1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 #include <linux/rbtree.h>
18
19 #define DM_MSG_PREFIX "bufio"
20
21 /*
22 * Memory management policy:
23 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
24 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
25 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
26 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
27 * dirty buffers.
28 */
29 #define DM_BUFIO_MIN_BUFFERS 8
30
31 #define DM_BUFIO_MEMORY_PERCENT 2
32 #define DM_BUFIO_VMALLOC_PERCENT 25
33 #define DM_BUFIO_WRITEBACK_PERCENT 75
34
35 /*
36 * Check buffer ages in this interval (seconds)
37 */
38 #define DM_BUFIO_WORK_TIMER_SECS 10
39
40 /*
41 * Free buffers when they are older than this (seconds)
42 */
43 #define DM_BUFIO_DEFAULT_AGE_SECS 60
44
45 /*
46 * The number of bvec entries that are embedded directly in the buffer.
47 * If the chunk size is larger, dm-io is used to do the io.
48 */
49 #define DM_BUFIO_INLINE_VECS 16
50
51 /*
52 * Don't try to use kmem_cache_alloc for blocks larger than this.
53 * For explanation, see alloc_buffer_data below.
54 */
55 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
56 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
57
58 /*
59 * dm_buffer->list_mode
60 */
61 #define LIST_CLEAN 0
62 #define LIST_DIRTY 1
63 #define LIST_SIZE 2
64
65 /*
66 * Linking of buffers:
67 * All buffers are linked to cache_hash with their hash_list field.
68 *
69 * Clean buffers that are not being written (B_WRITING not set)
70 * are linked to lru[LIST_CLEAN] with their lru_list field.
71 *
72 * Dirty and clean buffers that are being written are linked to
73 * lru[LIST_DIRTY] with their lru_list field. When the write
74 * finishes, the buffer cannot be relinked immediately (because we
75 * are in an interrupt context and relinking requires process
76 * context), so some clean-not-writing buffers can be held on
77 * dirty_lru too. They are later added to lru in the process
78 * context.
79 */
80 struct dm_bufio_client {
81 struct mutex lock;
82
83 struct list_head lru[LIST_SIZE];
84 unsigned long n_buffers[LIST_SIZE];
85
86 struct block_device *bdev;
87 unsigned block_size;
88 unsigned char sectors_per_block_bits;
89 unsigned char pages_per_block_bits;
90 unsigned char blocks_per_page_bits;
91 unsigned aux_size;
92 void (*alloc_callback)(struct dm_buffer *);
93 void (*write_callback)(struct dm_buffer *);
94
95 struct dm_io_client *dm_io;
96
97 struct list_head reserved_buffers;
98 unsigned need_reserved_buffers;
99
100 unsigned minimum_buffers;
101
102 struct rb_root buffer_tree;
103 wait_queue_head_t free_buffer_wait;
104
105 int async_write_error;
106
107 struct list_head client_list;
108 struct shrinker shrinker;
109 };
110
111 /*
112 * Buffer state bits.
113 */
114 #define B_READING 0
115 #define B_WRITING 1
116 #define B_DIRTY 2
117
118 /*
119 * Describes how the block was allocated:
120 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
121 * See the comment at alloc_buffer_data.
122 */
123 enum data_mode {
124 DATA_MODE_SLAB = 0,
125 DATA_MODE_GET_FREE_PAGES = 1,
126 DATA_MODE_VMALLOC = 2,
127 DATA_MODE_LIMIT = 3
128 };
129
130 struct dm_buffer {
131 struct rb_node node;
132 struct list_head lru_list;
133 sector_t block;
134 void *data;
135 enum data_mode data_mode;
136 unsigned char list_mode; /* LIST_* */
137 unsigned hold_count;
138 int read_error;
139 int write_error;
140 unsigned long state;
141 unsigned long last_accessed;
142 struct dm_bufio_client *c;
143 struct list_head write_list;
144 struct bio bio;
145 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
146 };
147
148 /*----------------------------------------------------------------*/
149
150 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
151 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
152
dm_bufio_cache_index(struct dm_bufio_client * c)153 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
154 {
155 unsigned ret = c->blocks_per_page_bits - 1;
156
157 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
158
159 return ret;
160 }
161
162 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
163 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
164
165 #define dm_bufio_in_request() (!!current->bio_list)
166
dm_bufio_lock(struct dm_bufio_client * c)167 static void dm_bufio_lock(struct dm_bufio_client *c)
168 {
169 mutex_lock_nested(&c->lock, dm_bufio_in_request());
170 }
171
dm_bufio_trylock(struct dm_bufio_client * c)172 static int dm_bufio_trylock(struct dm_bufio_client *c)
173 {
174 return mutex_trylock(&c->lock);
175 }
176
dm_bufio_unlock(struct dm_bufio_client * c)177 static void dm_bufio_unlock(struct dm_bufio_client *c)
178 {
179 mutex_unlock(&c->lock);
180 }
181
182 /*
183 * FIXME Move to sched.h?
184 */
185 #ifdef CONFIG_PREEMPT_VOLUNTARY
186 # define dm_bufio_cond_resched() \
187 do { \
188 if (unlikely(need_resched())) \
189 _cond_resched(); \
190 } while (0)
191 #else
192 # define dm_bufio_cond_resched() do { } while (0)
193 #endif
194
195 /*----------------------------------------------------------------*/
196
197 /*
198 * Default cache size: available memory divided by the ratio.
199 */
200 static unsigned long dm_bufio_default_cache_size;
201
202 /*
203 * Total cache size set by the user.
204 */
205 static unsigned long dm_bufio_cache_size;
206
207 /*
208 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
209 * at any time. If it disagrees, the user has changed cache size.
210 */
211 static unsigned long dm_bufio_cache_size_latch;
212
213 static DEFINE_SPINLOCK(param_spinlock);
214
215 /*
216 * Buffers are freed after this timeout
217 */
218 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
219
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225
226 /*----------------------------------------------------------------*/
227
228 /*
229 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230 */
231 static unsigned long dm_bufio_cache_size_per_client;
232
233 /*
234 * The current number of clients.
235 */
236 static int dm_bufio_client_count;
237
238 /*
239 * The list of all clients.
240 */
241 static LIST_HEAD(dm_bufio_all_clients);
242
243 /*
244 * This mutex protects dm_bufio_cache_size_latch,
245 * dm_bufio_cache_size_per_client and dm_bufio_client_count
246 */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248
249 /*----------------------------------------------------------------
250 * A red/black tree acts as an index for all the buffers.
251 *--------------------------------------------------------------*/
__find(struct dm_bufio_client * c,sector_t block)252 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
253 {
254 struct rb_node *n = c->buffer_tree.rb_node;
255 struct dm_buffer *b;
256
257 while (n) {
258 b = container_of(n, struct dm_buffer, node);
259
260 if (b->block == block)
261 return b;
262
263 n = (b->block < block) ? n->rb_left : n->rb_right;
264 }
265
266 return NULL;
267 }
268
__insert(struct dm_bufio_client * c,struct dm_buffer * b)269 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
270 {
271 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
272 struct dm_buffer *found;
273
274 while (*new) {
275 found = container_of(*new, struct dm_buffer, node);
276
277 if (found->block == b->block) {
278 BUG_ON(found != b);
279 return;
280 }
281
282 parent = *new;
283 new = (found->block < b->block) ?
