1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12
13 /*
14 * DMI stands for "Desktop Management Interface". It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS. See further: http://www.dmtf.org/standards
17 */
18 static const char dmi_empty_string[] = " ";
19
20 static u16 __initdata dmi_ver;
21 /*
22 * Catch too early calls to dmi_check_system():
23 */
24 static int dmi_initialized;
25
26 /* DMI system identification string used during boot */
27 static char dmi_ids_string[128] __initdata;
28
29 static struct dmi_memdev_info {
30 const char *device;
31 const char *bank;
32 u16 handle;
33 } *dmi_memdev;
34 static int dmi_memdev_nr;
35
dmi_string_nosave(const struct dmi_header * dm,u8 s)36 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
37 {
38 const u8 *bp = ((u8 *) dm) + dm->length;
39
40 if (s) {
41 s--;
42 while (s > 0 && *bp) {
43 bp += strlen(bp) + 1;
44 s--;
45 }
46
47 if (*bp != 0) {
48 size_t len = strlen(bp)+1;
49 size_t cmp_len = len > 8 ? 8 : len;
50
51 if (!memcmp(bp, dmi_empty_string, cmp_len))
52 return dmi_empty_string;
53 return bp;
54 }
55 }
56
57 return "";
58 }
59
dmi_string(const struct dmi_header * dm,u8 s)60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61 {
62 const char *bp = dmi_string_nosave(dm, s);
63 char *str;
64 size_t len;
65
66 if (bp == dmi_empty_string)
67 return dmi_empty_string;
68
69 len = strlen(bp) + 1;
70 str = dmi_alloc(len);
71 if (str != NULL)
72 strcpy(str, bp);
73
74 return str;
75 }
76
77 /*
78 * We have to be cautious here. We have seen BIOSes with DMI pointers
79 * pointing to completely the wrong place for example
80 */
dmi_table(u8 * buf,int len,int num,void (* decode)(const struct dmi_header *,void *),void * private_data)81 static void dmi_table(u8 *buf, int len, int num,
82 void (*decode)(const struct dmi_header *, void *),
83 void *private_data)
84 {
85 u8 *data = buf;
86 int i = 0;
87
88 /*
89 * Stop when we see all the items the table claimed to have
90 * OR we run off the end of the table (also happens)
91 */
92 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
93 const struct dmi_header *dm = (const struct dmi_header *)data;
94
95 /*
96 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
97 */
98 if (dm->type == DMI_ENTRY_END_OF_TABLE)
99 break;
100
101 /*
102 * We want to know the total length (formatted area and
103 * strings) before decoding to make sure we won't run off the
104 * table in dmi_decode or dmi_string
105 */
106 data += dm->length;
107 while ((data - buf < len - 1) && (data[0] || data[1]))
108 data++;
109 if (data - buf < len - 1)
110 decode(dm, private_data);
111 data += 2;
112 i++;
113 }
114 }
115
116 static phys_addr_t dmi_base;
117 static u16 dmi_len;
118 static u16 dmi_num;
119
dmi_walk_early(void (* decode)(const struct dmi_header *,void *))120 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
121 void *))
122 {
123 u8 *buf;
124
125 buf = dmi_early_remap(dmi_base, dmi_len);
126 if (buf == NULL)
127 return -1;
128
129 dmi_table(buf, dmi_len, dmi_num, decode, NULL);
130
131 add_device_randomness(buf, dmi_len);
132
133 dmi_early_unmap(buf, dmi_len);
134 return 0;
135 }
136
dmi_checksum(const u8 * buf,u8 len)137 static int __init dmi_checksum(const u8 *buf, u8 len)
138 {
139 u8 sum = 0;
140 int a;
141
142 for (a = 0; a < len; a++)
143 sum += buf[a];
144
145 return sum == 0;
146 }
147
148 static const char *dmi_ident[DMI_STRING_MAX];
149 static LIST_HEAD(dmi_devices);
150 int dmi_available;
151
152 /*
153 * Save a DMI string
154 */
dmi_save_ident(const struct dmi_header * dm,int slot,int string)155 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
156 int string)
157 {
158 const char *d = (const char *) dm;
159 const char *p;
160
161 if (dmi_ident[slot])
162 return;
163
164 p = dmi_string(dm, d[string]);
165 if (p == NULL)
166 return;
167
168 dmi_ident[slot] = p;
169 }
170
dmi_save_uuid(const struct dmi_header * dm,int slot,int index)171 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
172 int index)
173 {
174 const u8 *d = (u8 *) dm + index;
175 char *s;
176 int is_ff = 1, is_00 = 1, i;
177
178 if (dmi_ident[slot])
179 return;
180
181 for (i = 0; i < 16 && (is_ff || is_00); i++) {
182 if (d[i] != 0x00)
183 is_00 = 0;
184 if (d[i] != 0xFF)
185 is_ff = 0;
186 }
187
188 if (is_ff || is_00)
189 return;
190
191 s = dmi_alloc(16*2+4+1);
192 if (!s)
193 return;
194
195 /*
196 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
197 * the UUID are supposed to be little-endian encoded. The specification
198 * says that this is the defacto standard.
