1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 */
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
27
28 #include "denali.h"
29
30 MODULE_LICENSE("GPL");
31
32 /*
33 * We define a module parameter that allows the user to override
34 * the hardware and decide what timing mode should be used.
35 */
36 #define NAND_DEFAULT_TIMINGS -1
37
38 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39 module_param(onfi_timing_mode, int, S_IRUGO);
40 MODULE_PARM_DESC(onfi_timing_mode,
41 "Overrides default ONFI setting. -1 indicates use default timings");
42
43 #define DENALI_NAND_NAME "denali-nand"
44
45 /*
46 * We define a macro here that combines all interrupts this driver uses into
47 * a single constant value, for convenience.
48 */
49 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
50 INTR_STATUS__ECC_TRANSACTION_DONE | \
51 INTR_STATUS__ECC_ERR | \
52 INTR_STATUS__PROGRAM_FAIL | \
53 INTR_STATUS__LOAD_COMP | \
54 INTR_STATUS__PROGRAM_COMP | \
55 INTR_STATUS__TIME_OUT | \
56 INTR_STATUS__ERASE_FAIL | \
57 INTR_STATUS__RST_COMP | \
58 INTR_STATUS__ERASE_COMP)
59
60 /*
61 * indicates whether or not the internal value for the flash bank is
62 * valid or not
63 */
64 #define CHIP_SELECT_INVALID -1
65
66 #define SUPPORT_8BITECC 1
67
68 /*
69 * This macro divides two integers and rounds fractional values up
70 * to the nearest integer value.
71 */
72 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
73
74 /*
75 * this macro allows us to convert from an MTD structure to our own
76 * device context (denali) structure.
77 */
78 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
79
80 /*
81 * These constants are defined by the driver to enable common driver
82 * configuration options.
83 */
84 #define SPARE_ACCESS 0x41
85 #define MAIN_ACCESS 0x42
86 #define MAIN_SPARE_ACCESS 0x43
87 #define PIPELINE_ACCESS 0x2000
88
89 #define DENALI_READ 0
90 #define DENALI_WRITE 0x100
91
92 /* types of device accesses. We can issue commands and get status */
93 #define COMMAND_CYCLE 0
94 #define ADDR_CYCLE 1
95 #define STATUS_CYCLE 2
96
97 /*
98 * this is a helper macro that allows us to
99 * format the bank into the proper bits for the controller
100 */
101 #define BANK(x) ((x) << 24)
102
103 /* forward declarations */
104 static void clear_interrupts(struct denali_nand_info *denali);
105 static uint32_t wait_for_irq(struct denali_nand_info *denali,
106 uint32_t irq_mask);
107 static void denali_irq_enable(struct denali_nand_info *denali,
108 uint32_t int_mask);
109 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
110
111 /*
112 * Certain operations for the denali NAND controller use an indexed mode to
113 * read/write data. The operation is performed by writing the address value
114 * of the command to the device memory followed by the data. This function
115 * abstracts this common operation.
116 */
index_addr(struct denali_nand_info * denali,uint32_t address,uint32_t data)117 static void index_addr(struct denali_nand_info *denali,
118 uint32_t address, uint32_t data)
119 {
120 iowrite32(address, denali->flash_mem);
121 iowrite32(data, denali->flash_mem + 0x10);
122 }
123
124 /* Perform an indexed read of the device */
index_addr_read_data(struct denali_nand_info * denali,uint32_t address,uint32_t * pdata)125 static void index_addr_read_data(struct denali_nand_info *denali,
126 uint32_t address, uint32_t *pdata)
127 {
128 iowrite32(address, denali->flash_mem);
129 *pdata = ioread32(denali->flash_mem + 0x10);
130 }
131
132 /*
133 * We need to buffer some data for some of the NAND core routines.
134 * The operations manage buffering that data.
135 */
reset_buf(struct denali_nand_info * denali)136 static void reset_buf(struct denali_nand_info *denali)
137 {
138 denali->buf.head = denali->buf.tail = 0;
139 }
140
write_byte_to_buf(struct denali_nand_info * denali,uint8_t byte)141 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
142 {
143 denali->buf.buf[denali->buf.tail++] = byte;
144 }
145
146 /* reads the status of the device */
read_status(struct denali_nand_info * denali)147 static void read_status(struct denali_nand_info *denali)
148 {
149 uint32_t cmd;
150
151 /* initialize the data buffer to store status */
152 reset_buf(denali);
153
154 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
155 if (cmd)
156 write_byte_to_buf(denali, NAND_STATUS_WP);
157 else
158 write_byte_to_buf(denali, 0);
159 }
160
161 /* resets a specific device connected to the core */
reset_bank(struct denali_nand_info * denali)162 static void reset_bank(struct denali_nand_info *denali)
163 {
164 uint32_t irq_status;
165 uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT;
166
167 clear_interrupts(denali);
168
169 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
170
171 irq_status = wait_for_irq(denali, irq_mask);
172
173 if (irq_status & INTR_STATUS__TIME_OUT)
174 dev_err(denali->dev, "reset bank failed.\n");
175 }
176
177 /* Reset the flash controller */
denali_nand_reset(struct denali_nand_info * denali)178 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
179 {
180 int i;
181
182 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
183 __FILE__, __LINE__, __func__);
184
185 for (i = 0; i < denali->max_banks; i++)
186 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
187 denali->flash_reg + INTR_STATUS(i));
188
189 for (i = 0; i < denali->max_banks; i++) {
190 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
191 while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
192 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
193 cpu_relax();
194 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
195 INTR_STATUS__TIME_OUT)
196 dev_dbg(denali->dev,
197 "NAND Reset operation timed out on bank %d\n", i);
198 }
199
200 for (i = 0; i < denali->max_banks; i++)
201 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
202 denali->flash_reg + INTR_STATUS(i));
203
204 return PASS;
205 }
206
207 /*
208 * this routine calculates the ONFI timing values for a given mode and
209 * programs the clocking register accordingly. The mode is determined by
210 * the get_onfi_nand_para routine.
