 0x9d00, 0x9d6c,
1768 0x9d80, 0x9dec,
1769 0x9e00, 0x9e6c,
1770 0x9e80, 0x9eec,
1771 0x9f00, 0x9f6c,
1772 0x9f80, 0x9fec,
1773 0xd004, 0xd03c,
1774 0xdfc0, 0xdfe0,
1775 0xe000, 0xea7c,
1776 0xf000, 0x11110,
1777 0x11118, 0x11190,
1778 0x19040, 0x1906c,
1779 0x19078, 0x19080,
1780 0x1908c, 0x19124,
1781 0x19150, 0x191b0,
1782 0x191d0, 0x191e8,
1783 0x19238, 0x1924c,
1784 0x193f8, 0x19474,
1785 0x19490, 0x194f8,
1786 0x19800, 0x19f30,
1787 0x1a000, 0x1a06c,
1788 0x1a0b0, 0x1a120,
1789 0x1a128, 0x1a138,
1790 0x1a190, 0x1a1c4,
1791 0x1a1fc, 0x1a1fc,
1792 0x1e040, 0x1e04c,
1793 0x1e284, 0x1e28c,
1794 0x1e2c0, 0x1e2c0,
1795 0x1e2e0, 0x1e2e0,
1796 0x1e300, 0x1e384,
1797 0x1e3c0, 0x1e3c8,
1798 0x1e440, 0x1e44c,
1799 0x1e684, 0x1e68c,
1800 0x1e6c0, 0x1e6c0,
1801 0x1e6e0, 0x1e6e0,
1802 0x1e700, 0x1e784,
1803 0x1e7c0, 0x1e7c8,
1804 0x1e840, 0x1e84c,
1805 0x1ea84, 0x1ea8c,
1806 0x1eac0, 0x1eac0,
1807 0x1eae0, 0x1eae0,
1808 0x1eb00, 0x1eb84,
1809 0x1ebc0, 0x1ebc8,
1810 0x1ec40, 0x1ec4c,
1811 0x1ee84, 0x1ee8c,
1812 0x1eec0, 0x1eec0,
1813 0x1eee0, 0x1eee0,
1814 0x1ef00, 0x1ef84,
1815 0x1efc0, 0x1efc8,
1816 0x1f040, 0x1f04c,
1817 0x1f284, 0x1f28c,
1818 0x1f2c0, 0x1f2c0,
1819 0x1f2e0, 0x1f2e0,
1820 0x1f300, 0x1f384,
1821 0x1f3c0, 0x1f3c8,
1822 0x1f440, 0x1f44c,
1823 0x1f684, 0x1f68c,
1824 0x1f6c0, 0x1f6c0,
1825 0x1f6e0, 0x1f6e0,
1826 0x1f700, 0x1f784,
1827 0x1f7c0, 0x1f7c8,
1828 0x1f840, 0x1f84c,
1829 0x1fa84, 0x1fa8c,
1830 0x1fac0, 0x1fac0,
1831 0x1fae0, 0x1fae0,
1832 0x1fb00, 0x1fb84,
1833 0x1fbc0, 0x1fbc8,
1834 0x1fc40, 0x1fc4c,
1835 0x1fe84, 0x1fe8c,
1836 0x1fec0, 0x1fec0,
1837 0x1fee0, 0x1fee0,
1838 0x1ff00, 0x1ff84,
1839 0x1ffc0, 0x1ffc8,
1840 0x20000, 0x2002c,
1841 0x20100, 0x2013c,
1842 0x20190, 0x201c8,
1843 0x20200, 0x20318,
1844 0x20400, 0x20528,
1845 0x20540, 0x20614,
1846 0x21000, 0x21040,
1847 0x2104c, 0x21060,
1848 0x210c0, 0x210ec,
1849 0x21200, 0x21268,
1850 0x21270, 0x21284,
1851 0x212fc, 0x21388,
1852 0x21400, 0x21404,
1853 0x21500, 0x21518,
1854 0x2152c, 0x2153c,
1855 0x21550, 0x21554,
1856 0x21600, 0x21600,
1857 0x21608, 0x21628,
1858 0x21630, 0x2163c,
1859 0x21700, 0x2171c,
1860 0x21780, 0x2178c,
1861 0x21800, 0x21c38,
1862 0x21c80, 0x21d7c,
1863 0x21e00, 0x21e04,
1864 0x22000, 0x2202c,
1865 0x22100, 0x2213c,
1866 0x22190, 0x221c8,
1867 0x22200, 0x22318,
1868 0x22400, 0x22528,
1869 0x22540, 0x22614,
1870 0x23000, 0x23040,
1871 0x2304c, 0x23060,
1872 0x230c0, 0x230ec,
1873 0x23200, 0x23268,
1874 0x23270, 0x23284,
1875 0x232fc, 0x23388,
1876 0x23400, 0x23404,
1877 0x23500, 0x23518,
1878 0x2352c, 0x2353c,
1879 0x23550, 0x23554,
1880 0x23600, 0x23600,
1881 0x23608, 0x23628,
1882 0x23630, 0x2363c,
1883 0x23700, 0x2371c,
1884 0x23780, 0x2378c,
1885 0x23800, 0x23c38,
1886 0x23c80, 0x23d7c,
1887 0x23e00, 0x23e04,
1888 0x24000, 0x2402c,
1889 0x24100, 0x2413c,
1890 0x24190, 0x241c8,
1891 0x24200, 0x24318,
1892 0x24400, 0x24528,
1893 0x24540, 0x24614,
1894 0x25000, 0x25040,
1895 0x2504c, 0x25060,
1896 0x250c0, 0x250ec,
1897 0x25200, 0x25268,
1898 0x25270, 0x25284,
1899 0x252fc, 0x25388,
1900 0x25400, 0x25404,
1901 0x25500, 0x25518,
1902 0x2552c, 0x2553c,
1903 0x25550, 0x25554,
1904 0x25600, 0x25600,
1905 0x25608, 0x25628,
1906 0x25630, 0x2563c,
1907 0x25700, 0x2571c,
1908 0x25780, 0x2578c,
1909 0x25800, 0x25c38,
1910 0x25c80, 0x25d7c,
1911 0x25e00, 0x25e04,
1912 0x26000, 0x2602c,
1913 0x26100, 0x2613c,
1914 0x26190, 0x261c8,
1915 0x26200, 0x26318,
1916 0x26400, 0x26528,
1917 0x26540, 0x26614,
1918 0x27000, 0x27040,
1919 0x2704c, 0x27060,
1920 0x270c0, 0x270ec,
1921 0x27200, 0x27268,
1922 0x27270, 0x27284,
1923 0x272fc, 0x27388,
1924 0x27400, 0x27404,
1925 0x27500, 0x27518,
1926 0x2752c, 0x2753c,
1927 0x27550, 0x27554,
1928 0x27600, 0x27600,
1929 0x27608, 0x27628,
1930 0x27630, 0x2763c,
1931 0x27700, 0x2771c,
1932 0x27780, 0x2778c,
1933 0x27800, 0x27c38,
1934 0x27c80, 0x27d7c,
1935 0x27e00, 0x27e04
1936 };
1937
1938 static const unsigned int t5_reg_ranges[] = {
1939 0x1008, 0x1148,
1940 0x1180, 0x11b4,
1941 0x11fc, 0x123c,
1942 0x1280, 0x173c,
1943 0x1800, 0x18fc,
1944 0x3000, 0x3028,
1945 0x3060, 0x30d8,
1946 0x30e0, 0x30fc,
1947 0x3140, 0x357c,
1948 0x35a8, 0x35cc,
1949 0x35ec, 0x35ec,
1950 0x3600, 0x5624,
1951 0x56cc, 0x575c,
1952 0x580c, 0x5814,
1953 0x5890, 0x58bc,
1954 0x5940, 0x59dc,
1955 0x59fc, 0x5a18,
1956 0x5a60, 0x5a9c,
1957 0x5b9c, 0x5bfc,
1958 0x6000, 0x6040,
1959 0x6058, 0x614c,
1960 0x7700, 0x7798,
1961 0x77c0, 0x78fc,
1962 0x7b00, 0x7c54,
1963 0x7d00, 0x7efc,
1964 0x8dc0, 0x8de0,
1965 0x8df8, 0x8e84,
1966 0x8ea0, 0x8f84,
1967 0x8fc0, 0x90f8,
1968 0x9400, 0x9470,
1969 0x9600, 0x96f4,
1970 0x9800, 0x9808,
1971 0x9820, 0x983c,
1972 0x9850, 0x9864,
1973 0x9c00, 0x9c6c,
1974 0x9c80, 0x9cec,
1975 0x9d00, 0x9d6c,
1976 0x9d80, 0x9dec,
1977 0x9e00, 0x9e6c,
1978 0x9e80, 0x9eec,
1979 0x9f00, 0x9f6c,
1980 0x9f80, 0xa020,
1981 0xd004, 0xd03c,
1982 0xdfc0, 0xdfe0,
1983 0xe000, 0x11088,
1984 0x1109c, 0x11110,
1985 0x11118, 0x1117c,
1986 0x11190, 0x11204,
1987 0x19040, 0x1906c,
1988 0x19078, 0x19080,
1989 0x1908c, 0x19124,
1990 0x19150, 0x191b0,
1991 0x191d0, 0x191e8,
1992 0x19238, 0x19290,
1993 0x193f8, 0x19474,
1994 0x19490, 0x194cc,
1995 0x194f0, 0x194f8,
1996 0x19c00, 0x19c60,
1997 0x19c94, 0x19e10,
1998 0x19e50, 0x19f34,
1999 0x19f40, 0x19f50,
2000 0x19f90, 0x19fe4,
2001 0x1a000, 0x1a06c,
2002 0x1a0b0, 0x1a120,
2003 0x1a128, 0x1a138,
2004 0x1a190, 0x1a1c4,
2005 0x1a1fc, 0x1a1fc,
2006 0x1e008, 0x1e00c,
2007 0x1e040, 0x1e04c,
2008 0x1e284, 0x1e290,
2009 0x1e2c0, 0x1e2c0,
2010 0x1e2e0, 0x1e2e0,
2011 0x1e300, 0x1e384,
2012 0x1e3c0, 0x1e3c8,
2013 0x1e408, 0x1e40c,
2014 0x1e440, 0x1e44c,
2015 0x1e684, 0x1e690,
2016 0x1e6c0, 0x1e6c0,
2017 0x1e6e0, 0x1e6e0,
2018 0x1e700, 0x1e784,
2019 0x1e7c0, 0x1e7c8,
2020 0x1e808, 0x1e80c,
2021 0x1e840, 0x1e84c,
2022 0x1ea84, 0x1ea90,
2023 0x1eac0, 0x1eac0,
2024 0x1eae0, 0x1eae0,
2025 0x1eb00, 0x1eb84,
2026 0x1ebc0, 0x1ebc8,
2027 0x1ec08, 0x1ec0c,
2028 0x1ec40, 0x1ec4c,
2029 0x1ee84, 0x1ee90,
2030 0x1eec0, 0x1eec0,
2031 0x1eee0, 0x1eee0,
2032 0x1ef00, 0x1ef84,
2033 0x1efc0, 0x1efc8,
2034 0x1f008, 0x1f00c,
2035 0x1f040, 0x1f04c,
2036 0x1f284, 0x1f290,
2037 0x1f2c0, 0x1f2c0,
2038 0x1f2e0, 0x1f2e0,
2039 0x1f300, 0x1f384,
2040 0x1f3c0, 0x1f3c8,
2041 0x1f408, 0x1f40c,
2042 0x1f440, 0x1f44c,
2043 0x1f684, 0x1f690,
2044 0x1f6c0, 0x1f6c0,
2045 0x1f6e0, 0x1f6e0,
2046 0x1f700, 0x1f784,
2047 0x1f7c0, 0x1f7c8,
2048 0x1f808, 0x1f80c,
2049 0x1f840, 0x1f84c,
2050 0x1fa84, 0x1fa90,
2051 0x1fac0, 0x1fac0,
2052 0x1fae0, 0x1fae0,
2053 0x1fb00, 0x1fb84,
2054 0x1fbc0, 0x1fbc8,
2055 0x1fc08, 0x1fc0c,
2056 0x1fc40, 0x1fc4c,
2057 0x1fe84, 0x1fe90,
2058 0x1fec0, 0x1fec0,
2059 0x1fee0, 0x1fee0,
2060 0x1ff00, 0x1ff84,
2061 0x1ffc0, 0x1ffc8,
2062 0x30000, 0x30030,
2063 0x30100, 0x30144,
2064 0x30190, 0x301d0,
2065 0x30200, 0x30318,
2066 0x30400, 0x3052c,
2067 0x30540, 0x3061c,
2068 0x30800, 0x30834,
2069 0x308c0, 0x30908,
2070 0x30910, 0x309ac,
2071 0x30a00, 0x30a04,
2072 0x30a0c, 0x30a2c,
2073 0x30a44, 0x30a50,
2074 0x30a74, 0x30c24,
2075 0x30d08, 0x30d14,
2076 0x30d1c, 0x30d20,
2077 0x30d3c, 0x30d50,
2078 0x31200, 0x3120c,
2079 0x31220, 0x31220,
2080 0x31240, 0x31240,
2081 0x31600, 0x31600,
2082 0x31608, 0x3160c,
2083 0x31a00, 0x31a1c,
2084 0x31e04, 0x31e20,
2085 0x31e38, 0x31e3c,
2086 0x31e80, 0x31e80,
2087 0x31e88, 0x31ea8,
2088 0x31eb0, 0x31eb4,
2089 0x31ec8, 0x31ed4,
2090 0x31fb8, 0x32004,
2091 0x32208, 0x3223c,
2092 0x32600, 0x32630,
2093 0x32a00, 0x32abc,
2094 0x32b00, 0x32b70,
2095 0x33000, 0x33048,
2096 0x33060, 0x3309c,
2097 0x330f0, 0x33148,
2098 0x33160, 0x3319c,
2099 0x331f0, 0x332e4,
2100 0x332f8, 0x333e4,
2101 0x333f8, 0x33448,
2102 0x33460, 0x3349c,
2103 0x334f0, 0x33548,
2104 0x33560, 0x3359c,
2105 0x335f0, 0x336e4,
2106 0x336f8, 0x337e4,
2107 0x337f8, 0x337fc,
2108 0x33814, 0x33814,
2109 0x3382c, 0x3382c,
2110 0x33880, 0x3388c,
2111 0x338e8, 0x338ec,
2112 0x33900, 0x33948,
2113 0x33960, 0x3399c,
2114 0x339f0, 0x33ae4,
2115 0x33af8, 0x33b10,
2116 0x33b28, 0x33b28,
2117 0x33b3c, 0x33b50,
2118 0x33bf0, 0x33c10,
2119 0x33c28, 0x33c28,
2120 0x33c3c, 0x33c50,
2121 0x33cf0, 0x33cfc,
2122 0x34000, 0x34030,
2123 0x34100, 0x34144,
2124 0x34190, 0x341d0,
2125 0x34200, 0x34318,
2126 0x34400, 0x3452c,
2127 0x34540, 0x3461c,
2128 0x34800, 0x34834,
2129 0x348c0, 0x34908,
2130 0x34910, 0x349ac,
2131 0x34a00, 0x34a04,
2132 0x34a0c, 0x34a2c,
2133 0x34a44, 0x34a50,
2134 0x34a74, 0x34c24,
2135 0x34d08, 0x34d14,
2136 0x34d1c, 0x34d20,
2137 0x34d3c, 0x34d50,
2138 0x35200, 0x3520c,
2139 0x35220, 0x35220,
2140 0x35240, 0x35240,
2141 0x35600, 0x35600,
2142 0x35608, 0x3560c,
2143 0x35a00, 0x35a1c,
2144 0x35e04, 0x35e20,
2145 0x35e38, 0x35e3c,
2146 0x35e80, 0x35e80,
2147 0x35e88, 0x35ea8,
2148 0x35eb0, 0x35eb4,
2149 0x35ec8, 0x35ed4,
2150 0x35fb8, 0x36004,
2151 0x36208, 0x3623c,
2152 0x36600, 0x36630,
2153 0x36a00, 0x36abc,
2154 0x36b00, 0x36b70,
2155 0x37000, 0x37048,
2156 0x37060, 0x3709c,
2157 0x370f0, 0x37148,
2158 0x37160, 0x3719c,
2159 0x371f0, 0x372e4,
2160 0x372f8, 0x373e4,
2161 0x373f8, 0x37448,
2162 0x37460, 0x3749c,
2163 0x374f0, 0x37548,
2164 0x37560, 0x3759c,
2165 0x375f0, 0x376e4,
2166 0x376f8, 0x377e4,
2167 0x377f8, 0x377fc,
2168 0x37814, 0x37814,
2169 0x3782c, 0x3782c,
2170 0x37880, 0x3788c,
2171 0x378e8, 0x378ec,
2172 0x37900, 0x37948,
2173 0x37960, 0x3799c,
2174 0x379f0, 0x37ae4,
2175 0x37af8, 0x37b10,
2176 0x37b28, 0x37b28,
2177 0x37b3c, 0x37b50,
2178 0x37bf0, 0x37c10,
2179 0x37c28, 0x37c28,
2180 0x37c3c, 0x37c50,
2181 0x37cf0, 0x37cfc,
2182 0x38000, 0x38030,
2183 0x38100, 0x38144,
2184 0x38190, 0x381d0,
2185 0x38200, 0x38318,
2186 0x38400, 0x3852c,
2187 0x38540, 0x3861c,
2188 0x38800, 0x38834,
2189 0x388c0, 0x38908,
2190 0x38910, 0x389ac,
2191 0x38a00, 0x38a04,
2192 0x38a0c, 0x38a2c,
2193 0x38a44, 0x38a50,
2194 0x38a74, 0x38c24,
2195 0x38d08, 0x38d14,
2196 0x38d1c, 0x38d20,
2197 0x38d3c, 0x38d50,
2198 0x39200, 0x3920c,
2199 0x39220, 0x39220,
2200 0x39240, 0x39240,
2201 0x39600, 0x39600,
2202 0x39608, 0x3960c,
2203 0x39a00, 0x39a1c,
2204 0x39e04, 0x39e20,
2205 0x39e38, 0x39e3c,
2206 0x39e80, 0x39e80,
2207 0x39e88, 0x39ea8,
2208 0x39eb0, 0x39eb4,
2209 0x39ec8, 0x39ed4,
2210 0x39fb8, 0x3a004,
2211 0x3a208, 0x3a23c,
2212 0x3a600, 0x3a630,
2213 0x3aa00, 0x3aabc,
2214 0x3ab00, 0x3ab70,
2215 0x3b000, 0x3b048,
2216 0x3b060, 0x3b09c,
2217 0x3b0f0, 0x3b148,
2218 0x3b160, 0x3b19c,
2219 0x3b1f0, 0x3b2e4,
2220 0x3b2f8, 0x3b3e4,
2221 0x3b3f8, 0x3b448,
2222 0x3b460, 0x3b49c,
2223 0x3b4f0, 0x3b548,
2224 0x3b560, 0x3b59c,
2225 0x3b5f0, 0x3b6e4,
2226 0x3b6f8, 0x3b7e4,
2227 0x3b7f8, 0x3b7fc,
2228 0x3b814, 0x3b814,
2229 0x3b82c, 0x3b82c,
2230 0x3b880, 0x3b88c,
2231 0x3b8e8, 0x3b8ec,
2232 0x3b900, 0x3b948,
2233 0x3b960, 0x3b99c,
2234 0x3b9f0, 0x3bae4,
2235 0x3baf8, 0x3bb10,
2236 0x3bb28, 0x3bb28,
2237 0x3bb3c, 0x3bb50,
2238 0x3bbf0, 0x3bc10,
2239 0x3bc28, 0x3bc28,
2240 0x3bc3c, 0x3bc50,
2241 0x3bcf0, 0x3bcfc,
2242 0x3c000, 0x3c030,
2243 0x3c100, 0x3c144,
2244 0x3c190, 0x3c1d0,
2245 0x3c200, 0x3c318,
2246 0x3c400, 0x3c52c,
2247 0x3c540, 0x3c61c,
2248 0x3c800, 0x3c834,
2249 0x3c8c0, 0x3c908,
2250 0x3c910, 0x3c9ac,
2251 0x3ca00, 0x3ca04,
2252 0x3ca0c, 0x3ca2c,
2253 0x3ca44, 0x3ca50,
2254 0x3ca74, 0x3cc24,
2255 0x3cd08, 0x3cd14,
2256 0x3cd1c, 0x3cd20,
2257 0x3cd3c, 0x3cd50,
2258 0x3d200, 0x3d20c,
2259 0x3d220, 0x3d220,
2260 0x3d240, 0x3d240,
2261 0x3d600, 0x3d600,
2262 0x3d608, 0x3d60c,
2263 0x3da00, 0x3da1c,
2264 0x3de04, 0x3de20,
2265 0x3de38, 0x3de3c,
2266 0x3de80, 0x3de80,
2267 0x3de88, 0x3dea8,
2268 0x3deb0, 0x3deb4,
2269 0x3dec8, 0x3ded4,
2270 0x3dfb8, 0x3e004,
2271 0x3e208, 0x3e23c,
2272 0x3e600, 0x3e630,
2273 0x3ea00, 0x3eabc,
2274 0x3eb00, 0x3eb70,
2275 0x3f000, 0x3f048,
2276 0x3f060, 0x3f09c,
2277 0x3f0f0, 0x3f148,
2278 0x3f160, 0x3f19c,
2279 0x3f1f0, 0x3f2e4,
2280 0x3f2f8, 0x3f3e4,
2281 0x3f3f8, 0x3f448,
2282 0x3f460, 0x3f49c,
2283 0x3f4f0, 0x3f548,
2284 0x3f560, 0x3f59c,
2285 0x3f5f0, 0x3f6e4,
2286 0x3f6f8, 0x3f7e4,
2287 0x3f7f8, 0x3f7fc,
2288 0x3f814, 0x3f814,
2289 0x3f82c, 0x3f82c,
2290 0x3f880, 0x3f88c,
2291 0x3f8e8, 0x3f8ec,
2292 0x3f900, 0x3f948,
2293 0x3f960, 0x3f99c,
2294 0x3f9f0, 0x3fae4,
2295 0x3faf8, 0x3fb10,
2296 0x3fb28, 0x3fb28,
2297 0x3fb3c, 0x3fb50,
2298 0x3fbf0, 0x3fc10,
2299 0x3fc28, 0x3fc28,
2300 0x3fc3c, 0x3fc50,
2301 0x3fcf0, 0x3fcfc,
2302 0x40000, 0x4000c,
2303 0x40040, 0x40068,
2304 0x40080, 0x40144,
2305 0x40180, 0x4018c,
2306 0x40200, 0x40298,
2307 0x402ac, 0x4033c,
2308 0x403f8, 0x403fc,
2309 0x41304, 0x413c4,
2310 0x41400, 0x4141c,
2311 0x41480, 0x414d0,
2312 0x44000, 0x44078,
2313 0x440c0, 0x44278,
2314 0x442c0, 0x44478,
2315 0x444c0, 0x44678,
2316 0x446c0, 0x44878,
2317 0x448c0, 0x449fc,
2318 0x45000, 0x45068,
2319 0x45080, 0x45084,
2320 0x450a0, 0x450b0,
2321 0x45200, 0x45268,
2322 0x45280, 0x45284,
2323 0x452a0, 0x452b0,
2324 0x460c0, 0x460e4,
2325 0x47000, 0x4708c,
2326 0x47200, 0x47250,
2327 0x47400, 0x47420,
2328 0x47600, 0x47618,
2329 0x47800, 0x47814,
2330 0x48000, 0x4800c,
2331 0x48040, 0x48068,
2332 0x48080, 0x48144,
2333 0x48180, 0x4818c,
2334 0x48200, 0x48298,
2335 0x482ac, 0x4833c,
2336 0x483f8, 0x483fc,
2337 0x49304, 0x493c4,
2338 0x49400, 0x4941c,
2339 0x49480, 0x494d0,
2340 0x4c000, 0x4c078,
2341 0x4c0c0, 0x4c278,
2342 0x4c2c0, 0x4c478,
2343 0x4c4c0, 0x4c678,
2344 0x4c6c0, 0x4c878,
2345 0x4c8c0, 0x4c9fc,
2346 0x4d000, 0x4d068,
2347 0x4d080, 0x4d084,
2348 0x4d0a0, 0x4d0b0,
2349 0x4d200, 0x4d268,
2350 0x4d280, 0x4d284,
2351 0x4d2a0, 0x4d2b0,
2352 0x4e0c0, 0x4e0e4,
2353 0x4f000, 0x4f08c,
2354 0x4f200, 0x4f250,
2355 0x4f400, 0x4f420,
2356 0x4f600, 0x4f618,
2357 0x4f800, 0x4f814,
2358 0x50000, 0x500cc,
2359 0x50400, 0x50400,
2360 0x50800, 0x508cc,
2361 0x50c00, 0x50c00,
2362 0x51000, 0x5101c,
2363 0x51300, 0x51308,
2364 };
2365
2366 int i;
2367 struct adapter *ap = netdev2adap(dev);
2368 static const unsigned int *reg_ranges;
2369 int arr_size = 0, buf_size = 0;
2370
2371 if (is_t4(ap->params.chip)) {
2372 reg_ranges = &t4_reg_ranges[0];
2373 arr_size = ARRAY_SIZE(t4_reg_ranges);
2374 buf_size = T4_REGMAP_SIZE;
2375 } else {
2376 reg_ranges = &t5_reg_ranges[0];
2377 arr_size = ARRAY_SIZE(t5_reg_ranges);
2378 buf_size = T5_REGMAP_SIZE;
2379 }
2380
2381 regs->version = mk_adap_vers(ap);
2382
2383 memset(buf, 0, buf_size);
2384 for (i = 0; i < arr_size; i += 2)
2385 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2386 }
2387
restart_autoneg(struct net_device * dev)2388 static int restart_autoneg(struct net_device *dev)
2389 {
2390 struct port_info *p = netdev_priv(dev);
2391
2392 if (!netif_running(dev))
2393 return -EAGAIN;
2394 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2395 return -EINVAL;
2396 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2397 return 0;
2398 }
2399
identify_port(struct net_device * dev,enum ethtool_phys_id_state state)2400 static int identify_port(struct net_device *dev,
2401 enum ethtool_phys_id_state state)
2402 {
2403 unsigned int val;
2404 struct adapter *adap = netdev2adap(dev);
2405
2406 if (state == ETHTOOL_ID_ACTIVE)
2407 val = 0xffff;
2408 else if (state == ETHTOOL_ID_INACTIVE)
2409 val = 0;
2410 else
2411 return -EINVAL;
2412
2413 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2414 }
2415
from_fw_linkcaps(unsigned int type,unsigned int caps)2416 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2417 {
2418 unsigned int v = 0;
2419
2420 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2421 type == FW_PORT_TYPE_BT_XAUI) {
2422 v |= SUPPORTED_TP;
2423 if (caps & FW_PORT_CAP_SPEED_100M)
2424 v |= SUPPORTED_100baseT_Full;
2425 if (caps & FW_PORT_CAP_SPEED_1G)
2426 v |= SUPPORTED_1000baseT_Full;
2427 if (caps & FW_PORT_CAP_SPEED_10G)
2428 v |= SUPPORTED_10000baseT_Full;
2429 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2430 v |= SUPPORTED_Backplane;