199 */
200 if (dmi_ver >= 0x0206)
201 sprintf(s, "%pUL", d);
202 else
203 sprintf(s, "%pUB", d);
204
205 dmi_ident[slot] = s;
206 }
207
dmi_save_type(const struct dmi_header * dm,int slot,int index)208 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
209 int index)
210 {
211 const u8 *d = (u8 *) dm + index;
212 char *s;
213
214 if (dmi_ident[slot])
215 return;
216
217 s = dmi_alloc(4);
218 if (!s)
219 return;
220
221 sprintf(s, "%u", *d & 0x7F);
222 dmi_ident[slot] = s;
223 }
224
dmi_save_one_device(int type,const char * name)225 static void __init dmi_save_one_device(int type, const char *name)
226 {
227 struct dmi_device *dev;
228
229 /* No duplicate device */
230 if (dmi_find_device(type, name, NULL))
231 return;
232
233 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
234 if (!dev)
235 return;
236
237 dev->type = type;
238 strcpy((char *)(dev + 1), name);
239 dev->name = (char *)(dev + 1);
240 dev->device_data = NULL;
241 list_add(&dev->list, &dmi_devices);
242 }
243
dmi_save_devices(const struct dmi_header * dm)244 static void __init dmi_save_devices(const struct dmi_header *dm)
245 {
246 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
247
248 for (i = 0; i < count; i++) {
249 const char *d = (char *)(dm + 1) + (i * 2);
250
251 /* Skip disabled device */
252 if ((*d & 0x80) == 0)
253 continue;
254
255 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
256 }
257 }
258
dmi_save_oem_strings_devices(const struct dmi_header * dm)259 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
260 {
261 int i, count = *(u8 *)(dm + 1);
262 struct dmi_device *dev;
263
264 for (i = 1; i <= count; i++) {
265 const char *devname = dmi_string(dm, i);
266
267 if (devname == dmi_empty_string)
268 continue;
269
270 dev = dmi_alloc(sizeof(*dev));
271 if (!dev)
272 break;
273
274 dev->type = DMI_DEV_TYPE_OEM_STRING;
275 dev->name = devname;
276 dev->device_data = NULL;
277
278 list_add(&dev->list, &dmi_devices);
279 }
280 }
281
dmi_save_ipmi_device(const struct dmi_header * dm)282 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
283 {
284 struct dmi_device *dev;
285 void *data;
286
287 data = dmi_alloc(dm->length);
288 if (data == NULL)
289 return;
290
291 memcpy(data, dm, dm->length);
292
293 dev = dmi_alloc(sizeof(*dev));
294 if (!dev)
295 return;
296
297 dev->type = DMI_DEV_TYPE_IPMI;
298 dev->name = "IPMI controller";
299 dev->device_data = data;
300
301 list_add_tail(&dev->list, &dmi_devices);
302 }
303
dmi_save_dev_onboard(int instance,int segment,int bus,int devfn,const char * name)304 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
305 int devfn, const char *name)
306 {
307 struct dmi_dev_onboard *onboard_dev;
308
309 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
310 if (!onboard_dev)
311 return;
312
313 onboard_dev->instance = instance;
314 onboard_dev->segment = segment;
315 onboard_dev->bus = bus;
316 onboard_dev->devfn = devfn;
317
318 strcpy((char *)&onboard_dev[1], name);
319 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
320 onboard_dev->dev.name = (char *)&onboard_dev[1];
321 onboard_dev->dev.device_data = onboard_dev;
322
323 list_add(&onboard_dev->dev.list, &dmi_devices);
324 }
325
dmi_save_extended_devices(const struct dmi_header * dm)326 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
327 {
328 const u8 *d = (u8 *) dm + 5;
329
330 /* Skip disabled device */
331 if ((*d & 0x80) == 0)
332 return;
333
334 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
335 dmi_string_nosave(dm, *(d-1)));
336 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
337 }
338
count_mem_devices(const struct dmi_header * dm,void * v)339 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
340 {
341 if (dm->type != DMI_ENTRY_MEM_DEVICE)
342 return;
343 dmi_memdev_nr++;
344 }
345
save_mem_devices(const struct dmi_header * dm,void * v)346 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
347 {
348 const char *d = (const char *)dm;
349 static int nr;
350
351 if (dm->type != DMI_ENTRY_MEM_DEVICE)
352 return;
353 if (nr >= dmi_memdev_nr) {