284 &((*new)->rb_left) : &((*new)->rb_right);
285 }
286
287 rb_link_node(&b->node, parent, new);
288 rb_insert_color(&b->node, &c->buffer_tree);
289 }
290
__remove(struct dm_bufio_client * c,struct dm_buffer * b)291 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
292 {
293 rb_erase(&b->node, &c->buffer_tree);
294 }
295
296 /*----------------------------------------------------------------*/
297
adjust_total_allocated(enum data_mode data_mode,long diff)298 static void adjust_total_allocated(enum data_mode data_mode, long diff)
299 {
300 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
301 &dm_bufio_allocated_kmem_cache,
302 &dm_bufio_allocated_get_free_pages,
303 &dm_bufio_allocated_vmalloc,
304 };
305
306 spin_lock(¶m_spinlock);
307
308 *class_ptr[data_mode] += diff;
309
310 dm_bufio_current_allocated += diff;
311
312 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
313 dm_bufio_peak_allocated = dm_bufio_current_allocated;
314
315 spin_unlock(¶m_spinlock);
316 }
317
318 /*
319 * Change the number of clients and recalculate per-client limit.
320 */
__cache_size_refresh(void)321 static void __cache_size_refresh(void)
322 {
323 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
324 BUG_ON(dm_bufio_client_count < 0);
325
326 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
327
328 /*
329 * Use default if set to 0 and report the actual cache size used.
330 */
331 if (!dm_bufio_cache_size_latch) {
332 (void)cmpxchg(&dm_bufio_cache_size, 0,
333 dm_bufio_default_cache_size);
334 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
335 }
336
337 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
338 (dm_bufio_client_count ? : 1);
339 }
340
341 /*
342 * Allocating buffer data.
343 *
344 * Small buffers are allocated with kmem_cache, to use space optimally.
345 *
346 * For large buffers, we choose between get_free_pages and vmalloc.
347 * Each has advantages and disadvantages.
348 *
349 * __get_free_pages can randomly fail if the memory is fragmented.
350 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
351 * as low as 128M) so using it for caching is not appropriate.
352 *
353 * If the allocation may fail we use __get_free_pages. Memory fragmentation
354 * won't have a fatal effect here, but it just causes flushes of some other
355 * buffers and more I/O will be performed. Don't use __get_free_pages if it
356 * always fails (i.e. order >= MAX_ORDER).
357 *
358 * If the allocation shouldn't fail we use __vmalloc. This is only for the
359 * initial reserve allocation, so there's no risk of wasting all vmalloc
360 * space.
361 */
alloc_buffer_data(struct dm_bufio_client * c,gfp_t gfp_mask,enum data_mode * data_mode)362 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
363 enum data_mode *data_mode)
364 {
365 unsigned noio_flag;
366 void *ptr;
367
368 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
369 *data_mode = DATA_MODE_SLAB;
370 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
371 }
372
373 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
374 gfp_mask & __GFP_NORETRY) {
375 *data_mode = DATA_MODE_GET_FREE_PAGES;
376 return (void *)__get_free_pages(gfp_mask,
377 c->pages_per_block_bits);
378 }
379
380 *data_mode = DATA_MODE_VMALLOC;
381
382 /*
383 * __vmalloc allocates the data pages and auxiliary structures with
384 * gfp_flags that were specified, but pagetables are always allocated
385 * with GFP_KERNEL, no matter what was specified as gfp_mask.
386 *
387 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
388 * all allocations done by this process (including pagetables) are done
389 * as if GFP_NOIO was specified.
390 */
391
392 noio_flag = 0;
393 if (gfp_mask & __GFP_NORETRY)
394 noio_flag = memalloc_noio_save();
395
396 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
397
398 if (gfp_mask & __GFP_NORETRY)
399 memalloc_noio_restore(noio_flag);
400
401 return ptr;
402 }
403
404 /*
405 * Free buffer's data.
406 */
free_buffer_data(struct dm_bufio_client * c,void * data,enum data_mode data_mode)407 static void free_buffer_data(struct dm_bufio_client *c,
408 void *data, enum data_mode data_mode)
409 {
410 switch (data_mode) {
411 case DATA_MODE_SLAB:
412 kmem_cache_free(DM_BUFIO_CACHE(c), data);
413 break;
414
415 case DATA_MODE_GET_FREE_PAGES:
416 free_pages((unsigned long)data, c->pages_per_block_bits);
417 break;
418
419 case DATA_MODE_VMALLOC:
420 vfree(data);
421 break;
422
423 default:
424 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
425 data_mode);
426 BUG();
427 }
428 }
429
430 /*
431 * Allocate buffer and its data.
432 */
alloc_buffer(struct dm_bufio_client * c,gfp_t gfp_mask)433 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
434 {
435 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
436 gfp_mask);
437
438 if (!b)
439 return NULL;
440
441 b->c = c;
442
443 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
444 if (!b->data) {
445 kfree(b);
446 return NULL;
447 }
448
449 adjust_total_allocated(b->data_mode, (long)c->block_size);
450
451 return b;
452 }
453
454 /*
455 * Free buffer and its data.
456 */
free_buffer(struct dm_buffer * b)457 static void free_buffer(struct dm_buffer *b)
458 {
459 struct dm_bufio_client *c = b->c;
460
461 adjust_total_allocated(b->data_mode, -(long)c->block_size);
462
463 free_buffer_data(c, b->data, b->data_mode);
464 kfree(b);
465 }
466
467 /*
468 * Link buffer to the hash list and clean or dirty queue.
469 */
__link_buffer(struct dm_buffer * b,sector_t block,int dirty)470 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
471 {
472 struct dm_bufio_client *c = b->c;
473
474 c->n_buffers[dirty]++;
475 b->block = block;
476 b->list_mode = dirty;
477 list_add(&b->lru_list, &c->lru[dirty]);
478 __insert(b->c, b);
479 b->last_accessed = jiffies;
480 }
481
482 /*
483 * Unlink buffer from the hash list and dirty or clean queue.
484 */
__unlink_buffer(struct dm_buffer * b)485 static void __unlink_buffer(struct dm_buffer *b)
486 {
487 struct dm_bufio_client *c = b->c;
488
489 BUG_ON(!c->n_buffers[b->list_mode]);
490
491 c->n_buffers[b->list_mode]--;
492 __remove(b->c, b);
493 list_del(&b->lru_list);
494 }
495
496 /*
497 * Place the buffer to the head of dirty or clean LRU queue.
498 */
__relink_lru(struct dm_buffer * b,int dirty)499 static void __relink_lru(struct dm_buffer *b, int dirty)
500 {
501 struct dm_bufio_client *c = b->c;
502
503 BUG_ON(!c->n_buffers[b->list_mode]);
504
505 c->n_buffers[b->list_mode]--;
506 c->n_buffers[dirty]++;
507 b->list_mode = dirty;
508 list_move(&b->lru_list, &c->lru[dirty]);
509 b->last_accessed = jiffies;
510 }
511
512 /*----------------------------------------------------------------
513 * Submit I/O on the buffer.