211 */
nand_onfi_timing_set(struct denali_nand_info * denali,uint16_t mode)212 static void nand_onfi_timing_set(struct denali_nand_info *denali,
213 uint16_t mode)
214 {
215 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
216 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
217 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
218 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
219 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
220 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
221 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
222 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
223 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
224 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
225 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
226 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
227
228 uint16_t TclsRising = 1;
229 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
230 uint16_t dv_window = 0;
231 uint16_t en_lo, en_hi;
232 uint16_t acc_clks;
233 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
234
235 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
236 __FILE__, __LINE__, __func__);
237
238 en_lo = CEIL_DIV(Trp[mode], CLK_X);
239 en_hi = CEIL_DIV(Treh[mode], CLK_X);
240 #if ONFI_BLOOM_TIME
241 if ((en_hi * CLK_X) < (Treh[mode] + 2))
242 en_hi++;
243 #endif
244
245 if ((en_lo + en_hi) * CLK_X < Trc[mode])
246 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
247
248 if ((en_lo + en_hi) < CLK_MULTI)
249 en_lo += CLK_MULTI - en_lo - en_hi;
250
251 while (dv_window < 8) {
252 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
253
254 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
255
256 data_invalid = data_invalid_rhoh < data_invalid_rloh ?
257 data_invalid_rhoh : data_invalid_rloh;
258
259 dv_window = data_invalid - Trea[mode];
260
261 if (dv_window < 8)
262 en_lo++;
263 }
264
265 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
266
267 while (acc_clks * CLK_X - Trea[mode] < 3)
268 acc_clks++;
269
270 if (data_invalid - acc_clks * CLK_X < 2)
271 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
272 __FILE__, __LINE__);
273
274 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
275 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
276 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
277 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
278 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
279 if (!TclsRising)
280 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
281 if (cs_cnt == 0)
282 cs_cnt = 1;
283
284 if (Tcea[mode]) {
285 while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
286 cs_cnt++;
287 }
288
289 #if MODE5_WORKAROUND
290 if (mode == 5)
291 acc_clks = 5;
292 #endif
293
294 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
295 if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
296 ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
297 acc_clks = 6;
298
299 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
300 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
301 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
302 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
303 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
304 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
305 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
306 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
307 }
308
309 /* queries the NAND device to see what ONFI modes it supports. */
get_onfi_nand_para(struct denali_nand_info * denali)310 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
311 {
312 int i;
313
314 /*
315 * we needn't to do a reset here because driver has already
316 * reset all the banks before
317 */
318 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
319 ONFI_TIMING_MODE__VALUE))
320 return FAIL;
321
322 for (i = 5; i > 0; i--) {
323 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
324 (0x01 << i))
325 break;
326 }
327
328 nand_onfi_timing_set(denali, i);
329
330 /*
331 * By now, all the ONFI devices we know support the page cache
332 * rw feature. So here we enable the pipeline_rw_ahead feature
333 */
334 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
335 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
336
337 return PASS;
338 }
339
get_samsung_nand_para(struct denali_nand_info * denali,uint8_t device_id)340 static void get_samsung_nand_para(struct denali_nand_info *denali,
341 uint8_t device_id)
342 {
343 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
344 /* Set timing register values according to datasheet */
345 iowrite32(5, denali->flash_reg + ACC_CLKS);
346 iowrite32(20, denali->flash_reg + RE_2_WE);
347 iowrite32(12, denali->flash_reg + WE_2_RE);
348 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
349 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
350 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
351 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
352 }
353 }
354
get_toshiba_nand_para(struct denali_nand_info * denali)355 static void get_toshiba_nand_para(struct denali_nand_info *denali)
356 {
357 uint32_t tmp;
358
359 /*
360 * Workaround to fix a controller bug which reports a wrong
361 * spare area size for some kind of Toshiba NAND device
362 */
363 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
364 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
365 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
366 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
367 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
368 iowrite32(tmp,
369 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
370 #if SUPPORT_15BITECC
371 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
372 #elif SUPPORT_8BITECC
373 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
374 #endif
375 }
376 }
377
get_hynix_nand_para(struct denali_nand_info * denali,uint8_t device_id)378 static void get_hynix_nand_para(struct denali_nand_info *denali,
379 uint8_t device_id)
380 {
381 uint32_t main_size, spare_size;
382
383 switch (device_id) {
384 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
385 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
386 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
387 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
388 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
389 main_size = 4096 *
390 ioread32(denali->flash_reg + DEVICES_CONNECTED);
391 spare_size = 224 *
392 ioread32(denali->flash_reg + DEVICES_CONNECTED);
393 iowrite32(main_size,
394 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
395 iowrite32(spare_size,
396 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
397 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
398 #if SUPPORT_15BITECC
399 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
400 #elif SUPPORT_8BITECC
401 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
402 #endif
403 break;
404 default:
405 dev_warn(denali->dev,
406 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
407 "Will use default parameter values instead.\n",
408 device_id);
409 }
410 }
411
412 /*
413 * determines how many NAND chips are connected to the controller. Note for
414 * Intel CE4100 devices we don't support more than one device.
415 */
find_valid_banks(struct denali_nand_info * denali)416 static void find_valid_banks(struct denali_nand_info *denali)
417 {
418 uint32_t id[denali->max_banks];
419 int i;
420
421 denali->total_used_banks = 1;
422 for (i = 0; i < denali->max_banks; i++) {
423 index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
424 index_addr(denali, MODE_11 | (i << 24) | 1, 0);
425 index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
426
427 dev_dbg(denali->dev,
428 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
429
430 if (i == 0) {
431 if (!(id[i] & 0x0ff))
432 break; /* WTF? */
433 } else {
434 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
435 denali->total_used_banks++;
436 else
437 break;
438 }
439 }
440
441 if (denali->platform == INTEL_CE4100) {
442 /*
443 * Platform limitations of the CE4100 device limit
444 * users to a single chip solution for NAND.
445 * Multichip support is not enabled.
446 */
447 if (denali->total_used_banks != 1) {
448 dev_err(denali->dev,
449 "Sorry, Intel CE4100 only supports a single NAND device.\n");
450 BUG();
451 }
452 }
453 dev_dbg(denali->dev,
454 "denali->total_used_banks: %d\n", denali->total_used_banks);
455 }
456
457 /*
458 * Use the configuration feature register to determine the maximum number of
459 * banks that the hardware supports.
460 */
detect_max_banks(struct denali_nand_info * denali)461 static void detect_max_banks(struct denali_nand_info *denali)
462 {
463 uint32_t features = ioread32(denali->flash_reg + FEATURES);
464
465 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
466 }
467
detect_partition_feature(struct denali_nand_info * denali)468 static void detect_partition_feature(struct denali_nand_info *denali)
469 {
470 /*
471 * For MRST platform, denali->fwblks represent the
472 * number of blocks firmware is taken,
473 * FW is in protect partition and MTD driver has no
474 * permission to access it. So let driver know how many
475 * blocks it can't touch.