354 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
355 return;
356 }
357 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
358 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
359 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
360 nr++;
361 }
362
dmi_memdev_walk(void)363 void __init dmi_memdev_walk(void)
364 {
365 if (!dmi_available)
366 return;
367
368 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
369 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
370 if (dmi_memdev)
371 dmi_walk_early(save_mem_devices);
372 }
373 }
374
375 /*
376 * Process a DMI table entry. Right now all we care about are the BIOS
377 * and machine entries. For 2.5 we should pull the smbus controller info
378 * out of here.
379 */
dmi_decode(const struct dmi_header * dm,void * dummy)380 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
381 {
382 switch (dm->type) {
383 case 0: /* BIOS Information */
384 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
385 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
386 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
387 break;
388 case 1: /* System Information */
389 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
390 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
391 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
392 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
393 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
394 break;
395 case 2: /* Base Board Information */
396 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
397 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
398 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
399 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
400 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
401 break;
402 case 3: /* Chassis Information */
403 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
404 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
405 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
406 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
407 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
408 break;
409 case 10: /* Onboard Devices Information */
410 dmi_save_devices(dm);
411 break;
412 case 11: /* OEM Strings */
413 dmi_save_oem_strings_devices(dm);
414 break;
415 case 38: /* IPMI Device Information */
416 dmi_save_ipmi_device(dm);
417 break;
418 case 41: /* Onboard Devices Extended Information */
419 dmi_save_extended_devices(dm);
420 }
421 }
422
print_filtered(char * buf,size_t len,const char * info)423 static int __init print_filtered(char *buf, size_t len, const char *info)
424 {
425 int c = 0;
426 const char *p;
427
428 if (!info)
429 return c;
430
431 for (p = info; *p; p++)
432 if (isprint(*p))
433 c += scnprintf(buf + c, len - c, "%c", *p);
434 else
435 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
436 return c;
437 }
438
dmi_format_ids(char * buf,size_t len)439 static void __init dmi_format_ids(char *buf, size_t len)
440 {
441 int c = 0;
442 const char *board; /* Board Name is optional */
443
444 c += print_filtered(buf + c, len - c,
445 dmi_get_system_info(DMI_SYS_VENDOR));
446 c += scnprintf(buf + c, len - c, " ");
447 c += print_filtered(buf + c, len - c,
448 dmi_get_system_info(DMI_PRODUCT_NAME));
449
450 board = dmi_get_system_info(DMI_BOARD_NAME);
451 if (board) {
452 c += scnprintf(buf + c, len - c, "/");
453 c += print_filtered(buf + c, len - c, board);
454 }
455 c += scnprintf(buf + c, len - c, ", BIOS ");
456 c += print_filtered(buf + c, len - c,
457 dmi_get_system_info(DMI_BIOS_VERSION));
458 c += scnprintf(buf + c, len - c, " ");
459 c += print_filtered(buf + c, len - c,
460 dmi_get_system_info(DMI_BIOS_DATE));
461 }
462
463 /*
464 * Check for DMI/SMBIOS headers in the system firmware image. Any
465 * SMBIOS header must start 16 bytes before the DMI header, so take a
466 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
467 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
468 * takes precedence) and return 0. Otherwise return 1.