2431 if (caps & FW_PORT_CAP_SPEED_1G)
2432 v |= SUPPORTED_1000baseKX_Full;
2433 if (caps & FW_PORT_CAP_SPEED_10G)
2434 v |= SUPPORTED_10000baseKX4_Full;
2435 } else if (type == FW_PORT_TYPE_KR)
2436 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2437 else if (type == FW_PORT_TYPE_BP_AP)
2438 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2439 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2440 else if (type == FW_PORT_TYPE_BP4_AP)
2441 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2442 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2443 SUPPORTED_10000baseKX4_Full;
2444 else if (type == FW_PORT_TYPE_FIBER_XFI ||
2445 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP) {
2446 v |= SUPPORTED_FIBRE;
2447 if (caps & FW_PORT_CAP_SPEED_1G)
2448 v |= SUPPORTED_1000baseT_Full;
2449 if (caps & FW_PORT_CAP_SPEED_10G)
2450 v |= SUPPORTED_10000baseT_Full;
2451 } else if (type == FW_PORT_TYPE_BP40_BA)
2452 v |= SUPPORTED_40000baseSR4_Full;
2453
2454 if (caps & FW_PORT_CAP_ANEG)
2455 v |= SUPPORTED_Autoneg;
2456 return v;
2457 }
2458
to_fw_linkcaps(unsigned int caps)2459 static unsigned int to_fw_linkcaps(unsigned int caps)
2460 {
2461 unsigned int v = 0;
2462
2463 if (caps & ADVERTISED_100baseT_Full)
2464 v |= FW_PORT_CAP_SPEED_100M;
2465 if (caps & ADVERTISED_1000baseT_Full)
2466 v |= FW_PORT_CAP_SPEED_1G;
2467 if (caps & ADVERTISED_10000baseT_Full)
2468 v |= FW_PORT_CAP_SPEED_10G;
2469 if (caps & ADVERTISED_40000baseSR4_Full)
2470 v |= FW_PORT_CAP_SPEED_40G;
2471 return v;
2472 }
2473
get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2474 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2475 {
2476 const struct port_info *p = netdev_priv(dev);
2477
2478 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2479 p->port_type == FW_PORT_TYPE_BT_XFI ||
2480 p->port_type == FW_PORT_TYPE_BT_XAUI)
2481 cmd->port = PORT_TP;
2482 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2483 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2484 cmd->port = PORT_FIBRE;
2485 else if (p->port_type == FW_PORT_TYPE_SFP ||
2486 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2487 p->port_type == FW_PORT_TYPE_QSFP) {
2488 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2489 p->mod_type == FW_PORT_MOD_TYPE_SR ||
2490 p->mod_type == FW_PORT_MOD_TYPE_ER ||
2491 p->mod_type == FW_PORT_MOD_TYPE_LRM)
2492 cmd->port = PORT_FIBRE;
2493 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2494 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2495 cmd->port = PORT_DA;
2496 else
2497 cmd->port = PORT_OTHER;
2498 } else
2499 cmd->port = PORT_OTHER;
2500
2501 if (p->mdio_addr >= 0) {
2502 cmd->phy_address = p->mdio_addr;
2503 cmd->transceiver = XCVR_EXTERNAL;
2504 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2505 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2506 } else {
2507 cmd->phy_address = 0; /* not really, but no better option */
2508 cmd->transceiver = XCVR_INTERNAL;
2509 cmd->mdio_support = 0;
2510 }
2511
2512 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2513 cmd->advertising = from_fw_linkcaps(p->port_type,
2514 p->link_cfg.advertising);
2515 ethtool_cmd_speed_set(cmd,
2516 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2517 cmd->duplex = DUPLEX_FULL;
2518 cmd->autoneg = p->link_cfg.autoneg;
2519 cmd->maxtxpkt = 0;
2520 cmd->maxrxpkt = 0;
2521 return 0;
2522 }
2523
speed_to_caps(int speed)2524 static unsigned int speed_to_caps(int speed)
2525 {
2526 if (speed == 100)
2527 return FW_PORT_CAP_SPEED_100M;
2528 if (speed == 1000)
2529 return FW_PORT_CAP_SPEED_1G;
2530 if (speed == 10000)
2531 return FW_PORT_CAP_SPEED_10G;
2532 if (speed == 40000)
2533 return FW_PORT_CAP_SPEED_40G;
2534 return 0;
2535 }
2536
set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2537 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2538 {
2539 unsigned int cap;
2540 struct port_info *p = netdev_priv(dev);
2541 struct link_config *lc = &p->link_cfg;
2542 u32 speed = ethtool_cmd_speed(cmd);
2543
2544 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
2545 return -EINVAL;
2546
2547 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2548 /*
2549 * PHY offers a single speed. See if that's what's
2550 * being requested.
2551 */
2552 if (cmd->autoneg == AUTONEG_DISABLE &&
2553 (lc->supported & speed_to_caps(speed)))
2554 return 0;
2555 return -EINVAL;
2556 }
2557
2558 if (cmd->autoneg == AUTONEG_DISABLE) {
2559 cap = speed_to_caps(speed);
2560
2561 if (!(lc->supported & cap) ||
2562 (speed == 1000) ||
2563 (speed == 10000) ||
2564 (speed == 40000))
2565 return -EINVAL;
2566 lc->requested_speed = cap;
2567 lc->advertising = 0;
2568 } else {
2569 cap = to_fw_linkcaps(cmd->advertising);
2570 if (!(lc->supported & cap))
2571 return -EINVAL;
2572 lc->requested_speed = 0;
2573 lc->advertising = cap | FW_PORT_CAP_ANEG;
2574 }
2575 lc->autoneg = cmd->autoneg;
2576
2577 if (netif_running(dev))
2578 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2579 lc);
2580 return 0;
2581 }
2582
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)2583 static void get_pauseparam(struct net_device *dev,
2584 struct ethtool_pauseparam *epause)
2585 {
2586 struct port_info *p = netdev_priv(dev);
2587
2588 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2589 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2590 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2591 }
2592
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)2593 static int set_pauseparam(struct net_device *dev,
2594 struct ethtool_pauseparam *epause)
2595 {
2596 struct port_info *p = netdev_priv(dev);
2597 struct link_config *lc = &p->link_cfg;
2598
2599 if (epause->autoneg == AUTONEG_DISABLE)
2600 lc->requested_fc = 0;
2601 else if (lc->supported & FW_PORT_CAP_ANEG)
2602 lc->requested_fc = PAUSE_AUTONEG;
2603 else
2604 return -EINVAL;
2605
2606 if (epause->rx_pause)
2607 lc->requested_fc |= PAUSE_RX;
2608 if (epause->tx_pause)
2609 lc->requested_fc |= PAUSE_TX;
2610 if (netif_running(dev))
2611 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2612 lc);
2613 return 0;
2614 }
2615
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)2616 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2617 {
2618 const struct port_info *pi = netdev_priv(dev);
2619 const struct sge *s = &pi->adapter->sge;
2620
2621 e->rx_max_pending = MAX_RX_BUFFERS;
2622 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2623 e->rx_jumbo_max_pending = 0;
2624 e->tx_max_pending = MAX_TXQ_ENTRIES;
2625
2626 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2627 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2628 e->rx_jumbo_pending = 0;
2629 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2630 }
2631
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)2632 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2633 {
2634 int i;
2635 const struct port_info *pi = netdev_priv(dev);
2636 struct adapter *adapter = pi->adapter;
2637 struct sge *s = &adapter->sge;
2638
2639 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2640 e->tx_pending > MAX_TXQ_ENTRIES ||
2641 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2642 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2643 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2644 return -EINVAL;
2645
2646 if (adapter->flags & FULL_INIT_DONE)
2647 return -EBUSY;
2648
2649 for (i = 0; i < pi->nqsets; ++i) {
2650 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2651 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2652 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2653 }
2654 return 0;
2655 }
2656
closest_timer(const struct sge * s,int time)2657 static int closest_timer(const struct sge *s, int time)
2658 {
2659 int i, delta, match = 0, min_delta = INT_MAX;
2660
2661 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2662 delta = time - s->timer_val[i];
2663 if (delta < 0)
2664 delta = -delta;
2665 if (delta < min_delta) {
2666 min_delta = delta;
2667 match = i;
2668 }
2669 }
2670 return match;
2671 }
2672
closest_thres(const struct sge * s,int thres)2673 static int closest_thres(const struct sge *s, int thres)
2674 {
2675 int i, delta, match = 0, min_delta = INT_MAX;
2676
2677 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2678 delta = thres - s->counter_val[i];
2679 if (delta < 0)
2680 delta = -delta;
2681 if (delta < min_delta) {
2682 min_delta = delta;
2683 match = i;
2684 }
2685 }
2686 return match;
2687 }
2688
2689 /*
2690 * Return a queue's interrupt hold-off time in us. 0 means no timer.
2691 */
qtimer_val(const struct adapter * adap,const struct sge_rspq * q)2692 static unsigned int qtimer_val(const struct adapter *adap,
2693 const struct sge_rspq *q)
2694 {
2695 unsigned int idx = q->intr_params >> 1;
2696
2697 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2698 }
2699
2700 /**
2701 * set_rspq_intr_params - set a queue's interrupt holdoff parameters
2702 * @q: the Rx queue
2703 * @us: the hold-off time in us, or 0 to disable timer
2704 * @cnt: the hold-off packet count, or 0 to disable counter
2705 *
2706 * Sets an Rx queue's interrupt hold-off time and packet count. At least
2707 * one of the two needs to be enabled for the queue to generate interrupts.
2708 */
set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)2709 static int set_rspq_intr_params(struct sge_rspq *q,
2710 unsigned int us, unsigned int cnt)
2711 {
2712 struct adapter *adap = q->adap;
2713
2714 if ((us | cnt) == 0)
2715 cnt = 1;
2716
2717 if (cnt) {
2718 int err;
2719 u32 v, new_idx;
2720
2721 new_idx = closest_thres(&adap->sge, cnt);
2722 if (q->desc && q->pktcnt_idx != new_idx) {
2723 /* the queue has already been created, update it */
2724 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2725 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2726 FW_PARAMS_PARAM_YZ(q->cntxt_id);
2727 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2728 &new_idx);
2729 if (err)
2730 return err;
2731 }
2732 q->pktcnt_idx = new_idx;
2733 }
2734
2735 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2736 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2737 return 0;
2738 }
2739
2740 /**
2741 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2742 * @dev: the network device
2743 * @us: the hold-off time in us, or 0 to disable timer
2744 * @cnt: the hold-off packet count, or 0 to disable counter
2745 *
2746 * Set the RX interrupt hold-off parameters for a network device.
2747 */
set_rx_intr_params(struct net_device * dev,unsigned int us,unsigned int cnt)2748 static int set_rx_intr_params(struct net_device *dev,
2749 unsigned int us, unsigned int cnt)
2750 {
2751 int i, err;
2752 struct port_info *pi = netdev_priv(dev);
2753 struct adapter *adap = pi->adapter;
2754 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2755
2756 for (i = 0; i < pi->nqsets; i++, q++) {
2757 err = set_rspq_intr_params(&q->rspq, us, cnt);
2758 if (err)
2759 return err;
2760 }
2761 return 0;
2762 }
2763
set_adaptive_rx_setting(struct net_device * dev,int adaptive_rx)2764 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2765 {
2766 int i;
2767 struct port_info *pi = netdev_priv(dev);
2768 struct adapter *adap = pi->adapter;
2769 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2770
2771 for (i = 0; i < pi->nqsets; i++, q++)
2772 q->rspq.adaptive_rx = adaptive_rx;
2773
2774 return 0;
2775 }
2776
get_adaptive_rx_setting(struct net_device * dev)2777 static int get_adaptive_rx_setting(struct net_device *dev)
2778 {
2779 struct port_info *pi = netdev_priv(dev);
2780 struct adapter *adap = pi->adapter;
2781 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2782
2783 return q->rspq.adaptive_rx;
2784 }
2785
set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2786 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2787 {
2788 set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2789 return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2790 c->rx_max_coalesced_frames);
2791 }
2792
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2793 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2794 {
2795 const struct port_info *pi = netdev_priv(dev);
2796 const struct adapter *adap = pi->adapter;
2797 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2798
2799 c->rx_coalesce_usecs = qtimer_val(adap, rq);
2800 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2801 adap->sge.counter_val[rq->pktcnt_idx] : 0;
2802 c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2803 return 0;
2804 }
2805
2806 /**
2807 * eeprom_ptov - translate a physical EEPROM address to virtual
2808 * @phys_addr: the physical EEPROM address
2809 * @fn: the PCI function number
2810 * @sz: size of function-specific area
2811 *
2812 * Translate a physical EEPROM address to virtual. The first 1K is
2813 * accessed through virtual addresses starting at 31K, the rest is
2814 * accessed through virtual addresses starting at 0.
2815 *
2816 * The mapping is as follows:
2817 * [0..1K) -> [31K..32K)
2818 * [1K..1K+A) -> [31K-A..31K)
2819 * [1K+A..ES) -> [0..ES-A-1K)
2820 *
2821 * where A = @fn * @sz, and ES = EEPROM size.
2822 */
eeprom_ptov(unsigned int phys_addr,unsigned int fn,unsigned int sz)2823 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2824 {
2825 fn *= sz;
2826 if (phys_addr < 1024)
2827 return phys_addr + (31 << 10);
2828 if (phys_addr < 1024 + fn)
2829 return 31744 - fn + phys_addr - 1024;
2830 if (phys_addr < EEPROMSIZE)
2831 return phys_addr - 1024 - fn;
2832 return -EINVAL;
2833 }
2834
2835 /*
2836 * The next two routines implement eeprom read/write from physical addresses.
2837 */
eeprom_rd_phys(struct adapter * adap,unsigned int phys_addr,u32 * v)2838 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2839 {
2840 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2841
2842 if (vaddr >= 0)
2843 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2844 return vaddr < 0 ? vaddr : 0;
2845 }
2846
eeprom_wr_phys(struct adapter * adap,unsigned int phys_addr,u32 v)2847 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2848 {
2849 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2850
2851 if (vaddr >= 0)
2852 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2853 return vaddr < 0 ? vaddr : 0;
2854 }
2855
2856 #define EEPROM_MAGIC 0x38E2F10C
2857
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)2858 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2859 u8 *data)
2860 {
2861 int i, err = 0;
2862 struct adapter *adapter = netdev2adap(dev);
2863
2864 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2865 if (!buf)
2866 return -ENOMEM;
2867
2868 e->magic = EEPROM_MAGIC;
2869 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2870 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2871
2872 if (!err)
2873 memcpy(data, buf + e->offset, e->len);
2874 kfree(buf);
2875 return err;
2876 }
2877
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2878 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2879 u8 *data)
2880 {
2881 u8 *buf;
2882 int err = 0;
2883 u32 aligned_offset, aligned_len, *p;
2884 struct adapter *adapter = netdev2adap(dev);
2885
2886 if (eeprom->magic != EEPROM_MAGIC)
2887 return -EINVAL;
2888
2889 aligned_offset = eeprom->offset & ~3;
2890 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2891
2892 if (adapter->fn > 0) {
2893 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2894
2895 if (aligned_offset < start ||
2896 aligned_offset + aligned_len > start + EEPROMPFSIZE)
2897 return -EPERM;
2898 }
2899
2900 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2901 /*
2902 * RMW possibly needed for first or last words.
