• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
27 
28 #include "denali.h"
29 
30 MODULE_LICENSE("GPL");
31 
32 /*
33  * We define a module parameter that allows the user to override
34  * the hardware and decide what timing mode should be used.
35  */
36 #define NAND_DEFAULT_TIMINGS	-1
37 
38 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39 module_param(onfi_timing_mode, int, S_IRUGO);
40 MODULE_PARM_DESC(onfi_timing_mode,
41 	   "Overrides default ONFI setting. -1 indicates use default timings");
42 
43 #define DENALI_NAND_NAME    "denali-nand"
44 
45 /*
46  * We define a macro here that combines all interrupts this driver uses into
47  * a single constant value, for convenience.
48  */
49 #define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
50 			INTR_STATUS__ECC_TRANSACTION_DONE | \
51 			INTR_STATUS__ECC_ERR | \
52 			INTR_STATUS__PROGRAM_FAIL | \
53 			INTR_STATUS__LOAD_COMP | \
54 			INTR_STATUS__PROGRAM_COMP | \
55 			INTR_STATUS__TIME_OUT | \
56 			INTR_STATUS__ERASE_FAIL | \
57 			INTR_STATUS__RST_COMP | \
58 			INTR_STATUS__ERASE_COMP)
59 
60 /*
61  * indicates whether or not the internal value for the flash bank is
62  * valid or not
63  */
64 #define CHIP_SELECT_INVALID	-1
65 
66 #define SUPPORT_8BITECC		1
67 
68 /*
69  * This macro divides two integers and rounds fractional values up
70  * to the nearest integer value.
71  */
72 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
73 
74 /*
75  * this macro allows us to convert from an MTD structure to our own
76  * device context (denali) structure.
77  */
78 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
79 
80 /*
81  * These constants are defined by the driver to enable common driver
82  * configuration options.
83  */
84 #define SPARE_ACCESS		0x41
85 #define MAIN_ACCESS		0x42
86 #define MAIN_SPARE_ACCESS	0x43
87 #define PIPELINE_ACCESS		0x2000
88 
89 #define DENALI_READ	0
90 #define DENALI_WRITE	0x100
91 
92 /* types of device accesses. We can issue commands and get status */
93 #define COMMAND_CYCLE	0
94 #define ADDR_CYCLE	1
95 #define STATUS_CYCLE	2
96 
97 /*
98  * this is a helper macro that allows us to
99  * format the bank into the proper bits for the controller
100  */
101 #define BANK(x) ((x) << 24)
102 
103 /* forward declarations */
104 static void clear_interrupts(struct denali_nand_info *denali);
105 static uint32_t wait_for_irq(struct denali_nand_info *denali,
106 							uint32_t irq_mask);
107 static void denali_irq_enable(struct denali_nand_info *denali,
108 							uint32_t int_mask);
109 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
110 
111 /*
112  * Certain operations for the denali NAND controller use an indexed mode to
113  * read/write data. The operation is performed by writing the address value
114  * of the command to the device memory followed by the data. This function
115  * abstracts this common operation.
116  */
index_addr(struct denali_nand_info * denali,uint32_t address,uint32_t data)117 static void index_addr(struct denali_nand_info *denali,
118 				uint32_t address, uint32_t data)
119 {
120 	iowrite32(address, denali->flash_mem);
121 	iowrite32(data, denali->flash_mem + 0x10);
122 }
123 
124 /* Perform an indexed read of the device */
index_addr_read_data(struct denali_nand_info * denali,uint32_t address,uint32_t * pdata)125 static void index_addr_read_data(struct denali_nand_info *denali,
126 				 uint32_t address, uint32_t *pdata)
127 {
128 	iowrite32(address, denali->flash_mem);
129 	*pdata = ioread32(denali->flash_mem + 0x10);
130 }
131 
132 /*
133  * We need to buffer some data for some of the NAND core routines.
134  * The operations manage buffering that data.
135  */
reset_buf(struct denali_nand_info * denali)136 static void reset_buf(struct denali_nand_info *denali)
137 {
138 	denali->buf.head = denali->buf.tail = 0;
139 }
140 
write_byte_to_buf(struct denali_nand_info * denali,uint8_t byte)141 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
142 {
143 	denali->buf.buf[denali->buf.tail++] = byte;
144 }
145 
146 /* reads the status of the device */
read_status(struct denali_nand_info * denali)147 static void read_status(struct denali_nand_info *denali)
148 {
149 	uint32_t cmd;
150 
151 	/* initialize the data buffer to store status */
152 	reset_buf(denali);
153 
154 	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
155 	if (cmd)
156 		write_byte_to_buf(denali, NAND_STATUS_WP);
157 	else
158 		write_byte_to_buf(denali, 0);
159 }
160 
161 /* resets a specific device connected to the core */
reset_bank(struct denali_nand_info * denali)162 static void reset_bank(struct denali_nand_info *denali)
163 {
164 	uint32_t irq_status;
165 	uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
166 
167 	clear_interrupts(denali);
168 
169 	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
170 
171 	irq_status = wait_for_irq(denali, irq_mask);
172 
173 	if (irq_status & INTR_STATUS__TIME_OUT)
174 		dev_err(denali->dev, "reset bank failed.\n");
175 }
176 
177 /* Reset the flash controller */
denali_nand_reset(struct denali_nand_info * denali)178 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
179 {
180 	int i;
181 
182 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
183 		__FILE__, __LINE__, __func__);
184 
185 	for (i = 0; i < denali->max_banks; i++)
186 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
187 		denali->flash_reg + INTR_STATUS(i));
188 
189 	for (i = 0; i < denali->max_banks; i++) {
190 		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
191 		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
192 			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
193 			cpu_relax();
194 		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
195 			INTR_STATUS__TIME_OUT)
196 			dev_dbg(denali->dev,
197 			"NAND Reset operation timed out on bank %d\n", i);
198 	}
199 
200 	for (i = 0; i < denali->max_banks; i++)
201 		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
202 			  denali->flash_reg + INTR_STATUS(i));
203 
204 	return PASS;
205 }
206 
207 /*
208  * this routine calculates the ONFI timing values for a given mode and
209  * programs the clocking register accordingly. The mode is determined by
210  * the get_onfi_nand_para routine.