469 */
dmi_present(const u8 * buf)470 static int __init dmi_present(const u8 *buf)
471 {
472 int smbios_ver;
473
474 if (memcmp(buf, "_SM_", 4) == 0 &&
475 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
476 smbios_ver = get_unaligned_be16(buf + 6);
477
478 /* Some BIOS report weird SMBIOS version, fix that up */
479 switch (smbios_ver) {
480 case 0x021F:
481 case 0x0221:
482 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
483 smbios_ver & 0xFF, 3);
484 smbios_ver = 0x0203;
485 break;
486 case 0x0233:
487 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
488 smbios_ver = 0x0206;
489 break;
490 }
491 } else {
492 smbios_ver = 0;
493 }
494
495 buf += 16;
496
497 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
498 if (smbios_ver)
499 dmi_ver = smbios_ver;
500 else
501 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
502 dmi_num = get_unaligned_le16(buf + 12);
503 dmi_len = get_unaligned_le16(buf + 6);
504 dmi_base = get_unaligned_le32(buf + 8);
505
506 if (dmi_walk_early(dmi_decode) == 0) {
507 if (smbios_ver) {
508 pr_info("SMBIOS %d.%d present.\n",
509 dmi_ver >> 8, dmi_ver & 0xFF);
510 } else {
511 pr_info("Legacy DMI %d.%d present.\n",
512 dmi_ver >> 8, dmi_ver & 0xFF);
513 }
514 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
515 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
516 return 0;
517 }
518 }
519
520 return 1;
521 }
522
523 /*
524 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
525 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
526 */
dmi_smbios3_present(const u8 * buf)527 static int __init dmi_smbios3_present(const u8 *buf)
528 {
529 if (memcmp(buf, "_SM3_", 5) == 0 &&
530 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
531 dmi_ver = get_unaligned_be16(buf + 7);
532 dmi_len = get_unaligned_le32(buf + 12);
533 dmi_base = get_unaligned_le64(buf + 16);
534
535 /*
536 * The 64-bit SMBIOS 3.0 entry point no longer has a field
537 * containing the number of structures present in the table.
538 * Instead, it defines the table size as a maximum size, and
539 * relies on the end-of-table structure type (#127) to be used
540 * to signal the end of the table.
541 * So let's define dmi_num as an upper bound as well: each
542 * structure has a 4 byte header, so dmi_len / 4 is an upper
543 * bound for the number of structures in the table.
544 */
545 dmi_num = dmi_len / 4;
546
547 if (dmi_walk_early(dmi_decode) == 0) {
548 pr_info("SMBIOS %d.%d present.\n",
549 dmi_ver >> 8, dmi_ver & 0xFF);
550 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
551 pr_debug("DMI: %s\n", dmi_ids_string);
552 return 0;
553 }
554 }
555 return 1;
556 }
557
dmi_scan_machine(void)558 void __init dmi_scan_machine(void)
559 {
560 char __iomem *p, *q;
561 char buf[32];
562
563 if (efi_enabled(EFI_CONFIG_TABLES)) {
564 /*
565 * According to the DMTF SMBIOS reference spec v3.0.0, it is
566 * allowed to define both the 64-bit entry point (smbios3) and
567 * the 32-bit entry point (smbios), in which case they should
568 * either both point to the same SMBIOS structure table, or the
569 * table pointed to by the 64-bit entry point should contain a
570 * superset of the table contents pointed to by the 32-bit entry
571 * point (section 5.2)
572 * This implies that the 64-bit entry point should have
573 * precedence if it is defined and supported by the OS. If we
574 * have the 64-bit entry point, but fail to decode it, fall
575 * back to the legacy one (if available)
576 */
577 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
578 p = dmi_early_remap(efi.smbios3, 32);
579 if (p == NULL)
580 goto error;
581 memcpy_fromio(buf, p, 32);
582 dmi_early_unmap(p, 32);
583
584 if (!dmi_smbios3_present(buf)) {
585 dmi_available = 1;
586 goto out;
587 }
588 }
589 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
590 goto error;
591
592 /* This is called as a core_initcall() because it isn't
593 * needed during early boot. This also means we can
594 * iounmap the space when we're done with it.
