1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/timer.h>
54
55 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
56
57 EXPORT_SYMBOL(jiffies_64);
58
59 /*
60 * per-CPU timer vector definitions:
61 */
62 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
63 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
64 #define TVN_SIZE (1 << TVN_BITS)
65 #define TVR_SIZE (1 << TVR_BITS)
66 #define TVN_MASK (TVN_SIZE - 1)
67 #define TVR_MASK (TVR_SIZE - 1)
68 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
69
70 struct tvec {
71 struct list_head vec[TVN_SIZE];
72 };
73
74 struct tvec_root {
75 struct list_head vec[TVR_SIZE];
76 };
77
78 struct tvec_base {
79 spinlock_t lock;
80 struct timer_list *running_timer;
81 unsigned long timer_jiffies;
82 unsigned long next_timer;
83 unsigned long active_timers;
84 unsigned long all_timers;
85 int cpu;
86 struct tvec_root tv1;
87 struct tvec tv2;
88 struct tvec tv3;
89 struct tvec tv4;
90 struct tvec tv5;
91 } ____cacheline_aligned;
92
93 struct tvec_base boot_tvec_bases;
94 EXPORT_SYMBOL(boot_tvec_bases);
95 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
96
97 /* Functions below help us manage 'deferrable' flag */
tbase_get_deferrable(struct tvec_base * base)98 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
99 {
100 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
101 }
102
tbase_get_irqsafe(struct tvec_base * base)103 static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
104 {
105 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
106 }
107
tbase_get_base(struct tvec_base * base)108 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
109 {
110 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
111 }
112
113 static inline void
timer_set_base(struct timer_list * timer,struct tvec_base * new_base)114 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
115 {
116 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
117
118 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
119 }
120
round_jiffies_common(unsigned long j,int cpu,bool force_up)121 static unsigned long round_jiffies_common(unsigned long j, int cpu,
122 bool force_up)
123 {
124 int rem;
125 unsigned long original = j;
126
127 /*
128 * We don't want all cpus firing their timers at once hitting the
129 * same lock or cachelines, so we skew each extra cpu with an extra
130 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
131 * already did this.
132 * The skew is done by adding 3*cpunr, then round, then subtract this
133 * extra offset again.
134 */
135 j += cpu * 3;
136
137 rem = j % HZ;
138
139 /*
140 * If the target jiffie is just after a whole second (which can happen
141 * due to delays of the timer irq, long irq off times etc etc) then
142 * we should round down to the whole second, not up. Use 1/4th second
143 * as cutoff for this rounding as an extreme upper bound for this.
144 * But never round down if @force_up is set.
145 */
146 if (rem < HZ/4 && !force_up) /* round down */
147 j = j - rem;
148 else /* round up */
149 j = j - rem + HZ;
150
151 /* now that we have rounded, subtract the extra skew again */
152 j -= cpu * 3;
153
154 /*
155 * Make sure j is still in the future. Otherwise return the
156 * unmodified value.
157 */
158 return time_is_after_jiffies(j) ? j : original;
159 }
160
161 /**
162 * __round_jiffies - function to round jiffies to a full second
163 * @j: the time in (absolute) jiffies that should be rounded
164 * @cpu: the processor number on which the timeout will happen
165 *
166 * __round_jiffies() rounds an absolute time in the future (in jiffies)
167 * up or down to (approximately) full seconds. This is useful for timers
168 * for which the exact time they fire does not matter too much, as long as
169 * they fire approximately every X seconds.
170 *
171 * By rounding these timers to whole seconds, all such timers will fire
172 * at the same time, rather than at various times spread out. The goal
173 * of this is to have the CPU wake up less, which saves power.
174 *
175 * The exact rounding is skewed for each processor to avoid all
176 * processors firing at the exact same time, which could lead
177 * to lock contention or spurious cache line bouncing.
178 *
179 * The return value is the rounded version of the @j parameter.
180 */
__round_jiffies(unsigned long j,int cpu)181 unsigned long __round_jiffies(unsigned long j, int cpu)
182 {
183 return round_jiffies_common(j, cpu, false);
184 }
185 EXPORT_SYMBOL_GPL(__round_jiffies);
186
187 /**
188 * __round_jiffies_relative - function to round jiffies to a full second
189 * @j: the time in (relative) jiffies that should be rounded
190 * @cpu: the processor number on which the timeout will happen
191 *
192 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
193 * up or down to (approximately) full seconds. This is useful for timers
194 * for which the exact time they fire does not matter too much, as long as
195 * they fire approximately every X seconds.
196 *
197 * By rounding these timers to whole seconds, all such timers will fire
198 * at the same time, rather than at various times spread out. The goal
199 * of this is to have the CPU wake up less, which saves power.
200 *
201 * The exact rounding is skewed for each processor to avoid all
202 * processors firing at the exact same time, which could lead
203 * to lock contention or spurious cache line bouncing.
204 *
205 * The return value is the rounded version of the @j parameter.
206 */
__round_jiffies_relative(unsigned long j,int cpu)207 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
208 {
209 unsigned long j0 = jiffies;
210
211 /* Use j0 because jiffies might change while we run */
212 return round_jiffies_common(j + j0, cpu, false) - j0;
213 }
214 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
215
216 /**
217 * round_jiffies - function to round jiffies to a full second
218 * @j: the time in (absolute) jiffies that should be rounded
219 *
220 * round_jiffies() rounds an absolute time in the future (in jiffies)
221 * up or down to (approximately) full seconds. This is useful for timers
222 * for which the exact time they fire does not matter too much, as long as
223 * they fire approximately every X seconds.
224 *
225 * By rounding these timers to whole seconds, all such timers will fire
226 * at the same time, rather than at various times spread out. The goal
227 * of this is to have the CPU wake up less, which saves power.
228 *
229 * The return value is the rounded version of the @j parameter.
230 */
round_jiffies(unsigned long j)231 unsigned long round_jiffies(unsigned long j)
232 {
233 return round_jiffies_common(j, raw_smp_processor_id(), false);
234 }
235 EXPORT_SYMBOL_GPL(round_jiffies);
236
237 /**
238 * round_jiffies_relative - function to round jiffies to a full second
239 * @j: the time in (relative) jiffies that should be rounded
240 *
241 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
242 * up or down to (approximately) full seconds. This is useful for timers
243 * for which the exact time they fire does not matter too much, as long as
244 * they fire approximately every X seconds.
245 *
246 * By rounding these timers to whole seconds, all such timers will fire
247 * at the same time, rather than at various times spread out. The goal
248 * of this is to have the CPU wake up less, which saves power.
249 *
250 * The return value is the rounded version of the @j parameter.
251 */
round_jiffies_relative(unsigned long j)252 unsigned long round_jiffies_relative(unsigned long j)
253 {
254 return __round_jiffies_relative(j, raw_smp_processor_id());
255 }
256 EXPORT_SYMBOL_GPL(round_jiffies_relative);
257
258 /**
259 * __round_jiffies_up - function to round jiffies up to a full second
260 * @j: the time in (absolute) jiffies that should be rounded
261 * @cpu: the processor number on which the timeout will happen
262 *
263 * This is the same as __round_jiffies() except that it will never
264 * round down. This is useful for timeouts for which the exact time
265 * of firing does not matter too much, as long as they don't fire too
266 * early.