211  */
nand_onfi_timing_set(struct denali_nand_info * denali,uint16_t mode)212 static void nand_onfi_timing_set(struct denali_nand_info *denali,
213 								uint16_t mode)
214 {
215 	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
216 	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
217 	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
218 	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
219 	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
220 	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
221 	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
222 	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
223 	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
224 	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
225 	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
226 	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
227 
228 	uint16_t TclsRising = 1;
229 	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
230 	uint16_t dv_window = 0;
231 	uint16_t en_lo, en_hi;
232 	uint16_t acc_clks;
233 	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
234 
235 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
236 		__FILE__, __LINE__, __func__);
237 
238 	en_lo = CEIL_DIV(Trp[mode], CLK_X);
239 	en_hi = CEIL_DIV(Treh[mode], CLK_X);
240 #if ONFI_BLOOM_TIME
241 	if ((en_hi * CLK_X) < (Treh[mode] + 2))
242 		en_hi++;
243 #endif
244 
245 	if ((en_lo + en_hi) * CLK_X < Trc[mode])
246 		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
247 
248 	if ((en_lo + en_hi) < CLK_MULTI)
249 		en_lo += CLK_MULTI - en_lo - en_hi;
250 
251 	while (dv_window < 8) {
252 		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
253 
254 		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
255 
256 		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
257 					data_invalid_rhoh : data_invalid_rloh;
258 
259 		dv_window = data_invalid - Trea[mode];
260 
261 		if (dv_window < 8)
262 			en_lo++;
263 	}
264 
265 	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
266 
267 	while (acc_clks * CLK_X - Trea[mode] < 3)
268 		acc_clks++;
269 
270 	if (data_invalid - acc_clks * CLK_X < 2)
271 		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
272 			 __FILE__, __LINE__);
273 
274 	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
275 	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
276 	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
277 	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
278 	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
279 	if (!TclsRising)
280 		cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
281 	if (cs_cnt == 0)
282 		cs_cnt = 1;
283 
284 	if (Tcea[mode]) {
285 		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
286 			cs_cnt++;
287 	}
288 
289 #if MODE5_WORKAROUND
290 	if (mode == 5)
291 		acc_clks = 5;
292 #endif
293 
294 	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
295 	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
296 		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
297 		acc_clks = 6;
298 
299 	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
300 	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
301 	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
302 	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
303 	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
304 	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
305 	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
306 	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
307 }
308 
309 /* queries the NAND device to see what ONFI modes it supports. */
get_onfi_nand_para(struct denali_nand_info * denali)310 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
311 {
312 	int i;
313 
314 	/*
315 	 * we needn't to do a reset here because driver has already
316 	 * reset all the banks before
317 	 */
318 	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
319 		ONFI_TIMING_MODE__VALUE))
320 		return FAIL;
321 
322 	for (i = 5; i > 0; i--) {
323 		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
324 			(0x01 << i))
325 			break;
326 	}
327 
328 	nand_onfi_timing_set(denali, i);
329 
330 	/*
331 	 * By now, all the ONFI devices we know support the page cache
332 	 * rw feature. So here we enable the pipeline_rw_ahead feature
333 	 */
334 	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
335 	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
336 
337 	return PASS;
338 }
339 
get_samsung_nand_para(struct denali_nand_info * denali,uint8_t device_id)340 static void get_samsung_nand_para(struct denali_nand_info *denali,
341 							uint8_t device_id)
342 {
343 	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
344 		/* Set timing register values according to datasheet */
345 		iowrite32(5, denali->flash_reg + ACC_CLKS);
346 		iowrite32(20, denali->flash_reg + RE_2_WE);
347 		iowrite32(12, denali->flash_reg + WE_2_RE);
348 		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
349 		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
350 		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
351 		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
352 	}
353 }
354 
get_toshiba_nand_para(struct denali_nand_info * denali)355 static void get_toshiba_nand_para(struct denali_nand_info *denali)
356 {
357 	uint32_t tmp;
358 
359 	/*
360 	 * Workaround to fix a controller bug which reports a wrong
361 	 * spare area size for some kind of Toshiba NAND device
362 	 */
363 	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
364 		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
365 		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
366 		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
367 			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
368 		iowrite32(tmp,
369 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
370 #if SUPPORT_15BITECC
371 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
372 #elif SUPPORT_8BITECC
373 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
374 #endif
375 	}
376 }
377 
get_hynix_nand_para(struct denali_nand_info * denali,uint8_t device_id)378 static void get_hynix_nand_para(struct denali_nand_info *denali,
379 							uint8_t device_id)
380 {
381 	uint32_t main_size, spare_size;
382 
383 	switch (device_id) {
384 	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
385 	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
386 		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
387 		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
388 		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
389 		main_size = 4096 *
390 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
391 		spare_size = 224 *
392 			ioread32(denali->flash_reg + DEVICES_CONNECTED);
393 		iowrite32(main_size,
394 				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
395 		iowrite32(spare_size,
396 				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
397 		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
398 #if SUPPORT_15BITECC
399 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
400 #elif SUPPORT_8BITECC
401 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
402 #endif
403 		break;
404 	default:
405 		dev_warn(denali->dev,
406 			 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
407 			 "Will use default parameter values instead.\n",
408 			 device_id);
409 	}
410 }
411 
412 /*
413  * determines how many NAND chips are connected to the controller. Note for
414  * Intel CE4100 devices we don't support more than one device.
415  */
find_valid_banks(struct denali_nand_info * denali)416 static void find_valid_banks(struct denali_nand_info *denali)
417 {
418 	uint32_t id[denali->max_banks];
419 	int i;
420 
421 	denali->total_used_banks = 1;
422 	for (i = 0; i < denali->max_banks; i++) {
423 		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
424 		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
425 		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
426 
427 		dev_dbg(denali->dev,
428 			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
429 
430 		if (i == 0) {
431 			if (!(id[i] & 0x0ff))
432 				break; /* WTF? */
433 		} else {
434 			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
435 				denali->total_used_banks++;
436 			else
437 				break;
438 		}
439 	}
440 
441 	if (denali->platform == INTEL_CE4100) {
442 		/*
443 		 * Platform limitations of the CE4100 device limit
444 		 * users to a single chip solution for NAND.
445 		 * Multichip support is not enabled.
446 		 */
447 		if (denali->total_used_banks != 1) {
448 			dev_err(denali->dev,
449 				"Sorry, Intel CE4100 only supports a single NAND device.\n");
450 			BUG();
451 		}
452 	}
453 	dev_dbg(denali->dev,
454 		"denali->total_used_banks: %d\n", denali->total_used_banks);
455 }
456 
457 /*
458  * Use the configuration feature register to determine the maximum number of
459  * banks that the hardware supports.
460  */
detect_max_banks(struct denali_nand_info * denali)461 static void detect_max_banks(struct denali_nand_info *denali)
462 {
463 	uint32_t features = ioread32(denali->flash_reg + FEATURES);
464 
465 	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
466 }
467 
detect_partition_feature(struct denali_nand_info * denali)468 static void detect_partition_feature(struct denali_nand_info *denali)
469 {
470 	/*
471 	 * For MRST platform, denali->fwblks represent the
472 	 * number of blocks firmware is taken,
473 	 * FW is in protect partition and MTD driver has no
474 	 * permission to access it. So let driver know how many
475 	 * blocks it can't touch.