595 */
596 p = dmi_early_remap(efi.smbios, 32);
597 if (p == NULL)
598 goto error;
599 memcpy_fromio(buf, p, 32);
600 dmi_early_unmap(p, 32);
601
602 if (!dmi_present(buf)) {
603 dmi_available = 1;
604 goto out;
605 }
606 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
607 p = dmi_early_remap(0xF0000, 0x10000);
608 if (p == NULL)
609 goto error;
610
611 /*
612 * Iterate over all possible DMI header addresses q.
613 * Maintain the 32 bytes around q in buf. On the
614 * first iteration, substitute zero for the
615 * out-of-range bytes so there is no chance of falsely
616 * detecting an SMBIOS header.
617 */
618 memset(buf, 0, 16);
619 for (q = p; q < p + 0x10000; q += 16) {
620 memcpy_fromio(buf + 16, q, 16);
621 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
622 dmi_available = 1;
623 dmi_early_unmap(p, 0x10000);
624 goto out;
625 }
626 memcpy(buf, buf + 16, 16);
627 }
628 dmi_early_unmap(p, 0x10000);
629 }
630 error:
631 pr_info("DMI not present or invalid.\n");
632 out:
633 dmi_initialized = 1;
634 }
635
636 /**
637 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
638 *
639 * Invoke dump_stack_set_arch_desc() with DMI system information so that
640 * DMI identifiers are printed out on task dumps. Arch boot code should
641 * call this function after dmi_scan_machine() if it wants to print out DMI
642 * identifiers on task dumps.
643 */
dmi_set_dump_stack_arch_desc(void)644 void __init dmi_set_dump_stack_arch_desc(void)
645 {
646 dump_stack_set_arch_desc("%s", dmi_ids_string);
647 }
648
649 /**
650 * dmi_matches - check if dmi_system_id structure matches system DMI data
651 * @dmi: pointer to the dmi_system_id structure to check
652 */
dmi_matches(const struct dmi_system_id * dmi)653 static bool dmi_matches(const struct dmi_system_id *dmi)
654 {
655 int i;
656
657 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
658
659 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
660 int s = dmi->matches[i].slot;
661 if (s == DMI_NONE)
662 break;
663 if (dmi_ident[s]) {
664 if (!dmi->matches[i].exact_match &&
665 strstr(dmi_ident[s], dmi->matches[i].substr))
666 continue;
667 else if (dmi->matches[i].exact_match &&
668 !strcmp(dmi_ident[s], dmi->matches[i].substr))
669 continue;
670 }
671
672 /* No match */
673 return false;
674 }
675 return true;
676 }
677
678 /**
679 * dmi_is_end_of_table - check for end-of-table marker
680 * @dmi: pointer to the dmi_system_id structure to check
681 */
dmi_is_end_of_table(const struct dmi_system_id * dmi)682 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
683 {
684 return dmi->matches[0].slot == DMI_NONE;
685 }
686
687 /**
688 * dmi_check_system - check system DMI data
689 * @list: array of dmi_system_id structures to match against
690 * All non-null elements of the list must match
691 * their slot's (field index's) data (i.e., each
692 * list string must be a substring of the specified
693 * DMI slot's string data) to be considered a
694 * successful match.