267 */
__round_jiffies_up(unsigned long j,int cpu)268 unsigned long __round_jiffies_up(unsigned long j, int cpu)
269 {
270 return round_jiffies_common(j, cpu, true);
271 }
272 EXPORT_SYMBOL_GPL(__round_jiffies_up);
273
274 /**
275 * __round_jiffies_up_relative - function to round jiffies up to a full second
276 * @j: the time in (relative) jiffies that should be rounded
277 * @cpu: the processor number on which the timeout will happen
278 *
279 * This is the same as __round_jiffies_relative() except that it will never
280 * round down. This is useful for timeouts for which the exact time
281 * of firing does not matter too much, as long as they don't fire too
282 * early.
283 */
__round_jiffies_up_relative(unsigned long j,int cpu)284 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
285 {
286 unsigned long j0 = jiffies;
287
288 /* Use j0 because jiffies might change while we run */
289 return round_jiffies_common(j + j0, cpu, true) - j0;
290 }
291 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
292
293 /**
294 * round_jiffies_up - function to round jiffies up to a full second
295 * @j: the time in (absolute) jiffies that should be rounded
296 *
297 * This is the same as round_jiffies() except that it will never
298 * round down. This is useful for timeouts for which the exact time
299 * of firing does not matter too much, as long as they don't fire too
300 * early.
301 */
round_jiffies_up(unsigned long j)302 unsigned long round_jiffies_up(unsigned long j)
303 {
304 return round_jiffies_common(j, raw_smp_processor_id(), true);
305 }
306 EXPORT_SYMBOL_GPL(round_jiffies_up);
307
308 /**
309 * round_jiffies_up_relative - function to round jiffies up to a full second
310 * @j: the time in (relative) jiffies that should be rounded
311 *
312 * This is the same as round_jiffies_relative() except that it will never
313 * round down. This is useful for timeouts for which the exact time
314 * of firing does not matter too much, as long as they don't fire too
315 * early.
316 */
round_jiffies_up_relative(unsigned long j)317 unsigned long round_jiffies_up_relative(unsigned long j)
318 {
319 return __round_jiffies_up_relative(j, raw_smp_processor_id());
320 }
321 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
322
323 /**
324 * set_timer_slack - set the allowed slack for a timer
325 * @timer: the timer to be modified
326 * @slack_hz: the amount of time (in jiffies) allowed for rounding
327 *
328 * Set the amount of time, in jiffies, that a certain timer has
329 * in terms of slack. By setting this value, the timer subsystem
330 * will schedule the actual timer somewhere between
331 * the time mod_timer() asks for, and that time plus the slack.
332 *
333 * By setting the slack to -1, a percentage of the delay is used
334 * instead.
335 */
set_timer_slack(struct timer_list * timer,int slack_hz)336 void set_timer_slack(struct timer_list *timer, int slack_hz)
337 {
338 timer->slack = slack_hz;
339 }
340 EXPORT_SYMBOL_GPL(set_timer_slack);
341
342 /*
343 * If the list is empty, catch up ->timer_jiffies to the current time.
344 * The caller must hold the tvec_base lock. Returns true if the list
345 * was empty and therefore ->timer_jiffies was updated.
346 */
catchup_timer_jiffies(struct tvec_base * base)347 static bool catchup_timer_jiffies(struct tvec_base *base)
348 {
349 if (!base->all_timers) {
350 base->timer_jiffies = jiffies;
351 return true;
352 }
353 return false;
354 }
355
356 static void
__internal_add_timer(struct tvec_base * base,struct timer_list * timer)357 __internal_add_timer(struct tvec_base *base, struct timer_list *timer)
358 {
359 unsigned long expires = timer->expires;
360 unsigned long idx = expires - base->timer_jiffies;
361 struct list_head *vec;
362
363 if (idx < TVR_SIZE) {
364 int i = expires & TVR_MASK;
365 vec = base->tv1.vec + i;
366 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
367 int i = (expires >> TVR_BITS) & TVN_MASK;
368 vec = base->tv2.vec + i;
369 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
370 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
371 vec = base->tv3.vec + i;
372 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
373 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
374 vec = base->tv4.vec + i;
375 } else if ((signed long) idx < 0) {
376 /*
377 * Can happen if you add a timer with expires == jiffies,
378 * or you set a timer to go off in the past
379 */
380 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
381 } else {
382 int i;
383 /* If the timeout is larger than MAX_TVAL (on 64-bit
384 * architectures or with CONFIG_BASE_SMALL=1) then we
385 * use the maximum timeout.
386 */
387 if (idx > MAX_TVAL) {
388 idx = MAX_TVAL;
389 expires = idx + base->timer_jiffies;
390 }
391 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
392 vec = base->tv5.vec + i;
393 }
394 /*
395 * Timers are FIFO:
396 */
397 list_add_tail(&timer->entry, vec);
398 }
399
internal_add_timer(struct tvec_base * base,struct timer_list * timer)400 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
401 {
402 (void)catchup_timer_jiffies(base);
403 __internal_add_timer(base, timer);
404 /*
405 * Update base->active_timers and base->next_timer
406 */
407 if (!tbase_get_deferrable(timer->base)) {
408 if (!base->active_timers++ ||
409 time_before(timer->expires, base->next_timer))
410 base->next_timer = timer->expires;
411 }
412 base->all_timers++;
413
414 /*
415 * Check whether the other CPU is in dynticks mode and needs
416 * to be triggered to reevaluate the timer wheel.
417 * We are protected against the other CPU fiddling
418 * with the timer by holding the timer base lock. This also
419 * makes sure that a CPU on the way to stop its tick can not
420 * evaluate the timer wheel.
421 *
422 * Spare the IPI for deferrable timers on idle targets though.
423 * The next busy ticks will take care of it. Except full dynticks
424 * require special care against races with idle_cpu(), lets deal
425 * with that later.