2903 */
2904 buf = kmalloc(aligned_len, GFP_KERNEL);
2905 if (!buf)
2906 return -ENOMEM;
2907 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2908 if (!err && aligned_len > 4)
2909 err = eeprom_rd_phys(adapter,
2910 aligned_offset + aligned_len - 4,
2911 (u32 *)&buf[aligned_len - 4]);
2912 if (err)
2913 goto out;
2914 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2915 } else
2916 buf = data;
2917
2918 err = t4_seeprom_wp(adapter, false);
2919 if (err)
2920 goto out;
2921
2922 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2923 err = eeprom_wr_phys(adapter, aligned_offset, *p);
2924 aligned_offset += 4;
2925 }
2926
2927 if (!err)
2928 err = t4_seeprom_wp(adapter, true);
2929 out:
2930 if (buf != data)
2931 kfree(buf);
2932 return err;
2933 }
2934
set_flash(struct net_device * netdev,struct ethtool_flash * ef)2935 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2936 {
2937 int ret;
2938 const struct firmware *fw;
2939 struct adapter *adap = netdev2adap(netdev);
2940 unsigned int mbox = FW_PCIE_FW_MASTER_MASK + 1;
2941
2942 ef->data[sizeof(ef->data) - 1] = '\0';
2943 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2944 if (ret < 0)
2945 return ret;
2946
2947 /* If the adapter has been fully initialized then we'll go ahead and
2948 * try to get the firmware's cooperation in upgrading to the new
2949 * firmware image otherwise we'll try to do the entire job from the
2950 * host ... and we always "force" the operation in this path.
2951 */
2952 if (adap->flags & FULL_INIT_DONE)
2953 mbox = adap->mbox;
2954
2955 ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
2956 release_firmware(fw);
2957 if (!ret)
2958 dev_info(adap->pdev_dev, "loaded firmware %s,"
2959 " reload cxgb4 driver\n", ef->data);
2960 return ret;
2961 }
2962
2963 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2964 #define BCAST_CRC 0xa0ccc1a6
2965
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2966 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2967 {
2968 wol->supported = WAKE_BCAST | WAKE_MAGIC;
2969 wol->wolopts = netdev2adap(dev)->wol;
2970 memset(&wol->sopass, 0, sizeof(wol->sopass));
2971 }
2972
set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2973 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2974 {
2975 int err = 0;
2976 struct port_info *pi = netdev_priv(dev);
2977
2978 if (wol->wolopts & ~WOL_SUPPORTED)
2979 return -EINVAL;
2980 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2981 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2982 if (wol->wolopts & WAKE_BCAST) {
2983 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2984 ~0ULL, 0, false);
2985 if (!err)
2986 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2987 ~6ULL, ~0ULL, BCAST_CRC, true);
2988 } else
2989 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2990 return err;
2991 }
2992
cxgb_set_features(struct net_device * dev,netdev_features_t features)2993 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2994 {
2995 const struct port_info *pi = netdev_priv(dev);
2996 netdev_features_t changed = dev->features ^ features;
2997 int err;
2998
2999 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
3000 return 0;
3001
3002 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
3003 -1, -1, -1,
3004 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
3005 if (unlikely(err))
3006 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
3007 return err;
3008 }
3009
get_rss_table_size(struct net_device * dev)3010 static u32 get_rss_table_size(struct net_device *dev)
3011 {
3012 const struct port_info *pi = netdev_priv(dev);
3013
3014 return pi->rss_size;
3015 }
3016
get_rss_table(struct net_device * dev,u32 * p,u8 * key)3017 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
3018 {
3019 const struct port_info *pi = netdev_priv(dev);
3020 unsigned int n = pi->rss_size;
3021
3022 while (n--)
3023 p[n] = pi->rss[n];
3024 return 0;
3025 }
3026
set_rss_table(struct net_device * dev,const u32 * p,const u8 * key)3027 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
3028 {
3029 unsigned int i;
3030 struct port_info *pi = netdev_priv(dev);
3031
3032 for (i = 0; i < pi->rss_size; i++)
3033 pi->rss[i] = p[i];
3034 if (pi->adapter->flags & FULL_INIT_DONE)
3035 return write_rss(pi, pi->rss);
3036 return 0;
3037 }
3038
get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)3039 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
3040 u32 *rules)
3041 {
3042 const struct port_info *pi = netdev_priv(dev);
3043
3044 switch (info->cmd) {
3045 case ETHTOOL_GRXFH: {
3046 unsigned int v = pi->rss_mode;
3047
3048 info->data = 0;
3049 switch (info->flow_type) {
3050 case TCP_V4_FLOW:
3051 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3052 info->data = RXH_IP_SRC | RXH_IP_DST |
3053 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3054 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3055 info->data = RXH_IP_SRC | RXH_IP_DST;
3056 break;
3057 case UDP_V4_FLOW:
3058 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3059 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3060 info->data = RXH_IP_SRC | RXH_IP_DST |
3061 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3062 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3063 info->data = RXH_IP_SRC | RXH_IP_DST;
3064 break;
3065 case SCTP_V4_FLOW:
3066 case AH_ESP_V4_FLOW:
3067 case IPV4_FLOW:
3068 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3069 info->data = RXH_IP_SRC | RXH_IP_DST;
3070 break;
3071 case TCP_V6_FLOW:
3072 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3073 info->data = RXH_IP_SRC | RXH_IP_DST |
3074 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3075 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3076 info->data = RXH_IP_SRC | RXH_IP_DST;
3077 break;
3078 case UDP_V6_FLOW:
3079 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3080 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3081 info->data = RXH_IP_SRC | RXH_IP_DST |
3082 RXH_L4_B_0_1 | RXH_L4_B_2_3;
3083 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3084 info->data = RXH_IP_SRC | RXH_IP_DST;
3085 break;
3086 case SCTP_V6_FLOW:
3087 case AH_ESP_V6_FLOW:
3088 case IPV6_FLOW:
3089 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3090 info->data = RXH_IP_SRC | RXH_IP_DST;
3091 break;
3092 }
3093 return 0;
3094 }
3095 case ETHTOOL_GRXRINGS:
3096 info->data = pi->nqsets;
3097 return 0;
3098 }
3099 return -EOPNOTSUPP;
3100 }
3101
3102 static const struct ethtool_ops cxgb_ethtool_ops = {
3103 .get_settings = get_settings,
3104 .set_settings = set_settings,
3105 .get_drvinfo = get_drvinfo,
3106 .get_msglevel = get_msglevel,
3107 .set_msglevel = set_msglevel,
3108 .get_ringparam = get_sge_param,
3109 .set_ringparam = set_sge_param,
3110 .get_coalesce = get_coalesce,
3111 .set_coalesce = set_coalesce,
3112 .get_eeprom_len = get_eeprom_len,
3113 .get_eeprom = get_eeprom,
3114 .set_eeprom = set_eeprom,
3115 .get_pauseparam = get_pauseparam,
3116 .set_pauseparam = set_pauseparam,
3117 .get_link = ethtool_op_get_link,
3118 .get_strings = get_strings,
3119 .set_phys_id = identify_port,
3120 .nway_reset = restart_autoneg,
3121 .get_sset_count = get_sset_count,
3122 .get_ethtool_stats = get_stats,
3123 .get_regs_len = get_regs_len,
3124 .get_regs = get_regs,
3125 .get_wol = get_wol,
3126 .set_wol = set_wol,
3127 .get_rxnfc = get_rxnfc,
3128 .get_rxfh_indir_size = get_rss_table_size,
3129 .get_rxfh = get_rss_table,
3130 .set_rxfh = set_rss_table,
3131 .flash_device = set_flash,
3132 };
3133
3134 /*
3135 * debugfs support
3136 */
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3137 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3138 loff_t *ppos)
3139 {
3140 loff_t pos = *ppos;
3141 loff_t avail = file_inode(file)->i_size;
3142 unsigned int mem = (uintptr_t)file->private_data & 3;
3143 struct adapter *adap = file->private_data - mem;
3144 __be32 *data;
3145 int ret;
3146
3147 if (pos < 0)
3148 return -EINVAL;
3149 if (pos >= avail)
3150 return 0;
3151 if (count > avail - pos)
3152 count = avail - pos;
3153
3154 data = t4_alloc_mem(count);
3155 if (!data)
3156 return -ENOMEM;
3157
3158 spin_lock(&adap->win0_lock);
3159 ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3160 spin_unlock(&adap->win0_lock);
3161 if (ret) {
3162 t4_free_mem(data);
3163 return ret;
3164 }
3165 ret = copy_to_user(buf, data, count);
3166
3167 t4_free_mem(data);
3168 if (ret)
3169 return -EFAULT;
3170
3171 *ppos = pos + count;
3172 return count;
3173 }
3174
3175 static const struct file_operations mem_debugfs_fops = {
3176 .owner = THIS_MODULE,
3177 .open = simple_open,
3178 .read = mem_read,
3179 .llseek = default_llseek,
3180 };
3181
add_debugfs_mem(struct adapter * adap,const char * name,unsigned int idx,unsigned int size_mb)3182 static void add_debugfs_mem(struct adapter *adap, const char *name,
3183 unsigned int idx, unsigned int size_mb)
3184 {
3185 struct dentry *de;
3186
3187 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3188 (void *)adap + idx, &mem_debugfs_fops);
3189 if (de && de->d_inode)
3190 de->d_inode->i_size = size_mb << 20;
3191 }
3192
setup_debugfs(struct adapter * adap)3193 static int setup_debugfs(struct adapter *adap)
3194 {
3195 int i;
3196 u32 size;
3197
3198 if (IS_ERR_OR_NULL(adap->debugfs_root))
3199 return -1;
3200
3201 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3202 if (i & EDRAM0_ENABLE) {
3203 size = t4_read_reg(adap, MA_EDRAM0_BAR);
3204 add_debugfs_mem(adap, "edc0", MEM_EDC0, EDRAM_SIZE_GET(size));
3205 }
3206 if (i & EDRAM1_ENABLE) {
3207 size = t4_read_reg(adap, MA_EDRAM1_BAR);
3208 add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3209 }
3210 if (is_t4(adap->params.chip)) {
3211 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3212 if (i & EXT_MEM_ENABLE)
3213 add_debugfs_mem(adap, "mc", MEM_MC,
3214 EXT_MEM_SIZE_GET(size));
3215 } else {
3216 if (i & EXT_MEM_ENABLE) {
3217 size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3218 add_debugfs_mem(adap, "mc0", MEM_MC0,
3219 EXT_MEM_SIZE_GET(size));
3220 }
3221 if (i & EXT_MEM1_ENABLE) {
3222 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3223 add_debugfs_mem(adap, "mc1", MEM_MC1,
3224 EXT_MEM_SIZE_GET(size));
3225 }
3226 }
3227 if (adap->l2t)
3228 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3229 &t4_l2t_fops);
3230 return 0;
3231 }
3232
3233 /*
3234 * upper-layer driver support
3235 */
3236
3237 /*
3238 * Allocate an active-open TID and set it to the supplied value.
3239 */
cxgb4_alloc_atid(struct tid_info * t,void * data)3240 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3241 {
3242 int atid = -1;
3243
3244 spin_lock_bh(&t->atid_lock);
3245 if (t->afree) {
3246 union aopen_entry *p = t->afree;
3247
3248 atid = (p - t->atid_tab) + t->atid_base;
3249 t->afree = p->next;
3250 p->data = data;
3251 t->atids_in_use++;
3252 }
3253 spin_unlock_bh(&t->atid_lock);
3254 return atid;
3255 }
3256 EXPORT_SYMBOL(cxgb4_alloc_atid);
3257
3258 /*
3259 * Release an active-open TID.
3260 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)3261 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3262 {
3263 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3264
3265 spin_lock_bh(&t->atid_lock);
3266 p->next = t->afree;
3267 t->afree = p;
3268 t->atids_in_use--;
3269 spin_unlock_bh(&t->atid_lock);
3270 }
3271 EXPORT_SYMBOL(cxgb4_free_atid);
3272
3273 /*
3274 * Allocate a server TID and set it to the supplied value.
3275 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)3276 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3277 {
3278 int stid;
3279
3280 spin_lock_bh(&t->stid_lock);
3281 if (family == PF_INET) {
3282 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3283 if (stid < t->nstids)
3284 __set_bit(stid, t->stid_bmap);
3285 else
3286 stid = -1;
3287 } else {
3288 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3289 if (stid < 0)
3290 stid = -1;
3291 }
3292 if (stid >= 0) {
3293 t->stid_tab[stid].data = data;
3294 stid += t->stid_base;
3295 /* IPv6 requires max of 520 bits or 16 cells in TCAM
3296 * This is equivalent to 4 TIDs. With CLIP enabled it
3297 * needs 2 TIDs.
3298 */
3299 if (family == PF_INET)
3300 t->stids_in_use++;
3301 else
3302 t->stids_in_use += 4;
3303 }
3304 spin_unlock_bh(&t->stid_lock);
3305 return stid;
3306 }
3307 EXPORT_SYMBOL(cxgb4_alloc_stid);
3308
3309 /* Allocate a server filter TID and set it to the supplied value.
3310 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)3311 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3312 {
3313 int stid;
3314
3315 spin_lock_bh(&t->stid_lock);
3316 if (family == PF_INET) {
3317 stid = find_next_zero_bit(t->stid_bmap,
3318 t->nstids + t->nsftids, t->nstids);
3319 if (stid < (t->nstids + t->nsftids))
3320 __set_bit(stid, t->stid_bmap);
3321 else
3322 stid = -1;
3323 } else {
3324 stid = -1;
3325 }
3326 if (stid >= 0) {
3327 t->stid_tab[stid].data = data;
3328 stid -= t->nstids;
3329 stid += t->sftid_base;
3330 t->stids_in_use++;
3331 }
3332 spin_unlock_bh(&t->stid_lock);
3333 return stid;
3334 }
3335 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3336
3337 /* Release a server TID.
3338 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)3339 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3340 {
3341 /* Is it a server filter TID? */
3342 if (t->nsftids && (stid >= t->sftid_base)) {
3343 stid -= t->sftid_base;
3344 stid += t->nstids;
3345 } else {
3346 stid -= t->stid_base;
3347 }
3348
3349 spin_lock_bh(&t->stid_lock);
3350 if (family == PF_INET)
3351 __clear_bit(stid, t->stid_bmap);
3352 else
3353 bitmap_release_region(t->stid_bmap, stid, 2);
3354 t->stid_tab[stid].data = NULL;
3355 if (family == PF_INET)
3356 t->stids_in_use--;
3357 else
3358 t->stids_in_use -= 4;
3359 spin_unlock_bh(&t->stid_lock);
3360 }
3361 EXPORT_SYMBOL(cxgb4_free_stid);
3362
3363 /*
3364 * Populate a TID_RELEASE WR. Caller must properly size the skb.
3365 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)3366 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3367 unsigned int tid)
3368 {
3369 struct cpl_tid_release *req;
3370
3371 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3372 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3373 INIT_TP_WR(req, tid);
3374 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3375 }
3376
3377 /*
3378 * Queue a TID release request and if necessary schedule a work queue to
3379 * process it.
3380 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)3381 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3382 unsigned int tid)
3383 {
3384 void **p = &t->tid_tab[tid];
3385 struct adapter *adap = container_of(t, struct adapter, tids);
3386
3387 spin_lock_bh(&adap->tid_release_lock);
3388 *p = adap->tid_release_head;
3389 /* Low 2 bits encode the Tx channel number */
3390 adap->tid_release_head = (void **)((uintptr_t)p | chan);
3391 if (!adap->tid_release_task_busy) {
3392 adap->tid_release_task_busy = true;
3393 queue_work(adap->workq, &adap->tid_release_task);
3394 }
3395 spin_unlock_bh(&adap->tid_release_lock);
3396 }
3397
3398 /*
3399 * Process the list of pending TID release requests.
3400 */
process_tid_release_list(struct work_struct * work)3401 static void process_tid_release_list(struct work_struct *work)
3402 {
3403 struct sk_buff *skb;
3404 struct adapter *adap;
3405
3406 adap = container_of(work, struct adapter, tid_release_task);
3407
3408 spin_lock_bh(&adap->tid_release_lock);
3409 while (adap->tid_release_head) {
3410 void **p = adap->tid_release_head;
3411 unsigned int chan = (uintptr_t)p & 3;
3412 p = (void *)p - chan;
3413
3414 adap->tid_release_head = *p;
3415 *p = NULL;
3416 spin_unlock_bh(&adap->tid_release_lock);
3417
3418 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3419 GFP_KERNEL)))
3420 schedule_timeout_uninterruptible(1);
3421
3422 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3423 t4_ofld_send(adap, skb);
3424 spin_lock_bh(&adap->tid_release_lock);
3425 }
3426 adap->tid_release_task_busy = false;
3427 spin_unlock_bh(&adap->tid_release_lock);
3428 }
3429
3430 /*
3431 * Release a TID and inform HW. If we are unable to allocate the release
3432 * message we defer to a work queue.
3433 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid)3434 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3435 {
3436 void *old;
3437 struct sk_buff *skb;
3438 struct adapter *adap = container_of(t, struct adapter, tids);
3439
3440 old = t->tid_tab[tid];
3441 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3442 if (likely(skb)) {
3443 t->tid_tab[tid] = NULL;
3444 mk_tid_release(skb, chan, tid);
3445 t4_ofld_send(adap, skb);
3446 } else
3447 cxgb4_queue_tid_release(t, chan, tid);
3448 if (old)
3449 atomic_dec(&t->tids_in_use);
3450 }
3451 EXPORT_SYMBOL(cxgb4_remove_tid);
3452
3453 /*
3454 * Allocate and initialize the TID tables. Returns 0 on success.
3455 */
tid_init(struct tid_info * t)3456 static int tid_init(struct tid_info *t)
3457 {
3458 size_t size;
3459 unsigned int stid_bmap_size;
3460 unsigned int natids = t->natids;
3461 struct adapter *adap = container_of(t, struct adapter, tids);
3462
3463 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3464 size = t->ntids * sizeof(*t->tid_tab) +
3465 natids * sizeof(*t->atid_tab) +
3466 t->nstids * sizeof(*t->stid_tab) +
3467 t->nsftids * sizeof(*t->stid_tab) +
3468 stid_bmap_size * sizeof(long) +
3469 t->nftids * sizeof(*t->ftid_tab) +
3470 t->nsftids * sizeof(*t->ftid_tab);
3471
3472 t->tid_tab = t4_alloc_mem(size);
3473 if (!t->tid_tab)
3474 return -ENOMEM;
3475
3476 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3477 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3478 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3479 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3480 spin_lock_init(&t->stid_lock);
3481 spin_lock_init(&t->atid_lock);
3482
3483 t->stids_in_use = 0;
3484 t->afree = NULL;
3485 t->atids_in_use = 0;
3486 atomic_set(&t->tids_in_use, 0);
3487
3488 /* Setup the free list for atid_tab and clear the stid bitmap. */
3489 if (natids) {
3490 while (--natids)
3491 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3492 t->afree = t->atid_tab;
3493 }
3494 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3495 /* Reserve stid 0 for T4/T5 adapters */
3496 if (!t->stid_base &&
3497 (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3498 __set_bit(0, t->stid_bmap);
3499
3500 return 0;
3501 }
3502
cxgb4_clip_get(const struct net_device * dev,const struct in6_addr * lip)3503 int cxgb4_clip_get(const struct net_device *dev,
3504 const struct in6_addr *lip)
3505 {
3506 struct adapter *adap;
3507 struct fw_clip_cmd c;
3508
3509 adap = netdev2adap(dev);
3510 memset(&c, 0, sizeof(c));
3511 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3512 FW_CMD_REQUEST | FW_CMD_WRITE);
3513 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3514 c.ip_hi = *(__be64 *)(lip->s6_addr);
3515 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3516 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3517 }
3518 EXPORT_SYMBOL(cxgb4_clip_get);
3519
cxgb4_clip_release(const struct net_device * dev,const struct in6_addr * lip)3520 int cxgb4_clip_release(const struct net_device *dev,
3521 const struct in6_addr *lip)
3522 {
3523 struct adapter *adap;
3524 struct fw_clip_cmd c;
3525
3526 adap = netdev2adap(dev);
3527 memset(&c, 0, sizeof(c));
3528 c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3529 FW_CMD_REQUEST | FW_CMD_READ);
3530 c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3531 c.ip_hi = *(__be64 *)(lip->s6_addr);
3532 c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3533 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3534 }
3535 EXPORT_SYMBOL(cxgb4_clip_release);
3536
3537 /**
3538 * cxgb4_create_server - create an IP server
3539 * @dev: the device
3540 * @stid: the server TID
3541 * @sip: local IP address to bind server to
3542 * @sport: the server's TCP port
3543 * @queue: queue to direct messages from this server to
3544 *
3545 * Create an IP server for the given port and address.
3546 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3547 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)3548 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3549 __be32 sip, __be16 sport, __be16 vlan,
3550 unsigned int queue)
3551 {
3552 unsigned int chan;
3553 struct sk_buff *skb;
3554 struct adapter *adap;
3555 struct cpl_pass_open_req *req;
3556 int ret;
3557
3558 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3559 if (!skb)
3560 return -ENOMEM;
3561
3562 adap = netdev2adap(dev);
3563 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3564 INIT_TP_WR(req, 0);
3565 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3566 req->local_port = sport;
3567 req->peer_port = htons(0);
3568 req->local_ip = sip;
3569 req->peer_ip = htonl(0);
3570 chan = rxq_to_chan(&adap->sge, queue);
3571 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3572 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3573 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3574 ret = t4_mgmt_tx(adap, skb);
3575 return net_xmit_eval(ret);
3576 }
3577 EXPORT_SYMBOL(cxgb4_create_server);
3578
3579 /* cxgb4_create_server6 - create an IPv6 server
3580 * @dev: the device
3581 * @stid: the server TID
3582 * @sip: local IPv6 address to bind server to
3583 * @sport: the server's TCP port
3584 * @queue: queue to direct messages from this server to
3585 *
3586 * Create an IPv6 server for the given port and address.
