1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 #include "e1000.h"
23
24 /**
25 * e1000_raise_eec_clk - Raise EEPROM clock
26 * @hw: pointer to the HW structure
27 * @eecd: pointer to the EEPROM
28 *
29 * Enable/Raise the EEPROM clock bit.
30 **/
e1000_raise_eec_clk(struct e1000_hw * hw,u32 * eecd)31 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
32 {
33 *eecd = *eecd | E1000_EECD_SK;
34 ew32(EECD, *eecd);
35 e1e_flush();
36 udelay(hw->nvm.delay_usec);
37 }
38
39 /**
40 * e1000_lower_eec_clk - Lower EEPROM clock
41 * @hw: pointer to the HW structure
42 * @eecd: pointer to the EEPROM
43 *
44 * Clear/Lower the EEPROM clock bit.
45 **/
e1000_lower_eec_clk(struct e1000_hw * hw,u32 * eecd)46 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
47 {
48 *eecd = *eecd & ~E1000_EECD_SK;
49 ew32(EECD, *eecd);
50 e1e_flush();
51 udelay(hw->nvm.delay_usec);
52 }
53
54 /**
55 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
56 * @hw: pointer to the HW structure
57 * @data: data to send to the EEPROM
58 * @count: number of bits to shift out
59 *
60 * We need to shift 'count' bits out to the EEPROM. So, the value in the
61 * "data" parameter will be shifted out to the EEPROM one bit at a time.
62 * In order to do this, "data" must be broken down into bits.
63 **/
e1000_shift_out_eec_bits(struct e1000_hw * hw,u16 data,u16 count)64 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
65 {
66 struct e1000_nvm_info *nvm = &hw->nvm;
67 u32 eecd = er32(EECD);
68 u32 mask;
69
70 mask = 0x01 << (count - 1);
71 if (nvm->type == e1000_nvm_eeprom_spi)
72 eecd |= E1000_EECD_DO;
73
74 do {
75 eecd &= ~E1000_EECD_DI;
76
77 if (data & mask)
78 eecd |= E1000_EECD_DI;
79
80 ew32(EECD, eecd);
81 e1e_flush();
82
83 udelay(nvm->delay_usec);
84
85 e1000_raise_eec_clk(hw, &eecd);
86 e1000_lower_eec_clk(hw, &eecd);
87
88 mask >>= 1;
89 } while (mask);
90
91 eecd &= ~E1000_EECD_DI;
92 ew32(EECD, eecd);
93 }
94
95 /**
96 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
97 * @hw: pointer to the HW structure
98 * @count: number of bits to shift in
99 *
100 * In order to read a register from the EEPROM, we need to shift 'count' bits
101 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
102 * the EEPROM (setting the SK bit), and then reading the value of the data out
103 * "DO" bit. During this "shifting in" process the data in "DI" bit should
104 * always be clear.
105 **/
e1000_shift_in_eec_bits(struct e1000_hw * hw,u16 count)106 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
107 {
108 u32 eecd;
109 u32 i;
110 u16 data;
111
112 eecd = er32(EECD);
113 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
114 data = 0;
115
116 for (i = 0; i < count; i++) {
117 data <<= 1;
118 e1000_raise_eec_clk(hw, &eecd);
119
120 eecd = er32(EECD);
121
122 eecd &= ~E1000_EECD_DI;
123 if (eecd & E1000_EECD_DO)
124 data |= 1;
125
126 e1000_lower_eec_clk(hw, &eecd);
127 }
128
129 return data;
130 }
131
132 /**
133 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
134 * @hw: pointer to the HW structure
135 * @ee_reg: EEPROM flag for polling
136 *
137 * Polls the EEPROM status bit for either read or write completion based
138 * upon the value of 'ee_reg'.
139 **/
e1000e_poll_eerd_eewr_done(struct e1000_hw * hw,int ee_reg)140 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
141 {
142 u32 attempts = 100000;
143 u32 i, reg = 0;
144
145 for (i = 0; i < attempts; i++) {
146 if (ee_reg == E1000_NVM_POLL_READ)
147 reg = er32(EERD);
148 else
149 reg = er32(EEWR);
150
151 if (reg & E1000_NVM_RW_REG_DONE)
152 return 0;
153
154 udelay(5);
155 }
156
157 return -E1000_ERR_NVM;
158 }
159
160 /**
161 * e1000e_acquire_nvm - Generic request for access to EEPROM
162 * @hw: pointer to the HW structure
163 *
164 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
165 * Return successful if access grant bit set, else clear the request for
166 * EEPROM access and return -E1000_ERR_NVM (-1).
