1 /*
2 * Code extracted from drivers/block/genhd.c
3 * Copyright (C) 1991-1998 Linus Torvalds
4 * Re-organised Feb 1998 Russell King
5 *
6 * We now have independent partition support from the
7 * block drivers, which allows all the partition code to
8 * be grouped in one location, and it to be mostly self
9 * contained.
10 */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/ctype.h>
18 #include <linux/genhd.h>
19 #include <linux/blktrace_api.h>
20
21 #include "partitions/check.h"
22
23 #ifdef CONFIG_BLK_DEV_MD
24 extern void md_autodetect_dev(dev_t dev);
25 #endif
26
27 /*
28 * disk_name() is used by partition check code and the genhd driver.
29 * It formats the devicename of the indicated disk into
30 * the supplied buffer (of size at least 32), and returns
31 * a pointer to that same buffer (for convenience).
32 */
33
disk_name(struct gendisk * hd,int partno,char * buf)34 char *disk_name(struct gendisk *hd, int partno, char *buf)
35 {
36 if (!partno)
37 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
38 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
39 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
40 else
41 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
42
43 return buf;
44 }
45
bdevname(struct block_device * bdev,char * buf)46 const char *bdevname(struct block_device *bdev, char *buf)
47 {
48 return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
49 }
50
51 EXPORT_SYMBOL(bdevname);
52
53 /*
54 * There's very little reason to use this, you should really
55 * have a struct block_device just about everywhere and use
56 * bdevname() instead.
57 */
__bdevname(dev_t dev,char * buffer)58 const char *__bdevname(dev_t dev, char *buffer)
59 {
60 scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
61 MAJOR(dev), MINOR(dev));
62 return buffer;
63 }
64
65 EXPORT_SYMBOL(__bdevname);
66
part_partition_show(struct device * dev,struct device_attribute * attr,char * buf)67 static ssize_t part_partition_show(struct device *dev,
68 struct device_attribute *attr, char *buf)
69 {
70 struct hd_struct *p = dev_to_part(dev);
71
72 return sprintf(buf, "%d\n", p->partno);
73 }
74
part_start_show(struct device * dev,struct device_attribute * attr,char * buf)75 static ssize_t part_start_show(struct device *dev,
76 struct device_attribute *attr, char *buf)
77 {
78 struct hd_struct *p = dev_to_part(dev);
79
80 return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
81 }
82
part_size_show(struct device * dev,struct device_attribute * attr,char * buf)83 ssize_t part_size_show(struct device *dev,
84 struct device_attribute *attr, char *buf)
85 {
86 struct hd_struct *p = dev_to_part(dev);
87 return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
88 }
89
part_ro_show(struct device * dev,struct device_attribute * attr,char * buf)90 static ssize_t part_ro_show(struct device *dev,
91 struct device_attribute *attr, char *buf)
92 {
93 struct hd_struct *p = dev_to_part(dev);
94 return sprintf(buf, "%d\n", p->policy ? 1 : 0);
95 }
96
part_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)97 static ssize_t part_alignment_offset_show(struct device *dev,
98 struct device_attribute *attr, char *buf)
99 {
100 struct hd_struct *p = dev_to_part(dev);
101 return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
102 }
103
part_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)104 static ssize_t part_discard_alignment_show(struct device *dev,
105 struct device_attribute *attr, char *buf)
106 {
107 struct hd_struct *p = dev_to_part(dev);
108 return sprintf(buf, "%u\n", p->discard_alignment);
109 }
110
part_stat_show(struct device * dev,struct device_attribute * attr,char * buf)111 ssize_t part_stat_show(struct device *dev,
112 struct device_attribute *attr, char *buf)
113 {
114 struct hd_struct *p = dev_to_part(dev);
115 int cpu;
116
117 cpu = part_stat_lock();
118 part_round_stats(cpu, p);
119 part_stat_unlock();
120 return sprintf(buf,
121 "%8lu %8lu %8llu %8u "
122 "%8lu %8lu %8llu %8u "
123 "%8u %8u %8u"
124 "\n",
125 part_stat_read(p, ios[READ]),
126 part_stat_read(p, merges[READ]),
127 (unsigned long long)part_stat_read(p, sectors[READ]),
128 jiffies_to_msecs(part_stat_read(p, ticks[READ])),
129 part_stat_read(p, ios[WRITE]),
130 part_stat_read(p, merges[WRITE]),
131 (unsigned long long)part_stat_read(p, sectors[WRITE]),
132 jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
133 part_in_flight(p),
134 jiffies_to_msecs(part_stat_read(p, io_ticks)),
135 jiffies_to_msecs(part_stat_read(p, time_in_queue)));