476 */
477 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
478 if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
479 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
480 denali->fwblks =
481 ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
482 MIN_MAX_BANK__MIN_VALUE) *
483 denali->blksperchip)
484 +
485 (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
486 MIN_BLK_ADDR__VALUE);
487 } else {
488 denali->fwblks = SPECTRA_START_BLOCK;
489 }
490 } else {
491 denali->fwblks = SPECTRA_START_BLOCK;
492 }
493 }
494
denali_nand_timing_set(struct denali_nand_info * denali)495 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
496 {
497 uint16_t status = PASS;
498 uint32_t id_bytes[8], addr;
499 uint8_t maf_id, device_id;
500 int i;
501
502 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
503 __FILE__, __LINE__, __func__);
504
505 /*
506 * Use read id method to get device ID and other params.
507 * For some NAND chips, controller can't report the correct
508 * device ID by reading from DEVICE_ID register
509 */
510 addr = MODE_11 | BANK(denali->flash_bank);
511 index_addr(denali, addr | 0, 0x90);
512 index_addr(denali, addr | 1, 0);
513 for (i = 0; i < 8; i++)
514 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
515 maf_id = id_bytes[0];
516 device_id = id_bytes[1];
517
518 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
519 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
520 if (FAIL == get_onfi_nand_para(denali))
521 return FAIL;
522 } else if (maf_id == 0xEC) { /* Samsung NAND */
523 get_samsung_nand_para(denali, device_id);
524 } else if (maf_id == 0x98) { /* Toshiba NAND */
525 get_toshiba_nand_para(denali);
526 } else if (maf_id == 0xAD) { /* Hynix NAND */
527 get_hynix_nand_para(denali, device_id);
528 }
529
530 dev_info(denali->dev,
531 "Dump timing register values:\n"
532 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
533 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
534 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
535 ioread32(denali->flash_reg + ACC_CLKS),
536 ioread32(denali->flash_reg + RE_2_WE),
537 ioread32(denali->flash_reg + RE_2_RE),
538 ioread32(denali->flash_reg + WE_2_RE),
539 ioread32(denali->flash_reg + ADDR_2_DATA),
540 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
541 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
542 ioread32(denali->flash_reg + CS_SETUP_CNT));
543
544 find_valid_banks(denali);
545
546 detect_partition_feature(denali);
547
548 /*
549 * If the user specified to override the default timings
550 * with a specific ONFI mode, we apply those changes here.
551 */
552 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
553 nand_onfi_timing_set(denali, onfi_timing_mode);
554
555 return status;
556 }
557
denali_set_intr_modes(struct denali_nand_info * denali,uint16_t INT_ENABLE)558 static void denali_set_intr_modes(struct denali_nand_info *denali,
559 uint16_t INT_ENABLE)
560 {
561 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
562 __FILE__, __LINE__, __func__);
563
564 if (INT_ENABLE)
565 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
566 else
567 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
568 }
569
570 /*
571 * validation function to verify that the controlling software is making
572 * a valid request
573 */
is_flash_bank_valid(int flash_bank)574 static inline bool is_flash_bank_valid(int flash_bank)
575 {
576 return flash_bank >= 0 && flash_bank < 4;
577 }
578
denali_irq_init(struct denali_nand_info * denali)579 static void denali_irq_init(struct denali_nand_info *denali)
580 {
581 uint32_t int_mask;
582 int i;
583
584 /* Disable global interrupts */
585 denali_set_intr_modes(denali, false);
586
587 int_mask = DENALI_IRQ_ALL;
588
589 /* Clear all status bits */
590 for (i = 0; i < denali->max_banks; ++i)
591 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
592
593 denali_irq_enable(denali, int_mask);
594 }
595
denali_irq_cleanup(int irqnum,struct denali_nand_info * denali)596 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
597 {
598 denali_set_intr_modes(denali, false);
599 free_irq(irqnum, denali);
600 }
601
denali_irq_enable(struct denali_nand_info * denali,uint32_t int_mask)602 static void denali_irq_enable(struct denali_nand_info *denali,
603 uint32_t int_mask)
604 {
605 int i;
606
607 for (i = 0; i < denali->max_banks; ++i)
608 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
609 }
610
611 /*
612 * This function only returns when an interrupt that this driver cares about
613 * occurs. This is to reduce the overhead of servicing interrupts
614 */
denali_irq_detected(struct denali_nand_info * denali)615 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
616 {
617 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
618 }
619
620 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
clear_interrupt(struct denali_nand_info * denali,uint32_t irq_mask)621 static inline void clear_interrupt(struct denali_nand_info *denali,
622 uint32_t irq_mask)
623 {
624 uint32_t intr_status_reg;
625
626 intr_status_reg = INTR_STATUS(denali->flash_bank);
627
628 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
629 }
630
clear_interrupts(struct denali_nand_info * denali)631 static void clear_interrupts(struct denali_nand_info *denali)
632 {
633 uint32_t status;
634
635 spin_lock_irq(&denali->irq_lock);
636
637 status = read_interrupt_status(denali);
638 clear_interrupt(denali, status);
639
640 denali->irq_status = 0x0;
641 spin_unlock_irq(&denali->irq_lock);
642 }
643
read_interrupt_status(struct denali_nand_info * denali)644 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
645 {
646 uint32_t intr_status_reg;
647
648 intr_status_reg = INTR_STATUS(denali->flash_bank);
649
650 return ioread32(denali->flash_reg + intr_status_reg);
651 }
652
653 /*
654 * This is the interrupt service routine. It handles all interrupts
655 * sent to this device. Note that on CE4100, this is a shared interrupt.