167 **/
e1000e_acquire_nvm(struct e1000_hw * hw)168 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
169 {
170 u32 eecd = er32(EECD);
171 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
172
173 ew32(EECD, eecd | E1000_EECD_REQ);
174 eecd = er32(EECD);
175
176 while (timeout) {
177 if (eecd & E1000_EECD_GNT)
178 break;
179 udelay(5);
180 eecd = er32(EECD);
181 timeout--;
182 }
183
184 if (!timeout) {
185 eecd &= ~E1000_EECD_REQ;
186 ew32(EECD, eecd);
187 e_dbg("Could not acquire NVM grant\n");
188 return -E1000_ERR_NVM;
189 }
190
191 return 0;
192 }
193
194 /**
195 * e1000_standby_nvm - Return EEPROM to standby state
196 * @hw: pointer to the HW structure
197 *
198 * Return the EEPROM to a standby state.
199 **/
e1000_standby_nvm(struct e1000_hw * hw)200 static void e1000_standby_nvm(struct e1000_hw *hw)
201 {
202 struct e1000_nvm_info *nvm = &hw->nvm;
203 u32 eecd = er32(EECD);
204
205 if (nvm->type == e1000_nvm_eeprom_spi) {
206 /* Toggle CS to flush commands */
207 eecd |= E1000_EECD_CS;
208 ew32(EECD, eecd);
209 e1e_flush();
210 udelay(nvm->delay_usec);
211 eecd &= ~E1000_EECD_CS;
212 ew32(EECD, eecd);
213 e1e_flush();
214 udelay(nvm->delay_usec);
215 }
216 }
217
218 /**
219 * e1000_stop_nvm - Terminate EEPROM command
220 * @hw: pointer to the HW structure
221 *
222 * Terminates the current command by inverting the EEPROM's chip select pin.
223 **/
e1000_stop_nvm(struct e1000_hw * hw)224 static void e1000_stop_nvm(struct e1000_hw *hw)
225 {
226 u32 eecd;
227
228 eecd = er32(EECD);
229 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
230 /* Pull CS high */
231 eecd |= E1000_EECD_CS;
232 e1000_lower_eec_clk(hw, &eecd);
233 }
234 }
235
236 /**
237 * e1000e_release_nvm - Release exclusive access to EEPROM
238 * @hw: pointer to the HW structure
239 *
240 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
241 **/
e1000e_release_nvm(struct e1000_hw * hw)242 void e1000e_release_nvm(struct e1000_hw *hw)
243 {
244 u32 eecd;
245
246 e1000_stop_nvm(hw);
247
248 eecd = er32(EECD);
249 eecd &= ~E1000_EECD_REQ;
250 ew32(EECD, eecd);
251 }
252
253 /**
254 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
255 * @hw: pointer to the HW structure
256 *
257 * Setups the EEPROM for reading and writing.
258 **/
e1000_ready_nvm_eeprom(struct e1000_hw * hw)259 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
260 {
261 struct e1000_nvm_info *nvm = &hw->nvm;
262 u32 eecd = er32(EECD);
263 u8 spi_stat_reg;
264
265 if (nvm->type == e1000_nvm_eeprom_spi) {
266 u16 timeout = NVM_MAX_RETRY_SPI;
267
268 /* Clear SK and CS */
269 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
270 ew32(EECD, eecd);
271 e1e_flush();
272 udelay(1);
273
274 /* Read "Status Register" repeatedly until the LSB is cleared.
275 * The EEPROM will signal that the command has been completed
276 * by clearing bit 0 of the internal status register. If it's
277 * not cleared within 'timeout', then error out.
278 */
279 while (timeout) {
280 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
281 hw->nvm.opcode_bits);
282 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
283 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
284 break;
285
286 udelay(5);
287 e1000_standby_nvm(hw);
288 timeout--;
289 }
290
291 if (!timeout) {
292 e_dbg("SPI NVM Status error\n");
293 return -E1000_ERR_NVM;
294 }
295 }
296
297 return 0;
298 }
299
300 /**
301 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
302 * @hw: pointer to the HW structure
303 * @offset: offset of word in the EEPROM to read
304 * @words: number of words to read
305 * @data: word read from the EEPROM
306 *
307 * Reads a 16 bit word from the EEPROM using the EERD register.
308 **/
e1000e_read_nvm_eerd(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)309 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
310 {
311 struct e1000_nvm_info *nvm = &hw->nvm;
312 u32 i, eerd = 0;
313 s32 ret_val = 0;
314
315 /* A check for invalid values: offset too large, too many words,
316 * too many words for the offset, and not enough words.