426 */
427 if (!tbase_get_deferrable(base) || tick_nohz_full_cpu(base->cpu))
428 wake_up_nohz_cpu(base->cpu);
429 }
430
431 #ifdef CONFIG_TIMER_STATS
__timer_stats_timer_set_start_info(struct timer_list * timer,void * addr)432 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
433 {
434 if (timer->start_site)
435 return;
436
437 timer->start_site = addr;
438 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
439 timer->start_pid = current->pid;
440 }
441
timer_stats_account_timer(struct timer_list * timer)442 static void timer_stats_account_timer(struct timer_list *timer)
443 {
444 unsigned int flag = 0;
445
446 if (likely(!timer->start_site))
447 return;
448 if (unlikely(tbase_get_deferrable(timer->base)))
449 flag |= TIMER_STATS_FLAG_DEFERRABLE;
450
451 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
452 timer->function, timer->start_comm, flag);
453 }
454
455 #else
timer_stats_account_timer(struct timer_list * timer)456 static void timer_stats_account_timer(struct timer_list *timer) {}
457 #endif
458
459 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
460
461 static struct debug_obj_descr timer_debug_descr;
462
timer_debug_hint(void * addr)463 static void *timer_debug_hint(void *addr)
464 {
465 return ((struct timer_list *) addr)->function;
466 }
467
468 /*
469 * fixup_init is called when:
470 * - an active object is initialized
471 */
timer_fixup_init(void * addr,enum debug_obj_state state)472 static int timer_fixup_init(void *addr, enum debug_obj_state state)
473 {
474 struct timer_list *timer = addr;
475
476 switch (state) {
477 case ODEBUG_STATE_ACTIVE:
478 del_timer_sync(timer);
479 debug_object_init(timer, &timer_debug_descr);
480 return 1;
481 default:
482 return 0;
483 }
484 }
485
486 /* Stub timer callback for improperly used timers. */
stub_timer(unsigned long data)487 static void stub_timer(unsigned long data)
488 {
489 WARN_ON(1);
490 }
491
492 /*
493 * fixup_activate is called when:
494 * - an active object is activated
495 * - an unknown object is activated (might be a statically initialized object)
496 */
timer_fixup_activate(void * addr,enum debug_obj_state state)497 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
498 {
499 struct timer_list *timer = addr;
500
501 switch (state) {
502
503 case ODEBUG_STATE_NOTAVAILABLE:
504 /*
505 * This is not really a fixup. The timer was
506 * statically initialized. We just make sure that it
507 * is tracked in the object tracker.
508 */
509 if (timer->entry.next == NULL &&
510 timer->entry.prev == TIMER_ENTRY_STATIC) {
511 debug_object_init(timer, &timer_debug_descr);
512 debug_object_activate(timer, &timer_debug_descr);
513 return 0;
514 } else {
515 setup_timer(timer, stub_timer, 0);
516 return 1;
517 }
518 return 0;
519
520 case ODEBUG_STATE_ACTIVE:
521 WARN_ON(1);
522
523 default:
524 return 0;
525 }
526 }
527
528 /*
529 * fixup_free is called when:
530 * - an active object is freed
531 */
timer_fixup_free(void * addr,enum debug_obj_state state)532 static int timer_fixup_free(void *addr, enum debug_obj_state state)
533 {
534 struct timer_list *timer = addr;
535
536 switch (state) {
537 case ODEBUG_STATE_ACTIVE:
538 del_timer_sync(timer);
539 debug_object_free(timer, &timer_debug_descr);
540 return 1;
541 default:
542 return 0;
543 }
544 }
545
546 /*
547 * fixup_assert_init is called when:
548 * - an untracked/uninit-ed object is found
549 */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)550 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
551 {
552 struct timer_list *timer = addr;
553
554 switch (state) {
555 case ODEBUG_STATE_NOTAVAILABLE:
556 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
557 /*
558 * This is not really a fixup. The timer was
559 * statically initialized. We just make sure that it
560 * is tracked in the object tracker.
561 */
562 debug_object_init(timer, &timer_debug_descr);
563 return 0;
564 } else {
565 setup_timer(timer, stub_timer, 0);
566 return 1;
567 }
568 default:
569 return 0;
570 }
571 }
572
573 static struct debug_obj_descr timer_debug_descr = {
574 .name = "timer_list",
575 .debug_hint = timer_debug_hint,
576 .fixup_init = timer_fixup_init,
577 .fixup_activate = timer_fixup_activate,
578 .fixup_free = timer_fixup_free,
579 .fixup_assert_init = timer_fixup_assert_init,
580 };
581
debug_timer_init(struct timer_list * timer)582 static inline void debug_timer_init(struct timer_list *timer)
583 {
584 debug_object_init(timer, &timer_debug_descr);
585 }
586
debug_timer_activate(struct timer_list * timer)587 static inline void debug_timer_activate(struct timer_list *timer)
588 {
589 debug_object_activate(timer, &timer_debug_descr);
590 }
591
debug_timer_deactivate(struct timer_list * timer)592 static inline void debug_timer_deactivate(struct timer_list *timer)
593 {
594 debug_object_deactivate(timer, &timer_debug_descr);
595 }
596
debug_timer_free(struct timer_list * timer)597 static inline void debug_timer_free(struct timer_list *timer)
598 {
599 debug_object_free(timer, &timer_debug_descr);
600 }
601
debug_timer_assert_init(struct timer_list * timer)602 static inline void debug_timer_assert_init(struct timer_list *timer)
603 {
604 debug_object_assert_init(timer, &timer_debug_descr);
605 }
606
607 static void do_init_timer(struct timer_list *timer, unsigned int flags,
608 const char *name, struct lock_class_key *key);
609
init_timer_on_stack_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)610 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
611 const char *name, struct lock_class_key *key)
612 {
613 debug_object_init_on_stack(timer, &timer_debug_descr);
614 do_init_timer(timer, flags, name, key);
615 }
616 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
617
destroy_timer_on_stack(struct timer_list * timer)618 void destroy_timer_on_stack(struct timer_list *timer)
619 {
620 debug_object_free(timer, &timer_debug_descr);
621 }
622 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
623
624 #else
debug_timer_init(struct timer_list * timer)625 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)626 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)627 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)628 static inline void debug_timer_assert_init(struct timer_list *timer) { }
629 #endif
630
debug_init(struct timer_list * timer)631 static inline void debug_init(struct timer_list *timer)
632 {
633 debug_timer_init(timer);
634 trace_timer_init(timer);
635 }
636
637 static inline void
debug_activate(struct timer_list * timer,unsigned long expires)638 debug_activate(struct timer_list *timer, unsigned long expires)
639 {
640 debug_timer_activate(timer);
641 trace_timer_start(timer, expires);
642 }
643
debug_deactivate(struct timer_list * timer)644 static inline void debug_deactivate(struct timer_list *timer)
645 {
646 debug_timer_deactivate(timer);
647 trace_timer_cancel(timer);
648 }
649
debug_assert_init(struct timer_list * timer)650 static inline void debug_assert_init(struct timer_list *timer)
651 {
652 debug_timer_assert_init(timer);
653 }
654
do_init_timer(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)655 static void do_init_timer(struct timer_list *timer, unsigned int flags,
656 const char *name, struct lock_class_key *key)
657 {
658 struct tvec_base *base = raw_cpu_read(tvec_bases);
659
660 timer->entry.next = NULL;
661 timer->base = (void *)((unsigned long)base | flags);
662 timer->slack = -1;
663 #ifdef CONFIG_TIMER_STATS
664 timer->start_site = NULL;
665 timer->start_pid = -1;
666 memset(timer->start_comm, 0, TASK_COMM_LEN);
667 #endif
668 lockdep_init_map(&timer->lockdep_map, name, key, 0);
669 }
670
671 /**
672 * init_timer_key - initialize a timer
673 * @timer: the timer to be initialized
674 * @flags: timer flags
675 * @name: name of the timer
676 * @key: lockdep class key of the fake lock used for tracking timer
677 * sync lock dependencies
678 *
679 * init_timer_key() must be done to a timer prior calling *any* of the
680 * other timer functions.