656 */
denali_isr(int irq,void * dev_id)657 static irqreturn_t denali_isr(int irq, void *dev_id)
658 {
659 struct denali_nand_info *denali = dev_id;
660 uint32_t irq_status;
661 irqreturn_t result = IRQ_NONE;
662
663 spin_lock(&denali->irq_lock);
664
665 /* check to see if a valid NAND chip has been selected. */
666 if (is_flash_bank_valid(denali->flash_bank)) {
667 /*
668 * check to see if controller generated the interrupt,
669 * since this is a shared interrupt
670 */
671 irq_status = denali_irq_detected(denali);
672 if (irq_status != 0) {
673 /* handle interrupt */
674 /* first acknowledge it */
675 clear_interrupt(denali, irq_status);
676 /*
677 * store the status in the device context for someone
678 * to read
679 */
680 denali->irq_status |= irq_status;
681 /* notify anyone who cares that it happened */
682 complete(&denali->complete);
683 /* tell the OS that we've handled this */
684 result = IRQ_HANDLED;
685 }
686 }
687 spin_unlock(&denali->irq_lock);
688 return result;
689 }
690 #define BANK(x) ((x) << 24)
691
wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)692 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
693 {
694 unsigned long comp_res;
695 uint32_t intr_status;
696 unsigned long timeout = msecs_to_jiffies(1000);
697
698 do {
699 comp_res =
700 wait_for_completion_timeout(&denali->complete, timeout);
701 spin_lock_irq(&denali->irq_lock);
702 intr_status = denali->irq_status;
703
704 if (intr_status & irq_mask) {
705 denali->irq_status &= ~irq_mask;
706 spin_unlock_irq(&denali->irq_lock);
707 /* our interrupt was detected */
708 break;
709 }
710
711 /*
712 * these are not the interrupts you are looking for -
713 * need to wait again
714 */
715 spin_unlock_irq(&denali->irq_lock);
716 } while (comp_res != 0);
717
718 if (comp_res == 0) {
719 /* timeout */
720 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
721 intr_status, irq_mask);
722
723 intr_status = 0;
724 }
725 return intr_status;
726 }
727
728 /*
729 * This helper function setups the registers for ECC and whether or not
730 * the spare area will be transferred.
731 */
setup_ecc_for_xfer(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare)732 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
733 bool transfer_spare)
734 {
735 int ecc_en_flag, transfer_spare_flag;
736
737 /* set ECC, transfer spare bits if needed */
738 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
739 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
740
741 /* Enable spare area/ECC per user's request. */
742 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
743 iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
744 }
745
746 /*
747 * sends a pipeline command operation to the controller. See the Denali NAND
748 * controller's user guide for more information (section 4.2.3.6).
749 */
denali_send_pipeline_cmd(struct denali_nand_info * denali,bool ecc_en,bool transfer_spare,int access_type,int op)750 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
751 bool ecc_en, bool transfer_spare,
752 int access_type, int op)
753 {
754 int status = PASS;
755 uint32_t page_count = 1;
756 uint32_t addr, cmd, irq_status, irq_mask;
757
758 if (op == DENALI_READ)
759 irq_mask = INTR_STATUS__LOAD_COMP;
760 else if (op == DENALI_WRITE)
761 irq_mask = 0;
762 else
763 BUG();
764
765 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
766
767 clear_interrupts(denali);
768
769 addr = BANK(denali->flash_bank) | denali->page;
770
771 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
772 cmd = MODE_01 | addr;
773 iowrite32(cmd, denali->flash_mem);
774 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
775 /* read spare area */
776 cmd = MODE_10 | addr;
777 index_addr(denali, cmd, access_type);
778
779 cmd = MODE_01 | addr;
780 iowrite32(cmd, denali->flash_mem);
781 } else if (op == DENALI_READ) {
782 /* setup page read request for access type */
783 cmd = MODE_10 | addr;
784 index_addr(denali, cmd, access_type);
785
786 /*
787 * page 33 of the NAND controller spec indicates we should not
788 * use the pipeline commands in Spare area only mode.
789 * So we don't.
790 */
791 if (access_type == SPARE_ACCESS) {
792 cmd = MODE_01 | addr;
793 iowrite32(cmd, denali->flash_mem);
794 } else {
795 index_addr(denali, cmd,
796 PIPELINE_ACCESS | op | page_count);
797
798 /*
799 * wait for command to be accepted
800 * can always use status0 bit as the
801 * mask is identical for each bank.
802 */
803 irq_status = wait_for_irq(denali, irq_mask);
804
805 if (irq_status == 0) {
806 dev_err(denali->dev,
807 "cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
808 cmd, denali->page, addr);
809 status = FAIL;
810 } else {
811 cmd = MODE_01 | addr;
812 iowrite32(cmd, denali->flash_mem);
813 }
814 }
815 }
816 return status;
817 }
818
819 /* helper function that simply writes a buffer to the flash */
write_data_to_flash_mem(struct denali_nand_info * denali,const uint8_t * buf,int len)820 static int write_data_to_flash_mem(struct denali_nand_info *denali,
821 const uint8_t *buf, int len)
822 {
823 uint32_t *buf32;
824 int i;
825
826 /*
827 * verify that the len is a multiple of 4.
828 * see comment in read_data_from_flash_mem()
829 */
830 BUG_ON((len % 4) != 0);
831
832 /* write the data to the flash memory */
833 buf32 = (uint32_t *)buf;
834 for (i = 0; i < len / 4; i++)
835 iowrite32(*buf32++, denali->flash_mem + 0x10);
836 return i * 4; /* intent is to return the number of bytes read */
837 }
838
839 /* helper function that simply reads a buffer from the flash */
read_data_from_flash_mem(struct denali_nand_info * denali,uint8_t * buf,int len)840 static int read_data_from_flash_mem(struct denali_nand_info *denali,
841 uint8_t *buf, int len)
842 {
843 uint32_t *buf32;
844 int i;
845
846 /*
847 * we assume that len will be a multiple of 4, if not it would be nice
848 * to know about it ASAP rather than have random failures...
849 * This assumption is based on the fact that this function is designed
850 * to be used to read flash pages, which are typically multiples of 4.
851 */
852 BUG_ON((len % 4) != 0);
853
854 /* transfer the data from the flash */
855 buf32 = (uint32_t *)buf;
856 for (i = 0; i < len / 4; i++)
857 *buf32++ = ioread32(denali->flash_mem + 0x10);
858 return i * 4; /* intent is to return the number of bytes read */
859 }
860
861 /* writes OOB data to the device */
write_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)862 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
863 {
864 struct denali_nand_info *denali = mtd_to_denali(mtd);
865 uint32_t irq_status;
866 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
867 INTR_STATUS__PROGRAM_FAIL;
868 int status = 0;
869
870 denali->page = page;
871
872 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
873 DENALI_WRITE) == PASS) {
874 write_data_to_flash_mem(denali, buf, mtd->oobsize);
875
876 /* wait for operation to complete */
877 irq_status = wait_for_irq(denali, irq_mask);
878
879 if (irq_status == 0) {
880 dev_err(denali->dev, "OOB write failed\n");
881 status = -EIO;
882 }
883 } else {
884 dev_err(denali->dev, "unable to send pipeline command\n");
885 status = -EIO;
886 }
887 return status;
888 }
889
890 /* reads OOB data from the device */
read_oob_data(struct mtd_info * mtd,uint8_t * buf,int page)891 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
892 {
893 struct denali_nand_info *denali = mtd_to_denali(mtd);
894 uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
895 uint32_t irq_status, addr, cmd;
896
897 denali->page = page;
898
899 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
900 DENALI_READ) == PASS) {
901 read_data_from_flash_mem(denali, buf, mtd->oobsize);
902
903 /*
904 * wait for command to be accepted
905 * can always use status0 bit as the
906 * mask is identical for each bank.