514 *
515 * Bio interface is faster but it has some problems:
516 * the vector list is limited (increasing this limit increases
517 * memory-consumption per buffer, so it is not viable);
518 *
519 * the memory must be direct-mapped, not vmalloced;
520 *
521 * the I/O driver can reject requests spuriously if it thinks that
522 * the requests are too big for the device or if they cross a
523 * controller-defined memory boundary.
524 *
525 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
526 * it is not vmalloced, try using the bio interface.
527 *
528 * If the buffer is big, if it is vmalloced or if the underlying device
529 * rejects the bio because it is too large, use dm-io layer to do the I/O.
530 * The dm-io layer splits the I/O into multiple requests, avoiding the above
531 * shortcomings.
532 *--------------------------------------------------------------*/
533
534 /*
535 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
536 * that the request was handled directly with bio interface.
537 */
dmio_complete(unsigned long error,void * context)538 static void dmio_complete(unsigned long error, void *context)
539 {
540 struct dm_buffer *b = context;
541
542 b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
543 }
544
use_dmio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)545 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
546 bio_end_io_t *end_io)
547 {
548 int r;
549 struct dm_io_request io_req = {
550 .bi_rw = rw,
551 .notify.fn = dmio_complete,
552 .notify.context = b,
553 .client = b->c->dm_io,
554 };
555 struct dm_io_region region = {
556 .bdev = b->c->bdev,
557 .sector = block << b->c->sectors_per_block_bits,
558 .count = b->c->block_size >> SECTOR_SHIFT,
559 };
560
561 if (b->data_mode != DATA_MODE_VMALLOC) {
562 io_req.mem.type = DM_IO_KMEM;
563 io_req.mem.ptr.addr = b->data;
564 } else {
565 io_req.mem.type = DM_IO_VMA;
566 io_req.mem.ptr.vma = b->data;
567 }
568
569 b->bio.bi_end_io = end_io;
570
571 r = dm_io(&io_req, 1, ®ion, NULL);
572 if (r)
573 end_io(&b->bio, r);
574 }
575
inline_endio(struct bio * bio,int error)576 static void inline_endio(struct bio *bio, int error)
577 {
578 bio_end_io_t *end_fn = bio->bi_private;
579
580 /*
581 * Reset the bio to free any attached resources
582 * (e.g. bio integrity profiles).
583 */
584 bio_reset(bio);
585
586 end_fn(bio, error);
587 }
588
use_inline_bio(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)589 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
590 bio_end_io_t *end_io)
591 {
592 char *ptr;
593 int len;
594
595 bio_init(&b->bio);
596 b->bio.bi_io_vec = b->bio_vec;
597 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
598 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
599 b->bio.bi_bdev = b->c->bdev;
600 b->bio.bi_end_io = inline_endio;
601 /*
602 * Use of .bi_private isn't a problem here because
603 * the dm_buffer's inline bio is local to bufio.
604 */
605 b->bio.bi_private = end_io;
606
607 /*
608 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
609 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
610 */
611 ptr = b->data;
612 len = b->c->block_size;
613
614 if (len >= PAGE_SIZE)
615 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
616 else
617 BUG_ON((unsigned long)ptr & (len - 1));
618
619 do {
620 if (!bio_add_page(&b->bio, virt_to_page(ptr),
621 len < PAGE_SIZE ? len : PAGE_SIZE,
622 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
623 BUG_ON(b->c->block_size <= PAGE_SIZE);
624 use_dmio(b, rw, block, end_io);
625 return;
626 }
627
628 len -= PAGE_SIZE;
629 ptr += PAGE_SIZE;
630 } while (len > 0);
631
632 submit_bio(rw, &b->bio);
633 }
634
submit_io(struct dm_buffer * b,int rw,sector_t block,bio_end_io_t * end_io)635 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
636 bio_end_io_t *end_io)
637 {
638 if (rw == WRITE && b->c->write_callback)
639 b->c->write_callback(b);
640
641 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
642 b->data_mode != DATA_MODE_VMALLOC)
643 use_inline_bio(b, rw, block, end_io);
644 else
645 use_dmio(b, rw, block, end_io);
646 }
647
648 /*----------------------------------------------------------------
649 * Writing dirty buffers
650 *--------------------------------------------------------------*/
651
652 /*
653 * The endio routine for write.
654 *
655 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
656 * it.
657 */
write_endio(struct bio * bio,int error)658 static void write_endio(struct bio *bio, int error)
659 {
660 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
661
662 b->write_error = error;
663 if (unlikely(error)) {
664 struct dm_bufio_client *c = b->c;
665 (void)cmpxchg(&c->async_write_error, 0, error);
666 }
667
668 BUG_ON(!test_bit(B_WRITING, &b->state));
669
670 smp_mb__before_atomic();
671 clear_bit(B_WRITING, &b->state);
672 smp_mb__after_atomic();
673
674 wake_up_bit(&b->state, B_WRITING);
675 }
676
677 /*
678 * Initiate a write on a dirty buffer, but don't wait for it.
679 *
680 * - If the buffer is not dirty, exit.
681 * - If there some previous write going on, wait for it to finish (we can't
682 * have two writes on the same buffer simultaneously).
683 * - Submit our write and don't wait on it. We set B_WRITING indicating
684 * that there is a write in progress.
685 */
__write_dirty_buffer(struct dm_buffer * b,struct list_head * write_list)686 static void __write_dirty_buffer(struct dm_buffer *b,
687 struct list_head *write_list)
688 {
689 if (!test_bit(B_DIRTY, &b->state))
690 return;
691
692 clear_bit(B_DIRTY, &b->state);
693 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
694
695 if (!write_list)
696 submit_io(b, WRITE, b->block, write_endio);
697 else
698 list_add_tail(&b->write_list, write_list);
699 }
700
__flush_write_list(struct list_head * write_list)701 static void __flush_write_list(struct list_head *write_list)
702 {
703 struct blk_plug plug;
704 blk_start_plug(&plug);
705 while (!list_empty(write_list)) {
706 struct dm_buffer *b =
707 list_entry(write_list->next, struct dm_buffer, write_list);
708 list_del(&b->write_list);
709 submit_io(b, WRITE, b->block, write_endio);
710 dm_bufio_cond_resched();
711 }
712 blk_finish_plug(&plug);
713 }
714
715 /*
716 * Wait until any activity on the buffer finishes. Possibly write the
717 * buffer if it is dirty. When this function finishes, there is no I/O
718 * running on the buffer and the buffer is not dirty.
719 */
__make_buffer_clean(struct dm_buffer * b)720 static void __make_buffer_clean(struct dm_buffer *b)
721 {
722 BUG_ON(b->hold_count);
723
724 if (!b->state) /* fast case */
725 return;
726
727 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
728 __write_dirty_buffer(b, NULL);
729 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
730 }
731
732 /*
733 * Find some buffer that is not held by anybody, clean it, unlink it and
734 * return it.