3587 * Returns <0 on error and one of the %NET_XMIT_* values on success.
3588 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)3589 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3590 const struct in6_addr *sip, __be16 sport,
3591 unsigned int queue)
3592 {
3593 unsigned int chan;
3594 struct sk_buff *skb;
3595 struct adapter *adap;
3596 struct cpl_pass_open_req6 *req;
3597 int ret;
3598
3599 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3600 if (!skb)
3601 return -ENOMEM;
3602
3603 adap = netdev2adap(dev);
3604 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3605 INIT_TP_WR(req, 0);
3606 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3607 req->local_port = sport;
3608 req->peer_port = htons(0);
3609 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3610 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3611 req->peer_ip_hi = cpu_to_be64(0);
3612 req->peer_ip_lo = cpu_to_be64(0);
3613 chan = rxq_to_chan(&adap->sge, queue);
3614 req->opt0 = cpu_to_be64(TX_CHAN(chan));
3615 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3616 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3617 ret = t4_mgmt_tx(adap, skb);
3618 return net_xmit_eval(ret);
3619 }
3620 EXPORT_SYMBOL(cxgb4_create_server6);
3621
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)3622 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3623 unsigned int queue, bool ipv6)
3624 {
3625 struct sk_buff *skb;
3626 struct adapter *adap;
3627 struct cpl_close_listsvr_req *req;
3628 int ret;
3629
3630 adap = netdev2adap(dev);
3631
3632 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3633 if (!skb)
3634 return -ENOMEM;
3635
3636 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3637 INIT_TP_WR(req, 0);
3638 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3639 req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3640 LISTSVR_IPV6(0)) | QUEUENO(queue));
3641 ret = t4_mgmt_tx(adap, skb);
3642 return net_xmit_eval(ret);
3643 }
3644 EXPORT_SYMBOL(cxgb4_remove_server);
3645
3646 /**
3647 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3648 * @mtus: the HW MTU table
3649 * @mtu: the target MTU
3650 * @idx: index of selected entry in the MTU table
3651 *
3652 * Returns the index and the value in the HW MTU table that is closest to
3653 * but does not exceed @mtu, unless @mtu is smaller than any value in the
3654 * table, in which case that smallest available value is selected.
3655 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)3656 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3657 unsigned int *idx)
3658 {
3659 unsigned int i = 0;
3660
3661 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3662 ++i;
3663 if (idx)
3664 *idx = i;
3665 return mtus[i];
3666 }
3667 EXPORT_SYMBOL(cxgb4_best_mtu);
3668
3669 /**
3670 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3671 * @mtus: the HW MTU table
3672 * @header_size: Header Size
3673 * @data_size_max: maximum Data Segment Size
3674 * @data_size_align: desired Data Segment Size Alignment (2^N)
3675 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3676 *
3677 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
3678 * MTU Table based solely on a Maximum MTU parameter, we break that
3679 * parameter up into a Header Size and Maximum Data Segment Size, and
3680 * provide a desired Data Segment Size Alignment. If we find an MTU in
3681 * the Hardware MTU Table which will result in a Data Segment Size with
3682 * the requested alignment _and_ that MTU isn't "too far" from the
3683 * closest MTU, then we'll return that rather than the closest MTU.
3684 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)3685 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3686 unsigned short header_size,
3687 unsigned short data_size_max,
3688 unsigned short data_size_align,
3689 unsigned int *mtu_idxp)
3690 {
3691 unsigned short max_mtu = header_size + data_size_max;
3692 unsigned short data_size_align_mask = data_size_align - 1;
3693 int mtu_idx, aligned_mtu_idx;
3694
3695 /* Scan the MTU Table till we find an MTU which is larger than our
3696 * Maximum MTU or we reach the end of the table. Along the way,
3697 * record the last MTU found, if any, which will result in a Data
3698 * Segment Length matching the requested alignment.
3699 */
3700 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3701 unsigned short data_size = mtus[mtu_idx] - header_size;
3702
3703 /* If this MTU minus the Header Size would result in a
3704 * Data Segment Size of the desired alignment, remember it.
3705 */
3706 if ((data_size & data_size_align_mask) == 0)
3707 aligned_mtu_idx = mtu_idx;
3708
3709 /* If we're not at the end of the Hardware MTU Table and the
3710 * next element is larger than our Maximum MTU, drop out of
3711 * the loop.
3712 */
3713 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3714 break;
3715 }
3716
3717 /* If we fell out of the loop because we ran to the end of the table,
3718 * then we just have to use the last [largest] entry.
3719 */
3720 if (mtu_idx == NMTUS)
3721 mtu_idx--;
3722
3723 /* If we found an MTU which resulted in the requested Data Segment
3724 * Length alignment and that's "not far" from the largest MTU which is
3725 * less than or equal to the maximum MTU, then use that.
3726 */
3727 if (aligned_mtu_idx >= 0 &&
3728 mtu_idx - aligned_mtu_idx <= 1)
3729 mtu_idx = aligned_mtu_idx;
3730
3731 /* If the caller has passed in an MTU Index pointer, pass the
3732 * MTU Index back. Return the MTU value.
3733 */
3734 if (mtu_idxp)
3735 *mtu_idxp = mtu_idx;
3736 return mtus[mtu_idx];
3737 }
3738 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3739
3740 /**
3741 * cxgb4_port_chan - get the HW channel of a port
3742 * @dev: the net device for the port
3743 *
3744 * Return the HW Tx channel of the given port.
3745 */
cxgb4_port_chan(const struct net_device * dev)3746 unsigned int cxgb4_port_chan(const struct net_device *dev)
3747 {
3748 return netdev2pinfo(dev)->tx_chan;
3749 }
3750 EXPORT_SYMBOL(cxgb4_port_chan);
3751
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)3752 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3753 {
3754 struct adapter *adap = netdev2adap(dev);
3755 u32 v1, v2, lp_count, hp_count;
3756
3757 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3758 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3759 if (is_t4(adap->params.chip)) {
3760 lp_count = G_LP_COUNT(v1);
3761 hp_count = G_HP_COUNT(v1);
3762 } else {
3763 lp_count = G_LP_COUNT_T5(v1);
3764 hp_count = G_HP_COUNT_T5(v2);
3765 }
3766 return lpfifo ? lp_count : hp_count;
3767 }
3768 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3769
3770 /**
3771 * cxgb4_port_viid - get the VI id of a port
3772 * @dev: the net device for the port
3773 *
3774 * Return the VI id of the given port.
3775 */
cxgb4_port_viid(const struct net_device * dev)3776 unsigned int cxgb4_port_viid(const struct net_device *dev)
3777 {
3778 return netdev2pinfo(dev)->viid;
3779 }
3780 EXPORT_SYMBOL(cxgb4_port_viid);
3781
3782 /**
3783 * cxgb4_port_idx - get the index of a port
3784 * @dev: the net device for the port
3785 *
3786 * Return the index of the given port.
3787 */
cxgb4_port_idx(const struct net_device * dev)3788 unsigned int cxgb4_port_idx(const struct net_device *dev)
3789 {
3790 return netdev2pinfo(dev)->port_id;
3791 }
3792 EXPORT_SYMBOL(cxgb4_port_idx);
3793
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)3794 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3795 struct tp_tcp_stats *v6)
3796 {
3797 struct adapter *adap = pci_get_drvdata(pdev);
3798
3799 spin_lock(&adap->stats_lock);
3800 t4_tp_get_tcp_stats(adap, v4, v6);
3801 spin_unlock(&adap->stats_lock);
3802 }
3803 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3804
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)3805 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3806 const unsigned int *pgsz_order)
3807 {
3808 struct adapter *adap = netdev2adap(dev);
3809
3810 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3811 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3812 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3813 HPZ3(pgsz_order[3]));
3814 }
3815 EXPORT_SYMBOL(cxgb4_iscsi_init);
3816
cxgb4_flush_eq_cache(struct net_device * dev)3817 int cxgb4_flush_eq_cache(struct net_device *dev)
3818 {
3819 struct adapter *adap = netdev2adap(dev);
3820 int ret;
3821
3822 ret = t4_fwaddrspace_write(adap, adap->mbox,
3823 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3824 return ret;
3825 }
3826 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3827
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)3828 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3829 {
3830 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3831 __be64 indices;
3832 int ret;
3833
3834 spin_lock(&adap->win0_lock);
3835 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3836 sizeof(indices), (__be32 *)&indices,
3837 T4_MEMORY_READ);
3838 spin_unlock(&adap->win0_lock);
3839 if (!ret) {
3840 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3841 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3842 }
3843 return ret;
3844 }
3845
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)3846 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3847 u16 size)
3848 {
3849 struct adapter *adap = netdev2adap(dev);
3850 u16 hw_pidx, hw_cidx;
3851 int ret;
3852
3853 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3854 if (ret)
3855 goto out;
3856
3857 if (pidx != hw_pidx) {
3858 u16 delta;
3859
3860 if (pidx >= hw_pidx)
3861 delta = pidx - hw_pidx;
3862 else
3863 delta = size - hw_pidx + pidx;
3864 wmb();
3865 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3866 QID(qid) | PIDX(delta));
3867 }
3868 out:
3869 return ret;
3870 }
3871 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3872
cxgb4_disable_db_coalescing(struct net_device * dev)3873 void cxgb4_disable_db_coalescing(struct net_device *dev)
3874 {
3875 struct adapter *adap;
3876
3877 adap = netdev2adap(dev);
3878 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3879 F_NOCOALESCE);
3880 }
3881 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3882
cxgb4_enable_db_coalescing(struct net_device * dev)3883 void cxgb4_enable_db_coalescing(struct net_device *dev)
3884 {
3885 struct adapter *adap;
3886
3887 adap = netdev2adap(dev);
3888 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3889 }
3890 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3891
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)3892 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3893 {
3894 struct adapter *adap;
3895 u32 offset, memtype, memaddr;
3896 u32 edc0_size, edc1_size, mc0_size, mc1_size;
3897 u32 edc0_end, edc1_end, mc0_end, mc1_end;
3898 int ret;
3899
3900 adap = netdev2adap(dev);
3901
3902 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3903
3904 /* Figure out where the offset lands in the Memory Type/Address scheme.
3905 * This code assumes that the memory is laid out starting at offset 0
3906 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3907 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
3908 * MC0, and some have both MC0 and MC1.
3909 */
3910 edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3911 edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3912 mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3913
3914 edc0_end = edc0_size;
3915 edc1_end = edc0_end + edc1_size;
3916 mc0_end = edc1_end + mc0_size;
3917
3918 if (offset < edc0_end) {
3919 memtype = MEM_EDC0;
3920 memaddr = offset;
3921 } else if (offset < edc1_end) {
3922 memtype = MEM_EDC1;
3923 memaddr = offset - edc0_end;
3924 } else {
3925 if (offset < mc0_end) {
3926 memtype = MEM_MC0;
3927 memaddr = offset - edc1_end;
3928 } else if (is_t4(adap->params.chip)) {
3929 /* T4 only has a single memory channel */
3930 goto err;
3931 } else {
3932 mc1_size = EXT_MEM_SIZE_GET(
3933 t4_read_reg(adap,
3934 MA_EXT_MEMORY1_BAR)) << 20;
3935 mc1_end = mc0_end + mc1_size;
3936 if (offset < mc1_end) {
3937 memtype = MEM_MC1;
3938 memaddr = offset - mc0_end;
3939 } else {
3940 /* offset beyond the end of any memory */
3941 goto err;
3942 }
3943 }
3944 }
3945
3946 spin_lock(&adap->win0_lock);
3947 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3948 spin_unlock(&adap->win0_lock);
3949 return ret;
3950
3951 err:
3952 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3953 stag, offset);
3954 return -EINVAL;
3955 }
3956 EXPORT_SYMBOL(cxgb4_read_tpte);
3957
cxgb4_read_sge_timestamp(struct net_device * dev)3958 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3959 {
3960 u32 hi, lo;
3961 struct adapter *adap;
3962
3963 adap = netdev2adap(dev);
3964 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3965 hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3966
3967 return ((u64)hi << 32) | (u64)lo;
3968 }
3969 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3970
3971 static struct pci_driver cxgb4_driver;
3972
check_neigh_update(struct neighbour * neigh)3973 static void check_neigh_update(struct neighbour *neigh)
3974 {
3975 const struct device *parent;
3976 const struct net_device *netdev = neigh->dev;
3977
3978 if (netdev->priv_flags & IFF_802_1Q_VLAN)
3979 netdev = vlan_dev_real_dev(netdev);
3980 parent = netdev->dev.parent;
3981 if (parent && parent->driver == &cxgb4_driver.driver)
3982 t4_l2t_update(dev_get_drvdata(parent), neigh);
3983 }
3984
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)3985 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3986 void *data)
3987 {
3988 switch (event) {
3989 case NETEVENT_NEIGH_UPDATE:
3990 check_neigh_update(data);
3991 break;
3992 case NETEVENT_REDIRECT:
3993 default:
3994 break;
3995 }
3996 return 0;
3997 }
3998
3999 static bool netevent_registered;
4000 static struct notifier_block cxgb4_netevent_nb = {
4001 .notifier_call = netevent_cb
4002 };
4003
drain_db_fifo(struct adapter * adap,int usecs)4004 static void drain_db_fifo(struct adapter *adap, int usecs)
4005 {
4006 u32 v1, v2, lp_count, hp_count;
4007
4008 do {
4009 v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
4010 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
4011 if (is_t4(adap->params.chip)) {
4012 lp_count = G_LP_COUNT(v1);
4013 hp_count = G_HP_COUNT(v1);
4014 } else {
4015 lp_count = G_LP_COUNT_T5(v1);
4016 hp_count = G_HP_COUNT_T5(v2);
4017 }
4018
4019 if (lp_count == 0 && hp_count == 0)
4020 break;
4021 set_current_state(TASK_UNINTERRUPTIBLE);
4022 schedule_timeout(usecs_to_jiffies(usecs));
4023 } while (1);
4024 }
4025
disable_txq_db(struct sge_txq * q)4026 static void disable_txq_db(struct sge_txq *q)
4027 {
4028 unsigned long flags;
4029
4030 spin_lock_irqsave(&q->db_lock, flags);
4031 q->db_disabled = 1;
4032 spin_unlock_irqrestore(&q->db_lock, flags);
4033 }
4034
enable_txq_db(struct adapter * adap,struct sge_txq * q)4035 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
4036 {
4037 spin_lock_irq(&q->db_lock);
4038 if (q->db_pidx_inc) {
4039 /* Make sure that all writes to the TX descriptors
4040 * are committed before we tell HW about them.
4041 */
4042 wmb();
4043 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4044 QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
4045 q->db_pidx_inc = 0;
4046 }
4047 q->db_disabled = 0;
4048 spin_unlock_irq(&q->db_lock);
4049 }
4050
disable_dbs(struct adapter * adap)4051 static void disable_dbs(struct adapter *adap)
4052 {
4053 int i;
4054
4055 for_each_ethrxq(&adap->sge, i)
4056 disable_txq_db(&adap->sge.ethtxq[i].q);
4057 for_each_ofldrxq(&adap->sge, i)
4058 disable_txq_db(&adap->sge.ofldtxq[i].q);
4059 for_each_port(adap, i)
4060 disable_txq_db(&adap->sge.ctrlq[i].q);
4061 }
4062
enable_dbs(struct adapter * adap)4063 static void enable_dbs(struct adapter *adap)
4064 {
4065 int i;
4066
4067 for_each_ethrxq(&adap->sge, i)
4068 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4069 for_each_ofldrxq(&adap->sge, i)
4070 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4071 for_each_port(adap, i)
4072 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4073 }
4074
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)4075 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4076 {
4077 if (adap->uld_handle[CXGB4_ULD_RDMA])
4078 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4079 cmd);
4080 }
4081
process_db_full(struct work_struct * work)4082 static void process_db_full(struct work_struct *work)
4083 {
4084 struct adapter *adap;
4085
4086 adap = container_of(work, struct adapter, db_full_task);
4087
4088 drain_db_fifo(adap, dbfifo_drain_delay);
4089 enable_dbs(adap);
4090 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4091 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4092 DBFIFO_HP_INT | DBFIFO_LP_INT,
4093 DBFIFO_HP_INT | DBFIFO_LP_INT);
4094 }
4095
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)4096 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4097 {
4098 u16 hw_pidx, hw_cidx;
4099 int ret;
4100
4101 spin_lock_irq(&q->db_lock);
4102 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4103 if (ret)
4104 goto out;
4105 if (q->db_pidx != hw_pidx) {
4106 u16 delta;
4107
4108 if (q->db_pidx >= hw_pidx)
4109 delta = q->db_pidx - hw_pidx;
4110 else
4111 delta = q->size - hw_pidx + q->db_pidx;
4112 wmb();
4113 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4114 QID(q->cntxt_id) | PIDX(delta));
4115 }
4116 out:
4117 q->db_disabled = 0;
4118 q->db_pidx_inc = 0;
4119 spin_unlock_irq(&q->db_lock);
4120 if (ret)
4121 CH_WARN(adap, "DB drop recovery failed.\n");
4122 }
recover_all_queues(struct adapter * adap)4123 static void recover_all_queues(struct adapter *adap)
4124 {
4125 int i;
4126
4127 for_each_ethrxq(&adap->sge, i)
4128 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4129 for_each_ofldrxq(&adap->sge, i)
4130 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4131 for_each_port(adap, i)
4132 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4133 }
4134
process_db_drop(struct work_struct * work)4135 static void process_db_drop(struct work_struct *work)
4136 {
4137 struct adapter *adap;
4138
4139 adap = container_of(work, struct adapter, db_drop_task);
4140
4141 if (is_t4(adap->params.chip)) {
4142 drain_db_fifo(adap, dbfifo_drain_delay);
4143 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4144 drain_db_fifo(adap, dbfifo_drain_delay);
4145 recover_all_queues(adap);
4146 drain_db_fifo(adap, dbfifo_drain_delay);
4147 enable_dbs(adap);
4148 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4149 } else {
4150 u32 dropped_db = t4_read_reg(adap, 0x010ac);
4151 u16 qid = (dropped_db >> 15) & 0x1ffff;
4152 u16 pidx_inc = dropped_db & 0x1fff;
4153 unsigned int s_qpp;
4154 unsigned short udb_density;
4155 unsigned long qpshift;
4156 int page;
4157 u32 udb;
4158
4159 dev_warn(adap->pdev_dev,
4160 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4161 dropped_db, qid,
4162 (dropped_db >> 14) & 1,
4163 (dropped_db >> 13) & 1,
4164 pidx_inc);
4165
4166 drain_db_fifo(adap, 1);
4167
4168 s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4169 udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4170 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4171 qpshift = PAGE_SHIFT - ilog2(udb_density);
4172 udb = qid << qpshift;
4173 udb &= PAGE_MASK;
4174 page = udb / PAGE_SIZE;
4175 udb += (qid - (page * udb_density)) * 128;
4176
4177 writel(PIDX(pidx_inc), adap->bar2 + udb + 8);
4178
4179 /* Re-enable BAR2 WC */
4180 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4181 }
4182
4183 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4184 }
4185
t4_db_full(struct adapter * adap)4186 void t4_db_full(struct adapter *adap)
4187 {
4188 if (is_t4(adap->params.chip)) {
4189 disable_dbs(adap);
4190 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4191 t4_set_reg_field(adap, SGE_INT_ENABLE3,
4192 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4193 queue_work(adap->workq, &adap->db_full_task);
4194 }
4195 }
4196
t4_db_dropped(struct adapter * adap)4197 void t4_db_dropped(struct adapter *adap)
4198 {
4199 if (is_t4(adap->params.chip)) {
4200 disable_dbs(adap);
4201 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4202 }
4203 queue_work(adap->workq, &adap->db_drop_task);
4204 }
4205
uld_attach(struct adapter * adap,unsigned int uld)4206 static void uld_attach(struct adapter *adap, unsigned int uld)
4207 {
4208 void *handle;
4209 struct cxgb4_lld_info lli;
4210 unsigned short i;
4211
4212 lli.pdev = adap->pdev;
4213 lli.pf = adap->fn;
4214 lli.l2t = adap->l2t;
4215 lli.tids = &adap->tids;
4216 lli.ports = adap->port;
4217 lli.vr = &adap->vres;
4218 lli.mtus = adap->params.mtus;
4219 if (uld == CXGB4_ULD_RDMA) {
4220 lli.rxq_ids = adap->sge.rdma_rxq;
4221 lli.ciq_ids = adap->sge.rdma_ciq;
4222 lli.nrxq = adap->sge.rdmaqs;
4223 lli.nciq = adap->sge.rdmaciqs;
4224 } else if (uld == CXGB4_ULD_ISCSI) {
4225 lli.rxq_ids = adap->sge.ofld_rxq;
4226 lli.nrxq = adap->sge.ofldqsets;
4227 }
4228 lli.ntxq = adap->sge.ofldqsets;
4229 lli.nchan = adap->params.nports;
4230 lli.nports = adap->params.nports;
4231 lli.wr_cred = adap->params.ofldq_wr_cred;
4232 lli.adapter_type = adap->params.chip;
4233 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4234 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4235 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4236 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4237 (adap->fn * 4));
4238 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4239 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4240 (adap->fn * 4));
4241 lli.filt_mode = adap->params.tp.vlan_pri_map;
4242 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4243 for (i = 0; i < NCHAN; i++)
4244 lli.tx_modq[i] = i;
4245 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4246 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4247 lli.fw_vers = adap->params.fw_vers;
4248 lli.dbfifo_int_thresh = dbfifo_int_thresh;
4249 lli.sge_ingpadboundary = adap->sge.fl_align;
4250 lli.sge_egrstatuspagesize = adap->sge.stat_len;
4251 lli.sge_pktshift = adap->sge.pktshift;
4252 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4253 lli.max_ordird_qp = adap->params.max_ordird_qp;
4254 lli.max_ird_adapter = adap->params.max_ird_adapter;
4255 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4256
4257 handle = ulds[uld].add(&lli);
4258 if (IS_ERR(handle)) {
4259 dev_warn(adap->pdev_dev,
4260 "could not attach to the %s driver, error %ld\n",
4261 uld_str[uld], PTR_ERR(handle));
4262 return;
4263 }
4264
4265 adap->uld_handle[uld] = handle;
4266
4267 if (!netevent_registered) {
4268 register_netevent_notifier(&cxgb4_netevent_nb);
4269 netevent_registered = true;
4270 }
4271
4272 if (adap->flags & FULL_INIT_DONE)
4273 ulds[uld].state_change(handle, CXGB4_STATE_UP);
4274 }
4275
attach_ulds(struct adapter * adap)4276 static void attach_ulds(struct adapter *adap)
4277 {
4278 unsigned int i;
4279
4280 spin_lock(&adap_rcu_lock);
4281 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4282 spin_unlock(&adap_rcu_lock);
4283
4284 mutex_lock(&uld_mutex);
4285 list_add_tail(&adap->list_node, &adapter_list);
4286 for (i = 0; i < CXGB4_ULD_MAX; i++)
4287 if (ulds[i].add)
4288 uld_attach(adap, i);
4289 mutex_unlock(&uld_mutex);
4290 }
4291
detach_ulds(struct adapter * adap)4292 static void detach_ulds(struct adapter *adap)
4293 {
4294 unsigned int i;
4295
4296 mutex_lock(&uld_mutex);
4297 list_del(&adap->list_node);
4298 for (i = 0; i < CXGB4_ULD_MAX; i++)
4299 if (adap->uld_handle[i]) {
4300 ulds[i].state_change(adap->uld_handle[i],
4301 CXGB4_STATE_DETACH);
4302 adap->uld_handle[i] = NULL;
4303 }
4304 if (netevent_registered && list_empty(&adapter_list)) {
4305 unregister_netevent_notifier(&cxgb4_netevent_nb);
4306 netevent_registered = false;
4307 }
4308 mutex_unlock(&uld_mutex);
4309
4310 spin_lock(&adap_rcu_lock);
4311 list_del_rcu(&adap->rcu_node);
4312 spin_unlock(&adap_rcu_lock);
4313 }
4314
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)4315 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4316 {
4317 unsigned int i;
4318
4319 mutex_lock(&uld_mutex);
4320 for (i = 0; i < CXGB4_ULD_MAX; i++)
4321 if (adap->uld_handle[i])
4322 ulds[i].state_change(adap->uld_handle[i], new_state);
4323 mutex_unlock(&uld_mutex);
4324 }
4325
4326 /**
4327 * cxgb4_register_uld - register an upper-layer driver
4328 * @type: the ULD type
4329 * @p: the ULD methods
4330 *
4331 * Registers an upper-layer driver with this driver and notifies the ULD
4332 * about any presently available devices that support its type. Returns
4333 * %-EBUSY if a ULD of the same type is already registered.