907 */
908 irq_status = wait_for_irq(denali, irq_mask);
909
910 if (irq_status == 0)
911 dev_err(denali->dev, "page on OOB timeout %d\n",
912 denali->page);
913
914 /*
915 * We set the device back to MAIN_ACCESS here as I observed
916 * instability with the controller if you do a block erase
917 * and the last transaction was a SPARE_ACCESS. Block erase
918 * is reliable (according to the MTD test infrastructure)
919 * if you are in MAIN_ACCESS.
920 */
921 addr = BANK(denali->flash_bank) | denali->page;
922 cmd = MODE_10 | addr;
923 index_addr(denali, cmd, MAIN_ACCESS);
924 }
925 }
926
927 /*
928 * this function examines buffers to see if they contain data that
929 * indicate that the buffer is part of an erased region of flash.
930 */
is_erased(uint8_t * buf,int len)931 static bool is_erased(uint8_t *buf, int len)
932 {
933 int i;
934
935 for (i = 0; i < len; i++)
936 if (buf[i] != 0xFF)
937 return false;
938 return true;
939 }
940 #define ECC_SECTOR_SIZE 512
941
942 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
943 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
944 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
945 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
946 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
947 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
948
handle_ecc(struct denali_nand_info * denali,uint8_t * buf,uint32_t irq_status,unsigned int * max_bitflips)949 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
950 uint32_t irq_status, unsigned int *max_bitflips)
951 {
952 bool check_erased_page = false;
953 unsigned int bitflips = 0;
954
955 if (irq_status & INTR_STATUS__ECC_ERR) {
956 /* read the ECC errors. we'll ignore them for now */
957 uint32_t err_address, err_correction_info, err_byte,
958 err_sector, err_device, err_correction_value;
959 denali_set_intr_modes(denali, false);
960
961 do {
962 err_address = ioread32(denali->flash_reg +
963 ECC_ERROR_ADDRESS);
964 err_sector = ECC_SECTOR(err_address);
965 err_byte = ECC_BYTE(err_address);
966
967 err_correction_info = ioread32(denali->flash_reg +
968 ERR_CORRECTION_INFO);
969 err_correction_value =
970 ECC_CORRECTION_VALUE(err_correction_info);
971 err_device = ECC_ERR_DEVICE(err_correction_info);
972
973 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
974 /*
975 * If err_byte is larger than ECC_SECTOR_SIZE,
976 * means error happened in OOB, so we ignore
977 * it. It's no need for us to correct it
978 * err_device is represented the NAND error
979 * bits are happened in if there are more
980 * than one NAND connected.
981 */
982 if (err_byte < ECC_SECTOR_SIZE) {
983 int offset;
984
985 offset = (err_sector *
986 ECC_SECTOR_SIZE +
987 err_byte) *
988 denali->devnum +
989 err_device;
990 /* correct the ECC error */
991 buf[offset] ^= err_correction_value;
992 denali->mtd.ecc_stats.corrected++;
993 bitflips++;
994 }
995 } else {
996 /*
997 * if the error is not correctable, need to
998 * look at the page to see if it is an erased
999 * page. if so, then it's not a real ECC error
1000 */
1001 check_erased_page = true;
1002 }
1003 } while (!ECC_LAST_ERR(err_correction_info));
1004 /*
1005 * Once handle all ecc errors, controller will triger
1006 * a ECC_TRANSACTION_DONE interrupt, so here just wait
1007 * for a while for this interrupt
1008 */
1009 while (!(read_interrupt_status(denali) &
1010 INTR_STATUS__ECC_TRANSACTION_DONE))
1011 cpu_relax();
1012 clear_interrupts(denali);
1013 denali_set_intr_modes(denali, true);
1014 }
1015 *max_bitflips = bitflips;
1016 return check_erased_page;
1017 }
1018
1019 /* programs the controller to either enable/disable DMA transfers */
denali_enable_dma(struct denali_nand_info * denali,bool en)1020 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1021 {
1022 iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
1023 ioread32(denali->flash_reg + DMA_ENABLE);
1024 }
1025
1026 /* setups the HW to perform the data DMA */
denali_setup_dma(struct denali_nand_info * denali,int op)1027 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1028 {
1029 uint32_t mode;
1030 const int page_count = 1;
1031 uint32_t addr = denali->buf.dma_buf;
1032
1033 mode = MODE_10 | BANK(denali->flash_bank);
1034
1035 /* DMA is a four step process */
1036
1037 /* 1. setup transfer type and # of pages */
1038 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1039
1040 /* 2. set memory high address bits 23:8 */
1041 index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
1042
1043 /* 3. set memory low address bits 23:8 */
1044 index_addr(denali, mode | ((addr & 0xff) << 8), 0x2300);
1045
1046 /* 4. interrupt when complete, burst len = 64 bytes */
1047 index_addr(denali, mode | 0x14000, 0x2400);
1048 }
1049
1050 /*
1051 * writes a page. user specifies type, and this function handles the
1052 * configuration details.
1053 */
write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,bool raw_xfer)1054 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1055 const uint8_t *buf, bool raw_xfer)
1056 {
1057 struct denali_nand_info *denali = mtd_to_denali(mtd);
1058 dma_addr_t addr = denali->buf.dma_buf;
1059 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1060 uint32_t irq_status;
1061 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1062 INTR_STATUS__PROGRAM_FAIL;
1063
1064 /*
1065 * if it is a raw xfer, we want to disable ecc and send the spare area.