476 	 */
477 	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
478 		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
479 			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
480 			denali->fwblks =
481 			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
482 			      MIN_MAX_BANK__MIN_VALUE) *
483 			     denali->blksperchip)
484 			    +
485 			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
486 			    MIN_BLK_ADDR__VALUE);
487 		} else {
488 			denali->fwblks = SPECTRA_START_BLOCK;
489 		}
490 	} else {
491 		denali->fwblks = SPECTRA_START_BLOCK;
492 	}
493 }
494 
denali_nand_timing_set(struct denali_nand_info * denali)495 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
496 {
497 	uint16_t status = PASS;
498 	uint32_t id_bytes[8], addr;
499 	uint8_t maf_id, device_id;
500 	int i;
501 
502 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
503 			__FILE__, __LINE__, __func__);
504 
505 	/*
506 	 * Use read id method to get device ID and other params.
507 	 * For some NAND chips, controller can't report the correct
508 	 * device ID by reading from DEVICE_ID register
509 	 */
510 	addr = MODE_11 | BANK(denali->flash_bank);
511 	index_addr(denali, addr | 0, 0x90);
512 	index_addr(denali, addr | 1, 0);
513 	for (i = 0; i < 8; i++)
514 		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
515 	maf_id = id_bytes[0];
516 	device_id = id_bytes[1];
517 
518 	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
519 		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
520 		if (FAIL == get_onfi_nand_para(denali))
521 			return FAIL;
522 	} else if (maf_id == 0xEC) { /* Samsung NAND */
523 		get_samsung_nand_para(denali, device_id);
524 	} else if (maf_id == 0x98) { /* Toshiba NAND */
525 		get_toshiba_nand_para(denali);
526 	} else if (maf_id == 0xAD) { /* Hynix NAND */
527 		get_hynix_nand_para(denali, device_id);
528 	}
529 
530 	dev_info(denali->dev,
531 			"Dump timing register values:\n"
532 			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
533 			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
534 			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
535 			ioread32(denali->flash_reg + ACC_CLKS),
536 			ioread32(denali->flash_reg + RE_2_WE),
537 			ioread32(denali->flash_reg + RE_2_RE),
538 			ioread32(denali->flash_reg + WE_2_RE),
539 			ioread32(denali->flash_reg + ADDR_2_DATA),
540 			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
541 			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
542 			ioread32(denali->flash_reg + CS_SETUP_CNT));
543 
544 	find_valid_banks(denali);
545 
546 	detect_partition_feature(denali);
547 
548 	/*
549 	 * If the user specified to override the default timings
550 	 * with a specific ONFI mode, we apply those changes here.
551 	 */
552 	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
553 		nand_onfi_timing_set(denali, onfi_timing_mode);
554 
555 	return status;
556 }
557 
denali_set_intr_modes(struct denali_nand_info * denali,uint16_t INT_ENABLE)558 static void denali_set_intr_modes(struct denali_nand_info *denali,
559 					uint16_t INT_ENABLE)
560 {
561 	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
562 		__FILE__, __LINE__, __func__);
563 
564 	if (INT_ENABLE)
565 		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
566 	else
567 		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
568 }
569 
570 /*
571  * validation function to verify that the controlling software is making
572  * a valid request
573  */
is_flash_bank_valid(int flash_bank)574 static inline bool is_flash_bank_valid(int flash_bank)
575 {
576 	return flash_bank >= 0 && flash_bank < 4;
577 }
578 
denali_irq_init(struct denali_nand_info * denali)579 static void denali_irq_init(struct denali_nand_info *denali)
580 {
581 	uint32_t int_mask;
582 	int i;
583 
584 	/* Disable global interrupts */
585 	denali_set_intr_modes(denali, false);
586 
587 	int_mask = DENALI_IRQ_ALL;
588 
589 	/* Clear all status bits */
590 	for (i = 0; i < denali->max_banks; ++i)
591 		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
592 
593 	denali_irq_enable(denali, int_mask);
594 }
595 
denali_irq_cleanup(int irqnum,struct denali_nand_info * denali)596 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
597 {
598 	denali_set_intr_modes(denali, false);
599 	free_irq(irqnum, denali);
600 }
601 
denali_irq_enable(struct denali_nand_info * denali,uint32_t int_mask)602 static void denali_irq_enable(struct denali_nand_info *denali,
603 							uint32_t int_mask)
604 {
605 	int i;
606 
607 	for (i = 0; i < denali->max_banks; ++i)
608 		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
609 }
610 
611 /*
612  * This function only returns when an interrupt that this driver cares about
613  * occurs. This is to reduce the overhead of servicing interrupts
614  */
denali_irq_detected(struct denali_nand_info * denali)615 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
616 {
617 	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
618 }
619 
620 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
clear_interrupt(struct denali_nand_info * denali,uint32_t irq_mask)621 static inline void clear_interrupt(struct denali_nand_info *denali,
622 							uint32_t irq_mask)
623 {
624 	uint32_t intr_status_reg;
625 
626 	intr_status_reg = INTR_STATUS(denali->flash_bank);
627 
628 	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
629 }
630 
clear_interrupts(struct denali_nand_info * denali)631 static void clear_interrupts(struct denali_nand_info *denali)
632 {
633 	uint32_t status;
634 
635 	spin_lock_irq(&denali->irq_lock);
636 
637 	status = read_interrupt_status(denali);
638 	clear_interrupt(denali, status);
639 
640 	denali->irq_status = 0x0;
641 	spin_unlock_irq(&denali->irq_lock);
642 }
643 
read_interrupt_status(struct denali_nand_info * denali)644 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
645 {
646 	uint32_t intr_status_reg;
647 
648 	intr_status_reg = INTR_STATUS(denali->flash_bank);
649 
650 	return ioread32(denali->flash_reg + intr_status_reg);
651 }
652 
653 /*
654  * This is the interrupt service routine. It handles all interrupts
655  * sent to this device. Note that on CE4100, this is a shared interrupt.