735 */
__get_unclaimed_buffer(struct dm_bufio_client * c)736 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
737 {
738 struct dm_buffer *b;
739
740 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
741 BUG_ON(test_bit(B_WRITING, &b->state));
742 BUG_ON(test_bit(B_DIRTY, &b->state));
743
744 if (!b->hold_count) {
745 __make_buffer_clean(b);
746 __unlink_buffer(b);
747 return b;
748 }
749 dm_bufio_cond_resched();
750 }
751
752 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
753 BUG_ON(test_bit(B_READING, &b->state));
754
755 if (!b->hold_count) {
756 __make_buffer_clean(b);
757 __unlink_buffer(b);
758 return b;
759 }
760 dm_bufio_cond_resched();
761 }
762
763 return NULL;
764 }
765
766 /*
767 * Wait until some other threads free some buffer or release hold count on
768 * some buffer.
769 *
770 * This function is entered with c->lock held, drops it and regains it
771 * before exiting.
772 */
__wait_for_free_buffer(struct dm_bufio_client * c)773 static void __wait_for_free_buffer(struct dm_bufio_client *c)
774 {
775 DECLARE_WAITQUEUE(wait, current);
776
777 add_wait_queue(&c->free_buffer_wait, &wait);
778 set_task_state(current, TASK_UNINTERRUPTIBLE);
779 dm_bufio_unlock(c);
780
781 io_schedule();
782
783 remove_wait_queue(&c->free_buffer_wait, &wait);
784
785 dm_bufio_lock(c);
786 }
787
788 enum new_flag {
789 NF_FRESH = 0,
790 NF_READ = 1,
791 NF_GET = 2,
792 NF_PREFETCH = 3
793 };
794
795 /*
796 * Allocate a new buffer. If the allocation is not possible, wait until
797 * some other thread frees a buffer.
798 *
799 * May drop the lock and regain it.
800 */
__alloc_buffer_wait_no_callback(struct dm_bufio_client * c,enum new_flag nf)801 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
802 {
803 struct dm_buffer *b;
804
805 /*
806 * dm-bufio is resistant to allocation failures (it just keeps
807 * one buffer reserved in cases all the allocations fail).
808 * So set flags to not try too hard:
809 * GFP_NOIO: don't recurse into the I/O layer
810 * __GFP_NORETRY: don't retry and rather return failure
811 * __GFP_NOMEMALLOC: don't use emergency reserves
812 * __GFP_NOWARN: don't print a warning in case of failure
813 *
814 * For debugging, if we set the cache size to 1, no new buffers will
815 * be allocated.
816 */
817 while (1) {
818 if (dm_bufio_cache_size_latch != 1) {
819 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
820 if (b)
821 return b;
822 }
823
824 if (nf == NF_PREFETCH)
825 return NULL;
826
827 if (!list_empty(&c->reserved_buffers)) {
828 b = list_entry(c->reserved_buffers.next,
829 struct dm_buffer, lru_list);
830 list_del(&b->lru_list);
831 c->need_reserved_buffers++;
832
833 return b;
834 }
835
836 b = __get_unclaimed_buffer(c);
837 if (b)
838 return b;
839
840 __wait_for_free_buffer(c);
841 }
842 }
843
__alloc_buffer_wait(struct dm_bufio_client * c,enum new_flag nf)844 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
845 {
846 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
847
848 if (!b)
849 return NULL;
850
851 if (c->alloc_callback)
852 c->alloc_callback(b);
853
854 return b;
855 }
856
857 /*
858 * Free a buffer and wake other threads waiting for free buffers.
859 */
__free_buffer_wake(struct dm_buffer * b)860 static void __free_buffer_wake(struct dm_buffer *b)
861 {
862 struct dm_bufio_client *c = b->c;
863
864 if (!c->need_reserved_buffers)
865 free_buffer(b);
866 else {
867 list_add(&b->lru_list, &c->reserved_buffers);
868 c->need_reserved_buffers--;
869 }
870
871 wake_up(&c->free_buffer_wait);
872 }
873
__write_dirty_buffers_async(struct dm_bufio_client * c,int no_wait,struct list_head * write_list)874 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
875 struct list_head *write_list)
876 {
877 struct dm_buffer *b, *tmp;
878
879 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
880 BUG_ON(test_bit(B_READING, &b->state));
881
882 if (!test_bit(B_DIRTY, &b->state) &&
883 !test_bit(B_WRITING, &b->state)) {
884 __relink_lru(b, LIST_CLEAN);
885 continue;
886 }
887
888 if (no_wait && test_bit(B_WRITING, &b->state))
889 return;
890
891 __write_dirty_buffer(b, write_list);
892 dm_bufio_cond_resched();
893 }
894 }
895
896 /*
897 * Get writeback threshold and buffer limit for a given client.
898 */
__get_memory_limit(struct dm_bufio_client * c,unsigned long * threshold_buffers,unsigned long * limit_buffers)899 static void __get_memory_limit(struct dm_bufio_client *c,
900 unsigned long *threshold_buffers,
901 unsigned long *limit_buffers)
902 {
903 unsigned long buffers;
904
905 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
906 if (mutex_trylock(&dm_bufio_clients_lock)) {
907 __cache_size_refresh();
908 mutex_unlock(&dm_bufio_clients_lock);
909 }
910 }
911
912 buffers = dm_bufio_cache_size_per_client >>
913 (c->sectors_per_block_bits + SECTOR_SHIFT);
914
915 if (buffers < c->minimum_buffers)
916 buffers = c->minimum_buffers;
917
918 *limit_buffers = buffers;
919 *threshold_buffers = mult_frac(buffers,
920 DM_BUFIO_WRITEBACK_PERCENT, 100);
921 }
922
923 /*
924 * Check if we're over watermark.
925 * If we are over threshold_buffers, start freeing buffers.
926 * If we're over "limit_buffers", block until we get under the limit.
927 */
__check_watermark(struct dm_bufio_client * c,struct list_head * write_list)928 static void __check_watermark(struct dm_bufio_client *c,
929 struct list_head *write_list)
930 {
931 unsigned long threshold_buffers, limit_buffers;
932
933 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
934
935 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
936 limit_buffers) {
937
938 struct dm_buffer *b = __get_unclaimed_buffer(c);
939
940 if (!b)
941 return;
942
943 __free_buffer_wake(b);
944 dm_bufio_cond_resched();
945 }
946
947 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
948 __write_dirty_buffers_async(c, 1, write_list);
949 }
950
951 /*----------------------------------------------------------------
952 * Getting a buffer
953 *--------------------------------------------------------------*/
954
__bufio_new(struct dm_bufio_client * c,sector_t block,enum new_flag nf,int * need_submit,struct list_head * write_list)955 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
956 enum new_flag nf, int *need_submit,
957 struct list_head *write_list)
958 {
959 struct dm_buffer *b, *new_b = NULL;
960
961 *need_submit = 0;
962
963 b = __find(c, block);
964 if (b)
965 goto found_buffer;
966
967 if (nf == NF_GET)
968 return NULL;
969
970 new_b = __alloc_buffer_wait(c, nf);
971 if (!new_b)
972 return NULL;
973
974 /*
975 * We've had a period where the mutex was unlocked, so need to
976 * recheck the hash table.