4334 */
cxgb4_register_uld(enum cxgb4_uld type,const struct cxgb4_uld_info * p)4335 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4336 {
4337 int ret = 0;
4338 struct adapter *adap;
4339
4340 if (type >= CXGB4_ULD_MAX)
4341 return -EINVAL;
4342 mutex_lock(&uld_mutex);
4343 if (ulds[type].add) {
4344 ret = -EBUSY;
4345 goto out;
4346 }
4347 ulds[type] = *p;
4348 list_for_each_entry(adap, &adapter_list, list_node)
4349 uld_attach(adap, type);
4350 out: mutex_unlock(&uld_mutex);
4351 return ret;
4352 }
4353 EXPORT_SYMBOL(cxgb4_register_uld);
4354
4355 /**
4356 * cxgb4_unregister_uld - unregister an upper-layer driver
4357 * @type: the ULD type
4358 *
4359 * Unregisters an existing upper-layer driver.
4360 */
cxgb4_unregister_uld(enum cxgb4_uld type)4361 int cxgb4_unregister_uld(enum cxgb4_uld type)
4362 {
4363 struct adapter *adap;
4364
4365 if (type >= CXGB4_ULD_MAX)
4366 return -EINVAL;
4367 mutex_lock(&uld_mutex);
4368 list_for_each_entry(adap, &adapter_list, list_node)
4369 adap->uld_handle[type] = NULL;
4370 ulds[type].add = NULL;
4371 mutex_unlock(&uld_mutex);
4372 return 0;
4373 }
4374 EXPORT_SYMBOL(cxgb4_unregister_uld);
4375
4376 /* Check if netdev on which event is occured belongs to us or not. Return
4377 * success (true) if it belongs otherwise failure (false).
4378 * Called with rcu_read_lock() held.
4379 */
4380 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_netdev(const struct net_device * netdev)4381 static bool cxgb4_netdev(const struct net_device *netdev)
4382 {
4383 struct adapter *adap;
4384 int i;
4385
4386 list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4387 for (i = 0; i < MAX_NPORTS; i++)
4388 if (adap->port[i] == netdev)
4389 return true;
4390 return false;
4391 }
4392
clip_add(struct net_device * event_dev,struct inet6_ifaddr * ifa,unsigned long event)4393 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4394 unsigned long event)
4395 {
4396 int ret = NOTIFY_DONE;
4397
4398 rcu_read_lock();
4399 if (cxgb4_netdev(event_dev)) {
4400 switch (event) {
4401 case NETDEV_UP:
4402 ret = cxgb4_clip_get(event_dev,
4403 (const struct in6_addr *)ifa->addr.s6_addr);
4404 if (ret < 0) {
4405 rcu_read_unlock();
4406 return ret;
4407 }
4408 ret = NOTIFY_OK;
4409 break;
4410 case NETDEV_DOWN:
4411 cxgb4_clip_release(event_dev,
4412 (const struct in6_addr *)ifa->addr.s6_addr);
4413 ret = NOTIFY_OK;
4414 break;
4415 default:
4416 break;
4417 }
4418 }
4419 rcu_read_unlock();
4420 return ret;
4421 }
4422
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)4423 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4424 unsigned long event, void *data)
4425 {
4426 struct inet6_ifaddr *ifa = data;
4427 struct net_device *event_dev;
4428 int ret = NOTIFY_DONE;
4429 struct bonding *bond = netdev_priv(ifa->idev->dev);
4430 struct list_head *iter;
4431 struct slave *slave;
4432 struct pci_dev *first_pdev = NULL;
4433
4434 if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4435 event_dev = vlan_dev_real_dev(ifa->idev->dev);
4436 ret = clip_add(event_dev, ifa, event);
4437 } else if (ifa->idev->dev->flags & IFF_MASTER) {
4438 /* It is possible that two different adapters are bonded in one
4439 * bond. We need to find such different adapters and add clip
4440 * in all of them only once.
4441 */
4442 bond_for_each_slave(bond, slave, iter) {
4443 if (!first_pdev) {
4444 ret = clip_add(slave->dev, ifa, event);
4445 /* If clip_add is success then only initialize
4446 * first_pdev since it means it is our device
4447 */
4448 if (ret == NOTIFY_OK)
4449 first_pdev = to_pci_dev(
4450 slave->dev->dev.parent);
4451 } else if (first_pdev !=
4452 to_pci_dev(slave->dev->dev.parent))
4453 ret = clip_add(slave->dev, ifa, event);
4454 }
4455 } else
4456 ret = clip_add(ifa->idev->dev, ifa, event);
4457
4458 return ret;
4459 }
4460
4461 static struct notifier_block cxgb4_inet6addr_notifier = {
4462 .notifier_call = cxgb4_inet6addr_handler
4463 };
4464
4465 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4466 * a physical device.
4467 * The physical device reference is needed to send the actul CLIP command.
4468 */
update_dev_clip(struct net_device * root_dev,struct net_device * dev)4469 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4470 {
4471 struct inet6_dev *idev = NULL;
4472 struct inet6_ifaddr *ifa;
4473 int ret = 0;
4474
4475 idev = __in6_dev_get(root_dev);
4476 if (!idev)
4477 return ret;
4478
4479 read_lock_bh(&idev->lock);
4480 list_for_each_entry(ifa, &idev->addr_list, if_list) {
4481 ret = cxgb4_clip_get(dev,
4482 (const struct in6_addr *)ifa->addr.s6_addr);
4483 if (ret < 0)
4484 break;
4485 }
4486 read_unlock_bh(&idev->lock);
4487
4488 return ret;
4489 }
4490
update_root_dev_clip(struct net_device * dev)4491 static int update_root_dev_clip(struct net_device *dev)
4492 {
4493 struct net_device *root_dev = NULL;
4494 int i, ret = 0;
4495
4496 /* First populate the real net device's IPv6 addresses */
4497 ret = update_dev_clip(dev, dev);
4498 if (ret)
4499 return ret;
4500
4501 /* Parse all bond and vlan devices layered on top of the physical dev */
4502 root_dev = netdev_master_upper_dev_get_rcu(dev);
4503 if (root_dev) {
4504 ret = update_dev_clip(root_dev, dev);
4505 if (ret)
4506 return ret;
4507 }
4508
4509 for (i = 0; i < VLAN_N_VID; i++) {
4510 root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4511 if (!root_dev)
4512 continue;
4513
4514 ret = update_dev_clip(root_dev, dev);
4515 if (ret)
4516 break;
4517 }
4518 return ret;
4519 }
4520
update_clip(const struct adapter * adap)4521 static void update_clip(const struct adapter *adap)
4522 {
4523 int i;
4524 struct net_device *dev;
4525 int ret;
4526
4527 rcu_read_lock();
4528
4529 for (i = 0; i < MAX_NPORTS; i++) {
4530 dev = adap->port[i];
4531 ret = 0;
4532
4533 if (dev)
4534 ret = update_root_dev_clip(dev);
4535
4536 if (ret < 0)
4537 break;
4538 }
4539 rcu_read_unlock();
4540 }
4541 #endif /* IS_ENABLED(CONFIG_IPV6) */
4542
4543 /**
4544 * cxgb_up - enable the adapter
4545 * @adap: adapter being enabled
4546 *
4547 * Called when the first port is enabled, this function performs the
4548 * actions necessary to make an adapter operational, such as completing
4549 * the initialization of HW modules, and enabling interrupts.
4550 *
4551 * Must be called with the rtnl lock held.
4552 */
cxgb_up(struct adapter * adap)4553 static int cxgb_up(struct adapter *adap)
4554 {
4555 int err;
4556
4557 err = setup_sge_queues(adap);
4558 if (err)
4559 goto out;
4560 err = setup_rss(adap);
4561 if (err)
4562 goto freeq;
4563
4564 if (adap->flags & USING_MSIX) {
4565 name_msix_vecs(adap);
4566 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4567 adap->msix_info[0].desc, adap);
4568 if (err)
4569 goto irq_err;
4570
4571 err = request_msix_queue_irqs(adap);
4572 if (err) {
4573 free_irq(adap->msix_info[0].vec, adap);
4574 goto irq_err;
4575 }
4576 } else {
4577 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4578 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4579 adap->port[0]->name, adap);
4580 if (err)
4581 goto irq_err;
4582 }
4583
4584 mutex_lock(&uld_mutex);
4585 enable_rx(adap);
4586 t4_sge_start(adap);
4587 t4_intr_enable(adap);
4588 adap->flags |= FULL_INIT_DONE;
4589 mutex_unlock(&uld_mutex);
4590
4591 notify_ulds(adap, CXGB4_STATE_UP);
4592 #if IS_ENABLED(CONFIG_IPV6)
4593 update_clip(adap);
4594 #endif
4595 out:
4596 return err;
4597 irq_err:
4598 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4599 freeq:
4600 t4_free_sge_resources(adap);
4601 goto out;
4602 }
4603
cxgb_down(struct adapter * adapter)4604 static void cxgb_down(struct adapter *adapter)
4605 {
4606 t4_intr_disable(adapter);
4607 cancel_work_sync(&adapter->tid_release_task);
4608 cancel_work_sync(&adapter->db_full_task);
4609 cancel_work_sync(&adapter->db_drop_task);
4610 adapter->tid_release_task_busy = false;
4611 adapter->tid_release_head = NULL;
4612
4613 if (adapter->flags & USING_MSIX) {
4614 free_msix_queue_irqs(adapter);
4615 free_irq(adapter->msix_info[0].vec, adapter);
4616 } else
4617 free_irq(adapter->pdev->irq, adapter);
4618 quiesce_rx(adapter);
4619 t4_sge_stop(adapter);
4620 t4_free_sge_resources(adapter);
4621 adapter->flags &= ~FULL_INIT_DONE;
4622 }
4623
4624 /*
4625 * net_device operations
4626 */
cxgb_open(struct net_device * dev)4627 static int cxgb_open(struct net_device *dev)
4628 {
4629 int err;
4630 struct port_info *pi = netdev_priv(dev);
4631 struct adapter *adapter = pi->adapter;
4632
4633 netif_carrier_off(dev);
4634
4635 if (!(adapter->flags & FULL_INIT_DONE)) {
4636 err = cxgb_up(adapter);
4637 if (err < 0)
4638 return err;
4639 }
4640
4641 err = link_start(dev);
4642 if (!err)
4643 netif_tx_start_all_queues(dev);
4644 return err;
4645 }
4646
cxgb_close(struct net_device * dev)4647 static int cxgb_close(struct net_device *dev)
4648 {
4649 struct port_info *pi = netdev_priv(dev);
4650 struct adapter *adapter = pi->adapter;
4651
4652 netif_tx_stop_all_queues(dev);
4653 netif_carrier_off(dev);
4654 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4655 }
4656
4657 /* Return an error number if the indicated filter isn't writable ...
4658 */
writable_filter(struct filter_entry * f)4659 static int writable_filter(struct filter_entry *f)
4660 {
4661 if (f->locked)
4662 return -EPERM;
4663 if (f->pending)
4664 return -EBUSY;
4665
4666 return 0;
4667 }
4668
4669 /* Delete the filter at the specified index (if valid). The checks for all
4670 * the common problems with doing this like the filter being locked, currently
4671 * pending in another operation, etc.
4672 */
delete_filter(struct adapter * adapter,unsigned int fidx)4673 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4674 {
4675 struct filter_entry *f;
4676 int ret;
4677
4678 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4679 return -EINVAL;
4680
4681 f = &adapter->tids.ftid_tab[fidx];
4682 ret = writable_filter(f);
4683 if (ret)
4684 return ret;
4685 if (f->valid)
4686 return del_filter_wr(adapter, fidx);
4687
4688 return 0;
4689 }
4690
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)4691 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4692 __be32 sip, __be16 sport, __be16 vlan,
4693 unsigned int queue, unsigned char port, unsigned char mask)
4694 {
4695 int ret;
4696 struct filter_entry *f;
4697 struct adapter *adap;
4698 int i;
4699 u8 *val;
4700
4701 adap = netdev2adap(dev);
4702
4703 /* Adjust stid to correct filter index */
4704 stid -= adap->tids.sftid_base;
4705 stid += adap->tids.nftids;
4706
4707 /* Check to make sure the filter requested is writable ...
4708 */
4709 f = &adap->tids.ftid_tab[stid];
4710 ret = writable_filter(f);
4711 if (ret)
4712 return ret;
4713
4714 /* Clear out any old resources being used by the filter before
4715 * we start constructing the new filter.
4716 */
4717 if (f->valid)
4718 clear_filter(adap, f);
4719
4720 /* Clear out filter specifications */
4721 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4722 f->fs.val.lport = cpu_to_be16(sport);
4723 f->fs.mask.lport = ~0;
4724 val = (u8 *)&sip;
4725 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4726 for (i = 0; i < 4; i++) {
4727 f->fs.val.lip[i] = val[i];
4728 f->fs.mask.lip[i] = ~0;
4729 }
4730 if (adap->params.tp.vlan_pri_map & F_PORT) {
4731 f->fs.val.iport = port;
4732 f->fs.mask.iport = mask;
4733 }
4734 }
4735
4736 if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4737 f->fs.val.proto = IPPROTO_TCP;
4738 f->fs.mask.proto = ~0;
4739 }
4740
4741 f->fs.dirsteer = 1;
4742 f->fs.iq = queue;
4743 /* Mark filter as locked */
4744 f->locked = 1;
4745 f->fs.rpttid = 1;
4746
4747 ret = set_filter_wr(adap, stid);
4748 if (ret) {
4749 clear_filter(adap, f);
4750 return ret;
4751 }
4752
4753 return 0;
4754 }
4755 EXPORT_SYMBOL(cxgb4_create_server_filter);
4756
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)4757 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4758 unsigned int queue, bool ipv6)
4759 {
4760 int ret;
4761 struct filter_entry *f;
4762 struct adapter *adap;
4763
4764 adap = netdev2adap(dev);
4765
4766 /* Adjust stid to correct filter index */
4767 stid -= adap->tids.sftid_base;
4768 stid += adap->tids.nftids;
4769
4770 f = &adap->tids.ftid_tab[stid];
4771 /* Unlock the filter */
4772 f->locked = 0;
4773
4774 ret = delete_filter(adap, stid);
4775 if (ret)
4776 return ret;
4777
4778 return 0;
4779 }
4780 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4781
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)4782 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4783 struct rtnl_link_stats64 *ns)
4784 {
4785 struct port_stats stats;
4786 struct port_info *p = netdev_priv(dev);
4787 struct adapter *adapter = p->adapter;
4788
4789 /* Block retrieving statistics during EEH error
4790 * recovery. Otherwise, the recovery might fail
4791 * and the PCI device will be removed permanently
4792 */
4793 spin_lock(&adapter->stats_lock);
4794 if (!netif_device_present(dev)) {
4795 spin_unlock(&adapter->stats_lock);
4796 return ns;
4797 }
4798 t4_get_port_stats(adapter, p->tx_chan, &stats);
4799 spin_unlock(&adapter->stats_lock);
4800
4801 ns->tx_bytes = stats.tx_octets;
4802 ns->tx_packets = stats.tx_frames;
4803 ns->rx_bytes = stats.rx_octets;
4804 ns->rx_packets = stats.rx_frames;
4805 ns->multicast = stats.rx_mcast_frames;
4806
4807 /* detailed rx_errors */
4808 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4809 stats.rx_runt;
4810 ns->rx_over_errors = 0;
4811 ns->rx_crc_errors = stats.rx_fcs_err;
4812 ns->rx_frame_errors = stats.rx_symbol_err;
4813 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
4814 stats.rx_ovflow2 + stats.rx_ovflow3 +
4815 stats.rx_trunc0 + stats.rx_trunc1 +
4816 stats.rx_trunc2 + stats.rx_trunc3;
4817 ns->rx_missed_errors = 0;
4818
4819 /* detailed tx_errors */
4820 ns->tx_aborted_errors = 0;
4821 ns->tx_carrier_errors = 0;
4822 ns->tx_fifo_errors = 0;
4823 ns->tx_heartbeat_errors = 0;
4824 ns->tx_window_errors = 0;
4825
4826 ns->tx_errors = stats.tx_error_frames;
4827 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4828 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4829 return ns;
4830 }
4831
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)4832 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4833 {
4834 unsigned int mbox;
4835 int ret = 0, prtad, devad;
4836 struct port_info *pi = netdev_priv(dev);
4837 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4838
4839 switch (cmd) {
4840 case SIOCGMIIPHY:
4841 if (pi->mdio_addr < 0)
4842 return -EOPNOTSUPP;
4843 data->phy_id = pi->mdio_addr;
4844 break;
4845 case SIOCGMIIREG:
4846 case SIOCSMIIREG:
4847 if (mdio_phy_id_is_c45(data->phy_id)) {
4848 prtad = mdio_phy_id_prtad(data->phy_id);
4849 devad = mdio_phy_id_devad(data->phy_id);
4850 } else if (data->phy_id < 32) {
4851 prtad = data->phy_id;
4852 devad = 0;
4853 data->reg_num &= 0x1f;
4854 } else
4855 return -EINVAL;
4856
4857 mbox = pi->adapter->fn;
4858 if (cmd == SIOCGMIIREG)
4859 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4860 data->reg_num, &data->val_out);
4861 else
4862 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4863 data->reg_num, data->val_in);
4864 break;
4865 default:
4866 return -EOPNOTSUPP;
4867 }
4868 return ret;
4869 }
4870
cxgb_set_rxmode(struct net_device * dev)4871 static void cxgb_set_rxmode(struct net_device *dev)
4872 {
4873 /* unfortunately we can't return errors to the stack */
4874 set_rxmode(dev, -1, false);
4875 }
4876
cxgb_change_mtu(struct net_device * dev,int new_mtu)4877 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4878 {
4879 int ret;
4880 struct port_info *pi = netdev_priv(dev);
4881
4882 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
4883 return -EINVAL;
4884 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4885 -1, -1, -1, true);
4886 if (!ret)
4887 dev->mtu = new_mtu;
4888 return ret;
4889 }
4890
cxgb_set_mac_addr(struct net_device * dev,void * p)4891 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4892 {
4893 int ret;
4894 struct sockaddr *addr = p;
4895 struct port_info *pi = netdev_priv(dev);
4896
4897 if (!is_valid_ether_addr(addr->sa_data))
4898 return -EADDRNOTAVAIL;
4899
4900 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4901 pi->xact_addr_filt, addr->sa_data, true, true);
4902 if (ret < 0)
4903 return ret;
4904
4905 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4906 pi->xact_addr_filt = ret;
4907 return 0;
4908 }
4909
4910 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)4911 static void cxgb_netpoll(struct net_device *dev)
4912 {
4913 struct port_info *pi = netdev_priv(dev);
4914 struct adapter *adap = pi->adapter;
4915
4916 if (adap->flags & USING_MSIX) {
4917 int i;
4918 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4919
4920 for (i = pi->nqsets; i; i--, rx++)
4921 t4_sge_intr_msix(0, &rx->rspq);
4922 } else
4923 t4_intr_handler(adap)(0, adap);
4924 }
4925 #endif
4926
4927 static const struct net_device_ops cxgb4_netdev_ops = {
4928 .ndo_open = cxgb_open,
4929 .ndo_stop = cxgb_close,
4930 .ndo_start_xmit = t4_eth_xmit,
4931 .ndo_select_queue = cxgb_select_queue,
4932 .ndo_get_stats64 = cxgb_get_stats,
4933 .ndo_set_rx_mode = cxgb_set_rxmode,
4934 .ndo_set_mac_address = cxgb_set_mac_addr,
4935 .ndo_set_features = cxgb_set_features,
4936 .ndo_validate_addr = eth_validate_addr,
4937 .ndo_do_ioctl = cxgb_ioctl,
4938 .ndo_change_mtu = cxgb_change_mtu,
4939 #ifdef CONFIG_NET_POLL_CONTROLLER
4940 .ndo_poll_controller = cxgb_netpoll,
4941 #endif
4942 };
4943
t4_fatal_err(struct adapter * adap)4944 void t4_fatal_err(struct adapter *adap)
4945 {
4946 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4947 t4_intr_disable(adap);
4948 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4949 }
4950
4951 /* Return the specified PCI-E Configuration Space register from our Physical
4952 * Function. We try first via a Firmware LDST Command since we prefer to let
4953 * the firmware own all of these registers, but if that fails we go for it
4954 * directly ourselves.