656  */
denali_isr(int irq,void * dev_id)657 static irqreturn_t denali_isr(int irq, void *dev_id)
658 {
659 	struct denali_nand_info *denali = dev_id;
660 	uint32_t irq_status;
661 	irqreturn_t result = IRQ_NONE;
662 
663 	spin_lock(&denali->irq_lock);
664 
665 	/* check to see if a valid NAND chip has been selected. */
666 	if (is_flash_bank_valid(denali->flash_bank)) {
667 		/*
668 		 * check to see if controller generated the interrupt,
669 		 * since this is a shared interrupt
670 		 */
671 		irq_status = denali_irq_detected(denali);
672 		if (irq_status != 0) {
673 			/* handle interrupt */
674 			/* first acknowledge it */
675 			clear_interrupt(denali, irq_status);
676 			/*
677 			 * store the status in the device context for someone
678 			 * to read
679 			 */
680 			denali->irq_status |= irq_status;
681 			/* notify anyone who cares that it happened */
682 			complete(&denali->complete);
683 			/* tell the OS that we've handled this */
684 			result = IRQ_HANDLED;
685 		}
686 	}
687 	spin_unlock(&denali->irq_lock);
688 	return result;
689 }
690 #define BANK(x) ((x) << 24)
691 
wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)692 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
693 {
694 	unsigned long comp_res;
695 	uint32_t intr_status;
696 	unsigned long timeout = msecs_to_jiffies(1000);
697 
698 	do {
699 		comp_res =
700 			wait_for_completion_timeout(&denali->complete, timeout);
701 		spin_lock_irq(&denali->irq_lock);
702 		intr_status = denali->irq_status;
703 
704 		if (intr_status & irq_mask) {
705 			denali->irq_status &= ~irq_mask;
706 			spin_unlock_irq(&denali->irq_lock);
707 			/* our interrupt was detected */
708 			break;
709 		}
710 
711 		/*
712 		 * these are not the interrupts you are looking for -
713 		 * need to wait again
714 		 */
715 		spin_unlock_irq(&denali->irq_lock);
716 	} while (comp_res != 0);
717 
718 	if (comp_res == 0) {
719 		/* timeout */
720 		pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
721 				intr_status, irq_mask);
722 
723 		intr_status = 0;
724 	}
725 	return intr_status;
726 }
727 
728 /*
729  * This helper function setups the registers for ECC and whether or not
730  * the spare area will be transferred.
731  */
setup_ecc_for_xfer(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare)732 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
733 				bool transfer_spare)
734 {
735 	int ecc_en_flag, transfer_spare_flag;
736 
737 	/* set ECC, transfer spare bits if needed */
738 	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
739 	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
740 
741 	/* Enable spare area/ECC per user's request. */
742 	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
743 	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
744 }
745 
746 /*
747  * sends a pipeline command operation to the controller. See the Denali NAND
748  * controller's user guide for more information (section 4.2.3.6).
749  */
denali_send_pipeline_cmd(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare,int access_type,int op)750 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
751 				    bool ecc_en, bool transfer_spare,
752 				    int access_type, int op)
753 {
754 	int status = PASS;
755 	uint32_t page_count = 1;
756 	uint32_t addr, cmd, irq_status, irq_mask;
757 
758 	if (op == DENALI_READ)
759 		irq_mask = INTR_STATUS__LOAD_COMP;
760 	else if (op == DENALI_WRITE)
761 		irq_mask = 0;
762 	else
763 		BUG();
764 
765 	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
766 
767 	clear_interrupts(denali);
768 
769 	addr = BANK(denali->flash_bank) | denali->page;
770 
771 	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
772 		cmd = MODE_01 | addr;
773 		iowrite32(cmd, denali->flash_mem);
774 	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
775 		/* read spare area */
776 		cmd = MODE_10 | addr;
777 		index_addr(denali, cmd, access_type);
778 
779 		cmd = MODE_01 | addr;
780 		iowrite32(cmd, denali->flash_mem);
781 	} else if (op == DENALI_READ) {
782 		/* setup page read request for access type */
783 		cmd = MODE_10 | addr;
784 		index_addr(denali, cmd, access_type);
785 
786 		/*
787 		 * page 33 of the NAND controller spec indicates we should not
788 		 * use the pipeline commands in Spare area only mode.
789 		 * So we don't.
790 		 */
791 		if (access_type == SPARE_ACCESS) {
792 			cmd = MODE_01 | addr;
793 			iowrite32(cmd, denali->flash_mem);
794 		} else {
795 			index_addr(denali, cmd,
796 					PIPELINE_ACCESS | op | page_count);
797 
798 			/*
799 			 * wait for command to be accepted
800 			 * can always use status0 bit as the
801 			 * mask is identical for each bank.
802 			 */
803 			irq_status = wait_for_irq(denali, irq_mask);
804 
805 			if (irq_status == 0) {
806 				dev_err(denali->dev,
807 					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
808 					cmd, denali->page, addr);
809 				status = FAIL;
810 			} else {
811 				cmd = MODE_01 | addr;
812 				iowrite32(cmd, denali->flash_mem);
813 			}
814 		}
815 	}
816 	return status;
817 }
818 
819 /* helper function that simply writes a buffer to the flash */
write_data_to_flash_mem(struct denali_nand_info * denali,const uint8_t * buf,int len)820 static int write_data_to_flash_mem(struct denali_nand_info *denali,
821 				   const uint8_t *buf, int len)
822 {
823 	uint32_t *buf32;
824 	int i;
825 
826 	/*
827 	 * verify that the len is a multiple of 4.
828 	 * see comment in read_data_from_flash_mem()
829 	 */
830 	BUG_ON((len % 4) != 0);
831 
832 	/* write the data to the flash memory */
833 	buf32 = (uint32_t *)buf;
834 	for (i = 0; i < len / 4; i++)
835 		iowrite32(*buf32++, denali->flash_mem + 0x10);
836 	return i * 4; /* intent is to return the number of bytes read */
837 }
838 
839 /* helper function that simply reads a buffer from the flash */
read_data_from_flash_mem(struct denali_nand_info * denali,uint8_t * buf,int len)840 static int read_data_from_flash_mem(struct denali_nand_info *denali,
841 				    uint8_t *buf, int len)
842 {
843 	uint32_t *buf32;
844 	int i;
845 
846 	/*
847 	 * we assume that len will be a multiple of 4, if not it would be nice
848 	 * to know about it ASAP rather than have random failures...
849 	 * This assumption is based on the fact that this function is designed
850 	 * to be used to read flash pages, which are typically multiples of 4.
851 	 */
852 	BUG_ON((len % 4) != 0);
853 
854 	/* transfer the data from the flash */
855 	buf32 = (uint32_t *)buf;
856 	for (i = 0; i < len / 4; i++)
857 		*buf32++ = ioread32(denali->flash_mem + 0x10);
858 	return i * 4; /* intent is to return the number of bytes read */
859 }
860 
861 /* writes OOB data to the device */
write_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)862 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
863 {
864 	struct denali_nand_info *denali = mtd_to_denali(mtd);
865 	uint32_t irq_status;
866 	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
867 						INTR_STATUS__PROGRAM_FAIL;
868 	int status = 0;
869 
870 	denali->page = page;
871 
872 	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
873 							DENALI_WRITE) == PASS) {
874 		write_data_to_flash_mem(denali, buf, mtd->oobsize);
875 
876 		/* wait for operation to complete */
877 		irq_status = wait_for_irq(denali, irq_mask);
878 
879 		if (irq_status == 0) {
880 			dev_err(denali->dev, "OOB write failed\n");
881 			status = -EIO;
882 		}
883 	} else {
884 		dev_err(denali->dev, "unable to send pipeline command\n");
885 		status = -EIO;
886 	}
887 	return status;
888 }
889 
890 /* reads OOB data from the device */
read_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)891 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
892 {
893 	struct denali_nand_info *denali = mtd_to_denali(mtd);
894 	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
895 	uint32_t irq_status, addr, cmd;
896 
897 	denali->page = page;
898 
899 	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
900 							DENALI_READ) == PASS) {
901 		read_data_from_flash_mem(denali, buf, mtd->oobsize);
902 
903 		/*
904 		 * wait for command to be accepted
905 		 * can always use status0 bit as the
906 		 * mask is identical for each bank.