136 }
137
part_inflight_show(struct device * dev,struct device_attribute * attr,char * buf)138 ssize_t part_inflight_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140 {
141 struct hd_struct *p = dev_to_part(dev);
142
143 return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
144 atomic_read(&p->in_flight[1]));
145 }
146
147 #ifdef CONFIG_FAIL_MAKE_REQUEST
part_fail_show(struct device * dev,struct device_attribute * attr,char * buf)148 ssize_t part_fail_show(struct device *dev,
149 struct device_attribute *attr, char *buf)
150 {
151 struct hd_struct *p = dev_to_part(dev);
152
153 return sprintf(buf, "%d\n", p->make_it_fail);
154 }
155
part_fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)156 ssize_t part_fail_store(struct device *dev,
157 struct device_attribute *attr,
158 const char *buf, size_t count)
159 {
160 struct hd_struct *p = dev_to_part(dev);
161 int i;
162
163 if (count > 0 && sscanf(buf, "%d", &i) > 0)
164 p->make_it_fail = (i == 0) ? 0 : 1;
165
166 return count;
167 }
168 #endif
169
170 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
171 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
172 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
173 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
174 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
175 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
176 NULL);
177 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
178 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
179 #ifdef CONFIG_FAIL_MAKE_REQUEST
180 static struct device_attribute dev_attr_fail =
181 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
182 #endif
183
184 static struct attribute *part_attrs[] = {
185 &dev_attr_partition.attr,
186 &dev_attr_start.attr,
187 &dev_attr_size.attr,
188 &dev_attr_ro.attr,
189 &dev_attr_alignment_offset.attr,
190 &dev_attr_discard_alignment.attr,
191 &dev_attr_stat.attr,
192 &dev_attr_inflight.attr,
193 #ifdef CONFIG_FAIL_MAKE_REQUEST
194 &dev_attr_fail.attr,
195 #endif
196 NULL
197 };
198
199 static struct attribute_group part_attr_group = {
200 .attrs = part_attrs,
201 };
202
203 static const struct attribute_group *part_attr_groups[] = {
204 &part_attr_group,
205 #ifdef CONFIG_BLK_DEV_IO_TRACE
206 &blk_trace_attr_group,
207 #endif
208 NULL
209 };
210
part_release(struct device * dev)211 static void part_release(struct device *dev)
212 {
213 struct hd_struct *p = dev_to_part(dev);
214 blk_free_devt(dev->devt);
215 free_part_stats(p);
216 free_part_info(p);
217 kfree(p);
218 }
219
part_uevent(struct device * dev,struct kobj_uevent_env * env)220 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
221 {
222 struct hd_struct *part = dev_to_part(dev);
223
224 add_uevent_var(env, "PARTN=%u", part->partno);
225 if (part->info && part->info->volname[0])
226 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
227 return 0;
228 }
229
230 struct device_type part_type = {
231 .name = "partition",
232 .groups = part_attr_groups,
233 .release = part_release,
234 .uevent = part_uevent,
235 };
236
delete_partition_rcu_cb(struct rcu_head * head)237 static void delete_partition_rcu_cb(struct rcu_head *head)
238 {
239 struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
240
241 part->start_sect = 0;
242 part->nr_sects = 0;
243 part_stat_set_all(part, 0);
244 put_device(part_to_dev(part));
245 }
246
__delete_partition(struct hd_struct * part)247 void __delete_partition(struct hd_struct *part)
248 {
249 call_rcu(&part->rcu_head, delete_partition_rcu_cb);
250 }
251
delete_partition(struct gendisk * disk,int partno)252 void delete_partition(struct gendisk *disk, int partno)
253 {
254 struct disk_part_tbl *ptbl = disk->part_tbl;
255 struct hd_struct *part;
256
257 if (partno >= ptbl->len)
258 return;
259
260 part = ptbl->part[partno];
261 if (!part)
262 return;
263
264 rcu_assign_pointer(ptbl->part[partno], NULL);
265 rcu_assign_pointer(ptbl->last_lookup, NULL);
266 kobject_put(part->holder_dir);
267 device_del(part_to_dev(part));
268
269 hd_struct_put(part);
270 }
271
whole_disk_show(struct device * dev,struct device_attribute * attr,char * buf)272 static ssize_t whole_disk_show(struct device *dev,
273 struct device_attribute *attr, char *buf)
274 {
275 return 0;
276 }
277 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
278 whole_disk_show, NULL);
279
add_partition(struct gendisk * disk,int partno,sector_t start,sector_t len,int flags,struct partition_meta_info * info)280 struct hd_struct *add_partition(struct gendisk *disk, int partno,