317 */
318 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
319 (words == 0)) {
320 e_dbg("nvm parameter(s) out of bounds\n");
321 return -E1000_ERR_NVM;
322 }
323
324 for (i = 0; i < words; i++) {
325 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
326 E1000_NVM_RW_REG_START;
327
328 ew32(EERD, eerd);
329 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
330 if (ret_val) {
331 e_dbg("NVM read error: %d\n", ret_val);
332 break;
333 }
334
335 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
336 }
337
338 return ret_val;
339 }
340
341 /**
342 * e1000e_write_nvm_spi - Write to EEPROM using SPI
343 * @hw: pointer to the HW structure
344 * @offset: offset within the EEPROM to be written to
345 * @words: number of words to write
346 * @data: 16 bit word(s) to be written to the EEPROM
347 *
348 * Writes data to EEPROM at offset using SPI interface.
349 *
350 * If e1000e_update_nvm_checksum is not called after this function , the
351 * EEPROM will most likely contain an invalid checksum.
352 **/
e1000e_write_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)353 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
354 {
355 struct e1000_nvm_info *nvm = &hw->nvm;
356 s32 ret_val = -E1000_ERR_NVM;
357 u16 widx = 0;
358
359 /* A check for invalid values: offset too large, too many words,
360 * and not enough words.
361 */
362 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
363 (words == 0)) {
364 e_dbg("nvm parameter(s) out of bounds\n");
365 return -E1000_ERR_NVM;
366 }
367
368 while (widx < words) {
369 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
370
371 ret_val = nvm->ops.acquire(hw);
372 if (ret_val)
373 return ret_val;
374
375 ret_val = e1000_ready_nvm_eeprom(hw);
376 if (ret_val) {
377 nvm->ops.release(hw);
378 return ret_val;
379 }
380
381 e1000_standby_nvm(hw);
382
383 /* Send the WRITE ENABLE command (8 bit opcode) */
384 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
385 nvm->opcode_bits);
386
387 e1000_standby_nvm(hw);
388
389 /* Some SPI eeproms use the 8th address bit embedded in the
390 * opcode
391 */
392 if ((nvm->address_bits == 8) && (offset >= 128))
393 write_opcode |= NVM_A8_OPCODE_SPI;
394
395 /* Send the Write command (8-bit opcode + addr) */
396 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
397 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
398 nvm->address_bits);
399
400 /* Loop to allow for up to whole page write of eeprom */
401 while (widx < words) {
402 u16 word_out = data[widx];
403
404 word_out = (word_out >> 8) | (word_out << 8);
405 e1000_shift_out_eec_bits(hw, word_out, 16);
406 widx++;
407
408 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
409 e1000_standby_nvm(hw);
410 break;
411 }
412 }
413 usleep_range(10000, 20000);
414 nvm->ops.release(hw);
415 }
416
417 return ret_val;
418 }
419
420 /**
421 * e1000_read_pba_string_generic - Read device part number
422 * @hw: pointer to the HW structure
423 * @pba_num: pointer to device part number
424 * @pba_num_size: size of part number buffer
425 *
426 * Reads the product board assembly (PBA) number from the EEPROM and stores
427 * the value in pba_num.
428 **/
e1000_read_pba_string_generic(struct e1000_hw * hw,u8 * pba_num,u32 pba_num_size)429 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
430 u32 pba_num_size)
431 {
432 s32 ret_val;
433 u16 nvm_data;
434 u16 pba_ptr;
435 u16 offset;
436 u16 length;
437
438 if (pba_num == NULL) {
439 e_dbg("PBA string buffer was null\n");
440 return -E1000_ERR_INVALID_ARGUMENT;
441 }
442
443 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
444 if (ret_val) {
445 e_dbg("NVM Read Error\n");
446 return ret_val;
447 }
448
449 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
450 if (ret_val) {
451 e_dbg("NVM Read Error\n");
452 return ret_val;
453 }
454
455 /* if nvm_data is not ptr guard the PBA must be in legacy format which
456 * means pba_ptr is actually our second data word for the PBA number
457 * and we can decode it into an ascii string
458 */
459 if (nvm_data != NVM_PBA_PTR_GUARD) {
460 e_dbg("NVM PBA number is not stored as string\n");
461
462 /* make sure callers buffer is big enough to store the PBA */
463 if (pba_num_size < E1000_PBANUM_LENGTH) {
464 e_dbg("PBA string buffer too small\n");
465 return E1000_ERR_NO_SPACE;
466 }
467
468 /* extract hex string from data and pba_ptr */
469 pba_num[0] = (nvm_data >> 12) & 0xF;
470 pba_num[1] = (nvm_data >> 8) & 0xF;
471 pba_num[2] = (nvm_data >> 4) & 0xF;
472 pba_num[3] = nvm_data & 0xF;