907 		 */
908 		irq_status = wait_for_irq(denali, irq_mask);
909 
910 		if (irq_status == 0)
911 			dev_err(denali->dev, "page on OOB timeout %d\n",
912 					denali->page);
913 
914 		/*
915 		 * We set the device back to MAIN_ACCESS here as I observed
916 		 * instability with the controller if you do a block erase
917 		 * and the last transaction was a SPARE_ACCESS. Block erase
918 		 * is reliable (according to the MTD test infrastructure)
919 		 * if you are in MAIN_ACCESS.
920 		 */
921 		addr = BANK(denali->flash_bank) | denali->page;
922 		cmd = MODE_10 | addr;
923 		index_addr(denali, cmd, MAIN_ACCESS);
924 	}
925 }
926 
927 /*
928  * this function examines buffers to see if they contain data that
929  * indicate that the buffer is part of an erased region of flash.
930  */
is_erased(uint8_t * buf,int len)931 static bool is_erased(uint8_t *buf, int len)
932 {
933 	int i;
934 
935 	for (i = 0; i < len; i++)
936 		if (buf[i] != 0xFF)
937 			return false;
938 	return true;
939 }
940 #define ECC_SECTOR_SIZE 512
941 
942 #define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
943 #define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
944 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
945 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
946 #define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
947 #define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
948 
handle_ecc(struct denali_nand_info * denali,uint8_t * buf,uint32_t irq_status,unsigned int * max_bitflips)949 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
950 		       uint32_t irq_status, unsigned int *max_bitflips)
951 {
952 	bool check_erased_page = false;
953 	unsigned int bitflips = 0;
954 
955 	if (irq_status & INTR_STATUS__ECC_ERR) {
956 		/* read the ECC errors. we'll ignore them for now */
957 		uint32_t err_address, err_correction_info, err_byte,
958 			 err_sector, err_device, err_correction_value;
959 		denali_set_intr_modes(denali, false);
960 
961 		do {
962 			err_address = ioread32(denali->flash_reg +
963 						ECC_ERROR_ADDRESS);
964 			err_sector = ECC_SECTOR(err_address);
965 			err_byte = ECC_BYTE(err_address);
966 
967 			err_correction_info = ioread32(denali->flash_reg +
968 						ERR_CORRECTION_INFO);
969 			err_correction_value =
970 				ECC_CORRECTION_VALUE(err_correction_info);
971 			err_device = ECC_ERR_DEVICE(err_correction_info);
972 
973 			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
974 				/*
975 				 * If err_byte is larger than ECC_SECTOR_SIZE,
976 				 * means error happened in OOB, so we ignore
977 				 * it. It's no need for us to correct it
978 				 * err_device is represented the NAND error
979 				 * bits are happened in if there are more
980 				 * than one NAND connected.
981 				 */
982 				if (err_byte < ECC_SECTOR_SIZE) {
983 					int offset;
984 
985 					offset = (err_sector *
986 							ECC_SECTOR_SIZE +
987 							err_byte) *
988 							denali->devnum +
989 							err_device;
990 					/* correct the ECC error */
991 					buf[offset] ^= err_correction_value;
992 					denali->mtd.ecc_stats.corrected++;
993 					bitflips++;
994 				}
995 			} else {
996 				/*
997 				 * if the error is not correctable, need to
998 				 * look at the page to see if it is an erased
999 				 * page. if so, then it's not a real ECC error
1000 				 */
1001 				check_erased_page = true;
1002 			}
1003 		} while (!ECC_LAST_ERR(err_correction_info));
1004 		/*
1005 		 * Once handle all ecc errors, controller will triger
1006 		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1007 		 * for a while for this interrupt
1008 		 */
1009 		while (!(read_interrupt_status(denali) &
1010 				INTR_STATUS__ECC_TRANSACTION_DONE))
1011 			cpu_relax();
1012 		clear_interrupts(denali);
1013 		denali_set_intr_modes(denali, true);
1014 	}
1015 	*max_bitflips = bitflips;
1016 	return check_erased_page;
1017 }
1018 
1019 /* programs the controller to either enable/disable DMA transfers */
denali_enable_dma(struct denali_nand_info * denali,bool en)1020 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1021 {
1022 	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1023 	ioread32(denali->flash_reg + DMA_ENABLE);
1024 }
1025 
1026 /* setups the HW to perform the data DMA */
denali_setup_dma(struct denali_nand_info * denali,int op)1027 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1028 {
1029 	uint32_t mode;
1030 	const int page_count = 1;
1031 	uint32_t addr = denali->buf.dma_buf;
1032 
1033 	mode = MODE_10 | BANK(denali->flash_bank);
1034 
1035 	/* DMA is a four step process */
1036 
1037 	/* 1. setup transfer type and # of pages */
1038 	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1039 
1040 	/* 2. set memory high address bits 23:8 */
1041 	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1042 
1043 	/* 3. set memory low address bits 23:8 */
1044 	index_addr(denali, mode | ((addr & 0xff) << 8), 0x2300);
1045 
1046 	/* 4. interrupt when complete, burst len = 64 bytes */
1047 	index_addr(denali, mode | 0x14000, 0x2400);
1048 }
1049 
1050 /*
1051  * writes a page. user specifies type, and this function handles the
1052  * configuration details.
1053  */
write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,bool raw_xfer)1054 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1055 			const uint8_t *buf, bool raw_xfer)
1056 {
1057 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1058 	dma_addr_t addr = denali->buf.dma_buf;
1059 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1060 	uint32_t irq_status;
1061 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1062 						INTR_STATUS__PROGRAM_FAIL;
1063 
1064 	/*
1065 	 * if it is a raw xfer, we want to disable ecc and send the spare area.