281 sector_t start, sector_t len, int flags,
282 struct partition_meta_info *info)
283 {
284 struct hd_struct *p;
285 dev_t devt = MKDEV(0, 0);
286 struct device *ddev = disk_to_dev(disk);
287 struct device *pdev;
288 struct disk_part_tbl *ptbl;
289 const char *dname;
290 int err;
291
292 err = disk_expand_part_tbl(disk, partno);
293 if (err)
294 return ERR_PTR(err);
295 ptbl = disk->part_tbl;
296
297 if (ptbl->part[partno])
298 return ERR_PTR(-EBUSY);
299
300 p = kzalloc(sizeof(*p), GFP_KERNEL);
301 if (!p)
302 return ERR_PTR(-EBUSY);
303
304 if (!init_part_stats(p)) {
305 err = -ENOMEM;
306 goto out_free;
307 }
308
309 seqcount_init(&p->nr_sects_seq);
310 pdev = part_to_dev(p);
311
312 p->start_sect = start;
313 p->alignment_offset =
314 queue_limit_alignment_offset(&disk->queue->limits, start);
315 p->discard_alignment =
316 queue_limit_discard_alignment(&disk->queue->limits, start);
317 p->nr_sects = len;
318 p->partno = partno;
319 p->policy = get_disk_ro(disk);
320
321 if (info) {
322 struct partition_meta_info *pinfo = alloc_part_info(disk);
323 if (!pinfo)
324 goto out_free_stats;
325 memcpy(pinfo, info, sizeof(*info));
326 p->info = pinfo;
327 }
328
329 dname = dev_name(ddev);
330 if (isdigit(dname[strlen(dname) - 1]))
331 dev_set_name(pdev, "%sp%d", dname, partno);
332 else
333 dev_set_name(pdev, "%s%d", dname, partno);
334
335 device_initialize(pdev);
336 pdev->class = &block_class;
337 pdev->type = &part_type;
338 pdev->parent = ddev;
339
340 err = blk_alloc_devt(p, &devt);
341 if (err)
342 goto out_free_info;
343 pdev->devt = devt;
344
345 /* delay uevent until 'holders' subdir is created */
346 dev_set_uevent_suppress(pdev, 1);
347 err = device_add(pdev);
348 if (err)
349 goto out_put;
350
351 err = -ENOMEM;
352 p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
353 if (!p->holder_dir)
354 goto out_del;
355
356 dev_set_uevent_suppress(pdev, 0);
357 if (flags & ADDPART_FLAG_WHOLEDISK) {
358 err = device_create_file(pdev, &dev_attr_whole_disk);
359 if (err)
360 goto out_del;
361 }
362
363 /* everything is up and running, commence */
364 rcu_assign_pointer(ptbl->part[partno], p);
365
366 /* suppress uevent if the disk suppresses it */
367 if (!dev_get_uevent_suppress(ddev))
368 kobject_uevent(&pdev->kobj, KOBJ_ADD);
369
370 hd_ref_init(p);
371 return p;
372
373 out_free_info:
374 free_part_info(p);
375 out_free_stats:
376 free_part_stats(p);
377 out_free:
378 kfree(p);
379 return ERR_PTR(err);
380 out_del:
381 kobject_put(p->holder_dir);
382 device_del(pdev);
383 out_put:
384 put_device(pdev);
385 blk_free_devt(devt);
386 return ERR_PTR(err);
387 }
388
disk_unlock_native_capacity(struct gendisk * disk)389 static bool disk_unlock_native_capacity(struct gendisk *disk)
390 {
391 const struct block_device_operations *bdops = disk->fops;
392
393 if (bdops->unlock_native_capacity &&
394 !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
395 printk(KERN_CONT "enabling native capacity\n");
396 bdops->unlock_native_capacity(disk);
397 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
398 return true;
399 } else {
400 printk(KERN_CONT "truncated\n");
401 return false;
402 }
403 }
404
drop_partitions(struct gendisk * disk,struct block_device * bdev)405 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
406 {
407 struct disk_part_iter piter;
408 struct hd_struct *part;
409 int res;
410
411 if (bdev->bd_part_count)
412 return -EBUSY;
413 res = invalidate_partition(disk, 0);
414 if (res)
415 return res;
416
417 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
418 while ((part = disk_part_iter_next(&piter)))
419 delete_partition(disk, part->partno);
420 disk_part_iter_exit(&piter);
421
422 return 0;
423 }
424
rescan_partitions(struct gendisk * disk,struct block_device * bdev)425 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
426 {
427 struct parsed_partitions *state = NULL;
428 struct hd_struct *part;
429 int p, highest, res;
430 rescan:
431 if (state && !IS_ERR(state)) {
432 free_partitions(state);
433 state = NULL;
434 }
435
436 res = drop_partitions(disk, bdev);
437 if (res)
438 return res;
439
440 if (disk->fops->revalidate_disk)
441 disk->fops->revalidate_disk(disk);
442 check_disk_size_change(disk, bdev);
443 bdev->bd_invalidated = 0;
444 if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
445 return 0;
446 if (IS_ERR(state)) {
447 /*
448 * I/O error reading the partition table. If any
449 * partition code tried to read beyond EOD, retry
450 * after unlocking native capacity.