4955 */
t4_read_pcie_cfg4(struct adapter * adap,int reg)4956 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4957 {
4958 struct fw_ldst_cmd ldst_cmd;
4959 u32 val;
4960 int ret;
4961
4962 /* Construct and send the Firmware LDST Command to retrieve the
4963 * specified PCI-E Configuration Space register.
4964 */
4965 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4966 ldst_cmd.op_to_addrspace =
4967 htonl(FW_CMD_OP(FW_LDST_CMD) |
4968 FW_CMD_REQUEST |
4969 FW_CMD_READ |
4970 FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4971 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4972 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4973 ldst_cmd.u.pcie.ctrl_to_fn =
4974 (FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4975 ldst_cmd.u.pcie.r = reg;
4976 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4977 &ldst_cmd);
4978
4979 /* If the LDST Command suucceeded, exctract the returned register
4980 * value. Otherwise read it directly ourself.
4981 */
4982 if (ret == 0)
4983 val = ntohl(ldst_cmd.u.pcie.data[0]);
4984 else
4985 t4_hw_pci_read_cfg4(adap, reg, &val);
4986
4987 return val;
4988 }
4989
setup_memwin(struct adapter * adap)4990 static void setup_memwin(struct adapter *adap)
4991 {
4992 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4993
4994 if (is_t4(adap->params.chip)) {
4995 u32 bar0;
4996
4997 /* Truncation intentional: we only read the bottom 32-bits of
4998 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
4999 * mechanism to read BAR0 instead of using
5000 * pci_resource_start() because we could be operating from
5001 * within a Virtual Machine which is trapping our accesses to
5002 * our Configuration Space and we need to set up the PCI-E
5003 * Memory Window decoders with the actual addresses which will
5004 * be coming across the PCI-E link.
5005 */
5006 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
5007 bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
5008 adap->t4_bar0 = bar0;
5009
5010 mem_win0_base = bar0 + MEMWIN0_BASE;
5011 mem_win1_base = bar0 + MEMWIN1_BASE;
5012 mem_win2_base = bar0 + MEMWIN2_BASE;
5013 mem_win2_aperture = MEMWIN2_APERTURE;
5014 } else {
5015 /* For T5, only relative offset inside the PCIe BAR is passed */
5016 mem_win0_base = MEMWIN0_BASE;
5017 mem_win1_base = MEMWIN1_BASE;
5018 mem_win2_base = MEMWIN2_BASE_T5;
5019 mem_win2_aperture = MEMWIN2_APERTURE_T5;
5020 }
5021 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
5022 mem_win0_base | BIR(0) |
5023 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
5024 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
5025 mem_win1_base | BIR(0) |
5026 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
5027 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
5028 mem_win2_base | BIR(0) |
5029 WINDOW(ilog2(mem_win2_aperture) - 10));
5030 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
5031 }
5032
setup_memwin_rdma(struct adapter * adap)5033 static void setup_memwin_rdma(struct adapter *adap)
5034 {
5035 if (adap->vres.ocq.size) {
5036 u32 start;
5037 unsigned int sz_kb;
5038
5039 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
5040 start &= PCI_BASE_ADDRESS_MEM_MASK;
5041 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
5042 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
5043 t4_write_reg(adap,
5044 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
5045 start | BIR(1) | WINDOW(ilog2(sz_kb)));
5046 t4_write_reg(adap,
5047 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
5048 adap->vres.ocq.start);
5049 t4_read_reg(adap,
5050 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
5051 }
5052 }
5053
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)5054 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
5055 {
5056 u32 v;
5057 int ret;
5058
5059 /* get device capabilities */
5060 memset(c, 0, sizeof(*c));
5061 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5062 FW_CMD_REQUEST | FW_CMD_READ);
5063 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
5064 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5065 if (ret < 0)
5066 return ret;
5067
5068 /* select capabilities we'll be using */
5069 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5070 if (!vf_acls)
5071 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5072 else
5073 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5074 } else if (vf_acls) {
5075 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5076 return ret;
5077 }
5078 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5079 FW_CMD_REQUEST | FW_CMD_WRITE);
5080 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5081 if (ret < 0)
5082 return ret;
5083
5084 ret = t4_config_glbl_rss(adap, adap->fn,
5085 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5086 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5087 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5088 if (ret < 0)
5089 return ret;
5090
5091 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5092 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5093 if (ret < 0)
5094 return ret;
5095
5096 t4_sge_init(adap);
5097
5098 /* tweak some settings */
5099 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5100 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5101 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5102 v = t4_read_reg(adap, TP_PIO_DATA);
5103 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5104
5105 /* first 4 Tx modulation queues point to consecutive Tx channels */
5106 adap->params.tp.tx_modq_map = 0xE4;
5107 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5108 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5109
5110 /* associate each Tx modulation queue with consecutive Tx channels */
5111 v = 0x84218421;
5112 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5113 &v, 1, A_TP_TX_SCHED_HDR);
5114 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5115 &v, 1, A_TP_TX_SCHED_FIFO);
5116 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5117 &v, 1, A_TP_TX_SCHED_PCMD);
5118
5119 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5120 if (is_offload(adap)) {
5121 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5122 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5123 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5124 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5125 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5126 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5127 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5128 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5129 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5130 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5131 }
5132
5133 /* get basic stuff going */
5134 return t4_early_init(adap, adap->fn);
5135 }
5136
5137 /*
5138 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
5139 */
5140 #define MAX_ATIDS 8192U
5141
5142 /*
5143 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5144 *
5145 * If the firmware we're dealing with has Configuration File support, then
5146 * we use that to perform all configuration
5147 */
5148
5149 /*
5150 * Tweak configuration based on module parameters, etc. Most of these have
5151 * defaults assigned to them by Firmware Configuration Files (if we're using
5152 * them) but need to be explicitly set if we're using hard-coded
5153 * initialization. But even in the case of using Firmware Configuration
5154 * Files, we'd like to expose the ability to change these via module
5155 * parameters so these are essentially common tweaks/settings for
5156 * Configuration Files and hard-coded initialization ...
5157 */
adap_init0_tweaks(struct adapter * adapter)5158 static int adap_init0_tweaks(struct adapter *adapter)
5159 {
5160 /*
5161 * Fix up various Host-Dependent Parameters like Page Size, Cache
5162 * Line Size, etc. The firmware default is for a 4KB Page Size and
5163 * 64B Cache Line Size ...
5164 */
5165 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5166
5167 /*
5168 * Process module parameters which affect early initialization.
5169 */
5170 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5171 dev_err(&adapter->pdev->dev,
5172 "Ignoring illegal rx_dma_offset=%d, using 2\n",
5173 rx_dma_offset);
5174 rx_dma_offset = 2;
5175 }
5176 t4_set_reg_field(adapter, SGE_CONTROL,
5177 PKTSHIFT_MASK,
5178 PKTSHIFT(rx_dma_offset));
5179
5180 /*
5181 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5182 * adds the pseudo header itself.
5183 */
5184 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5185 CSUM_HAS_PSEUDO_HDR, 0);
5186
5187 return 0;
5188 }
5189
5190 /*
5191 * Attempt to initialize the adapter via a Firmware Configuration File.
5192 */
adap_init0_config(struct adapter * adapter,int reset)5193 static int adap_init0_config(struct adapter *adapter, int reset)
5194 {
5195 struct fw_caps_config_cmd caps_cmd;
5196 const struct firmware *cf;
5197 unsigned long mtype = 0, maddr = 0;
5198 u32 finiver, finicsum, cfcsum;
5199 int ret;
5200 int config_issued = 0;
5201 char *fw_config_file, fw_config_file_path[256];
5202 char *config_name = NULL;
5203
5204 /*
5205 * Reset device if necessary.
5206 */
5207 if (reset) {
5208 ret = t4_fw_reset(adapter, adapter->mbox,
5209 PIORSTMODE | PIORST);
5210 if (ret < 0)
5211 goto bye;
5212 }
5213
5214 /*
5215 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5216 * then use that. Otherwise, use the configuration file stored
5217 * in the adapter flash ...
5218 */
5219 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5220 case CHELSIO_T4:
5221 fw_config_file = FW4_CFNAME;
5222 break;
5223 case CHELSIO_T5:
5224 fw_config_file = FW5_CFNAME;
5225 break;
5226 default:
5227 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5228 adapter->pdev->device);
5229 ret = -EINVAL;
5230 goto bye;
5231 }
5232
5233 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5234 if (ret < 0) {
5235 config_name = "On FLASH";
5236 mtype = FW_MEMTYPE_CF_FLASH;
5237 maddr = t4_flash_cfg_addr(adapter);
5238 } else {
5239 u32 params[7], val[7];
5240
5241 sprintf(fw_config_file_path,
5242 "/lib/firmware/%s", fw_config_file);
5243 config_name = fw_config_file_path;
5244
5245 if (cf->size >= FLASH_CFG_MAX_SIZE)
5246 ret = -ENOMEM;
5247 else {
5248 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5249 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5250 ret = t4_query_params(adapter, adapter->mbox,
5251 adapter->fn, 0, 1, params, val);
5252 if (ret == 0) {
5253 /*
5254 * For t4_memory_rw() below addresses and
5255 * sizes have to be in terms of multiples of 4
5256 * bytes. So, if the Configuration File isn't
5257 * a multiple of 4 bytes in length we'll have
5258 * to write that out separately since we can't
5259 * guarantee that the bytes following the
5260 * residual byte in the buffer returned by
5261 * request_firmware() are zeroed out ...
5262 */
5263 size_t resid = cf->size & 0x3;
5264 size_t size = cf->size & ~0x3;
5265 __be32 *data = (__be32 *)cf->data;
5266
5267 mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5268 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5269
5270 spin_lock(&adapter->win0_lock);
5271 ret = t4_memory_rw(adapter, 0, mtype, maddr,
5272 size, data, T4_MEMORY_WRITE);
5273 if (ret == 0 && resid != 0) {
5274 union {
5275 __be32 word;
5276 char buf[4];
5277 } last;
5278 int i;
5279
5280 last.word = data[size >> 2];
5281 for (i = resid; i < 4; i++)
5282 last.buf[i] = 0;
5283 ret = t4_memory_rw(adapter, 0, mtype,
5284 maddr + size,
5285 4, &last.word,
5286 T4_MEMORY_WRITE);
5287 }
5288 spin_unlock(&adapter->win0_lock);
5289 }
5290 }
5291
5292 release_firmware(cf);
5293 if (ret)
5294 goto bye;
5295 }
5296
5297 /*
5298 * Issue a Capability Configuration command to the firmware to get it
5299 * to parse the Configuration File. We don't use t4_fw_config_file()
5300 * because we want the ability to modify various features after we've
5301 * processed the configuration file ...
5302 */
5303 memset(&caps_cmd, 0, sizeof(caps_cmd));
5304 caps_cmd.op_to_write =
5305 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5306 FW_CMD_REQUEST |
5307 FW_CMD_READ);
5308 caps_cmd.cfvalid_to_len16 =
5309 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5310 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5311 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5312 FW_LEN16(caps_cmd));
5313 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5314 &caps_cmd);
5315
5316 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5317 * Configuration File in FLASH), our last gasp effort is to use the
5318 * Firmware Configuration File which is embedded in the firmware. A
5319 * very few early versions of the firmware didn't have one embedded
5320 * but we can ignore those.
5321 */
5322 if (ret == -ENOENT) {
5323 memset(&caps_cmd, 0, sizeof(caps_cmd));
5324 caps_cmd.op_to_write =
5325 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5326 FW_CMD_REQUEST |
5327 FW_CMD_READ);
5328 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5329 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5330 sizeof(caps_cmd), &caps_cmd);
5331 config_name = "Firmware Default";
5332 }
5333
5334 config_issued = 1;
5335 if (ret < 0)
5336 goto bye;
5337
5338 finiver = ntohl(caps_cmd.finiver);
5339 finicsum = ntohl(caps_cmd.finicsum);
5340 cfcsum = ntohl(caps_cmd.cfcsum);
5341 if (finicsum != cfcsum)
5342 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5343 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5344 finicsum, cfcsum);
5345
5346 /*
5347 * And now tell the firmware to use the configuration we just loaded.
5348 */
5349 caps_cmd.op_to_write =
5350 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5351 FW_CMD_REQUEST |
5352 FW_CMD_WRITE);
5353 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5354 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5355 NULL);
5356 if (ret < 0)
5357 goto bye;
5358
5359 /*
5360 * Tweak configuration based on system architecture, module
5361 * parameters, etc.
5362 */
5363 ret = adap_init0_tweaks(adapter);
5364 if (ret < 0)
5365 goto bye;
5366
5367 /*
5368 * And finally tell the firmware to initialize itself using the
5369 * parameters from the Configuration File.
5370 */
5371 ret = t4_fw_initialize(adapter, adapter->mbox);
5372 if (ret < 0)
5373 goto bye;
5374
5375 /*
5376 * Return successfully and note that we're operating with parameters
5377 * not supplied by the driver, rather than from hard-wired
5378 * initialization constants burried in the driver.
5379 */
5380 adapter->flags |= USING_SOFT_PARAMS;
5381 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5382 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5383 config_name, finiver, cfcsum);
5384 return 0;
5385
5386 /*
5387 * Something bad happened. Return the error ... (If the "error"
5388 * is that there's no Configuration File on the adapter we don't
5389 * want to issue a warning since this is fairly common.)
5390 */
5391 bye:
5392 if (config_issued && ret != -ENOENT)
5393 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5394 config_name, -ret);
5395 return ret;
5396 }
5397
5398 /*
5399 * Attempt to initialize the adapter via hard-coded, driver supplied
5400 * parameters ...
5401 */
adap_init0_no_config(struct adapter * adapter,int reset)5402 static int adap_init0_no_config(struct adapter *adapter, int reset)
5403 {
5404 struct sge *s = &adapter->sge;
5405 struct fw_caps_config_cmd caps_cmd;
5406 u32 v;
5407 int i, ret;
5408
5409 /*
5410 * Reset device if necessary
5411 */
5412 if (reset) {
5413 ret = t4_fw_reset(adapter, adapter->mbox,
5414 PIORSTMODE | PIORST);
5415 if (ret < 0)
5416 goto bye;
5417 }
5418
5419 /*
5420 * Get device capabilities and select which we'll be using.
5421 */
5422 memset(&caps_cmd, 0, sizeof(caps_cmd));
5423 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5424 FW_CMD_REQUEST | FW_CMD_READ);
5425 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5426 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5427 &caps_cmd);
5428 if (ret < 0)
5429 goto bye;
5430
5431 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5432 if (!vf_acls)
5433 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5434 else
5435 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5436 } else if (vf_acls) {
5437 dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5438 goto bye;
5439 }
5440 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5441 FW_CMD_REQUEST | FW_CMD_WRITE);
5442 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5443 NULL);
5444 if (ret < 0)
5445 goto bye;
5446
5447 /*
5448 * Tweak configuration based on system architecture, module
5449 * parameters, etc.
5450 */
5451 ret = adap_init0_tweaks(adapter);
5452 if (ret < 0)
5453 goto bye;
5454
5455 /*
5456 * Select RSS Global Mode we want to use. We use "Basic Virtual"
5457 * mode which maps each Virtual Interface to its own section of
5458 * the RSS Table and we turn on all map and hash enables ...
5459 */
5460 adapter->flags |= RSS_TNLALLLOOKUP;
5461 ret = t4_config_glbl_rss(adapter, adapter->mbox,
5462 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5463 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5464 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5465 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5466 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5467 if (ret < 0)
5468 goto bye;
5469
5470 /*
5471 * Set up our own fundamental resource provisioning ...
5472 */
5473 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5474 PFRES_NEQ, PFRES_NETHCTRL,
5475 PFRES_NIQFLINT, PFRES_NIQ,
5476 PFRES_TC, PFRES_NVI,
5477 FW_PFVF_CMD_CMASK_MASK,
5478 pfvfres_pmask(adapter, adapter->fn, 0),
5479 PFRES_NEXACTF,
5480 PFRES_R_CAPS, PFRES_WX_CAPS);
5481 if (ret < 0)
5482 goto bye;
5483
5484 /*
5485 * Perform low level SGE initialization. We need to do this before we
5486 * send the firmware the INITIALIZE command because that will cause
5487 * any other PF Drivers which are waiting for the Master
5488 * Initialization to proceed forward.
5489 */
5490 for (i = 0; i < SGE_NTIMERS - 1; i++)
5491 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5492 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5493 s->counter_val[0] = 1;
5494 for (i = 1; i < SGE_NCOUNTERS; i++)
5495 s->counter_val[i] = min(intr_cnt[i - 1],
5496 THRESHOLD_0_GET(THRESHOLD_0_MASK));
5497 t4_sge_init(adapter);
5498
5499 #ifdef CONFIG_PCI_IOV
5500 /*
5501 * Provision resource limits for Virtual Functions. We currently
5502 * grant them all the same static resource limits except for the Port
5503 * Access Rights Mask which we're assigning based on the PF. All of
5504 * the static provisioning stuff for both the PF and VF really needs
5505 * to be managed in a persistent manner for each device which the
5506 * firmware controls.
5507 */
5508 {
5509 int pf, vf;
5510
5511 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5512 if (num_vf[pf] <= 0)
5513 continue;
5514
5515 /* VF numbering starts at 1! */
5516 for (vf = 1; vf <= num_vf[pf]; vf++) {
5517 ret = t4_cfg_pfvf(adapter, adapter->mbox,
5518 pf, vf,
5519 VFRES_NEQ, VFRES_NETHCTRL,
5520 VFRES_NIQFLINT, VFRES_NIQ,
5521 VFRES_TC, VFRES_NVI,
5522 FW_PFVF_CMD_CMASK_MASK,
5523 pfvfres_pmask(
5524 adapter, pf, vf),
5525 VFRES_NEXACTF,
5526 VFRES_R_CAPS, VFRES_WX_CAPS);
5527 if (ret < 0)
5528 dev_warn(adapter->pdev_dev,
5529 "failed to "\
5530 "provision pf/vf=%d/%d; "
5531 "err=%d\n", pf, vf, ret);
5532 }
5533 }
5534 }
5535 #endif
5536
5537 /*
5538 * Set up the default filter mode. Later we'll want to implement this
5539 * via a firmware command, etc. ... This needs to be done before the
5540 * firmare initialization command ... If the selected set of fields
5541 * isn't equal to the default value, we'll need to make sure that the
5542 * field selections will fit in the 36-bit budget.
5543 */
5544 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5545 int j, bits = 0;
5546
5547 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5548 switch (tp_vlan_pri_map & (1 << j)) {
5549 case 0:
5550 /* compressed filter field not enabled */
5551 break;
5552 case FCOE_MASK:
5553 bits += 1;
5554 break;
5555 case PORT_MASK:
5556 bits += 3;
5557 break;
5558 case VNIC_ID_MASK:
5559 bits += 17;
5560 break;
5561 case VLAN_MASK:
5562 bits += 17;
5563 break;
5564 case TOS_MASK:
5565 bits += 8;
5566 break;
5567 case PROTOCOL_MASK:
5568 bits += 8;
5569 break;
5570 case ETHERTYPE_MASK:
5571 bits += 16;
5572 break;
5573 case MACMATCH_MASK:
5574 bits += 9;
5575 break;
5576 case MPSHITTYPE_MASK:
5577 bits += 3;
5578 break;
5579 case FRAGMENTATION_MASK:
5580 bits += 1;
5581 break;
5582 }
5583
5584 if (bits > 36) {
5585 dev_err(adapter->pdev_dev,
5586 "tp_vlan_pri_map=%#x needs %d bits > 36;"\
5587 " using %#x\n", tp_vlan_pri_map, bits,
5588 TP_VLAN_PRI_MAP_DEFAULT);
5589 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5590 }
5591 }
5592 v = tp_vlan_pri_map;
5593 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5594 &v, 1, TP_VLAN_PRI_MAP);
5595
5596 /*
5597 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5598 * to support any of the compressed filter fields above. Newer
5599 * versions of the firmware do this automatically but it doesn't hurt
5600 * to set it here. Meanwhile, we do _not_ need to set Lookup Every
5601 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5602 * since the firmware automatically turns this on and off when we have
5603 * a non-zero number of filters active (since it does have a
5604 * performance impact).