1066 	 * !raw_xfer - enable ecc
1067 	 * raw_xfer - transfer spare
1068 	 */
1069 	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1070 
1071 	/* copy buffer into DMA buffer */
1072 	memcpy(denali->buf.buf, buf, mtd->writesize);
1073 
1074 	if (raw_xfer) {
1075 		/* transfer the data to the spare area */
1076 		memcpy(denali->buf.buf + mtd->writesize,
1077 			chip->oob_poi,
1078 			mtd->oobsize);
1079 	}
1080 
1081 	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1082 
1083 	clear_interrupts(denali);
1084 	denali_enable_dma(denali, true);
1085 
1086 	denali_setup_dma(denali, DENALI_WRITE);
1087 
1088 	/* wait for operation to complete */
1089 	irq_status = wait_for_irq(denali, irq_mask);
1090 
1091 	if (irq_status == 0) {
1092 		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1093 			raw_xfer);
1094 		denali->status = NAND_STATUS_FAIL;
1095 	}
1096 
1097 	denali_enable_dma(denali, false);
1098 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1099 
1100 	return 0;
1101 }
1102 
1103 /* NAND core entry points */
1104 
1105 /*
1106  * this is the callback that the NAND core calls to write a page. Since
1107  * writing a page with ECC or without is similar, all the work is done
1108  * by write_page above.
1109  */
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1110 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1111 				const uint8_t *buf, int oob_required)
1112 {
1113 	/*
1114 	 * for regular page writes, we let HW handle all the ECC
1115 	 * data written to the device.
1116 	 */
1117 	return write_page(mtd, chip, buf, false);
1118 }
1119 
1120 /*
1121  * This is the callback that the NAND core calls to write a page without ECC.
1122  * raw access is similar to ECC page writes, so all the work is done in the
1123  * write_page() function above.
1124  */
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1125 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1126 					const uint8_t *buf, int oob_required)
1127 {
1128 	/*
1129 	 * for raw page writes, we want to disable ECC and simply write
1130 	 * whatever data is in the buffer.
1131 	 */
1132 	return write_page(mtd, chip, buf, true);
1133 }
1134 
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1135 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1136 			    int page)
1137 {
1138 	return write_oob_data(mtd, chip->oob_poi, page);
1139 }
1140 
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1141 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1142 			   int page)
1143 {
1144 	read_oob_data(mtd, chip->oob_poi, page);
1145 
1146 	return 0;
1147 }
1148 
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1149 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1150 			    uint8_t *buf, int oob_required, int page)
1151 {
1152 	unsigned int max_bitflips;
1153 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1154 
1155 	dma_addr_t addr = denali->buf.dma_buf;
1156 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1157 
1158 	uint32_t irq_status;
1159 	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1160 			    INTR_STATUS__ECC_ERR;
1161 	bool check_erased_page = false;
1162 
1163 	if (page != denali->page) {
1164 		dev_err(denali->dev,
1165 			"IN %s: page %d is not equal to denali->page %d",
1166 			__func__, page, denali->page);
1167 		BUG();
1168 	}
1169 
1170 	setup_ecc_for_xfer(denali, true, false);
1171 
1172 	denali_enable_dma(denali, true);
1173 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1174 
1175 	clear_interrupts(denali);
1176 	denali_setup_dma(denali, DENALI_READ);
1177 
1178 	/* wait for operation to complete */
1179 	irq_status = wait_for_irq(denali, irq_mask);
1180 
1181 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1182 
1183 	memcpy(buf, denali->buf.buf, mtd->writesize);
1184 
1185 	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1186 	denali_enable_dma(denali, false);
1187 
1188 	if (check_erased_page) {
1189 		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1190 
1191 		/* check ECC failures that may have occurred on erased pages */
1192 		if (check_erased_page) {
1193 			if (!is_erased(buf, denali->mtd.writesize))
1194 				denali->mtd.ecc_stats.failed++;
1195 			if (!is_erased(buf, denali->mtd.oobsize))
1196 				denali->mtd.ecc_stats.failed++;
1197 		}
1198 	}
1199 	return max_bitflips;
1200 }
1201 
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1202 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1203 				uint8_t *buf, int oob_required, int page)
1204 {
1205 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1206 	dma_addr_t addr = denali->buf.dma_buf;
1207 	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1208 	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1209 
1210 	if (page != denali->page) {
1211 		dev_err(denali->dev,
1212 			"IN %s: page %d is not equal to denali->page %d",
1213 			__func__, page, denali->page);
1214 		BUG();
1215 	}
1216 
1217 	setup_ecc_for_xfer(denali, false, true);
1218 	denali_enable_dma(denali, true);
1219 
1220 	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1221 
1222 	clear_interrupts(denali);
1223 	denali_setup_dma(denali, DENALI_READ);
1224 
1225 	/* wait for operation to complete */
1226 	wait_for_irq(denali, irq_mask);
1227 
1228 	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1229 
1230 	denali_enable_dma(denali, false);
1231 
1232 	memcpy(buf, denali->buf.buf, mtd->writesize);
1233 	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1234 
1235 	return 0;
1236 }
1237 
denali_read_byte(struct mtd_info * mtd)1238 static uint8_t denali_read_byte(struct mtd_info *mtd)
1239 {
1240 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1241 	uint8_t result = 0xff;
1242 
1243 	if (denali->buf.head < denali->buf.tail)
1244 		result = denali->buf.buf[denali->buf.head++];
1245 
1246 	return result;
1247 }
1248 
denali_select_chip(struct mtd_info * mtd,int chip)1249 static void denali_select_chip(struct mtd_info *mtd, int chip)
1250 {
1251 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1252 
1253 	spin_lock_irq(&denali->irq_lock);
1254 	denali->flash_bank = chip;
1255 	spin_unlock_irq(&denali->irq_lock);
1256 }
1257 
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)1258 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1259 {
1260 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1261 	int status = denali->status;
1262 
1263 	denali->status = 0;
1264 