695 *
696 * Walk the blacklist table running matching functions until someone
697 * returns non zero or we hit the end. Callback function is called for
698 * each successful match. Returns the number of matches.
699 */
dmi_check_system(const struct dmi_system_id * list)700 int dmi_check_system(const struct dmi_system_id *list)
701 {
702 int count = 0;
703 const struct dmi_system_id *d;
704
705 for (d = list; !dmi_is_end_of_table(d); d++)
706 if (dmi_matches(d)) {
707 count++;
708 if (d->callback && d->callback(d))
709 break;
710 }
711
712 return count;
713 }
714 EXPORT_SYMBOL(dmi_check_system);
715
716 /**
717 * dmi_first_match - find dmi_system_id structure matching system DMI data
718 * @list: array of dmi_system_id structures to match against
719 * All non-null elements of the list must match
720 * their slot's (field index's) data (i.e., each
721 * list string must be a substring of the specified
722 * DMI slot's string data) to be considered a
723 * successful match.
724 *
725 * Walk the blacklist table until the first match is found. Return the
726 * pointer to the matching entry or NULL if there's no match.
727 */
dmi_first_match(const struct dmi_system_id * list)728 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
729 {
730 const struct dmi_system_id *d;
731
732 for (d = list; !dmi_is_end_of_table(d); d++)
733 if (dmi_matches(d))
734 return d;
735
736 return NULL;
737 }
738 EXPORT_SYMBOL(dmi_first_match);
739
740 /**
741 * dmi_get_system_info - return DMI data value
742 * @field: data index (see enum dmi_field)
743 *
744 * Returns one DMI data value, can be used to perform
745 * complex DMI data checks.
746 */
dmi_get_system_info(int field)747 const char *dmi_get_system_info(int field)
748 {
749 return dmi_ident[field];
750 }
751 EXPORT_SYMBOL(dmi_get_system_info);
752
753 /**
754 * dmi_name_in_serial - Check if string is in the DMI product serial information
755 * @str: string to check for
756 */
dmi_name_in_serial(const char * str)757 int dmi_name_in_serial(const char *str)
758 {
759 int f = DMI_PRODUCT_SERIAL;
760 if (dmi_ident[f] && strstr(dmi_ident[f], str))
761 return 1;
762 return 0;
763 }
764
765 /**
766 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
767 * @str: Case sensitive Name
768 */
dmi_name_in_vendors(const char * str)769 int dmi_name_in_vendors(const char *str)
770 {
771 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
772 int i;
773 for (i = 0; fields[i] != DMI_NONE; i++) {
774 int f = fields[i];
775 if (dmi_ident[f] && strstr(dmi_ident[f], str))
776 return 1;
777 }
778 return 0;
779 }
780 EXPORT_SYMBOL(dmi_name_in_vendors);
781
782 /**
783 * dmi_find_device - find onboard device by type/name
784 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
785 * @name: device name string or %NULL to match all
786 * @from: previous device found in search, or %NULL for new search.
787 *
788 * Iterates through the list of known onboard devices. If a device is
789 * found with a matching @vendor and @device, a pointer to its device
790 * structure is returned. Otherwise, %NULL is returned.
791 * A new search is initiated by passing %NULL as the @from argument.
792 * If @from is not %NULL, searches continue from next device.
793 */
dmi_find_device(int type,const char * name,const struct dmi_device * from)794 const struct dmi_device *dmi_find_device(int type, const char *name,
795 const struct dmi_device *from)
796 {
797 const struct list_head *head = from ? &from->list : &dmi_devices;
798 struct list_head *d;
799
800 for (d = head->next; d != &dmi_devices; d = d->next) {
801 const struct dmi_device *dev =
802 list_entry(d, struct dmi_device, list);
803
804 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
805 ((name == NULL) || (strcmp(dev->name, name) == 0)))
806 return dev;
807 }
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(dmi_find_device);
812
813 /**
814 * dmi_get_date - parse a DMI date
815 * @field: data index (see enum dmi_field)
816 * @yearp: optional out parameter for the year
817 * @monthp: optional out parameter for the month
818 * @dayp: optional out parameter for the day
819 *
820 * The date field is assumed to be in the form resembling
821 * [mm[/dd]]/yy[yy] and the result is stored in the out
822 * parameters any or all of which can be omitted.