1066 * !raw_xfer - enable ecc
1067 * raw_xfer - transfer spare
1068 */
1069 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1070
1071 /* copy buffer into DMA buffer */
1072 memcpy(denali->buf.buf, buf, mtd->writesize);
1073
1074 if (raw_xfer) {
1075 /* transfer the data to the spare area */
1076 memcpy(denali->buf.buf + mtd->writesize,
1077 chip->oob_poi,
1078 mtd->oobsize);
1079 }
1080
1081 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1082
1083 clear_interrupts(denali);
1084 denali_enable_dma(denali, true);
1085
1086 denali_setup_dma(denali, DENALI_WRITE);
1087
1088 /* wait for operation to complete */
1089 irq_status = wait_for_irq(denali, irq_mask);
1090
1091 if (irq_status == 0) {
1092 dev_err(denali->dev, "timeout on write_page (type = %d)\n",
1093 raw_xfer);
1094 denali->status = NAND_STATUS_FAIL;
1095 }
1096
1097 denali_enable_dma(denali, false);
1098 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1099
1100 return 0;
1101 }
1102
1103 /* NAND core entry points */
1104
1105 /*
1106 * this is the callback that the NAND core calls to write a page. Since
1107 * writing a page with ECC or without is similar, all the work is done
1108 * by write_page above.
1109 */
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1110 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1111 const uint8_t *buf, int oob_required)
1112 {
1113 /*
1114 * for regular page writes, we let HW handle all the ECC
1115 * data written to the device.
1116 */
1117 return write_page(mtd, chip, buf, false);
1118 }
1119
1120 /*
1121 * This is the callback that the NAND core calls to write a page without ECC.
1122 * raw access is similar to ECC page writes, so all the work is done in the
1123 * write_page() function above.
1124 */
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)1125 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1126 const uint8_t *buf, int oob_required)
1127 {
1128 /*
1129 * for raw page writes, we want to disable ECC and simply write
1130 * whatever data is in the buffer.
1131 */
1132 return write_page(mtd, chip, buf, true);
1133 }
1134
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1135 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1136 int page)
1137 {
1138 return write_oob_data(mtd, chip->oob_poi, page);
1139 }
1140
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1141 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1142 int page)
1143 {
1144 read_oob_data(mtd, chip->oob_poi, page);
1145
1146 return 0;
1147 }
1148
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1149 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1150 uint8_t *buf, int oob_required, int page)
1151 {
1152 unsigned int max_bitflips;
1153 struct denali_nand_info *denali = mtd_to_denali(mtd);
1154
1155 dma_addr_t addr = denali->buf.dma_buf;
1156 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1157
1158 uint32_t irq_status;
1159 uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1160 INTR_STATUS__ECC_ERR;
1161 bool check_erased_page = false;
1162
1163 if (page != denali->page) {
1164 dev_err(denali->dev,
1165 "IN %s: page %d is not equal to denali->page %d",
1166 __func__, page, denali->page);
1167 BUG();
1168 }
1169
1170 setup_ecc_for_xfer(denali, true, false);
1171
1172 denali_enable_dma(denali, true);
1173 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1174
1175 clear_interrupts(denali);
1176 denali_setup_dma(denali, DENALI_READ);
1177
1178 /* wait for operation to complete */
1179 irq_status = wait_for_irq(denali, irq_mask);
1180
1181 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1182
1183 memcpy(buf, denali->buf.buf, mtd->writesize);
1184
1185 check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1186 denali_enable_dma(denali, false);
1187
1188 if (check_erased_page) {
1189 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1190
1191 /* check ECC failures that may have occurred on erased pages */
1192 if (check_erased_page) {
1193 if (!is_erased(buf, denali->mtd.writesize))
1194 denali->mtd.ecc_stats.failed++;
1195 if (!is_erased(buf, denali->mtd.oobsize))
1196 denali->mtd.ecc_stats.failed++;
1197 }
1198 }
1199 return max_bitflips;
1200 }
1201
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1202 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1203 uint8_t *buf, int oob_required, int page)
1204 {
1205 struct denali_nand_info *denali = mtd_to_denali(mtd);
1206 dma_addr_t addr = denali->buf.dma_buf;
1207 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1208 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1209
1210 if (page != denali->page) {
1211 dev_err(denali->dev,
1212 "IN %s: page %d is not equal to denali->page %d",
1213 __func__, page, denali->page);
1214 BUG();
1215 }
1216
1217 setup_ecc_for_xfer(denali, false, true);
1218 denali_enable_dma(denali, true);
1219
1220 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1221
1222 clear_interrupts(denali);
1223 denali_setup_dma(denali, DENALI_READ);
1224
1225 /* wait for operation to complete */
1226 wait_for_irq(denali, irq_mask);
1227
1228 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1229
1230 denali_enable_dma(denali, false);
1231
1232 memcpy(buf, denali->buf.buf, mtd->writesize);
1233 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1234
1235 return 0;
1236 }
1237
denali_read_byte(struct mtd_info * mtd)1238 static uint8_t denali_read_byte(struct mtd_info *mtd)
1239 {
1240 struct denali_nand_info *denali = mtd_to_denali(mtd);
1241 uint8_t result = 0xff;
1242
1243 if (denali->buf.head < denali->buf.tail)
1244 result = denali->buf.buf[denali->buf.head++];
1245
1246 return result;
1247 }
1248
denali_select_chip(struct mtd_info * mtd,int chip)1249 static void denali_select_chip(struct mtd_info *mtd, int chip)
1250 {
1251 struct denali_nand_info *denali = mtd_to_denali(mtd);
1252
1253 spin_lock_irq(&denali->irq_lock);
1254 denali->flash_bank = chip;
1255 spin_unlock_irq(&denali->irq_lock);
1256 }
1257
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)1258 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1259 {
1260 struct denali_nand_info *denali = mtd_to_denali(mtd);
1261 int status = denali->status;
1262
1263 denali->status = 0;
1264
1265 return status;