977 */
978 b = __find(c, block);
979 if (b) {
980 __free_buffer_wake(new_b);
981 goto found_buffer;
982 }
983
984 __check_watermark(c, write_list);
985
986 b = new_b;
987 b->hold_count = 1;
988 b->read_error = 0;
989 b->write_error = 0;
990 __link_buffer(b, block, LIST_CLEAN);
991
992 if (nf == NF_FRESH) {
993 b->state = 0;
994 return b;
995 }
996
997 b->state = 1 << B_READING;
998 *need_submit = 1;
999
1000 return b;
1001
1002 found_buffer:
1003 if (nf == NF_PREFETCH)
1004 return NULL;
1005 /*
1006 * Note: it is essential that we don't wait for the buffer to be
1007 * read if dm_bufio_get function is used. Both dm_bufio_get and
1008 * dm_bufio_prefetch can be used in the driver request routine.
1009 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1010 * the same buffer, it would deadlock if we waited.
1011 */
1012 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1013 return NULL;
1014
1015 b->hold_count++;
1016 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1017 test_bit(B_WRITING, &b->state));
1018 return b;
1019 }
1020
1021 /*
1022 * The endio routine for reading: set the error, clear the bit and wake up
1023 * anyone waiting on the buffer.
1024 */
read_endio(struct bio * bio,int error)1025 static void read_endio(struct bio *bio, int error)
1026 {
1027 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1028
1029 b->read_error = error;
1030
1031 BUG_ON(!test_bit(B_READING, &b->state));
1032
1033 smp_mb__before_atomic();
1034 clear_bit(B_READING, &b->state);
1035 smp_mb__after_atomic();
1036
1037 wake_up_bit(&b->state, B_READING);
1038 }
1039
1040 /*
1041 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1042 * functions is similar except that dm_bufio_new doesn't read the
1043 * buffer from the disk (assuming that the caller overwrites all the data
1044 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1045 */
new_read(struct dm_bufio_client * c,sector_t block,enum new_flag nf,struct dm_buffer ** bp)1046 static void *new_read(struct dm_bufio_client *c, sector_t block,
1047 enum new_flag nf, struct dm_buffer **bp)
1048 {
1049 int need_submit;
1050 struct dm_buffer *b;
1051
1052 LIST_HEAD(write_list);
1053
1054 dm_bufio_lock(c);
1055 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1056 dm_bufio_unlock(c);
1057
1058 __flush_write_list(&write_list);
1059
1060 if (!b)
1061 return b;
1062
1063 if (need_submit)
1064 submit_io(b, READ, b->block, read_endio);
1065
1066 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1067
1068 if (b->read_error) {
1069 int error = b->read_error;
1070
1071 dm_bufio_release(b);
1072
1073 return ERR_PTR(error);
1074 }
1075
1076 *bp = b;
1077
1078 return b->data;
1079 }
1080
dm_bufio_get(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1081 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1082 struct dm_buffer **bp)
1083 {
1084 return new_read(c, block, NF_GET, bp);
1085 }
1086 EXPORT_SYMBOL_GPL(dm_bufio_get);
1087
dm_bufio_read(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1088 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1089 struct dm_buffer **bp)
1090 {
1091 BUG_ON(dm_bufio_in_request());
1092
1093 return new_read(c, block, NF_READ, bp);
1094 }
1095 EXPORT_SYMBOL_GPL(dm_bufio_read);
1096
dm_bufio_new(struct dm_bufio_client * c,sector_t block,struct dm_buffer ** bp)1097 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1098 struct dm_buffer **bp)
1099 {
1100 BUG_ON(dm_bufio_in_request());
1101
1102 return new_read(c, block, NF_FRESH, bp);
1103 }
1104 EXPORT_SYMBOL_GPL(dm_bufio_new);
1105
dm_bufio_prefetch(struct dm_bufio_client * c,sector_t block,unsigned n_blocks)1106 void dm_bufio_prefetch(struct dm_bufio_client *c,
1107 sector_t block, unsigned n_blocks)
1108 {
1109 struct blk_plug plug;
1110
1111 LIST_HEAD(write_list);
1112
1113 BUG_ON(dm_bufio_in_request());
1114
1115 blk_start_plug(&plug);
1116 dm_bufio_lock(c);
1117
1118 for (; n_blocks--; block++) {
1119 int need_submit;
1120 struct dm_buffer *b;
1121 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1122 &write_list);
1123 if (unlikely(!list_empty(&write_list))) {
1124 dm_bufio_unlock(c);
1125 blk_finish_plug(&plug);
1126 __flush_write_list(&write_list);
1127 blk_start_plug(&plug);
1128 dm_bufio_lock(c);
1129 }
1130 if (unlikely(b != NULL)) {
1131 dm_bufio_unlock(c);
1132
1133 if (need_submit)
1134 submit_io(b, READ, b->block, read_endio);
1135 dm_bufio_release(b);
1136
1137 dm_bufio_cond_resched();
1138
1139 if (!n_blocks)
1140 goto flush_plug;
1141 dm_bufio_lock(c);
1142 }
1143 }
1144
1145 dm_bufio_unlock(c);
1146
1147 flush_plug:
1148 blk_finish_plug(&plug);
1149 }
1150 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1151
dm_bufio_release(struct dm_buffer * b)1152 void dm_bufio_release(struct dm_buffer *b)
1153 {
1154 struct dm_bufio_client *c = b->c;
1155
1156 dm_bufio_lock(c);
1157
1158 BUG_ON(!b->hold_count);
1159
1160 b->hold_count--;
1161 if (!b->hold_count) {
1162 wake_up(&c->free_buffer_wait);
1163
1164 /*
1165 * If there were errors on the buffer, and the buffer is not
1166 * to be written, free the buffer. There is no point in caching
1167 * invalid buffer.
1168 */
1169 if ((b->read_error || b->write_error) &&
1170 !test_bit(B_READING, &b->state) &&
1171 !test_bit(B_WRITING, &b->state) &&
1172 !test_bit(B_DIRTY, &b->state)) {
1173 __unlink_buffer(b);
1174 __free_buffer_wake(b);
1175 }
1176 }
1177
1178 dm_bufio_unlock(c);
1179 }
1180 EXPORT_SYMBOL_GPL(dm_bufio_release);
1181
dm_bufio_mark_buffer_dirty(struct dm_buffer * b)1182 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1183 {
1184 struct dm_bufio_client *c = b->c;
1185
1186 dm_bufio_lock(c);
1187
1188 BUG_ON(test_bit(B_READING, &b->state));
1189
1190 if (!test_and_set_bit(B_DIRTY, &b->state))
1191 __relink_lru(b, LIST_DIRTY);
1192
1193 dm_bufio_unlock(c);
1194 }
1195 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1196
dm_bufio_write_dirty_buffers_async(struct dm_bufio_client * c)1197 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1198 {
1199 LIST_HEAD(write_list);
1200
1201 BUG_ON(dm_bufio_in_request());
1202
1203 dm_bufio_lock(c);
1204 __write_dirty_buffers_async(c, 0, &write_list);
1205 dm_bufio_unlock(c);
1206 __flush_write_list(&write_list);
1207 }
1208 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1209
1210 /*
1211 * For performance, it is essential that the buffers are written asynchronously
1212 * and simultaneously (so that the block layer can merge the writes) and then
1213 * waited upon.