823 *
824 * If the field doesn't exist, all out parameters are set to zero
825 * and false is returned. Otherwise, true is returned with any
826 * invalid part of date set to zero.
827 *
828 * On return, year, month and day are guaranteed to be in the
829 * range of [0,9999], [0,12] and [0,31] respectively.
830 */
dmi_get_date(int field,int * yearp,int * monthp,int * dayp)831 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
832 {
833 int year = 0, month = 0, day = 0;
834 bool exists;
835 const char *s, *y;
836 char *e;
837
838 s = dmi_get_system_info(field);
839 exists = s;
840 if (!exists)
841 goto out;
842
843 /*
844 * Determine year first. We assume the date string resembles
845 * mm/dd/yy[yy] but the original code extracted only the year
846 * from the end. Keep the behavior in the spirit of no
847 * surprises.
848 */
849 y = strrchr(s, '/');
850 if (!y)
851 goto out;
852
853 y++;
854 year = simple_strtoul(y, &e, 10);
855 if (y != e && year < 100) { /* 2-digit year */
856 year += 1900;
857 if (year < 1996) /* no dates < spec 1.0 */
858 year += 100;
859 }
860 if (year > 9999) /* year should fit in %04d */
861 year = 0;
862
863 /* parse the mm and dd */
864 month = simple_strtoul(s, &e, 10);
865 if (s == e || *e != '/' || !month || month > 12) {
866 month = 0;
867 goto out;
868 }
869
870 s = e + 1;
871 day = simple_strtoul(s, &e, 10);
872 if (s == y || s == e || *e != '/' || day > 31)
873 day = 0;
874 out:
875 if (yearp)
876 *yearp = year;
877 if (monthp)
878 *monthp = month;
879 if (dayp)
880 *dayp = day;
881 return exists;
882 }
883 EXPORT_SYMBOL(dmi_get_date);
884
885 /**
886 * dmi_walk - Walk the DMI table and get called back for every record
887 * @decode: Callback function
888 * @private_data: Private data to be passed to the callback function
889 *
890 * Returns -1 when the DMI table can't be reached, 0 on success.
891 */
dmi_walk(void (* decode)(const struct dmi_header *,void *),void * private_data)892 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
893 void *private_data)
894 {
895 u8 *buf;
896
897 if (!dmi_available)
898 return -1;
899
900 buf = dmi_remap(dmi_base, dmi_len);
901 if (buf == NULL)
902 return -1;
903
904 dmi_table(buf, dmi_len, dmi_num, decode, private_data);
905
906 dmi_unmap(buf);
907 return 0;
908 }
909 EXPORT_SYMBOL_GPL(dmi_walk);
910
911 /**
912 * dmi_match - compare a string to the dmi field (if exists)
913 * @f: DMI field identifier
914 * @str: string to compare the DMI field to
915 *
916 * Returns true if the requested field equals to the str (including NULL).
917 */
dmi_match(enum dmi_field f,const char * str)918 bool dmi_match(enum dmi_field f, const char *str)
919 {
920 const char *info = dmi_get_system_info(f);
921
922 if (info == NULL || str == NULL)
923 return info == str;
924
925 return !strcmp(info, str);
926 }
927 EXPORT_SYMBOL_GPL(dmi_match);
928
dmi_memdev_name(u16 handle,const char ** bank,const char ** device)929 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
930 {
931 int n;
932
933 if (dmi_memdev == NULL)
934 return;
935
936 for (n = 0; n < dmi_memdev_nr; n++) {
937 if (handle == dmi_memdev[n].handle) {
938 *bank = dmi_memdev[n].bank;
939 *device = dmi_memdev[n].device;
940 break;
941 }
942 }
943 }
944 EXPORT_SYMBOL_GPL(dmi_memdev_name);
945