681 */
init_timer_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)682 void init_timer_key(struct timer_list *timer, unsigned int flags,
683 const char *name, struct lock_class_key *key)
684 {
685 debug_init(timer);
686 do_init_timer(timer, flags, name, key);
687 }
688 EXPORT_SYMBOL(init_timer_key);
689
detach_timer(struct timer_list * timer,bool clear_pending)690 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
691 {
692 struct list_head *entry = &timer->entry;
693
694 debug_deactivate(timer);
695
696 __list_del(entry->prev, entry->next);
697 if (clear_pending)
698 entry->next = NULL;
699 entry->prev = LIST_POISON2;
700 }
701
702 static inline void
detach_expired_timer(struct timer_list * timer,struct tvec_base * base)703 detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
704 {
705 detach_timer(timer, true);
706 if (!tbase_get_deferrable(timer->base))
707 base->active_timers--;
708 base->all_timers--;
709 (void)catchup_timer_jiffies(base);
710 }
711
detach_if_pending(struct timer_list * timer,struct tvec_base * base,bool clear_pending)712 static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
713 bool clear_pending)
714 {
715 if (!timer_pending(timer))
716 return 0;
717
718 detach_timer(timer, clear_pending);
719 if (!tbase_get_deferrable(timer->base)) {
720 base->active_timers--;
721 if (timer->expires == base->next_timer)
722 base->next_timer = base->timer_jiffies;
723 }
724 base->all_timers--;
725 (void)catchup_timer_jiffies(base);
726 return 1;
727 }
728
729 /*
730 * We are using hashed locking: holding per_cpu(tvec_bases).lock
731 * means that all timers which are tied to this base via timer->base are
732 * locked, and the base itself is locked too.
733 *
734 * So __run_timers/migrate_timers can safely modify all timers which could
735 * be found on ->tvX lists.
736 *
737 * When the timer's base is locked, and the timer removed from list, it is
738 * possible to set timer->base = NULL and drop the lock: the timer remains
739 * locked.
740 */
lock_timer_base(struct timer_list * timer,unsigned long * flags)741 static struct tvec_base *lock_timer_base(struct timer_list *timer,
742 unsigned long *flags)
743 __acquires(timer->base->lock)
744 {
745 struct tvec_base *base;
746
747 for (;;) {
748 struct tvec_base *prelock_base = timer->base;
749 base = tbase_get_base(prelock_base);
750 if (likely(base != NULL)) {
751 spin_lock_irqsave(&base->lock, *flags);
752 if (likely(prelock_base == timer->base))
753 return base;
754 /* The timer has migrated to another CPU */
755 spin_unlock_irqrestore(&base->lock, *flags);
756 }
757 cpu_relax();
758 }
759 }
760
761 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,bool pending_only,int pinned)762 __mod_timer(struct timer_list *timer, unsigned long expires,
763 bool pending_only, int pinned)
764 {
765 struct tvec_base *base, *new_base;
766 unsigned long flags;
767 int ret = 0 , cpu;
768
769 timer_stats_timer_set_start_info(timer);
770 BUG_ON(!timer->function);
771
772 base = lock_timer_base(timer, &flags);
773
774 ret = detach_if_pending(timer, base, false);
775 if (!ret && pending_only)
776 goto out_unlock;
777
778 debug_activate(timer, expires);
779
780 cpu = get_nohz_timer_target(pinned);
781 new_base = per_cpu(tvec_bases, cpu);
782
783 if (base != new_base) {
784 /*
785 * We are trying to schedule the timer on the local CPU.
786 * However we can't change timer's base while it is running,
787 * otherwise del_timer_sync() can't detect that the timer's
788 * handler yet has not finished. This also guarantees that
789 * the timer is serialized wrt itself.
790 */
791 if (likely(base->running_timer != timer)) {
792 /* See the comment in lock_timer_base() */
793 timer_set_base(timer, NULL);
794 spin_unlock(&base->lock);
795 base = new_base;
796 spin_lock(&base->lock);
797 timer_set_base(timer, base);
798 }
799 }
800
801 timer->expires = expires;
802 internal_add_timer(base, timer);
803
804 out_unlock:
805 spin_unlock_irqrestore(&base->lock, flags);
806
807 return ret;
808 }
809
810 /**
811 * mod_timer_pending - modify a pending timer's timeout
812 * @timer: the pending timer to be modified
813 * @expires: new timeout in jiffies
814 *
815 * mod_timer_pending() is the same for pending timers as mod_timer(),
816 * but will not re-activate and modify already deleted timers.
817 *
818 * It is useful for unserialized use of timers.
819 */
mod_timer_pending(struct timer_list * timer,unsigned long expires)820 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
821 {
822 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
823 }
824 EXPORT_SYMBOL(mod_timer_pending);
825
826 /*
827 * Decide where to put the timer while taking the slack into account
828 *
829 * Algorithm:
830 * 1) calculate the maximum (absolute) time
831 * 2) calculate the highest bit where the expires and new max are different
832 * 3) use this bit to make a mask
833 * 4) use the bitmask to round down the maximum time, so that all last
834 * bits are zeros
835 */
836 static inline
apply_slack(struct timer_list * timer,unsigned long expires)837 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
838 {
839 unsigned long expires_limit, mask;
840 int bit;
841
842 if (timer->slack >= 0) {
843 expires_limit = expires + timer->slack;
844 } else {
845 long delta = expires - jiffies;
846
847 if (delta < 256)
848 return expires;
849
850 expires_limit = expires + delta / 256;
851 }
852 mask = expires ^ expires_limit;
853 if (mask == 0)
854 return expires;
855
856 bit = find_last_bit(&mask, BITS_PER_LONG);
857
858 mask = (1UL << bit) - 1;
859
860 expires_limit = expires_limit & ~(mask);
861
862 return expires_limit;
863 }
864
865 /**
866 * mod_timer - modify a timer's timeout
867 * @timer: the timer to be modified
868 * @expires: new timeout in jiffies
869 *
870 * mod_timer() is a more efficient way to update the expire field of an
871 * active timer (if the timer is inactive it will be activated)
872 *
873 * mod_timer(timer, expires) is equivalent to:
874 *
875 * del_timer(timer); timer->expires = expires; add_timer(timer);
876 *
877 * Note that if there are multiple unserialized concurrent users of the
878 * same timer, then mod_timer() is the only safe way to modify the timeout,
879 * since add_timer() cannot modify an already running timer.
880 *
881 * The function returns whether it has modified a pending timer or not.
882 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
883 * active timer returns 1.)
884 */
mod_timer(struct timer_list * timer,unsigned long expires)885 int mod_timer(struct timer_list *timer, unsigned long expires)
886 {
887 expires = apply_slack(timer, expires);
888
889 /*
890 * This is a common optimization triggered by the
891 * networking code - if the timer is re-modified
892 * to be the same thing then just return:
893 */
894 if (timer_pending(timer) && timer->expires == expires)
895 return 1;
896
897 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
898 }
899 EXPORT_SYMBOL(mod_timer);
900
901 /**
902 * mod_timer_pinned - modify a timer's timeout
903 * @timer: the timer to be modified
904 * @expires: new timeout in jiffies
905 *
906 * mod_timer_pinned() is a way to update the expire field of an
907 * active timer (if the timer is inactive it will be activated)
908 * and to ensure that the timer is scheduled on the current CPU.