1265 	return status;
1266 }
1267 
denali_erase(struct mtd_info * mtd,int page)1268 static int denali_erase(struct mtd_info *mtd, int page)
1269 {
1270 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1271 
1272 	uint32_t cmd, irq_status;
1273 
1274 	clear_interrupts(denali);
1275 
1276 	/* setup page read request for access type */
1277 	cmd = MODE_10 | BANK(denali->flash_bank) | page;
1278 	index_addr(denali, cmd, 0x1);
1279 
1280 	/* wait for erase to complete or failure to occur */
1281 	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1282 					INTR_STATUS__ERASE_FAIL);
1283 
1284 	return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1285 }
1286 
denali_cmdfunc(struct mtd_info * mtd,unsigned int cmd,int col,int page)1287 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1288 			   int page)
1289 {
1290 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1291 	uint32_t addr, id;
1292 	int i;
1293 
1294 	switch (cmd) {
1295 	case NAND_CMD_PAGEPROG:
1296 		break;
1297 	case NAND_CMD_STATUS:
1298 		read_status(denali);
1299 		break;
1300 	case NAND_CMD_READID:
1301 	case NAND_CMD_PARAM:
1302 		reset_buf(denali);
1303 		/*
1304 		 * sometimes ManufactureId read from register is not right
1305 		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1306 		 * So here we send READID cmd to NAND insteand
1307 		 */
1308 		addr = MODE_11 | BANK(denali->flash_bank);
1309 		index_addr(denali, addr | 0, 0x90);
1310 		index_addr(denali, addr | 1, 0);
1311 		for (i = 0; i < 8; i++) {
1312 			index_addr_read_data(denali, addr | 2, &id);
1313 			write_byte_to_buf(denali, id);
1314 		}
1315 		break;
1316 	case NAND_CMD_READ0:
1317 	case NAND_CMD_SEQIN:
1318 		denali->page = page;
1319 		break;
1320 	case NAND_CMD_RESET:
1321 		reset_bank(denali);
1322 		break;
1323 	case NAND_CMD_READOOB:
1324 		/* TODO: Read OOB data */
1325 		break;
1326 	default:
1327 		pr_err(": unsupported command received 0x%x\n", cmd);
1328 		break;
1329 	}
1330 }
1331 
1332 /* stubs for ECC functions not used by the NAND core */
denali_ecc_calculate(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc_code)1333 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1334 				uint8_t *ecc_code)
1335 {
1336 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1337 
1338 	dev_err(denali->dev, "denali_ecc_calculate called unexpectedly\n");
1339 	BUG();
1340 	return -EIO;
1341 }
1342 
denali_ecc_correct(struct mtd_info * mtd,uint8_t * data,uint8_t * read_ecc,uint8_t * calc_ecc)1343 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1344 				uint8_t *read_ecc, uint8_t *calc_ecc)
1345 {
1346 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1347 
1348 	dev_err(denali->dev, "denali_ecc_correct called unexpectedly\n");
1349 	BUG();
1350 	return -EIO;
1351 }
1352 
denali_ecc_hwctl(struct mtd_info * mtd,int mode)1353 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1354 {
1355 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1356 
1357 	dev_err(denali->dev, "denali_ecc_hwctl called unexpectedly\n");
1358 	BUG();
1359 }
1360 /* end NAND core entry points */
1361 
1362 /* Initialization code to bring the device up to a known good state */
denali_hw_init(struct denali_nand_info * denali)1363 static void denali_hw_init(struct denali_nand_info *denali)
1364 {
1365 	/*
1366 	 * tell driver how many bit controller will skip before
1367 	 * writing ECC code in OOB, this register may be already
1368 	 * set by firmware. So we read this value out.
1369 	 * if this value is 0, just let it be.
1370 	 */
1371 	denali->bbtskipbytes = ioread32(denali->flash_reg +
1372 						SPARE_AREA_SKIP_BYTES);
1373 	detect_max_banks(denali);
1374 	denali_nand_reset(denali);
1375 	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1376 	iowrite32(CHIP_EN_DONT_CARE__FLAG,
1377 			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1378 
1379 	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1380 
1381 	/* Should set value for these registers when init */
1382 	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1383 	iowrite32(1, denali->flash_reg + ECC_ENABLE);
1384 	denali_nand_timing_set(denali);
1385 	denali_irq_init(denali);
1386 }
1387 
1388 /*
1389  * Althogh controller spec said SLC ECC is forceb to be 4bit,
1390  * but denali controller in MRST only support 15bit and 8bit ECC
1391  * correction
1392  */
1393 #define ECC_8BITS	14
1394 static struct nand_ecclayout nand_8bit_oob = {
1395 	.eccbytes = 14,
1396 };
1397 
1398 #define ECC_15BITS	26
1399 static struct nand_ecclayout nand_15bit_oob = {
1400 	.eccbytes = 26,
1401 };
1402 
1403 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1404 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1405 
1406 static struct nand_bbt_descr bbt_main_descr = {
1407 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1408 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1409 	.offs =	8,
1410 	.len = 4,
1411 	.veroffs = 12,
1412 	.maxblocks = 4,
1413 	.pattern = bbt_pattern,
1414 };
1415 
1416 static struct nand_bbt_descr bbt_mirror_descr = {
1417 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1418 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1419 	.offs =	8,
1420 	.len = 4,
1421 	.veroffs = 12,
1422 	.maxblocks = 4,
1423 	.pattern = mirror_pattern,
1424 };
1425 
1426 /* initialize driver data structures */
denali_drv_init(struct denali_nand_info * denali)1427 static void denali_drv_init(struct denali_nand_info *denali)
1428 {
1429 	denali->idx = 0;
1430 
1431 	/* setup interrupt handler */
1432 	/*
1433 	 * the completion object will be used to notify
1434 	 * the callee that the interrupt is done
1435 	 */
1436 	init_completion(&denali->complete);
1437 
1438 	/*
1439 	 * the spinlock will be used to synchronize the ISR with any
1440 	 * element that might be access shared data (interrupt status)
1441 	 */
1442 	spin_lock_init(&denali->irq_lock);
1443 
1444 	/* indicate that MTD has not selected a valid bank yet */
1445 	denali->flash_bank = CHIP_SELECT_INVALID;
1446 
1447 	/* initialize our irq_status variable to indicate no interrupts */
1448 	denali->irq_status = 0;
1449 }
1450 
denali_init(struct denali_nand_info * denali)1451 int denali_init(struct denali_nand_info *denali)
1452 {
1453 	int ret;
1454 
1455 	if (denali->platform == INTEL_CE4100) {
1456 		/*
1457 		 * Due to a silicon limitation, we can only support
1458 		 * ONFI timing mode 1 and below.