5605 */
5606 if (tp_vlan_pri_map)
5607 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5608 FIVETUPLELOOKUP_MASK,
5609 FIVETUPLELOOKUP_MASK);
5610
5611 /*
5612 * Tweak some settings.
5613 */
5614 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5615 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5616 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5617 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5618
5619 /*
5620 * Get basic stuff going by issuing the Firmware Initialize command.
5621 * Note that this _must_ be after all PFVF commands ...
5622 */
5623 ret = t4_fw_initialize(adapter, adapter->mbox);
5624 if (ret < 0)
5625 goto bye;
5626
5627 /*
5628 * Return successfully!
5629 */
5630 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5631 "driver parameters\n");
5632 return 0;
5633
5634 /*
5635 * Something bad happened. Return the error ...
5636 */
5637 bye:
5638 return ret;
5639 }
5640
5641 static struct fw_info fw_info_array[] = {
5642 {
5643 .chip = CHELSIO_T4,
5644 .fs_name = FW4_CFNAME,
5645 .fw_mod_name = FW4_FNAME,
5646 .fw_hdr = {
5647 .chip = FW_HDR_CHIP_T4,
5648 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5649 .intfver_nic = FW_INTFVER(T4, NIC),
5650 .intfver_vnic = FW_INTFVER(T4, VNIC),
5651 .intfver_ri = FW_INTFVER(T4, RI),
5652 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
5653 .intfver_fcoe = FW_INTFVER(T4, FCOE),
5654 },
5655 }, {
5656 .chip = CHELSIO_T5,
5657 .fs_name = FW5_CFNAME,
5658 .fw_mod_name = FW5_FNAME,
5659 .fw_hdr = {
5660 .chip = FW_HDR_CHIP_T5,
5661 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5662 .intfver_nic = FW_INTFVER(T5, NIC),
5663 .intfver_vnic = FW_INTFVER(T5, VNIC),
5664 .intfver_ri = FW_INTFVER(T5, RI),
5665 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
5666 .intfver_fcoe = FW_INTFVER(T5, FCOE),
5667 },
5668 }
5669 };
5670
find_fw_info(int chip)5671 static struct fw_info *find_fw_info(int chip)
5672 {
5673 int i;
5674
5675 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5676 if (fw_info_array[i].chip == chip)
5677 return &fw_info_array[i];
5678 }
5679 return NULL;
5680 }
5681
5682 /*
5683 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5684 */
adap_init0(struct adapter * adap)5685 static int adap_init0(struct adapter *adap)
5686 {
5687 int ret;
5688 u32 v, port_vec;
5689 enum dev_state state;
5690 u32 params[7], val[7];
5691 struct fw_caps_config_cmd caps_cmd;
5692 int reset = 1;
5693
5694 /*
5695 * Contact FW, advertising Master capability (and potentially forcing
5696 * ourselves as the Master PF if our module parameter force_init is
5697 * set).
5698 */
5699 ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5700 force_init ? MASTER_MUST : MASTER_MAY,
5701 &state);
5702 if (ret < 0) {
5703 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5704 ret);
5705 return ret;
5706 }
5707 if (ret == adap->mbox)
5708 adap->flags |= MASTER_PF;
5709 if (force_init && state == DEV_STATE_INIT)
5710 state = DEV_STATE_UNINIT;
5711
5712 /*
5713 * If we're the Master PF Driver and the device is uninitialized,
5714 * then let's consider upgrading the firmware ... (We always want
5715 * to check the firmware version number in order to A. get it for
5716 * later reporting and B. to warn if the currently loaded firmware
5717 * is excessively mismatched relative to the driver.)
5718 */
5719 t4_get_fw_version(adap, &adap->params.fw_vers);
5720 t4_get_tp_version(adap, &adap->params.tp_vers);
5721 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5722 struct fw_info *fw_info;
5723 struct fw_hdr *card_fw;
5724 const struct firmware *fw;
5725 const u8 *fw_data = NULL;
5726 unsigned int fw_size = 0;
5727
5728 /* This is the firmware whose headers the driver was compiled
5729 * against
5730 */
5731 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5732 if (fw_info == NULL) {
5733 dev_err(adap->pdev_dev,
5734 "unable to get firmware info for chip %d.\n",
5735 CHELSIO_CHIP_VERSION(adap->params.chip));
5736 return -EINVAL;
5737 }
5738
5739 /* allocate memory to read the header of the firmware on the
5740 * card
5741 */
5742 card_fw = t4_alloc_mem(sizeof(*card_fw));
5743
5744 /* Get FW from from /lib/firmware/ */
5745 ret = request_firmware(&fw, fw_info->fw_mod_name,
5746 adap->pdev_dev);
5747 if (ret < 0) {
5748 dev_err(adap->pdev_dev,
5749 "unable to load firmware image %s, error %d\n",
5750 fw_info->fw_mod_name, ret);
5751 } else {
5752 fw_data = fw->data;
5753 fw_size = fw->size;
5754 }
5755
5756 /* upgrade FW logic */
5757 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5758 state, &reset);
5759
5760 /* Cleaning up */
5761 if (fw != NULL)
5762 release_firmware(fw);
5763 t4_free_mem(card_fw);
5764
5765 if (ret < 0)
5766 goto bye;
5767 }
5768
5769 /*
5770 * Grab VPD parameters. This should be done after we establish a
5771 * connection to the firmware since some of the VPD parameters
5772 * (notably the Core Clock frequency) are retrieved via requests to
5773 * the firmware. On the other hand, we need these fairly early on
5774 * so we do this right after getting ahold of the firmware.
5775 */
5776 ret = get_vpd_params(adap, &adap->params.vpd);
5777 if (ret < 0)
5778 goto bye;
5779
5780 /*
5781 * Find out what ports are available to us. Note that we need to do
5782 * this before calling adap_init0_no_config() since it needs nports
5783 * and portvec ...
5784 */
5785 v =
5786 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5787 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5788 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5789 if (ret < 0)
5790 goto bye;
5791
5792 adap->params.nports = hweight32(port_vec);
5793 adap->params.portvec = port_vec;
5794
5795 /*
5796 * If the firmware is initialized already (and we're not forcing a
5797 * master initialization), note that we're living with existing
5798 * adapter parameters. Otherwise, it's time to try initializing the
5799 * adapter ...
5800 */
5801 if (state == DEV_STATE_INIT) {
5802 dev_info(adap->pdev_dev, "Coming up as %s: "\
5803 "Adapter already initialized\n",
5804 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5805 adap->flags |= USING_SOFT_PARAMS;
5806 } else {
5807 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5808 "Initializing adapter\n");
5809
5810 /*
5811 * If the firmware doesn't support Configuration
5812 * Files warn user and exit,
5813 */
5814 if (ret < 0)
5815 dev_warn(adap->pdev_dev, "Firmware doesn't support "
5816 "configuration file.\n");
5817 if (force_old_init)
5818 ret = adap_init0_no_config(adap, reset);
5819 else {
5820 /*
5821 * Find out whether we're dealing with a version of
5822 * the firmware which has configuration file support.
5823 */
5824 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5825 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5826 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5827 params, val);
5828
5829 /*
5830 * If the firmware doesn't support Configuration
5831 * Files, use the old Driver-based, hard-wired
5832 * initialization. Otherwise, try using the
5833 * Configuration File support and fall back to the
5834 * Driver-based initialization if there's no
5835 * Configuration File found.
5836 */
5837 if (ret < 0)
5838 ret = adap_init0_no_config(adap, reset);
5839 else {
5840 /*
5841 * The firmware provides us with a memory
5842 * buffer where we can load a Configuration
5843 * File from the host if we want to override
5844 * the Configuration File in flash.
5845 */
5846
5847 ret = adap_init0_config(adap, reset);
5848 if (ret == -ENOENT) {
5849 dev_info(adap->pdev_dev,
5850 "No Configuration File present "
5851 "on adapter. Using hard-wired "
5852 "configuration parameters.\n");
5853 ret = adap_init0_no_config(adap, reset);
5854 }
5855 }
5856 }
5857 if (ret < 0) {
5858 dev_err(adap->pdev_dev,
5859 "could not initialize adapter, error %d\n",
5860 -ret);
5861 goto bye;
5862 }
5863 }
5864
5865 /*
5866 * If we're living with non-hard-coded parameters (either from a
5867 * Firmware Configuration File or values programmed by a different PF
5868 * Driver), give the SGE code a chance to pull in anything that it
5869 * needs ... Note that this must be called after we retrieve our VPD
5870 * parameters in order to know how to convert core ticks to seconds.
5871 */
5872 if (adap->flags & USING_SOFT_PARAMS) {
5873 ret = t4_sge_init(adap);
5874 if (ret < 0)
5875 goto bye;
5876 }
5877
5878 if (is_bypass_device(adap->pdev->device))
5879 adap->params.bypass = 1;
5880
5881 /*
5882 * Grab some of our basic fundamental operating parameters.
5883 */
5884 #define FW_PARAM_DEV(param) \
5885 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5886 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5887
5888 #define FW_PARAM_PFVF(param) \
5889 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5890 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \
5891 FW_PARAMS_PARAM_Y(0) | \
5892 FW_PARAMS_PARAM_Z(0)
5893
5894 params[0] = FW_PARAM_PFVF(EQ_START);
5895 params[1] = FW_PARAM_PFVF(L2T_START);
5896 params[2] = FW_PARAM_PFVF(L2T_END);
5897 params[3] = FW_PARAM_PFVF(FILTER_START);
5898 params[4] = FW_PARAM_PFVF(FILTER_END);
5899 params[5] = FW_PARAM_PFVF(IQFLINT_START);
5900 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5901 if (ret < 0)
5902 goto bye;
5903 adap->sge.egr_start = val[0];
5904 adap->l2t_start = val[1];
5905 adap->l2t_end = val[2];
5906 adap->tids.ftid_base = val[3];
5907 adap->tids.nftids = val[4] - val[3] + 1;
5908 adap->sge.ingr_start = val[5];
5909
5910 /* query params related to active filter region */
5911 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5912 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5913 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5914 /* If Active filter size is set we enable establishing
5915 * offload connection through firmware work request
5916 */
5917 if ((val[0] != val[1]) && (ret >= 0)) {
5918 adap->flags |= FW_OFLD_CONN;
5919 adap->tids.aftid_base = val[0];
5920 adap->tids.aftid_end = val[1];
5921 }
5922
5923 /* If we're running on newer firmware, let it know that we're
5924 * prepared to deal with encapsulated CPL messages. Older
5925 * firmware won't understand this and we'll just get
5926 * unencapsulated messages ...
5927 */
5928 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5929 val[0] = 1;
5930 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5931
5932 /*
5933 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5934 * capability. Earlier versions of the firmware didn't have the
5935 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5936 * permission to use ULPTX MEMWRITE DSGL.
5937 */
5938 if (is_t4(adap->params.chip)) {
5939 adap->params.ulptx_memwrite_dsgl = false;
5940 } else {
5941 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5942 ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5943 1, params, val);
5944 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5945 }
5946
5947 /*
5948 * Get device capabilities so we can determine what resources we need
5949 * to manage.
5950 */
5951 memset(&caps_cmd, 0, sizeof(caps_cmd));
5952 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5953 FW_CMD_REQUEST | FW_CMD_READ);
5954 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5955 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5956 &caps_cmd);
5957 if (ret < 0)
5958 goto bye;
5959
5960 if (caps_cmd.ofldcaps) {
5961 /* query offload-related parameters */
5962 params[0] = FW_PARAM_DEV(NTID);
5963 params[1] = FW_PARAM_PFVF(SERVER_START);
5964 params[2] = FW_PARAM_PFVF(SERVER_END);
5965 params[3] = FW_PARAM_PFVF(TDDP_START);
5966 params[4] = FW_PARAM_PFVF(TDDP_END);
5967 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5968 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5969 params, val);
5970 if (ret < 0)
5971 goto bye;
5972 adap->tids.ntids = val[0];
5973 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5974 adap->tids.stid_base = val[1];
5975 adap->tids.nstids = val[2] - val[1] + 1;
5976 /*
5977 * Setup server filter region. Divide the availble filter
5978 * region into two parts. Regular filters get 1/3rd and server
5979 * filters get 2/3rd part. This is only enabled if workarond
5980 * path is enabled.
5981 * 1. For regular filters.
5982 * 2. Server filter: This are special filters which are used
5983 * to redirect SYN packets to offload queue.
5984 */
5985 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5986 adap->tids.sftid_base = adap->tids.ftid_base +
5987 DIV_ROUND_UP(adap->tids.nftids, 3);
5988 adap->tids.nsftids = adap->tids.nftids -
5989 DIV_ROUND_UP(adap->tids.nftids, 3);
5990 adap->tids.nftids = adap->tids.sftid_base -
5991 adap->tids.ftid_base;
5992 }
5993 adap->vres.ddp.start = val[3];
5994 adap->vres.ddp.size = val[4] - val[3] + 1;
5995 adap->params.ofldq_wr_cred = val[5];
5996
5997 adap->params.offload = 1;
5998 }
5999 if (caps_cmd.rdmacaps) {
6000 params[0] = FW_PARAM_PFVF(STAG_START);
6001 params[1] = FW_PARAM_PFVF(STAG_END);
6002 params[2] = FW_PARAM_PFVF(RQ_START);
6003 params[3] = FW_PARAM_PFVF(RQ_END);
6004 params[4] = FW_PARAM_PFVF(PBL_START);
6005 params[5] = FW_PARAM_PFVF(PBL_END);
6006 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
6007 params, val);
6008 if (ret < 0)
6009 goto bye;
6010 adap->vres.stag.start = val[0];
6011 adap->vres.stag.size = val[1] - val[0] + 1;
6012 adap->vres.rq.start = val[2];
6013 adap->vres.rq.size = val[3] - val[2] + 1;
6014 adap->vres.pbl.start = val[4];
6015 adap->vres.pbl.size = val[5] - val[4] + 1;
6016
6017 params[0] = FW_PARAM_PFVF(SQRQ_START);
6018 params[1] = FW_PARAM_PFVF(SQRQ_END);
6019 params[2] = FW_PARAM_PFVF(CQ_START);
6020 params[3] = FW_PARAM_PFVF(CQ_END);
6021 params[4] = FW_PARAM_PFVF(OCQ_START);
6022 params[5] = FW_PARAM_PFVF(OCQ_END);
6023 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
6024 val);
6025 if (ret < 0)
6026 goto bye;
6027 adap->vres.qp.start = val[0];
6028 adap->vres.qp.size = val[1] - val[0] + 1;
6029 adap->vres.cq.start = val[2];
6030 adap->vres.cq.size = val[3] - val[2] + 1;
6031 adap->vres.ocq.start = val[4];
6032 adap->vres.ocq.size = val[5] - val[4] + 1;
6033
6034 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
6035 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
6036 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
6037 val);
6038 if (ret < 0) {
6039 adap->params.max_ordird_qp = 8;
6040 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
6041 ret = 0;
6042 } else {
6043 adap->params.max_ordird_qp = val[0];
6044 adap->params.max_ird_adapter = val[1];
6045 }
6046 dev_info(adap->pdev_dev,
6047 "max_ordird_qp %d max_ird_adapter %d\n",
6048 adap->params.max_ordird_qp,
6049 adap->params.max_ird_adapter);
6050 }
6051 if (caps_cmd.iscsicaps) {
6052 params[0] = FW_PARAM_PFVF(ISCSI_START);
6053 params[1] = FW_PARAM_PFVF(ISCSI_END);
6054 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
6055 params, val);
6056 if (ret < 0)
6057 goto bye;
6058 adap->vres.iscsi.start = val[0];
6059 adap->vres.iscsi.size = val[1] - val[0] + 1;
6060 }
6061 #undef FW_PARAM_PFVF
6062 #undef FW_PARAM_DEV
6063
6064 /* The MTU/MSS Table is initialized by now, so load their values. If
6065 * we're initializing the adapter, then we'll make any modifications
6066 * we want to the MTU/MSS Table and also initialize the congestion
6067 * parameters.
6068 */
6069 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6070 if (state != DEV_STATE_INIT) {
6071 int i;
6072
6073 /* The default MTU Table contains values 1492 and 1500.
6074 * However, for TCP, it's better to have two values which are
6075 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6076 * This allows us to have a TCP Data Payload which is a
6077 * multiple of 8 regardless of what combination of TCP Options
6078 * are in use (always a multiple of 4 bytes) which is
6079 * important for performance reasons. For instance, if no
6080 * options are in use, then we have a 20-byte IP header and a
6081 * 20-byte TCP header. In this case, a 1500-byte MSS would
6082 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6083 * which is not a multiple of 8. So using an MSS of 1488 in
6084 * this case results in a TCP Data Payload of 1448 bytes which
6085 * is a multiple of 8. On the other hand, if 12-byte TCP Time
6086 * Stamps have been negotiated, then an MTU of 1500 bytes
6087 * results in a TCP Data Payload of 1448 bytes which, as
6088 * above, is a multiple of 8 bytes ...
6089 */
6090 for (i = 0; i < NMTUS; i++)
6091 if (adap->params.mtus[i] == 1492) {
6092 adap->params.mtus[i] = 1488;
6093 break;
6094 }
6095
6096 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6097 adap->params.b_wnd);
6098 }
6099 t4_init_tp_params(adap);
6100 adap->flags |= FW_OK;
6101 return 0;
6102
6103 /*
6104 * Something bad happened. If a command timed out or failed with EIO
6105 * FW does not operate within its spec or something catastrophic
6106 * happened to HW/FW, stop issuing commands.
6107 */
6108 bye:
6109 if (ret != -ETIMEDOUT && ret != -EIO)
6110 t4_fw_bye(adap, adap->mbox);
6111 return ret;
6112 }
6113
6114 /* EEH callbacks */
6115
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)6116 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6117 pci_channel_state_t state)
6118 {
6119 int i;
6120 struct adapter *adap = pci_get_drvdata(pdev);
6121
6122 if (!adap)
6123 goto out;
6124
6125 rtnl_lock();
6126 adap->flags &= ~FW_OK;
6127 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6128 spin_lock(&adap->stats_lock);
6129 for_each_port(adap, i) {
6130 struct net_device *dev = adap->port[i];
6131
6132 netif_device_detach(dev);
6133 netif_carrier_off(dev);
6134 }
6135 spin_unlock(&adap->stats_lock);
6136 if (adap->flags & FULL_INIT_DONE)
6137 cxgb_down(adap);
6138 rtnl_unlock();
6139 if ((adap->flags & DEV_ENABLED)) {
6140 pci_disable_device(pdev);
6141 adap->flags &= ~DEV_ENABLED;
6142 }
6143 out: return state == pci_channel_io_perm_failure ?
6144 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6145 }
6146
eeh_slot_reset(struct pci_dev * pdev)6147 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6148 {
6149 int i, ret;
6150 struct fw_caps_config_cmd c;
6151 struct adapter *adap = pci_get_drvdata(pdev);
6152
6153 if (!adap) {
6154 pci_restore_state(pdev);
6155 pci_save_state(pdev);
6156 return PCI_ERS_RESULT_RECOVERED;
6157 }
6158
6159 if (!(adap->flags & DEV_ENABLED)) {
6160 if (pci_enable_device(pdev)) {
6161 dev_err(&pdev->dev, "Cannot reenable PCI "
6162 "device after reset\n");
6163 return PCI_ERS_RESULT_DISCONNECT;
6164 }
6165 adap->flags |= DEV_ENABLED;
6166 }
6167
6168 pci_set_master(pdev);
6169 pci_restore_state(pdev);
6170 pci_save_state(pdev);
6171 pci_cleanup_aer_uncorrect_error_status(pdev);
6172
6173 if (t4_wait_dev_ready(adap->regs) < 0)
6174 return PCI_ERS_RESULT_DISCONNECT;
6175 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6176 return PCI_ERS_RESULT_DISCONNECT;
6177 adap->flags |= FW_OK;
6178 if (adap_init1(adap, &c))
6179 return PCI_ERS_RESULT_DISCONNECT;
6180
6181 for_each_port(adap, i) {
6182 struct port_info *p = adap2pinfo(adap, i);
6183
6184 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6185 NULL, NULL);
6186 if (ret < 0)
6187 return PCI_ERS_RESULT_DISCONNECT;
6188 p->viid = ret;
6189 p->xact_addr_filt = -1;
6190 }
6191
6192 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6193 adap->params.b_wnd);
6194 setup_memwin(adap);
6195 if (cxgb_up(adap))
6196 return PCI_ERS_RESULT_DISCONNECT;
6197 return PCI_ERS_RESULT_RECOVERED;
6198 }
6199
eeh_resume(struct pci_dev * pdev)6200 static void eeh_resume(struct pci_dev *pdev)
6201 {
6202 int i;
6203 struct adapter *adap = pci_get_drvdata(pdev);
6204
6205 if (!adap)
6206 return;
6207
6208 rtnl_lock();
6209 for_each_port(adap, i) {
6210 struct net_device *dev = adap->port[i];
6211
6212 if (netif_running(dev)) {
6213 link_start(dev);
6214 cxgb_set_rxmode(dev);
6215 }
6216 netif_device_attach(dev);
6217 }
6218 rtnl_unlock();
6219 }
6220
6221 static const struct pci_error_handlers cxgb4_eeh = {
6222 .error_detected = eeh_err_detected,
6223 .slot_reset = eeh_slot_reset,
6224 .resume = eeh_resume,
6225 };
6226
is_x_10g_port(const struct link_config * lc)6227 static inline bool is_x_10g_port(const struct link_config *lc)
6228 {
6229 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6230 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6231 }
6232
init_rspq(struct adapter * adap,struct sge_rspq * q,unsigned int us,unsigned int cnt,unsigned int size,unsigned int iqe_size)6233 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6234 unsigned int us, unsigned int cnt,
6235 unsigned int size, unsigned int iqe_size)
6236 {
6237 q->adap = adap;
6238 set_rspq_intr_params(q, us, cnt);
6239 q->iqe_len = iqe_size;
6240 q->size = size;
6241 }
6242
6243 /*
6244 * Perform default configuration of DMA queues depending on the number and type
6245 * of ports we found and the number of available CPUs. Most settings can be
6246 * modified by the admin prior to actual use.