1214 *
1215 * Finally, we flush hardware disk cache.
1216 */
dm_bufio_write_dirty_buffers(struct dm_bufio_client * c)1217 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1218 {
1219 int a, f;
1220 unsigned long buffers_processed = 0;
1221 struct dm_buffer *b, *tmp;
1222
1223 LIST_HEAD(write_list);
1224
1225 dm_bufio_lock(c);
1226 __write_dirty_buffers_async(c, 0, &write_list);
1227 dm_bufio_unlock(c);
1228 __flush_write_list(&write_list);
1229 dm_bufio_lock(c);
1230
1231 again:
1232 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1233 int dropped_lock = 0;
1234
1235 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1236 buffers_processed++;
1237
1238 BUG_ON(test_bit(B_READING, &b->state));
1239
1240 if (test_bit(B_WRITING, &b->state)) {
1241 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1242 dropped_lock = 1;
1243 b->hold_count++;
1244 dm_bufio_unlock(c);
1245 wait_on_bit_io(&b->state, B_WRITING,
1246 TASK_UNINTERRUPTIBLE);
1247 dm_bufio_lock(c);
1248 b->hold_count--;
1249 } else
1250 wait_on_bit_io(&b->state, B_WRITING,
1251 TASK_UNINTERRUPTIBLE);
1252 }
1253
1254 if (!test_bit(B_DIRTY, &b->state) &&
1255 !test_bit(B_WRITING, &b->state))
1256 __relink_lru(b, LIST_CLEAN);
1257
1258 dm_bufio_cond_resched();
1259
1260 /*
1261 * If we dropped the lock, the list is no longer consistent,
1262 * so we must restart the search.
1263 *
1264 * In the most common case, the buffer just processed is
1265 * relinked to the clean list, so we won't loop scanning the
1266 * same buffer again and again.
1267 *
1268 * This may livelock if there is another thread simultaneously
1269 * dirtying buffers, so we count the number of buffers walked
1270 * and if it exceeds the total number of buffers, it means that
1271 * someone is doing some writes simultaneously with us. In
1272 * this case, stop, dropping the lock.
1273 */
1274 if (dropped_lock)
1275 goto again;
1276 }
1277 wake_up(&c->free_buffer_wait);
1278 dm_bufio_unlock(c);
1279
1280 a = xchg(&c->async_write_error, 0);
1281 f = dm_bufio_issue_flush(c);
1282 if (a)
1283 return a;
1284
1285 return f;
1286 }
1287 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1288
1289 /*
1290 * Use dm-io to send and empty barrier flush the device.
1291 */
dm_bufio_issue_flush(struct dm_bufio_client * c)1292 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1293 {
1294 struct dm_io_request io_req = {
1295 .bi_rw = WRITE_FLUSH,
1296 .mem.type = DM_IO_KMEM,
1297 .mem.ptr.addr = NULL,
1298 .client = c->dm_io,
1299 };
1300 struct dm_io_region io_reg = {
1301 .bdev = c->bdev,
1302 .sector = 0,
1303 .count = 0,
1304 };
1305
1306 BUG_ON(dm_bufio_in_request());
1307
1308 return dm_io(&io_req, 1, &io_reg, NULL);
1309 }
1310 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1311
1312 /*
1313 * We first delete any other buffer that may be at that new location.
1314 *
1315 * Then, we write the buffer to the original location if it was dirty.
1316 *
1317 * Then, if we are the only one who is holding the buffer, relink the buffer
1318 * in the hash queue for the new location.
1319 *
1320 * If there was someone else holding the buffer, we write it to the new
1321 * location but not relink it, because that other user needs to have the buffer
1322 * at the same place.
1323 */
dm_bufio_release_move(struct dm_buffer * b,sector_t new_block)1324 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1325 {
1326 struct dm_bufio_client *c = b->c;
1327 struct dm_buffer *new;
1328
1329 BUG_ON(dm_bufio_in_request());
1330
1331 dm_bufio_lock(c);
1332
1333 retry:
1334 new = __find(c, new_block);
1335 if (new) {
1336 if (new->hold_count) {
1337 __wait_for_free_buffer(c);
1338 goto retry;
1339 }
1340
1341 /*
1342 * FIXME: Is there any point waiting for a write that's going
1343 * to be overwritten in a bit?
1344 */
1345 __make_buffer_clean(new);
1346 __unlink_buffer(new);
1347 __free_buffer_wake(new);
1348 }
1349
1350 BUG_ON(!b->hold_count);
1351 BUG_ON(test_bit(B_READING, &b->state));
1352
1353 __write_dirty_buffer(b, NULL);
1354 if (b->hold_count == 1) {
1355 wait_on_bit_io(&b->state, B_WRITING,
1356 TASK_UNINTERRUPTIBLE);
1357 set_bit(B_DIRTY, &b->state);
1358 __unlink_buffer(b);
1359 __link_buffer(b, new_block, LIST_DIRTY);
1360 } else {
1361 sector_t old_block;
1362 wait_on_bit_lock_io(&b->state, B_WRITING,
1363 TASK_UNINTERRUPTIBLE);
1364 /*
1365 * Relink buffer to "new_block" so that write_callback
1366 * sees "new_block" as a block number.
1367 * After the write, link the buffer back to old_block.
1368 * All this must be done in bufio lock, so that block number
1369 * change isn't visible to other threads.
1370 */
1371 old_block = b->block;
1372 __unlink_buffer(b);
1373 __link_buffer(b, new_block, b->list_mode);
1374 submit_io(b, WRITE, new_block, write_endio);
1375 wait_on_bit_io(&b->state, B_WRITING,
1376 TASK_UNINTERRUPTIBLE);
1377 __unlink_buffer(b);
1378 __link_buffer(b, old_block, b->list_mode);
1379 }
1380
1381 dm_bufio_unlock(c);
1382 dm_bufio_release(b);
1383 }
1384 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1385
1386 /*
1387 * Free the given buffer.
1388 *
1389 * This is just a hint, if the buffer is in use or dirty, this function
1390 * does nothing.