451 */
452 if (PTR_ERR(state) == -ENOSPC) {
453 printk(KERN_WARNING "%s: partition table beyond EOD, ",
454 disk->disk_name);
455 if (disk_unlock_native_capacity(disk))
456 goto rescan;
457 }
458 return -EIO;
459 }
460 /*
461 * If any partition code tried to read beyond EOD, try
462 * unlocking native capacity even if partition table is
463 * successfully read as we could be missing some partitions.
464 */
465 if (state->access_beyond_eod) {
466 printk(KERN_WARNING
467 "%s: partition table partially beyond EOD, ",
468 disk->disk_name);
469 if (disk_unlock_native_capacity(disk))
470 goto rescan;
471 }
472
473 /* tell userspace that the media / partition table may have changed */
474 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
475
476 /* Detect the highest partition number and preallocate
477 * disk->part_tbl. This is an optimization and not strictly
478 * necessary.
479 */
480 for (p = 1, highest = 0; p < state->limit; p++)
481 if (state->parts[p].size)
482 highest = p;
483
484 disk_expand_part_tbl(disk, highest);
485
486 /* add partitions */
487 for (p = 1; p < state->limit; p++) {
488 sector_t size, from;
489 struct partition_meta_info *info = NULL;
490
491 size = state->parts[p].size;
492 if (!size)
493 continue;
494
495 from = state->parts[p].from;
496 if (from >= get_capacity(disk)) {
497 printk(KERN_WARNING
498 "%s: p%d start %llu is beyond EOD, ",
499 disk->disk_name, p, (unsigned long long) from);
500 if (disk_unlock_native_capacity(disk))
501 goto rescan;
502 continue;
503 }
504
505 if (from + size > get_capacity(disk)) {
506 printk(KERN_WARNING
507 "%s: p%d size %llu extends beyond EOD, ",
508 disk->disk_name, p, (unsigned long long) size);
509
510 if (disk_unlock_native_capacity(disk)) {
511 /* free state and restart */
512 goto rescan;
513 } else {
514 /*
515 * we can not ignore partitions of broken tables
516 * created by for example camera firmware, but
517 * we limit them to the end of the disk to avoid
518 * creating invalid block devices
519 */
520 size = get_capacity(disk) - from;
521 }
522 }
523
524 if (state->parts[p].has_info)
525 info = &state->parts[p].info;
526 part = add_partition(disk, p, from, size,
527 state->parts[p].flags,
528 &state->parts[p].info);
529 if (IS_ERR(part)) {
530 printk(KERN_ERR " %s: p%d could not be added: %ld\n",
531 disk->disk_name, p, -PTR_ERR(part));
532 continue;
533 }
534 #ifdef CONFIG_BLK_DEV_MD
535 if (state->parts[p].flags & ADDPART_FLAG_RAID)
536 md_autodetect_dev(part_to_dev(part)->devt);
537 #endif
538 }
539 free_partitions(state);
540 return 0;
541 }
542
invalidate_partitions(struct gendisk * disk,struct block_device * bdev)543 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
544 {
545 int res;
546
547 if (!bdev->bd_invalidated)
548 return 0;
549
550 res = drop_partitions(disk, bdev);
551 if (res)
552 return res;
553
554 set_capacity(disk, 0);
555 check_disk_size_change(disk, bdev);
556 bdev->bd_invalidated = 0;
557 /* tell userspace that the media / partition table may have changed */
558 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
559
560 return 0;
561 }
562
read_dev_sector(struct block_device * bdev,sector_t n,Sector * p)563 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
564 {
565 struct address_space *mapping = bdev->bd_inode->i_mapping;
566 struct page *page;
567
568 page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_CACHE_SHIFT-9)),
569 NULL);
570 if (!IS_ERR(page)) {
571 if (PageError(page))
572 goto fail;
573 p->v = page;
574 return (unsigned char *)page_address(page) + ((n & ((1 << (PAGE_CACHE_SHIFT - 9)) - 1)) << 9);
575 fail:
576 page_cache_release(page);
577 }
578 p->v = NULL;
579 return NULL;
580 }
581
582 EXPORT_SYMBOL(read_dev_sector);
583