909 *
910 * Note that this does not prevent the timer from being migrated
911 * when the current CPU goes offline. If this is a problem for
912 * you, use CPU-hotplug notifiers to handle it correctly, for
913 * example, cancelling the timer when the corresponding CPU goes
914 * offline.
915 *
916 * mod_timer_pinned(timer, expires) is equivalent to:
917 *
918 * del_timer(timer); timer->expires = expires; add_timer(timer);
919 */
mod_timer_pinned(struct timer_list * timer,unsigned long expires)920 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
921 {
922 if (timer->expires == expires && timer_pending(timer))
923 return 1;
924
925 return __mod_timer(timer, expires, false, TIMER_PINNED);
926 }
927 EXPORT_SYMBOL(mod_timer_pinned);
928
929 /**
930 * add_timer - start a timer
931 * @timer: the timer to be added
932 *
933 * The kernel will do a ->function(->data) callback from the
934 * timer interrupt at the ->expires point in the future. The
935 * current time is 'jiffies'.
936 *
937 * The timer's ->expires, ->function (and if the handler uses it, ->data)
938 * fields must be set prior calling this function.
939 *
940 * Timers with an ->expires field in the past will be executed in the next
941 * timer tick.
942 */
add_timer(struct timer_list * timer)943 void add_timer(struct timer_list *timer)
944 {
945 BUG_ON(timer_pending(timer));
946 mod_timer(timer, timer->expires);
947 }
948 EXPORT_SYMBOL(add_timer);
949
950 /**
951 * add_timer_on - start a timer on a particular CPU
952 * @timer: the timer to be added
953 * @cpu: the CPU to start it on
954 *
955 * This is not very scalable on SMP. Double adds are not possible.
956 */
add_timer_on(struct timer_list * timer,int cpu)957 void add_timer_on(struct timer_list *timer, int cpu)
958 {
959 struct tvec_base *new_base = per_cpu(tvec_bases, cpu);
960 struct tvec_base *base;
961 unsigned long flags;
962
963 timer_stats_timer_set_start_info(timer);
964 BUG_ON(timer_pending(timer) || !timer->function);
965
966 /*
967 * If @timer was on a different CPU, it should be migrated with the
968 * old base locked to prevent other operations proceeding with the
969 * wrong base locked. See lock_timer_base().
970 */
971 base = lock_timer_base(timer, &flags);
972 if (base != new_base) {
973 timer_set_base(timer, NULL);
974 spin_unlock(&base->lock);
975 base = new_base;
976 spin_lock(&base->lock);
977 timer_set_base(timer, base);
978 }
979
980 debug_activate(timer, timer->expires);
981 internal_add_timer(base, timer);
982 spin_unlock_irqrestore(&base->lock, flags);
983 }
984 EXPORT_SYMBOL_GPL(add_timer_on);
985
986 /**
987 * del_timer - deactive a timer.
988 * @timer: the timer to be deactivated
989 *
990 * del_timer() deactivates a timer - this works on both active and inactive
991 * timers.
992 *
993 * The function returns whether it has deactivated a pending timer or not.
994 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
995 * active timer returns 1.)
996 */
del_timer(struct timer_list * timer)997 int del_timer(struct timer_list *timer)
998 {
999 struct tvec_base *base;
1000 unsigned long flags;
1001 int ret = 0;
1002
1003 debug_assert_init(timer);
1004
1005 timer_stats_timer_clear_start_info(timer);
1006 if (timer_pending(timer)) {
1007 base = lock_timer_base(timer, &flags);
1008 ret = detach_if_pending(timer, base, true);
1009 spin_unlock_irqrestore(&base->lock, flags);
1010 }
1011
1012 return ret;
1013 }
1014 EXPORT_SYMBOL(del_timer);
1015
1016 /**
1017 * try_to_del_timer_sync - Try to deactivate a timer
1018 * @timer: timer do del
1019 *
1020 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1021 * exit the timer is not queued and the handler is not running on any CPU.
1022 */
try_to_del_timer_sync(struct timer_list * timer)1023 int try_to_del_timer_sync(struct timer_list *timer)
1024 {
1025 struct tvec_base *base;
1026 unsigned long flags;
1027 int ret = -1;
1028
1029 debug_assert_init(timer);
1030
1031 base = lock_timer_base(timer, &flags);
1032
1033 if (base->running_timer != timer) {
1034 timer_stats_timer_clear_start_info(timer);
1035 ret = detach_if_pending(timer, base, true);
1036 }
1037 spin_unlock_irqrestore(&base->lock, flags);
1038
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(try_to_del_timer_sync);
1042
1043 #ifdef CONFIG_SMP
1044 /**
1045 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1046 * @timer: the timer to be deactivated
1047 *
1048 * This function only differs from del_timer() on SMP: besides deactivating
1049 * the timer it also makes sure the handler has finished executing on other
1050 * CPUs.
1051 *
1052 * Synchronization rules: Callers must prevent restarting of the timer,
1053 * otherwise this function is meaningless. It must not be called from
1054 * interrupt contexts unless the timer is an irqsafe one. The caller must
1055 * not hold locks which would prevent completion of the timer's
1056 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1057 * timer is not queued and the handler is not running on any CPU.
1058 *
1059 * Note: For !irqsafe timers, you must not hold locks that are held in
1060 * interrupt context while calling this function. Even if the lock has
1061 * nothing to do with the timer in question. Here's why:
1062 *
1063 * CPU0 CPU1
1064 * ---- ----
1065 * <SOFTIRQ>
1066 * call_timer_fn();
1067 * base->running_timer = mytimer;
1068 * spin_lock_irq(somelock);
1069 * <IRQ>
1070 * spin_lock(somelock);
1071 * del_timer_sync(mytimer);
1072 * while (base->running_timer == mytimer);
1073 *
1074 * Now del_timer_sync() will never return and never release somelock.
1075 * The interrupt on the other CPU is waiting to grab somelock but
1076 * it has interrupted the softirq that CPU0 is waiting to finish.
1077 *
1078 * The function returns whether it has deactivated a pending timer or not.
1079 */
del_timer_sync(struct timer_list * timer)1080 int del_timer_sync(struct timer_list *timer)
1081 {
1082 #ifdef CONFIG_LOCKDEP
1083 unsigned long flags;
1084
1085 /*
1086 * If lockdep gives a backtrace here, please reference
1087 * the synchronization rules above.
1088 */
1089 local_irq_save(flags);
1090 lock_map_acquire(&timer->lockdep_map);
1091 lock_map_release(&timer->lockdep_map);
1092 local_irq_restore(flags);
1093 #endif
1094 /*
1095 * don't use it in hardirq context, because it
1096 * could lead to deadlock.
1097 */
1098 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
1099 for (;;) {
1100 int ret = try_to_del_timer_sync(timer);
1101 if (ret >= 0)
1102 return ret;
1103 cpu_relax();
1104 }
1105 }
1106 EXPORT_SYMBOL(del_timer_sync);
1107 #endif
1108
cascade(struct tvec_base * base,struct tvec * tv,int index)1109 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1110 {
1111 /* cascade all the timers from tv up one level */
1112 struct timer_list *timer, *tmp;
1113 struct list_head tv_list;
1114
1115 list_replace_init(tv->vec + index, &tv_list);
1116
1117 /*
1118 * We are removing _all_ timers from the list, so we
1119 * don't have to detach them individually.