6247 */
cfg_queues(struct adapter * adap)6248 static void cfg_queues(struct adapter *adap)
6249 {
6250 struct sge *s = &adap->sge;
6251 int i, n10g = 0, qidx = 0;
6252 #ifndef CONFIG_CHELSIO_T4_DCB
6253 int q10g = 0;
6254 #endif
6255 int ciq_size;
6256
6257 for_each_port(adap, i)
6258 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6259 #ifdef CONFIG_CHELSIO_T4_DCB
6260 /* For Data Center Bridging support we need to be able to support up
6261 * to 8 Traffic Priorities; each of which will be assigned to its
6262 * own TX Queue in order to prevent Head-Of-Line Blocking.
6263 */
6264 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6265 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6266 MAX_ETH_QSETS, adap->params.nports * 8);
6267 BUG_ON(1);
6268 }
6269
6270 for_each_port(adap, i) {
6271 struct port_info *pi = adap2pinfo(adap, i);
6272
6273 pi->first_qset = qidx;
6274 pi->nqsets = 8;
6275 qidx += pi->nqsets;
6276 }
6277 #else /* !CONFIG_CHELSIO_T4_DCB */
6278 /*
6279 * We default to 1 queue per non-10G port and up to # of cores queues
6280 * per 10G port.
6281 */
6282 if (n10g)
6283 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6284 if (q10g > netif_get_num_default_rss_queues())
6285 q10g = netif_get_num_default_rss_queues();
6286
6287 for_each_port(adap, i) {
6288 struct port_info *pi = adap2pinfo(adap, i);
6289
6290 pi->first_qset = qidx;
6291 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6292 qidx += pi->nqsets;
6293 }
6294 #endif /* !CONFIG_CHELSIO_T4_DCB */
6295
6296 s->ethqsets = qidx;
6297 s->max_ethqsets = qidx; /* MSI-X may lower it later */
6298
6299 if (is_offload(adap)) {
6300 /*
6301 * For offload we use 1 queue/channel if all ports are up to 1G,
6302 * otherwise we divide all available queues amongst the channels
6303 * capped by the number of available cores.
6304 */
6305 if (n10g) {
6306 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6307 num_online_cpus());
6308 s->ofldqsets = roundup(i, adap->params.nports);
6309 } else
6310 s->ofldqsets = adap->params.nports;
6311 /* For RDMA one Rx queue per channel suffices */
6312 s->rdmaqs = adap->params.nports;
6313 s->rdmaciqs = adap->params.nports;
6314 }
6315
6316 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6317 struct sge_eth_rxq *r = &s->ethrxq[i];
6318
6319 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6320 r->fl.size = 72;
6321 }
6322
6323 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6324 s->ethtxq[i].q.size = 1024;
6325
6326 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6327 s->ctrlq[i].q.size = 512;
6328
6329 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6330 s->ofldtxq[i].q.size = 1024;
6331
6332 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6333 struct sge_ofld_rxq *r = &s->ofldrxq[i];
6334
6335 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6336 r->rspq.uld = CXGB4_ULD_ISCSI;
6337 r->fl.size = 72;
6338 }
6339
6340 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6341 struct sge_ofld_rxq *r = &s->rdmarxq[i];
6342
6343 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6344 r->rspq.uld = CXGB4_ULD_RDMA;
6345 r->fl.size = 72;
6346 }
6347
6348 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6349 if (ciq_size > SGE_MAX_IQ_SIZE) {
6350 CH_WARN(adap, "CIQ size too small for available IQs\n");
6351 ciq_size = SGE_MAX_IQ_SIZE;
6352 }
6353
6354 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6355 struct sge_ofld_rxq *r = &s->rdmaciq[i];
6356
6357 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6358 r->rspq.uld = CXGB4_ULD_RDMA;
6359 }
6360
6361 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6362 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6363 }
6364
6365 /*
6366 * Reduce the number of Ethernet queues across all ports to at most n.
6367 * n provides at least one queue per port.
6368 */
reduce_ethqs(struct adapter * adap,int n)6369 static void reduce_ethqs(struct adapter *adap, int n)
6370 {
6371 int i;
6372 struct port_info *pi;
6373
6374 while (n < adap->sge.ethqsets)
6375 for_each_port(adap, i) {
6376 pi = adap2pinfo(adap, i);
6377 if (pi->nqsets > 1) {
6378 pi->nqsets--;
6379 adap->sge.ethqsets--;
6380 if (adap->sge.ethqsets <= n)
6381 break;
6382 }
6383 }
6384
6385 n = 0;
6386 for_each_port(adap, i) {
6387 pi = adap2pinfo(adap, i);
6388 pi->first_qset = n;
6389 n += pi->nqsets;
6390 }
6391 }
6392
6393 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6394 #define EXTRA_VECS 2
6395
enable_msix(struct adapter * adap)6396 static int enable_msix(struct adapter *adap)
6397 {
6398 int ofld_need = 0;
6399 int i, want, need;
6400 struct sge *s = &adap->sge;
6401 unsigned int nchan = adap->params.nports;
6402 struct msix_entry entries[MAX_INGQ + 1];
6403
6404 for (i = 0; i < ARRAY_SIZE(entries); ++i)
6405 entries[i].entry = i;
6406
6407 want = s->max_ethqsets + EXTRA_VECS;
6408 if (is_offload(adap)) {
6409 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6410 /* need nchan for each possible ULD */
6411 ofld_need = 3 * nchan;
6412 }
6413 #ifdef CONFIG_CHELSIO_T4_DCB
6414 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6415 * each port.
6416 */
6417 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6418 #else
6419 need = adap->params.nports + EXTRA_VECS + ofld_need;
6420 #endif
6421 want = pci_enable_msix_range(adap->pdev, entries, need, want);
6422 if (want < 0)
6423 return want;
6424
6425 /*
6426 * Distribute available vectors to the various queue groups.
6427 * Every group gets its minimum requirement and NIC gets top
6428 * priority for leftovers.
6429 */
6430 i = want - EXTRA_VECS - ofld_need;
6431 if (i < s->max_ethqsets) {
6432 s->max_ethqsets = i;
6433 if (i < s->ethqsets)
6434 reduce_ethqs(adap, i);
6435 }
6436 if (is_offload(adap)) {
6437 i = want - EXTRA_VECS - s->max_ethqsets;
6438 i -= ofld_need - nchan;
6439 s->ofldqsets = (i / nchan) * nchan; /* round down */
6440 }
6441 for (i = 0; i < want; ++i)
6442 adap->msix_info[i].vec = entries[i].vector;
6443
6444 return 0;
6445 }
6446
6447 #undef EXTRA_VECS
6448
init_rss(struct adapter * adap)6449 static int init_rss(struct adapter *adap)
6450 {
6451 unsigned int i, j;
6452
6453 for_each_port(adap, i) {
6454 struct port_info *pi = adap2pinfo(adap, i);
6455
6456 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6457 if (!pi->rss)
6458 return -ENOMEM;
6459 for (j = 0; j < pi->rss_size; j++)
6460 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6461 }
6462 return 0;
6463 }
6464
print_port_info(const struct net_device * dev)6465 static void print_port_info(const struct net_device *dev)
6466 {
6467 char buf[80];
6468 char *bufp = buf;
6469 const char *spd = "";
6470 const struct port_info *pi = netdev_priv(dev);
6471 const struct adapter *adap = pi->adapter;
6472
6473 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6474 spd = " 2.5 GT/s";
6475 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6476 spd = " 5 GT/s";
6477 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6478 spd = " 8 GT/s";
6479
6480 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6481 bufp += sprintf(bufp, "100/");
6482 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6483 bufp += sprintf(bufp, "1000/");
6484 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6485 bufp += sprintf(bufp, "10G/");
6486 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6487 bufp += sprintf(bufp, "40G/");
6488 if (bufp != buf)
6489 --bufp;
6490 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6491
6492 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6493 adap->params.vpd.id,
6494 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6495 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6496 (adap->flags & USING_MSIX) ? " MSI-X" :
6497 (adap->flags & USING_MSI) ? " MSI" : "");
6498 netdev_info(dev, "S/N: %s, P/N: %s\n",
6499 adap->params.vpd.sn, adap->params.vpd.pn);
6500 }
6501
enable_pcie_relaxed_ordering(struct pci_dev * dev)6502 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6503 {
6504 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6505 }
6506
6507 /*
6508 * Free the following resources:
6509 * - memory used for tables
6510 * - MSI/MSI-X
6511 * - net devices
6512 * - resources FW is holding for us
6513 */
free_some_resources(struct adapter * adapter)6514 static void free_some_resources(struct adapter *adapter)
6515 {
6516 unsigned int i;
6517
6518 t4_free_mem(adapter->l2t);
6519 t4_free_mem(adapter->tids.tid_tab);
6520 disable_msi(adapter);
6521
6522 for_each_port(adapter, i)
6523 if (adapter->port[i]) {
6524 kfree(adap2pinfo(adapter, i)->rss);
6525 free_netdev(adapter->port[i]);
6526 }
6527 if (adapter->flags & FW_OK)
6528 t4_fw_bye(adapter, adapter->fn);
6529 }
6530
6531 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6532 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6533 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6534 #define SEGMENT_SIZE 128
6535
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)6536 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6537 {
6538 int func, i, err, s_qpp, qpp, num_seg;
6539 struct port_info *pi;
6540 bool highdma = false;
6541 struct adapter *adapter = NULL;
6542 void __iomem *regs;
6543
6544 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6545
6546 err = pci_request_regions(pdev, KBUILD_MODNAME);
6547 if (err) {
6548 /* Just info, some other driver may have claimed the device. */
6549 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6550 return err;
6551 }
6552
6553 err = pci_enable_device(pdev);
6554 if (err) {
6555 dev_err(&pdev->dev, "cannot enable PCI device\n");
6556 goto out_release_regions;
6557 }
6558
6559 regs = pci_ioremap_bar(pdev, 0);
6560 if (!regs) {
6561 dev_err(&pdev->dev, "cannot map device registers\n");
6562 err = -ENOMEM;
6563 goto out_disable_device;
6564 }
6565
6566 err = t4_wait_dev_ready(regs);
6567 if (err < 0)
6568 goto out_unmap_bar0;
6569
6570 /* We control everything through one PF */
6571 func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6572 if (func != ent->driver_data) {
6573 iounmap(regs);
6574 pci_disable_device(pdev);
6575 pci_save_state(pdev); /* to restore SR-IOV later */
6576 goto sriov;
6577 }
6578
6579 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6580 highdma = true;
6581 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6582 if (err) {
6583 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6584 "coherent allocations\n");
6585 goto out_unmap_bar0;
6586 }
6587 } else {
6588 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6589 if (err) {
6590 dev_err(&pdev->dev, "no usable DMA configuration\n");
6591 goto out_unmap_bar0;
6592 }
6593 }
6594
6595 pci_enable_pcie_error_reporting(pdev);
6596 enable_pcie_relaxed_ordering(pdev);
6597 pci_set_master(pdev);
6598 pci_save_state(pdev);
6599
6600 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6601 if (!adapter) {
6602 err = -ENOMEM;
6603 goto out_unmap_bar0;
6604 }
6605
6606 adapter->workq = create_singlethread_workqueue("cxgb4");
6607 if (!adapter->workq) {
6608 err = -ENOMEM;
6609 goto out_free_adapter;
6610 }
6611
6612 /* PCI device has been enabled */
6613 adapter->flags |= DEV_ENABLED;
6614
6615 adapter->regs = regs;
6616 adapter->pdev = pdev;
6617 adapter->pdev_dev = &pdev->dev;
6618 adapter->mbox = func;
6619 adapter->fn = func;
6620 adapter->msg_enable = dflt_msg_enable;
6621 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6622
6623 spin_lock_init(&adapter->stats_lock);
6624 spin_lock_init(&adapter->tid_release_lock);
6625 spin_lock_init(&adapter->win0_lock);
6626
6627 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6628 INIT_WORK(&adapter->db_full_task, process_db_full);
6629 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6630
6631 err = t4_prep_adapter(adapter);
6632 if (err)
6633 goto out_free_adapter;
6634
6635
6636 if (!is_t4(adapter->params.chip)) {
6637 s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6638 qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6639 SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6640 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6641
6642 /* Each segment size is 128B. Write coalescing is enabled only
6643 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6644 * queue is less no of segments that can be accommodated in
6645 * a page size.
6646 */
6647 if (qpp > num_seg) {
6648 dev_err(&pdev->dev,
6649 "Incorrect number of egress queues per page\n");
6650 err = -EINVAL;
6651 goto out_free_adapter;
6652 }
6653 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6654 pci_resource_len(pdev, 2));
6655 if (!adapter->bar2) {
6656 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6657 err = -ENOMEM;
6658 goto out_free_adapter;
6659 }
6660 }
6661
6662 setup_memwin(adapter);
6663 err = adap_init0(adapter);
6664 setup_memwin_rdma(adapter);
6665 if (err)
6666 goto out_unmap_bar;
6667
6668 for_each_port(adapter, i) {
6669 struct net_device *netdev;
6670
6671 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6672 MAX_ETH_QSETS);
6673 if (!netdev) {
6674 err = -ENOMEM;
6675 goto out_free_dev;
6676 }
6677
6678 SET_NETDEV_DEV(netdev, &pdev->dev);
6679
6680 adapter->port[i] = netdev;
6681 pi = netdev_priv(netdev);
6682 pi->adapter = adapter;
6683 pi->xact_addr_filt = -1;
6684 pi->port_id = i;
6685 netdev->irq = pdev->irq;
6686
6687 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6688 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6689 NETIF_F_RXCSUM | NETIF_F_RXHASH |
6690 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6691 if (highdma)
6692 netdev->hw_features |= NETIF_F_HIGHDMA;
6693 netdev->features |= netdev->hw_features;
6694 netdev->vlan_features = netdev->features & VLAN_FEAT;
6695
6696 netdev->priv_flags |= IFF_UNICAST_FLT;
6697
6698 netdev->netdev_ops = &cxgb4_netdev_ops;
6699 #ifdef CONFIG_CHELSIO_T4_DCB
6700 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6701 cxgb4_dcb_state_init(netdev);
6702 #endif
6703 netdev->ethtool_ops = &cxgb_ethtool_ops;
6704 }
6705
6706 pci_set_drvdata(pdev, adapter);
6707
6708 if (adapter->flags & FW_OK) {
6709 err = t4_port_init(adapter, func, func, 0);
6710 if (err)
6711 goto out_free_dev;
6712 }
6713
6714 /*
6715 * Configure queues and allocate tables now, they can be needed as
6716 * soon as the first register_netdev completes.
6717 */
6718 cfg_queues(adapter);
6719
6720 adapter->l2t = t4_init_l2t();
6721 if (!adapter->l2t) {
6722 /* We tolerate a lack of L2T, giving up some functionality */
6723 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6724 adapter->params.offload = 0;
6725 }
6726
6727 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6728 dev_warn(&pdev->dev, "could not allocate TID table, "
6729 "continuing\n");
6730 adapter->params.offload = 0;
6731 }
6732
6733 /* See what interrupts we'll be using */
6734 if (msi > 1 && enable_msix(adapter) == 0)
6735 adapter->flags |= USING_MSIX;
6736 else if (msi > 0 && pci_enable_msi(pdev) == 0)
6737 adapter->flags |= USING_MSI;
6738
6739 err = init_rss(adapter);
6740 if (err)
6741 goto out_free_dev;
6742
6743 /*
6744 * The card is now ready to go. If any errors occur during device
6745 * registration we do not fail the whole card but rather proceed only
6746 * with the ports we manage to register successfully. However we must
6747 * register at least one net device.
6748 */
6749 for_each_port(adapter, i) {
6750 pi = adap2pinfo(adapter, i);
6751 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6752 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6753
6754 err = register_netdev(adapter->port[i]);
6755 if (err)
6756 break;
6757 adapter->chan_map[pi->tx_chan] = i;
6758 print_port_info(adapter->port[i]);
6759 }
6760 if (i == 0) {
6761 dev_err(&pdev->dev, "could not register any net devices\n");
6762 goto out_free_dev;
6763 }
6764 if (err) {
6765 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6766 err = 0;
6767 }
6768
6769 if (cxgb4_debugfs_root) {
6770 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6771 cxgb4_debugfs_root);
6772 setup_debugfs(adapter);
6773 }
6774
6775 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6776 pdev->needs_freset = 1;
6777
6778 if (is_offload(adapter))
6779 attach_ulds(adapter);
6780
6781 sriov:
6782 #ifdef CONFIG_PCI_IOV
6783 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6784 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6785 dev_info(&pdev->dev,
6786 "instantiated %u virtual functions\n",
6787 num_vf[func]);
6788 #endif
6789 return 0;
6790
6791 out_free_dev:
6792 free_some_resources(adapter);
6793 out_unmap_bar:
6794 if (!is_t4(adapter->params.chip))
6795 iounmap(adapter->bar2);
6796 out_free_adapter:
6797 if (adapter->workq)
6798 destroy_workqueue(adapter->workq);
6799
6800 kfree(adapter);
6801 out_unmap_bar0:
6802 iounmap(regs);
6803 out_disable_device:
6804 pci_disable_pcie_error_reporting(pdev);
6805 pci_disable_device(pdev);
6806 out_release_regions:
6807 pci_release_regions(pdev);
6808 return err;
6809 }
6810
remove_one(struct pci_dev * pdev)6811 static void remove_one(struct pci_dev *pdev)
6812 {
6813 struct adapter *adapter = pci_get_drvdata(pdev);
6814
6815 #ifdef CONFIG_PCI_IOV
6816 pci_disable_sriov(pdev);
6817
6818 #endif
6819
6820 if (adapter) {
6821 int i;
6822
6823 /* Tear down per-adapter Work Queue first since it can contain
6824 * references to our adapter data structure.
6825 */
6826 destroy_workqueue(adapter->workq);
6827
6828 if (is_offload(adapter))
6829 detach_ulds(adapter);
6830
6831 for_each_port(adapter, i)
6832 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6833 unregister_netdev(adapter->port[i]);
6834
6835 debugfs_remove_recursive(adapter->debugfs_root);
6836
6837 /* If we allocated filters, free up state associated with any
6838 * valid filters ...
6839 */
6840 if (adapter->tids.ftid_tab) {
6841 struct filter_entry *f = &adapter->tids.ftid_tab[0];
6842 for (i = 0; i < (adapter->tids.nftids +
6843 adapter->tids.nsftids); i++, f++)
6844 if (f->valid)
6845 clear_filter(adapter, f);
6846 }
6847
6848 if (adapter->flags & FULL_INIT_DONE)
6849 cxgb_down(adapter);
6850
6851 free_some_resources(adapter);
6852 iounmap(adapter->regs);
6853 if (!is_t4(adapter->params.chip))
6854 iounmap(adapter->bar2);
6855 pci_disable_pcie_error_reporting(pdev);
6856 if ((adapter->flags & DEV_ENABLED)) {
6857 pci_disable_device(pdev);
6858 adapter->flags &= ~DEV_ENABLED;
6859 }
6860 pci_release_regions(pdev);
6861 synchronize_rcu();
6862 kfree(adapter);
6863 } else
6864 pci_release_regions(pdev);
6865 }
6866
6867 static struct pci_driver cxgb4_driver = {
6868 .name = KBUILD_MODNAME,
6869 .id_table = cxgb4_pci_tbl,
6870 .probe = init_one,
6871 .remove = remove_one,
6872 .shutdown = remove_one,
6873 .err_handler = &cxgb4_eeh,
6874 };
6875
cxgb4_init_module(void)6876 static int __init cxgb4_init_module(void)
6877 {
6878 int ret;
6879
6880 /* Debugfs support is optional, just warn if this fails */
6881 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6882 if (!cxgb4_debugfs_root)
6883 pr_warn("could not create debugfs entry, continuing\n");
6884
6885 ret = pci_register_driver(&cxgb4_driver);
6886 if (ret < 0)
6887 debugfs_remove(cxgb4_debugfs_root);
6888
6889 #if IS_ENABLED(CONFIG_IPV6)
6890 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6891 #endif
6892
6893 return ret;
6894 }
6895
cxgb4_cleanup_module(void)6896 static void __exit cxgb4_cleanup_module(void)
6897 {
6898 #if IS_ENABLED(CONFIG_IPV6)
6899 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6900 #endif
6901 pci_unregister_driver(&cxgb4_driver);
6902 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6903 }
6904
6905 module_init(cxgb4_init_module);
6906 module_exit(cxgb4_cleanup_module);
6907