1266 }
1267
denali_erase(struct mtd_info * mtd,int page)1268 static int denali_erase(struct mtd_info *mtd, int page)
1269 {
1270 struct denali_nand_info *denali = mtd_to_denali(mtd);
1271
1272 uint32_t cmd, irq_status;
1273
1274 clear_interrupts(denali);
1275
1276 /* setup page read request for access type */
1277 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1278 index_addr(denali, cmd, 0x1);
1279
1280 /* wait for erase to complete or failure to occur */
1281 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1282 INTR_STATUS__ERASE_FAIL);
1283
1284 return irq_status & INTR_STATUS__ERASE_FAIL ? NAND_STATUS_FAIL : PASS;
1285 }
1286
denali_cmdfunc(struct mtd_info * mtd,unsigned int cmd,int col,int page)1287 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1288 int page)
1289 {
1290 struct denali_nand_info *denali = mtd_to_denali(mtd);
1291 uint32_t addr, id;
1292 int i;
1293
1294 switch (cmd) {
1295 case NAND_CMD_PAGEPROG:
1296 break;
1297 case NAND_CMD_STATUS:
1298 read_status(denali);
1299 break;
1300 case NAND_CMD_READID:
1301 case NAND_CMD_PARAM:
1302 reset_buf(denali);
1303 /*
1304 * sometimes ManufactureId read from register is not right
1305 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1306 * So here we send READID cmd to NAND insteand
1307 */
1308 addr = MODE_11 | BANK(denali->flash_bank);
1309 index_addr(denali, addr | 0, 0x90);
1310 index_addr(denali, addr | 1, 0);
1311 for (i = 0; i < 8; i++) {
1312 index_addr_read_data(denali, addr | 2, &id);
1313 write_byte_to_buf(denali, id);
1314 }
1315 break;
1316 case NAND_CMD_READ0:
1317 case NAND_CMD_SEQIN:
1318 denali->page = page;
1319 break;
1320 case NAND_CMD_RESET:
1321 reset_bank(denali);
1322 break;
1323 case NAND_CMD_READOOB:
1324 /* TODO: Read OOB data */
1325 break;
1326 default:
1327 pr_err(": unsupported command received 0x%x\n", cmd);
1328 break;
1329 }
1330 }
1331
1332 /* stubs for ECC functions not used by the NAND core */
denali_ecc_calculate(struct mtd_info * mtd,const uint8_t * data,uint8_t * ecc_code)1333 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1334 uint8_t *ecc_code)
1335 {
1336 struct denali_nand_info *denali = mtd_to_denali(mtd);
1337
1338 dev_err(denali->dev, "denali_ecc_calculate called unexpectedly\n");
1339 BUG();
1340 return -EIO;
1341 }
1342
denali_ecc_correct(struct mtd_info * mtd,uint8_t * data,uint8_t * read_ecc,uint8_t * calc_ecc)1343 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1344 uint8_t *read_ecc, uint8_t *calc_ecc)
1345 {
1346 struct denali_nand_info *denali = mtd_to_denali(mtd);
1347
1348 dev_err(denali->dev, "denali_ecc_correct called unexpectedly\n");
1349 BUG();
1350 return -EIO;
1351 }
1352
denali_ecc_hwctl(struct mtd_info * mtd,int mode)1353 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1354 {
1355 struct denali_nand_info *denali = mtd_to_denali(mtd);
1356
1357 dev_err(denali->dev, "denali_ecc_hwctl called unexpectedly\n");
1358 BUG();
1359 }
1360 /* end NAND core entry points */
1361
1362 /* Initialization code to bring the device up to a known good state */
denali_hw_init(struct denali_nand_info * denali)1363 static void denali_hw_init(struct denali_nand_info *denali)
1364 {
1365 /*
1366 * tell driver how many bit controller will skip before
1367 * writing ECC code in OOB, this register may be already
1368 * set by firmware. So we read this value out.
1369 * if this value is 0, just let it be.
1370 */
1371 denali->bbtskipbytes = ioread32(denali->flash_reg +
1372 SPARE_AREA_SKIP_BYTES);
1373 detect_max_banks(denali);
1374 denali_nand_reset(denali);
1375 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1376 iowrite32(CHIP_EN_DONT_CARE__FLAG,
1377 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1378
1379 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1380
1381 /* Should set value for these registers when init */
1382 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1383 iowrite32(1, denali->flash_reg + ECC_ENABLE);
1384 denali_nand_timing_set(denali);
1385 denali_irq_init(denali);
1386 }
1387
1388 /*
1389 * Althogh controller spec said SLC ECC is forceb to be 4bit,
1390 * but denali controller in MRST only support 15bit and 8bit ECC
1391 * correction
1392 */
1393 #define ECC_8BITS 14
1394 static struct nand_ecclayout nand_8bit_oob = {
1395 .eccbytes = 14,
1396 };
1397
1398 #define ECC_15BITS 26
1399 static struct nand_ecclayout nand_15bit_oob = {
1400 .eccbytes = 26,
1401 };
1402
1403 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1404 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1405
1406 static struct nand_bbt_descr bbt_main_descr = {
1407 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1408 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1409 .offs = 8,
1410 .len = 4,
1411 .veroffs = 12,
1412 .maxblocks = 4,
1413 .pattern = bbt_pattern,
1414 };
1415
1416 static struct nand_bbt_descr bbt_mirror_descr = {
1417 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1418 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1419 .offs = 8,
1420 .len = 4,
1421 .veroffs = 12,
1422 .maxblocks = 4,
1423 .pattern = mirror_pattern,
1424 };
1425
1426 /* initialize driver data structures */
denali_drv_init(struct denali_nand_info * denali)1427 static void denali_drv_init(struct denali_nand_info *denali)
1428 {
1429 denali->idx = 0;
1430
1431 /* setup interrupt handler */
1432 /*
1433 * the completion object will be used to notify
1434 * the callee that the interrupt is done
1435 */
1436 init_completion(&denali->complete);
1437
1438 /*
1439 * the spinlock will be used to synchronize the ISR with any
1440 * element that might be access shared data (interrupt status)
1441 */
1442 spin_lock_init(&denali->irq_lock);
1443
1444 /* indicate that MTD has not selected a valid bank yet */
1445 denali->flash_bank = CHIP_SELECT_INVALID;
1446
1447 /* initialize our irq_status variable to indicate no interrupts */
1448 denali->irq_status = 0;
1449 }
1450
denali_init(struct denali_nand_info * denali)1451 int denali_init(struct denali_nand_info *denali)
1452 {
1453 int ret;
1454
1455 if (denali->platform == INTEL_CE4100) {
1456 /*
1457 * Due to a silicon limitation, we can only support
1458 * ONFI timing mode 1 and below.