1120 */
1121 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1122 BUG_ON(tbase_get_base(timer->base) != base);
1123 /* No accounting, while moving them */
1124 __internal_add_timer(base, timer);
1125 }
1126
1127 return index;
1128 }
1129
call_timer_fn(struct timer_list * timer,void (* fn)(unsigned long),unsigned long data)1130 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1131 unsigned long data)
1132 {
1133 int count = preempt_count();
1134
1135 #ifdef CONFIG_LOCKDEP
1136 /*
1137 * It is permissible to free the timer from inside the
1138 * function that is called from it, this we need to take into
1139 * account for lockdep too. To avoid bogus "held lock freed"
1140 * warnings as well as problems when looking into
1141 * timer->lockdep_map, make a copy and use that here.
1142 */
1143 struct lockdep_map lockdep_map;
1144
1145 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1146 #endif
1147 /*
1148 * Couple the lock chain with the lock chain at
1149 * del_timer_sync() by acquiring the lock_map around the fn()
1150 * call here and in del_timer_sync().
1151 */
1152 lock_map_acquire(&lockdep_map);
1153
1154 trace_timer_expire_entry(timer);
1155 fn(data);
1156 trace_timer_expire_exit(timer);
1157
1158 lock_map_release(&lockdep_map);
1159
1160 if (count != preempt_count()) {
1161 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1162 fn, count, preempt_count());
1163 /*
1164 * Restore the preempt count. That gives us a decent
1165 * chance to survive and extract information. If the
1166 * callback kept a lock held, bad luck, but not worse
1167 * than the BUG() we had.
1168 */
1169 preempt_count_set(count);
1170 }
1171 }
1172
1173 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1174
1175 /**
1176 * __run_timers - run all expired timers (if any) on this CPU.
1177 * @base: the timer vector to be processed.
1178 *
1179 * This function cascades all vectors and executes all expired timer
1180 * vectors.
1181 */
__run_timers(struct tvec_base * base)1182 static inline void __run_timers(struct tvec_base *base)
1183 {
1184 struct timer_list *timer;
1185
1186 spin_lock_irq(&base->lock);
1187 if (catchup_timer_jiffies(base)) {
1188 spin_unlock_irq(&base->lock);
1189 return;
1190 }
1191 while (time_after_eq(jiffies, base->timer_jiffies)) {
1192 struct list_head work_list;
1193 struct list_head *head = &work_list;
1194 int index = base->timer_jiffies & TVR_MASK;
1195
1196 /*
1197 * Cascade timers:
1198 */
1199 if (!index &&
1200 (!cascade(base, &base->tv2, INDEX(0))) &&
1201 (!cascade(base, &base->tv3, INDEX(1))) &&
1202 !cascade(base, &base->tv4, INDEX(2)))
1203 cascade(base, &base->tv5, INDEX(3));
1204 ++base->timer_jiffies;
1205 list_replace_init(base->tv1.vec + index, head);
1206 while (!list_empty(head)) {
1207 void (*fn)(unsigned long);
1208 unsigned long data;
1209 bool irqsafe;
1210
1211 timer = list_first_entry(head, struct timer_list,entry);
1212 fn = timer->function;
1213 data = timer->data;
1214 irqsafe = tbase_get_irqsafe(timer->base);
1215
1216 timer_stats_account_timer(timer);
1217
1218 base->running_timer = timer;
1219 detach_expired_timer(timer, base);
1220
1221 if (irqsafe) {
1222 spin_unlock(&base->lock);
1223 call_timer_fn(timer, fn, data);
1224 spin_lock(&base->lock);
1225 } else {
1226 spin_unlock_irq(&base->lock);
1227 call_timer_fn(timer, fn, data);
1228 spin_lock_irq(&base->lock);
1229 }
1230 }
1231 }
1232 base->running_timer = NULL;
1233 spin_unlock_irq(&base->lock);
1234 }
1235
1236 #ifdef CONFIG_NO_HZ_COMMON
1237 /*
1238 * Find out when the next timer event is due to happen. This
1239 * is used on S/390 to stop all activity when a CPU is idle.
1240 * This function needs to be called with interrupts disabled.
1241 */
__next_timer_interrupt(struct tvec_base * base)1242 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1243 {
1244 unsigned long timer_jiffies = base->timer_jiffies;
1245 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1246 int index, slot, array, found = 0;
1247 struct timer_list *nte;
1248 struct tvec *varray[4];
1249
1250 /* Look for timer events in tv1. */
1251 index = slot = timer_jiffies & TVR_MASK;
1252 do {
1253 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1254 if (tbase_get_deferrable(nte->base))
1255 continue;
1256
1257 found = 1;
1258 expires = nte->expires;
1259 /* Look at the cascade bucket(s)? */
1260 if (!index || slot < index)
1261 goto cascade;
1262 return expires;
1263 }
1264 slot = (slot + 1) & TVR_MASK;
1265 } while (slot != index);
1266
1267 cascade:
1268 /* Calculate the next cascade event */
1269 if (index)
1270 timer_jiffies += TVR_SIZE - index;
1271 timer_jiffies >>= TVR_BITS;
1272
1273 /* Check tv2-tv5. */
1274 varray[0] = &base->tv2;
1275 varray[1] = &base->tv3;
1276 varray[2] = &base->tv4;
1277 varray[3] = &base->tv5;
1278
1279 for (array = 0; array < 4; array++) {
1280 struct tvec *varp = varray[array];
1281
1282 index = slot = timer_jiffies & TVN_MASK;
1283 do {
1284 list_for_each_entry(nte, varp->vec + slot, entry) {
1285 if (tbase_get_deferrable(nte->base))
1286 continue;
1287
1288 found = 1;
1289 if (time_before(nte->expires, expires))
1290 expires = nte->expires;
1291 }
1292 /*
1293 * Do we still search for the first timer or are
1294 * we looking up the cascade buckets ?