1459 		 */
1460 		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1461 			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1462 			return -EINVAL;
1463 		}
1464 	}
1465 
1466 	/* allocate a temporary buffer for nand_scan_ident() */
1467 	denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1468 					GFP_DMA | GFP_KERNEL);
1469 	if (!denali->buf.buf)
1470 		return -ENOMEM;
1471 
1472 	denali->mtd.dev.parent = denali->dev;
1473 	denali_hw_init(denali);
1474 	denali_drv_init(denali);
1475 
1476 	/*
1477 	 * denali_isr register is done after all the hardware
1478 	 * initilization is finished
1479 	 */
1480 	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1481 			DENALI_NAND_NAME, denali)) {
1482 		pr_err("Spectra: Unable to allocate IRQ\n");
1483 		return -ENODEV;
1484 	}
1485 
1486 	/* now that our ISR is registered, we can enable interrupts */
1487 	denali_set_intr_modes(denali, true);
1488 	denali->mtd.name = "denali-nand";
1489 	denali->mtd.owner = THIS_MODULE;
1490 	denali->mtd.priv = &denali->nand;
1491 
1492 	/* register the driver with the NAND core subsystem */
1493 	denali->nand.select_chip = denali_select_chip;
1494 	denali->nand.cmdfunc = denali_cmdfunc;
1495 	denali->nand.read_byte = denali_read_byte;
1496 	denali->nand.waitfunc = denali_waitfunc;
1497 
1498 	/*
1499 	 * scan for NAND devices attached to the controller
1500 	 * this is the first stage in a two step process to register
1501 	 * with the nand subsystem
1502 	 */
1503 	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1504 		ret = -ENXIO;
1505 		goto failed_req_irq;
1506 	}
1507 
1508 	/* allocate the right size buffer now */
1509 	devm_kfree(denali->dev, denali->buf.buf);
1510 	denali->buf.buf = devm_kzalloc(denali->dev,
1511 			     denali->mtd.writesize + denali->mtd.oobsize,
1512 			     GFP_KERNEL);
1513 	if (!denali->buf.buf) {
1514 		ret = -ENOMEM;
1515 		goto failed_req_irq;
1516 	}
1517 
1518 	/* Is 32-bit DMA supported? */
1519 	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1520 	if (ret) {
1521 		pr_err("Spectra: no usable DMA configuration\n");
1522 		goto failed_req_irq;
1523 	}
1524 
1525 	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1526 			     denali->mtd.writesize + denali->mtd.oobsize,
1527 			     DMA_BIDIRECTIONAL);
1528 	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1529 		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1530 		ret = -EIO;
1531 		goto failed_req_irq;
1532 	}
1533 
1534 	/*
1535 	 * support for multi nand
1536 	 * MTD known nothing about multi nand, so we should tell it
1537 	 * the real pagesize and anything necessery
1538 	 */
1539 	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1540 	denali->nand.chipsize <<= (denali->devnum - 1);
1541 	denali->nand.page_shift += (denali->devnum - 1);
1542 	denali->nand.pagemask = (denali->nand.chipsize >>
1543 						denali->nand.page_shift) - 1;
1544 	denali->nand.bbt_erase_shift += (denali->devnum - 1);
1545 	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1546 	denali->nand.chip_shift += (denali->devnum - 1);
1547 	denali->mtd.writesize <<= (denali->devnum - 1);
1548 	denali->mtd.oobsize <<= (denali->devnum - 1);
1549 	denali->mtd.erasesize <<= (denali->devnum - 1);
1550 	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1551 	denali->bbtskipbytes *= denali->devnum;
1552 
1553 	/*
1554 	 * second stage of the NAND scan
1555 	 * this stage requires information regarding ECC and
1556 	 * bad block management.
1557 	 */
1558 
1559 	/* Bad block management */
1560 	denali->nand.bbt_td = &bbt_main_descr;
1561 	denali->nand.bbt_md = &bbt_mirror_descr;
1562 
1563 	/* skip the scan for now until we have OOB read and write support */
1564 	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1565 	denali->nand.options |= NAND_SKIP_BBTSCAN;
1566 	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1567 
1568 	/*
1569 	 * Denali Controller only support 15bit and 8bit ECC in MRST,
1570 	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1571 	 * SLC if possible.
1572 	 * */
1573 	if (!nand_is_slc(&denali->nand) &&
1574 			(denali->mtd.oobsize > (denali->bbtskipbytes +
1575 			ECC_15BITS * (denali->mtd.writesize /
1576 			ECC_SECTOR_SIZE)))) {
1577 		/* if MLC OOB size is large enough, use 15bit ECC*/
1578 		denali->nand.ecc.strength = 15;
1579 		denali->nand.ecc.layout = &nand_15bit_oob;
1580 		denali->nand.ecc.bytes = ECC_15BITS;
1581 		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1582 	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1583 			ECC_8BITS * (denali->mtd.writesize /
1584 			ECC_SECTOR_SIZE))) {
1585 		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1586 		goto failed_req_irq;
1587 	} else {
1588 		denali->nand.ecc.strength = 8;
1589 		denali->nand.ecc.layout = &nand_8bit_oob;
1590 		denali->nand.ecc.bytes = ECC_8BITS;
1591 		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1592 	}
1593 
1594 	denali->nand.ecc.bytes *= denali->devnum;
1595 	denali->nand.ecc.strength *= denali->devnum;
1596 	denali->nand.ecc.layout->eccbytes *=
1597 		denali->mtd.writesize / ECC_SECTOR_SIZE;
1598 	denali->nand.ecc.layout->oobfree[0].offset =
1599 		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1600 	denali->nand.ecc.layout->oobfree[0].length =
1601 		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1602 		denali->bbtskipbytes;
1603 
1604 	/*
1605 	 * Let driver know the total blocks number and how many blocks
1606 	 * contained by each nand chip. blksperchip will help driver to
1607 	 * know how many blocks is taken by FW.
1608 	 */
1609 	denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
1610 	denali->blksperchip = denali->totalblks / denali->nand.numchips;
1611 
1612 	/*
1613 	 * These functions are required by the NAND core framework, otherwise,
1614 	 * the NAND core will assert. However, we don't need them, so we'll stub
1615 	 * them out.
1616 	 */
1617 	denali->nand.ecc.calculate = denali_ecc_calculate;
1618 	denali->nand.ecc.correct = denali_ecc_correct;
1619 	denali->nand.ecc.hwctl = denali_ecc_hwctl;
1620 
1621 	/* override the default read operations */
1622 	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1623 	denali->nand.ecc.read_page = denali_read_page;
1624 	denali->nand.ecc.read_page_raw = denali_read_page_raw;
1625 	denali->nand.ecc.write_page = denali_write_page;
1626 	denali->nand.ecc.write_page_raw = denali_write_page_raw;
1627 	denali->nand.ecc.read_oob = denali_read_oob;
1628 	denali->nand.ecc.write_oob = denali_write_oob;
1629 	denali->nand.erase = denali_erase;
1630 
1631 	if (nand_scan_tail(&denali->mtd)) {
1632 		ret = -ENXIO;
1633 		goto failed_req_irq;
1634 	}
1635 
1636 	ret = mtd_device_register(&denali->mtd, NULL, 0);
1637 	if (ret) {
1638 		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1639 				ret);
1640 		goto failed_req_irq;
1641 	}
1642 	return 0;
1643 
1644 failed_req_irq:
1645 	denali_irq_cleanup(denali->irq, denali);
1646 
1647 	return ret;
1648 }
1649 EXPORT_SYMBOL(denali_init);
1650 
1651 /* driver exit point */
denali_remove(struct denali_nand_info * denali)1652 void denali_remove(struct denali_nand_info *denali)
1653 {
1654 	denali_irq_cleanup(denali->irq, denali);
1655 	dma_unmap_single(denali->dev, denali->buf.dma_buf,
1656 			 denali->mtd.writesize + denali->mtd.oobsize,
1657 			 DMA_BIDIRECTIONAL);
1658 }
1659 EXPORT_SYMBOL(denali_remove);
1660