473 pba_num[4] = (pba_ptr >> 12) & 0xF;
474 pba_num[5] = (pba_ptr >> 8) & 0xF;
475 pba_num[6] = '-';
476 pba_num[7] = 0;
477 pba_num[8] = (pba_ptr >> 4) & 0xF;
478 pba_num[9] = pba_ptr & 0xF;
479
480 /* put a null character on the end of our string */
481 pba_num[10] = '\0';
482
483 /* switch all the data but the '-' to hex char */
484 for (offset = 0; offset < 10; offset++) {
485 if (pba_num[offset] < 0xA)
486 pba_num[offset] += '0';
487 else if (pba_num[offset] < 0x10)
488 pba_num[offset] += 'A' - 0xA;
489 }
490
491 return 0;
492 }
493
494 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
495 if (ret_val) {
496 e_dbg("NVM Read Error\n");
497 return ret_val;
498 }
499
500 if (length == 0xFFFF || length == 0) {
501 e_dbg("NVM PBA number section invalid length\n");
502 return -E1000_ERR_NVM_PBA_SECTION;
503 }
504 /* check if pba_num buffer is big enough */
505 if (pba_num_size < (((u32)length * 2) - 1)) {
506 e_dbg("PBA string buffer too small\n");
507 return -E1000_ERR_NO_SPACE;
508 }
509
510 /* trim pba length from start of string */
511 pba_ptr++;
512 length--;
513
514 for (offset = 0; offset < length; offset++) {
515 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
516 if (ret_val) {
517 e_dbg("NVM Read Error\n");
518 return ret_val;
519 }
520 pba_num[offset * 2] = (u8)(nvm_data >> 8);
521 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
522 }
523 pba_num[offset * 2] = '\0';
524
525 return 0;
526 }
527
528 /**
529 * e1000_read_mac_addr_generic - Read device MAC address
530 * @hw: pointer to the HW structure
531 *
532 * Reads the device MAC address from the EEPROM and stores the value.
533 * Since devices with two ports use the same EEPROM, we increment the
534 * last bit in the MAC address for the second port.
535 **/
e1000_read_mac_addr_generic(struct e1000_hw * hw)536 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
537 {
538 u32 rar_high;
539 u32 rar_low;
540 u16 i;
541
542 rar_high = er32(RAH(0));
543 rar_low = er32(RAL(0));
544
545 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
546 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
547
548 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
549 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
550
551 for (i = 0; i < ETH_ALEN; i++)
552 hw->mac.addr[i] = hw->mac.perm_addr[i];
553
554 return 0;
555 }
556
557 /**
558 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
559 * @hw: pointer to the HW structure
560 *
561 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
562 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
563 **/
e1000e_validate_nvm_checksum_generic(struct e1000_hw * hw)564 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
565 {
566 s32 ret_val;
567 u16 checksum = 0;
568 u16 i, nvm_data;
569
570 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
571 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
572 if (ret_val) {
573 e_dbg("NVM Read Error\n");
574 return ret_val;
575 }
576 checksum += nvm_data;
577 }
578
579 if (checksum != (u16)NVM_SUM) {
580 e_dbg("NVM Checksum Invalid\n");
581 return -E1000_ERR_NVM;
582 }
583
584 return 0;
585 }
586
587 /**
588 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
589 * @hw: pointer to the HW structure
590 *
591 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
592 * up to the checksum. Then calculates the EEPROM checksum and writes the
593 * value to the EEPROM.
594 **/
e1000e_update_nvm_checksum_generic(struct e1000_hw * hw)595 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
596 {
597 s32 ret_val;
598 u16 checksum = 0;
599 u16 i, nvm_data;
600
601 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
602 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
603 if (ret_val) {
604 e_dbg("NVM Read Error while updating checksum.\n");
605 return ret_val;
606 }
607 checksum += nvm_data;
608 }
609 checksum = (u16)NVM_SUM - checksum;
610 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
611 if (ret_val)
612 e_dbg("NVM Write Error while updating checksum.\n");
613
614 return ret_val;
615 }
616
617 /**
618 * e1000e_reload_nvm_generic - Reloads EEPROM
619 * @hw: pointer to the HW structure
620 *
621 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
622 * extended control register.
623 **/
e1000e_reload_nvm_generic(struct e1000_hw * hw)624 void e1000e_reload_nvm_generic(struct e1000_hw *hw)
625 {
626 u32 ctrl_ext;
627
628 usleep_range(10, 20);
629 ctrl_ext = er32(CTRL_EXT);
630 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
631 ew32(CTRL_EXT, ctrl_ext);
632 e1e_flush();
633 }
634