1295 */
1296 if (found) {
1297 /* Look at the cascade bucket(s)? */
1298 if (!index || slot < index)
1299 break;
1300 return expires;
1301 }
1302 slot = (slot + 1) & TVN_MASK;
1303 } while (slot != index);
1304
1305 if (index)
1306 timer_jiffies += TVN_SIZE - index;
1307 timer_jiffies >>= TVN_BITS;
1308 }
1309 return expires;
1310 }
1311
1312 /*
1313 * Check, if the next hrtimer event is before the next timer wheel
1314 * event:
1315 */
cmp_next_hrtimer_event(unsigned long now,unsigned long expires)1316 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1317 unsigned long expires)
1318 {
1319 ktime_t hr_delta = hrtimer_get_next_event();
1320 struct timespec tsdelta;
1321 unsigned long delta;
1322
1323 if (hr_delta.tv64 == KTIME_MAX)
1324 return expires;
1325
1326 /*
1327 * Expired timer available, let it expire in the next tick
1328 */
1329 if (hr_delta.tv64 <= 0)
1330 return now + 1;
1331
1332 tsdelta = ktime_to_timespec(hr_delta);
1333 delta = timespec_to_jiffies(&tsdelta);
1334
1335 /*
1336 * Limit the delta to the max value, which is checked in
1337 * tick_nohz_stop_sched_tick():
1338 */
1339 if (delta > NEXT_TIMER_MAX_DELTA)
1340 delta = NEXT_TIMER_MAX_DELTA;
1341
1342 /*
1343 * Take rounding errors in to account and make sure, that it
1344 * expires in the next tick. Otherwise we go into an endless
1345 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1346 * the timer softirq
1347 */
1348 if (delta < 1)
1349 delta = 1;
1350 now += delta;
1351 if (time_before(now, expires))
1352 return now;
1353 return expires;
1354 }
1355
1356 /**
1357 * get_next_timer_interrupt - return the jiffy of the next pending timer
1358 * @now: current time (in jiffies)
1359 */
get_next_timer_interrupt(unsigned long now)1360 unsigned long get_next_timer_interrupt(unsigned long now)
1361 {
1362 struct tvec_base *base = __this_cpu_read(tvec_bases);
1363 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1364
1365 /*
1366 * Pretend that there is no timer pending if the cpu is offline.
1367 * Possible pending timers will be migrated later to an active cpu.
1368 */
1369 if (cpu_is_offline(smp_processor_id()))
1370 return expires;
1371
1372 spin_lock(&base->lock);
1373 if (base->active_timers) {
1374 if (time_before_eq(base->next_timer, base->timer_jiffies))
1375 base->next_timer = __next_timer_interrupt(base);
1376 expires = base->next_timer;
1377 }
1378 spin_unlock(&base->lock);
1379
1380 if (time_before_eq(expires, now))
1381 return now;
1382
1383 return cmp_next_hrtimer_event(now, expires);
1384 }
1385 #endif
1386
1387 /*
1388 * Called from the timer interrupt handler to charge one tick to the current
1389 * process. user_tick is 1 if the tick is user time, 0 for system.
1390 */
update_process_times(int user_tick)1391 void update_process_times(int user_tick)
1392 {
1393 struct task_struct *p = current;
1394 int cpu = smp_processor_id();
1395
1396 /* Note: this timer irq context must be accounted for as well. */
1397 account_process_tick(p, user_tick);
1398 run_local_timers();
1399 rcu_check_callbacks(cpu, user_tick);
1400 #ifdef CONFIG_IRQ_WORK
1401 if (in_irq())
1402 irq_work_tick();
1403 #endif
1404 scheduler_tick();
1405 run_posix_cpu_timers(p);
1406 }
1407
1408 /*
1409 * This function runs timers and the timer-tq in bottom half context.
1410 */
run_timer_softirq(struct softirq_action * h)1411 static void run_timer_softirq(struct softirq_action *h)
1412 {
1413 struct tvec_base *base = __this_cpu_read(tvec_bases);
1414
1415 hrtimer_run_pending();
1416
1417 if (time_after_eq(jiffies, base->timer_jiffies))
1418 __run_timers(base);
1419 }
1420
1421 /*
1422 * Called by the local, per-CPU timer interrupt on SMP.
1423 */
run_local_timers(void)1424 void run_local_timers(void)
1425 {
1426 hrtimer_run_queues();
1427 raise_softirq(TIMER_SOFTIRQ);
1428 }
1429
1430 #ifdef __ARCH_WANT_SYS_ALARM
1431
1432 /*
1433 * For backwards compatibility? This can be done in libc so Alpha
1434 * and all newer ports shouldn't need it.
1435 */
SYSCALL_DEFINE1(alarm,unsigned int,seconds)1436 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1437 {
1438 return alarm_setitimer(seconds);
1439 }
1440
1441 #endif
1442
process_timeout(unsigned long __data)1443 static void process_timeout(unsigned long __data)
1444 {
1445 wake_up_process((struct task_struct *)__data);
1446 }
1447
1448 /**
1449 * schedule_timeout - sleep until timeout
1450 * @timeout: timeout value in jiffies
1451 *
1452 * Make the current task sleep until @timeout jiffies have
1453 * elapsed. The routine will return immediately unless
1454 * the current task state has been set (see set_current_state()).
1455 *
1456 * You can set the task state as follows -
1457 *
1458 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1459 * pass before the routine returns. The routine will return 0
1460 *
1461 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1462 * delivered to the current task. In this case the remaining time
1463 * in jiffies will be returned, or 0 if the timer expired in time
1464 *
1465 * The current task state is guaranteed to be TASK_RUNNING when this
1466 * routine returns.
1467 *
1468 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1469 * the CPU away without a bound on the timeout. In this case the return
1470 * value will be %MAX_SCHEDULE_TIMEOUT.
1471 *
1472 * In all cases the return value is guaranteed to be non-negative.
1473 */
schedule_timeout(signed long timeout)1474 signed long __sched schedule_timeout(signed long timeout)
1475 {
1476 struct timer_list timer;
1477 unsigned long expire;
1478
1479 switch (timeout)
1480 {
1481 case MAX_SCHEDULE_TIMEOUT:
1482 /*
1483 * These two special cases are useful to be comfortable
1484 * in the caller. Nothing more. We could take
1485 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1486 * but I' d like to return a valid offset (>=0) to allow
1487 * the caller to do everything it want with the retval.
1488 */
1489 schedule();
1490 goto out;
1491 default:
1492 /*
1493 * Another bit of PARANOID. Note that the retval will be
1494 * 0 since no piece of kernel is supposed to do a check
1495 * for a negative retval of schedule_timeout() (since it
1496 * should never happens anyway). You just have the printk()
1497 * that will tell you if something is gone wrong and where.
1498 */
1499 if (timeout < 0) {
1500 printk(KERN_ERR "schedule_timeout: wrong timeout "
1501 "value %lx\n", timeout);
1502 dump_stack();
1503 current->state = TASK_RUNNING;
1504 goto out;
1505 }
1506 }
1507
1508 expire = timeout + jiffies;
1509
1510 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1511 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1512 schedule();
1513 del_singleshot_timer_sync(&timer);
1514
1515 /* Remove the timer from the object tracker */
1516 destroy_timer_on_stack(&timer);
1517
1518 timeout = expire - jiffies;
1519
1520 out:
1521 return timeout < 0 ? 0 : timeout;
1522 }
1523 EXPORT_SYMBOL(schedule_timeout);
1524
1525 /*
1526 * We can use __set_current_state() here because schedule_timeout() calls
1527 * schedule() unconditionally.