1391 */
dm_bufio_forget(struct dm_bufio_client * c,sector_t block)1392 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1393 {
1394 struct dm_buffer *b;
1395
1396 dm_bufio_lock(c);
1397
1398 b = __find(c, block);
1399 if (b && likely(!b->hold_count) && likely(!b->state)) {
1400 __unlink_buffer(b);
1401 __free_buffer_wake(b);
1402 }
1403
1404 dm_bufio_unlock(c);
1405 }
1406 EXPORT_SYMBOL(dm_bufio_forget);
1407
dm_bufio_set_minimum_buffers(struct dm_bufio_client * c,unsigned n)1408 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1409 {
1410 c->minimum_buffers = n;
1411 }
1412 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1413
dm_bufio_get_block_size(struct dm_bufio_client * c)1414 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1415 {
1416 return c->block_size;
1417 }
1418 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1419
dm_bufio_get_device_size(struct dm_bufio_client * c)1420 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1421 {
1422 return i_size_read(c->bdev->bd_inode) >>
1423 (SECTOR_SHIFT + c->sectors_per_block_bits);
1424 }
1425 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1426
dm_bufio_get_block_number(struct dm_buffer * b)1427 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1428 {
1429 return b->block;
1430 }
1431 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1432
dm_bufio_get_block_data(struct dm_buffer * b)1433 void *dm_bufio_get_block_data(struct dm_buffer *b)
1434 {
1435 return b->data;
1436 }
1437 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1438
dm_bufio_get_aux_data(struct dm_buffer * b)1439 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1440 {
1441 return b + 1;
1442 }
1443 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1444
dm_bufio_get_client(struct dm_buffer * b)1445 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1446 {
1447 return b->c;
1448 }
1449 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1450
drop_buffers(struct dm_bufio_client * c)1451 static void drop_buffers(struct dm_bufio_client *c)
1452 {
1453 struct dm_buffer *b;
1454 int i;
1455
1456 BUG_ON(dm_bufio_in_request());
1457
1458 /*
1459 * An optimization so that the buffers are not written one-by-one.
1460 */
1461 dm_bufio_write_dirty_buffers_async(c);
1462
1463 dm_bufio_lock(c);
1464
1465 while ((b = __get_unclaimed_buffer(c)))
1466 __free_buffer_wake(b);
1467
1468 for (i = 0; i < LIST_SIZE; i++)
1469 list_for_each_entry(b, &c->lru[i], lru_list)
1470 DMERR("leaked buffer %llx, hold count %u, list %d",
1471 (unsigned long long)b->block, b->hold_count, i);
1472
1473 for (i = 0; i < LIST_SIZE; i++)
1474 BUG_ON(!list_empty(&c->lru[i]));
1475
1476 dm_bufio_unlock(c);
1477 }
1478
1479 /*
1480 * Test if the buffer is unused and too old, and commit it.
1481 * And if GFP_NOFS is used, we must not do any I/O because we hold
1482 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1483 * rerouted to different bufio client.
1484 */
__cleanup_old_buffer(struct dm_buffer * b,gfp_t gfp,unsigned long max_jiffies)1485 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1486 unsigned long max_jiffies)
1487 {
1488 if (jiffies - b->last_accessed < max_jiffies)
1489 return 0;
1490
1491 if (!(gfp & __GFP_FS)) {
1492 if (test_bit(B_READING, &b->state) ||
1493 test_bit(B_WRITING, &b->state) ||
1494 test_bit(B_DIRTY, &b->state))
1495 return 0;
1496 }
1497
1498 if (b->hold_count)
1499 return 0;
1500
1501 __make_buffer_clean(b);
1502 __unlink_buffer(b);
1503 __free_buffer_wake(b);
1504
1505 return 1;
1506 }
1507
__scan(struct dm_bufio_client * c,unsigned long nr_to_scan,gfp_t gfp_mask)1508 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1509 gfp_t gfp_mask)
1510 {
1511 int l;
1512 struct dm_buffer *b, *tmp;
1513 long freed = 0;
1514
1515 for (l = 0; l < LIST_SIZE; l++) {
1516 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1517 freed += __cleanup_old_buffer(b, gfp_mask, 0);
1518 if (!--nr_to_scan)
1519 return freed;
1520 dm_bufio_cond_resched();
1521 }
1522 }
1523 return freed;
1524 }
1525
1526 static unsigned long
dm_bufio_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1527 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1528 {
1529 struct dm_bufio_client *c;
1530 unsigned long freed;
1531
1532 c = container_of(shrink, struct dm_bufio_client, shrinker);
1533 if (sc->gfp_mask & __GFP_FS)
1534 dm_bufio_lock(c);
1535 else if (!dm_bufio_trylock(c))
1536 return SHRINK_STOP;
1537
1538 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1539 dm_bufio_unlock(c);
1540 return freed;
1541 }
1542
1543 static unsigned long
dm_bufio_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1544 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1545 {
1546 struct dm_bufio_client *c;
1547 unsigned long count;
1548
1549 c = container_of(shrink, struct dm_bufio_client, shrinker);
1550 if (sc->gfp_mask & __GFP_FS)
1551 dm_bufio_lock(c);
1552 else if (!dm_bufio_trylock(c))
1553 return 0;
1554
1555 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1556 dm_bufio_unlock(c);
1557 return count;
1558 }
1559
1560 /*
1561 * Create the buffering interface
1562 */
dm_bufio_client_create(struct block_device * bdev,unsigned block_size,unsigned reserved_buffers,unsigned aux_size,void (* alloc_callback)(struct dm_buffer *),void (* write_callback)(struct dm_buffer *))1563 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1564 unsigned reserved_buffers, unsigned aux_size,
1565 void (*alloc_callback)(struct dm_buffer *),
1566 void (*write_callback)(struct dm_buffer *))
1567 {
1568 int r;
1569 struct dm_bufio_client *c;
1570 unsigned i;
1571
1572 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1573 (block_size & (block_size - 1)));
1574
1575 c = kzalloc(sizeof(*c), GFP_KERNEL);
1576 if (!c) {
1577 r = -ENOMEM;
1578 goto bad_client;
1579 }
1580 c->buffer_tree = RB_ROOT;
1581
1582 c->bdev = bdev;
1583 c->block_size = block_size;
1584 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1585 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1586 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1587 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1588 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1589
1590 c->aux_size = aux_size;
1591 c->alloc_callback = alloc_callback;
1592 c->write_callback = write_callback;
1593
1594 for (i = 0; i < LIST_SIZE; i++) {
1595 INIT_LIST_HEAD(&c->lru[i]);
1596 c->n_buffers[i] = 0;
1597 }
1598
1599 mutex_init(&c->lock);
1600 INIT_LIST_HEAD(&c->reserved_buffers);
1601 c->need_reserved_buffers = reserved_buffers;
1602
1603 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1604
1605 init_waitqueue_head(&c->free_buffer_wait);
1606 c->async_write_error = 0;
1607
1608 c->dm_io = dm_io_client_create();
1609 if (IS_ERR(c->dm_io)) {
1610 r = PTR_ERR(c->dm_io);
1611 goto bad_dm_io;
1612 }
1613
1614 mutex_lock(&dm_bufio_clients_lock);
1615 if (c->blocks_per_page_bits) {
1616 if (!DM_BUFIO_CACHE_NAME(c)) {
1617 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1618 if (!DM_BUFIO_CACHE_NAME(c)) {
1619 r = -ENOMEM;
1620 mutex_unlock(&dm_bufio_clients_lock);
1621 goto bad_cache;
1622 }
1623 }
1624
1625 if (!DM_BUFIO_CACHE(c)) {
1626 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1627 c->block_size,
1628 c->block_size, 0, NULL);
1629 if (!DM_BUFIO_CACHE(c)) {
1630 r = -ENOMEM;
1631 mutex_unlock(&dm_bufio_clients_lock);
1632 goto bad_cache;
1633 }
1634 }
1635 }
1636 mutex_unlock(&dm_bufio_clients_lock);
1637
1638 while (c->need_reserved_buffers) {
1639 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1640
1641 if (!b) {
1642 r = -ENOMEM;
1643 goto bad_buffer;
1644 }
1645 __free_buffer_wake(b);
1646 }
1647
1648 mutex_lock(&dm_bufio_clients_lock);
1649 dm_bufio_client_count++;
1650 list_add(&c->client_list, &dm_bufio_all_clients);
1651 __cache_size_refresh();
1652 mutex_unlock(&dm_bufio_clients_lock);
1653
1654 c->shrinker.count_objects = dm_bufio_shrink_count;
1655 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1656 c->shrinker.seeks = 1;
1657 c->shrinker.batch = 0;
1658 register_shrinker(&c->shrinker);
1659
1660 return c;
1661
1662 bad_buffer:
1663 bad_cache:
1664 while (!list_empty(&c->reserved_buffers)) {
1665 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1666 struct dm_buffer, lru_list);
1667 list_del(&b->lru_list);
1668 free_buffer(b);
1669 }
1670 dm_io_client_destroy(c->dm_io);
1671 bad_dm_io:
1672 kfree(c);
1673 bad_client:
1674 return ERR_PTR(r);
1675 }
1676 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1677
1678 /*
1679 * Free the buffering interface.