1459 */
1460 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1461 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1462 return -EINVAL;
1463 }
1464 }
1465
1466 /* allocate a temporary buffer for nand_scan_ident() */
1467 denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1468 GFP_DMA | GFP_KERNEL);
1469 if (!denali->buf.buf)
1470 return -ENOMEM;
1471
1472 denali->mtd.dev.parent = denali->dev;
1473 denali_hw_init(denali);
1474 denali_drv_init(denali);
1475
1476 /*
1477 * denali_isr register is done after all the hardware
1478 * initilization is finished
1479 */
1480 if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1481 DENALI_NAND_NAME, denali)) {
1482 pr_err("Spectra: Unable to allocate IRQ\n");
1483 return -ENODEV;
1484 }
1485
1486 /* now that our ISR is registered, we can enable interrupts */
1487 denali_set_intr_modes(denali, true);
1488 denali->mtd.name = "denali-nand";
1489 denali->mtd.owner = THIS_MODULE;
1490 denali->mtd.priv = &denali->nand;
1491
1492 /* register the driver with the NAND core subsystem */
1493 denali->nand.select_chip = denali_select_chip;
1494 denali->nand.cmdfunc = denali_cmdfunc;
1495 denali->nand.read_byte = denali_read_byte;
1496 denali->nand.waitfunc = denali_waitfunc;
1497
1498 /*
1499 * scan for NAND devices attached to the controller
1500 * this is the first stage in a two step process to register
1501 * with the nand subsystem
1502 */
1503 if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1504 ret = -ENXIO;
1505 goto failed_req_irq;
1506 }
1507
1508 /* allocate the right size buffer now */
1509 devm_kfree(denali->dev, denali->buf.buf);
1510 denali->buf.buf = devm_kzalloc(denali->dev,
1511 denali->mtd.writesize + denali->mtd.oobsize,
1512 GFP_KERNEL);
1513 if (!denali->buf.buf) {
1514 ret = -ENOMEM;
1515 goto failed_req_irq;
1516 }
1517
1518 /* Is 32-bit DMA supported? */
1519 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1520 if (ret) {
1521 pr_err("Spectra: no usable DMA configuration\n");
1522 goto failed_req_irq;
1523 }
1524
1525 denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1526 denali->mtd.writesize + denali->mtd.oobsize,
1527 DMA_BIDIRECTIONAL);
1528 if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1529 dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1530 ret = -EIO;
1531 goto failed_req_irq;
1532 }
1533
1534 /*
1535 * support for multi nand
1536 * MTD known nothing about multi nand, so we should tell it
1537 * the real pagesize and anything necessery
1538 */
1539 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1540 denali->nand.chipsize <<= (denali->devnum - 1);
1541 denali->nand.page_shift += (denali->devnum - 1);
1542 denali->nand.pagemask = (denali->nand.chipsize >>
1543 denali->nand.page_shift) - 1;
1544 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1545 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1546 denali->nand.chip_shift += (denali->devnum - 1);
1547 denali->mtd.writesize <<= (denali->devnum - 1);
1548 denali->mtd.oobsize <<= (denali->devnum - 1);
1549 denali->mtd.erasesize <<= (denali->devnum - 1);
1550 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1551 denali->bbtskipbytes *= denali->devnum;
1552
1553 /*
1554 * second stage of the NAND scan
1555 * this stage requires information regarding ECC and
1556 * bad block management.
1557 */
1558
1559 /* Bad block management */
1560 denali->nand.bbt_td = &bbt_main_descr;
1561 denali->nand.bbt_md = &bbt_mirror_descr;
1562
1563 /* skip the scan for now until we have OOB read and write support */
1564 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1565 denali->nand.options |= NAND_SKIP_BBTSCAN;
1566 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1567
1568 /*
1569 * Denali Controller only support 15bit and 8bit ECC in MRST,
1570 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1571 * SLC if possible.
1572 * */
1573 if (!nand_is_slc(&denali->nand) &&
1574 (denali->mtd.oobsize > (denali->bbtskipbytes +
1575 ECC_15BITS * (denali->mtd.writesize /
1576 ECC_SECTOR_SIZE)))) {
1577 /* if MLC OOB size is large enough, use 15bit ECC*/
1578 denali->nand.ecc.strength = 15;
1579 denali->nand.ecc.layout = &nand_15bit_oob;
1580 denali->nand.ecc.bytes = ECC_15BITS;
1581 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1582 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1583 ECC_8BITS * (denali->mtd.writesize /
1584 ECC_SECTOR_SIZE))) {
1585 pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
1586 goto failed_req_irq;
1587 } else {
1588 denali->nand.ecc.strength = 8;
1589 denali->nand.ecc.layout = &nand_8bit_oob;
1590 denali->nand.ecc.bytes = ECC_8BITS;
1591 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1592 }
1593
1594 denali->nand.ecc.bytes *= denali->devnum;
1595 denali->nand.ecc.strength *= denali->devnum;
1596 denali->nand.ecc.layout->eccbytes *=
1597 denali->mtd.writesize / ECC_SECTOR_SIZE;
1598 denali->nand.ecc.layout->oobfree[0].offset =
1599 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1600 denali->nand.ecc.layout->oobfree[0].length =
1601 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1602 denali->bbtskipbytes;
1603
1604 /*
1605 * Let driver know the total blocks number and how many blocks
1606 * contained by each nand chip. blksperchip will help driver to
1607 * know how many blocks is taken by FW.
1608 */
1609 denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
1610 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1611
1612 /*
1613 * These functions are required by the NAND core framework, otherwise,
1614 * the NAND core will assert. However, we don't need them, so we'll stub
1615 * them out.
1616 */
1617 denali->nand.ecc.calculate = denali_ecc_calculate;
1618 denali->nand.ecc.correct = denali_ecc_correct;
1619 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1620
1621 /* override the default read operations */
1622 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1623 denali->nand.ecc.read_page = denali_read_page;
1624 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1625 denali->nand.ecc.write_page = denali_write_page;
1626 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1627 denali->nand.ecc.read_oob = denali_read_oob;
1628 denali->nand.ecc.write_oob = denali_write_oob;
1629 denali->nand.erase = denali_erase;
1630
1631 if (nand_scan_tail(&denali->mtd)) {
1632 ret = -ENXIO;
1633 goto failed_req_irq;
1634 }
1635
1636 ret = mtd_device_register(&denali->mtd, NULL, 0);
1637 if (ret) {
1638 dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1639 ret);
1640 goto failed_req_irq;
1641 }
1642 return 0;
1643
1644 failed_req_irq:
1645 denali_irq_cleanup(denali->irq, denali);
1646
1647 return ret;
1648 }
1649 EXPORT_SYMBOL(denali_init);
1650
1651 /* driver exit point */
denali_remove(struct denali_nand_info * denali)1652 void denali_remove(struct denali_nand_info *denali)
1653 {
1654 denali_irq_cleanup(denali->irq, denali);
1655 dma_unmap_single(denali->dev, denali->buf.dma_buf,
1656 denali->mtd.writesize + denali->mtd.oobsize,
1657 DMA_BIDIRECTIONAL);
1658 }
1659 EXPORT_SYMBOL(denali_remove);
1660