1528 */
schedule_timeout_interruptible(signed long timeout)1529 signed long __sched schedule_timeout_interruptible(signed long timeout)
1530 {
1531 __set_current_state(TASK_INTERRUPTIBLE);
1532 return schedule_timeout(timeout);
1533 }
1534 EXPORT_SYMBOL(schedule_timeout_interruptible);
1535
schedule_timeout_killable(signed long timeout)1536 signed long __sched schedule_timeout_killable(signed long timeout)
1537 {
1538 __set_current_state(TASK_KILLABLE);
1539 return schedule_timeout(timeout);
1540 }
1541 EXPORT_SYMBOL(schedule_timeout_killable);
1542
schedule_timeout_uninterruptible(signed long timeout)1543 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1544 {
1545 __set_current_state(TASK_UNINTERRUPTIBLE);
1546 return schedule_timeout(timeout);
1547 }
1548 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1549
init_timers_cpu(int cpu)1550 static int init_timers_cpu(int cpu)
1551 {
1552 int j;
1553 struct tvec_base *base;
1554 static char tvec_base_done[NR_CPUS];
1555
1556 if (!tvec_base_done[cpu]) {
1557 static char boot_done;
1558
1559 if (boot_done) {
1560 /*
1561 * The APs use this path later in boot
1562 */
1563 base = kzalloc_node(sizeof(*base), GFP_KERNEL,
1564 cpu_to_node(cpu));
1565 if (!base)
1566 return -ENOMEM;
1567
1568 /* Make sure tvec_base has TIMER_FLAG_MASK bits free */
1569 if (WARN_ON(base != tbase_get_base(base))) {
1570 kfree(base);
1571 return -ENOMEM;
1572 }
1573 per_cpu(tvec_bases, cpu) = base;
1574 } else {
1575 /*
1576 * This is for the boot CPU - we use compile-time
1577 * static initialisation because per-cpu memory isn't
1578 * ready yet and because the memory allocators are not
1579 * initialised either.
1580 */
1581 boot_done = 1;
1582 base = &boot_tvec_bases;
1583 }
1584 spin_lock_init(&base->lock);
1585 tvec_base_done[cpu] = 1;
1586 base->cpu = cpu;
1587 } else {
1588 base = per_cpu(tvec_bases, cpu);
1589 }
1590
1591
1592 for (j = 0; j < TVN_SIZE; j++) {
1593 INIT_LIST_HEAD(base->tv5.vec + j);
1594 INIT_LIST_HEAD(base->tv4.vec + j);
1595 INIT_LIST_HEAD(base->tv3.vec + j);
1596 INIT_LIST_HEAD(base->tv2.vec + j);
1597 }
1598 for (j = 0; j < TVR_SIZE; j++)
1599 INIT_LIST_HEAD(base->tv1.vec + j);
1600
1601 base->timer_jiffies = jiffies;
1602 base->next_timer = base->timer_jiffies;
1603 base->active_timers = 0;
1604 base->all_timers = 0;
1605 return 0;
1606 }
1607
1608 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct tvec_base * new_base,struct list_head * head)1609 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1610 {
1611 struct timer_list *timer;
1612
1613 while (!list_empty(head)) {
1614 timer = list_first_entry(head, struct timer_list, entry);
1615 /* We ignore the accounting on the dying cpu */
1616 detach_timer(timer, false);
1617 timer_set_base(timer, new_base);
1618 internal_add_timer(new_base, timer);
1619 }
1620 }
1621
migrate_timers(int cpu)1622 static void migrate_timers(int cpu)
1623 {
1624 struct tvec_base *old_base;
1625 struct tvec_base *new_base;
1626 int i;
1627
1628 BUG_ON(cpu_online(cpu));
1629 old_base = per_cpu(tvec_bases, cpu);
1630 new_base = get_cpu_var(tvec_bases);
1631 /*
1632 * The caller is globally serialized and nobody else
1633 * takes two locks at once, deadlock is not possible.
1634 */
1635 spin_lock_irq(&new_base->lock);
1636 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1637
1638 BUG_ON(old_base->running_timer);
1639
1640 for (i = 0; i < TVR_SIZE; i++)
1641 migrate_timer_list(new_base, old_base->tv1.vec + i);
1642 for (i = 0; i < TVN_SIZE; i++) {
1643 migrate_timer_list(new_base, old_base->tv2.vec + i);
1644 migrate_timer_list(new_base, old_base->tv3.vec + i);
1645 migrate_timer_list(new_base, old_base->tv4.vec + i);
1646 migrate_timer_list(new_base, old_base->tv5.vec + i);
1647 }
1648
1649 spin_unlock(&old_base->lock);
1650 spin_unlock_irq(&new_base->lock);
1651 put_cpu_var(tvec_bases);
1652 }
1653 #endif /* CONFIG_HOTPLUG_CPU */
1654
timer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1655 static int timer_cpu_notify(struct notifier_block *self,
1656 unsigned long action, void *hcpu)
1657 {
1658 long cpu = (long)hcpu;
1659 int err;
1660
1661 switch(action) {
1662 case CPU_UP_PREPARE:
1663 case CPU_UP_PREPARE_FROZEN:
1664 err = init_timers_cpu(cpu);
1665 if (err < 0)
1666 return notifier_from_errno(err);
1667 break;
1668 #ifdef CONFIG_HOTPLUG_CPU
1669 case CPU_DEAD:
1670 case CPU_DEAD_FROZEN:
1671 migrate_timers(cpu);
1672 break;
1673 #endif
1674 default:
1675 break;
1676 }
1677 return NOTIFY_OK;
1678 }
1679
1680 static struct notifier_block timers_nb = {
1681 .notifier_call = timer_cpu_notify,
1682 };
1683
1684
init_timers(void)1685 void __init init_timers(void)
1686 {
1687 int err;
1688
1689 /* ensure there are enough low bits for flags in timer->base pointer */
1690 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
1691
1692 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1693 (void *)(long)smp_processor_id());
1694 BUG_ON(err != NOTIFY_OK);
1695
1696 init_timer_stats();
1697 register_cpu_notifier(&timers_nb);
1698 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1699 }
1700
1701 /**
1702 * msleep - sleep safely even with waitqueue interruptions
1703 * @msecs: Time in milliseconds to sleep for
1704 */
msleep(unsigned int msecs)1705 void msleep(unsigned int msecs)
1706 {
1707 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1708
1709 while (timeout)
1710 timeout = schedule_timeout_uninterruptible(timeout);
1711 }
1712
1713 EXPORT_SYMBOL(msleep);
1714
1715 /**
1716 * msleep_interruptible - sleep waiting for signals
1717 * @msecs: Time in milliseconds to sleep for
1718 */
msleep_interruptible(unsigned int msecs)1719 unsigned long msleep_interruptible(unsigned int msecs)
1720 {
1721 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1722
1723 while (timeout && !signal_pending(current))
1724 timeout = schedule_timeout_interruptible(timeout);
1725 return jiffies_to_msecs(timeout);
1726 }
1727
1728 EXPORT_SYMBOL(msleep_interruptible);
1729
do_usleep_range(unsigned long min,unsigned long max)1730 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1731 {
1732 ktime_t kmin;
1733 unsigned long delta;
1734
1735 kmin = ktime_set(0, min * NSEC_PER_USEC);
1736 delta = (max - min) * NSEC_PER_USEC;
1737 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1738 }
1739
1740 /**
1741 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1742 * @min: Minimum time in usecs to sleep
1743 * @max: Maximum time in usecs to sleep
1744 */
usleep_range(unsigned long min,unsigned long max)1745 void usleep_range(unsigned long min, unsigned long max)
1746 {
1747 __set_current_state(TASK_UNINTERRUPTIBLE);
1748 do_usleep_range(min, max);
1749 }
1750 EXPORT_SYMBOL(usleep_range);
1751