1680 * It is required that there are no references on any buffers.
1681 */
dm_bufio_client_destroy(struct dm_bufio_client * c)1682 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1683 {
1684 unsigned i;
1685
1686 drop_buffers(c);
1687
1688 unregister_shrinker(&c->shrinker);
1689
1690 mutex_lock(&dm_bufio_clients_lock);
1691
1692 list_del(&c->client_list);
1693 dm_bufio_client_count--;
1694 __cache_size_refresh();
1695
1696 mutex_unlock(&dm_bufio_clients_lock);
1697
1698 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1699 BUG_ON(c->need_reserved_buffers);
1700
1701 while (!list_empty(&c->reserved_buffers)) {
1702 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1703 struct dm_buffer, lru_list);
1704 list_del(&b->lru_list);
1705 free_buffer(b);
1706 }
1707
1708 for (i = 0; i < LIST_SIZE; i++)
1709 if (c->n_buffers[i])
1710 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1711
1712 for (i = 0; i < LIST_SIZE; i++)
1713 BUG_ON(c->n_buffers[i]);
1714
1715 dm_io_client_destroy(c->dm_io);
1716 kfree(c);
1717 }
1718 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1719
cleanup_old_buffers(void)1720 static void cleanup_old_buffers(void)
1721 {
1722 unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1723 struct dm_bufio_client *c;
1724
1725 if (max_age > ULONG_MAX / HZ)
1726 max_age = ULONG_MAX / HZ;
1727
1728 mutex_lock(&dm_bufio_clients_lock);
1729 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1730 if (!dm_bufio_trylock(c))
1731 continue;
1732
1733 while (!list_empty(&c->lru[LIST_CLEAN])) {
1734 struct dm_buffer *b;
1735 b = list_entry(c->lru[LIST_CLEAN].prev,
1736 struct dm_buffer, lru_list);
1737 if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1738 break;
1739 dm_bufio_cond_resched();
1740 }
1741
1742 dm_bufio_unlock(c);
1743 dm_bufio_cond_resched();
1744 }
1745 mutex_unlock(&dm_bufio_clients_lock);
1746 }
1747
1748 static struct workqueue_struct *dm_bufio_wq;
1749 static struct delayed_work dm_bufio_work;
1750
work_fn(struct work_struct * w)1751 static void work_fn(struct work_struct *w)
1752 {
1753 cleanup_old_buffers();
1754
1755 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1756 DM_BUFIO_WORK_TIMER_SECS * HZ);
1757 }
1758
1759 /*----------------------------------------------------------------
1760 * Module setup
1761 *--------------------------------------------------------------*/
1762
1763 /*
1764 * This is called only once for the whole dm_bufio module.
1765 * It initializes memory limit.
1766 */
dm_bufio_init(void)1767 static int __init dm_bufio_init(void)
1768 {
1769 __u64 mem;
1770
1771 dm_bufio_allocated_kmem_cache = 0;
1772 dm_bufio_allocated_get_free_pages = 0;
1773 dm_bufio_allocated_vmalloc = 0;
1774 dm_bufio_current_allocated = 0;
1775
1776 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1777 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1778
1779 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1780 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1781
1782 if (mem > ULONG_MAX)
1783 mem = ULONG_MAX;
1784
1785 #ifdef CONFIG_MMU
1786 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1787 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1788 #endif
1789
1790 dm_bufio_default_cache_size = mem;
1791
1792 mutex_lock(&dm_bufio_clients_lock);
1793 __cache_size_refresh();
1794 mutex_unlock(&dm_bufio_clients_lock);
1795
1796 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1797 if (!dm_bufio_wq)
1798 return -ENOMEM;
1799
1800 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1801 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1802 DM_BUFIO_WORK_TIMER_SECS * HZ);
1803
1804 return 0;
1805 }
1806
1807 /*
1808 * This is called once when unloading the dm_bufio module.
1809 */
dm_bufio_exit(void)1810 static void __exit dm_bufio_exit(void)
1811 {
1812 int bug = 0;
1813 int i;
1814
1815 cancel_delayed_work_sync(&dm_bufio_work);
1816 destroy_workqueue(dm_bufio_wq);
1817
1818 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1819 struct kmem_cache *kc = dm_bufio_caches[i];
1820
1821 if (kc)
1822 kmem_cache_destroy(kc);
1823 }
1824
1825 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1826 kfree(dm_bufio_cache_names[i]);
1827
1828 if (dm_bufio_client_count) {
1829 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1830 __func__, dm_bufio_client_count);
1831 bug = 1;
1832 }
1833
1834 if (dm_bufio_current_allocated) {
1835 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1836 __func__, dm_bufio_current_allocated);
1837 bug = 1;
1838 }
1839
1840 if (dm_bufio_allocated_get_free_pages) {
1841 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1842 __func__, dm_bufio_allocated_get_free_pages);
1843 bug = 1;
1844 }
1845
1846 if (dm_bufio_allocated_vmalloc) {
1847 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1848 __func__, dm_bufio_allocated_vmalloc);
1849 bug = 1;
1850 }
1851
1852 if (bug)
1853 BUG();
1854 }
1855
1856 module_init(dm_bufio_init)
1857 module_exit(dm_bufio_exit)
1858
1859 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1860 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1861
1862 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1863 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1864
1865 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1866 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1867
1868 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1869 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1870
1871 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1872 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1873
1874 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1875 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1876
1877 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1878 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1879
1880 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1881 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1882 MODULE_LICENSE("GPL");
1883