1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36 #include <ras/ras_event.h>
37
38 /* lock to memory controller's control array */
39 static DEFINE_MUTEX(mem_ctls_mutex);
40 static LIST_HEAD(mc_devices);
41
42 /*
43 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
44 * apei/ghes and i7core_edac to be used at the same time.
45 */
46 static void const *edac_mc_owner;
47
48 static struct bus_type mc_bus[EDAC_MAX_MCS];
49
edac_dimm_info_location(struct dimm_info * dimm,char * buf,unsigned len)50 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
51 unsigned len)
52 {
53 struct mem_ctl_info *mci = dimm->mci;
54 int i, n, count = 0;
55 char *p = buf;
56
57 for (i = 0; i < mci->n_layers; i++) {
58 n = snprintf(p, len, "%s %d ",
59 edac_layer_name[mci->layers[i].type],
60 dimm->location[i]);
61 p += n;
62 len -= n;
63 count += n;
64 if (!len)
65 break;
66 }
67
68 return count;
69 }
70
71 #ifdef CONFIG_EDAC_DEBUG
72
edac_mc_dump_channel(struct rank_info * chan)73 static void edac_mc_dump_channel(struct rank_info *chan)
74 {
75 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
76 edac_dbg(4, " channel = %p\n", chan);
77 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
78 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
79 }
80
edac_mc_dump_dimm(struct dimm_info * dimm,int number)81 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
82 {
83 char location[80];
84
85 edac_dimm_info_location(dimm, location, sizeof(location));
86
87 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
88 dimm->mci->csbased ? "rank" : "dimm",
89 number, location, dimm->csrow, dimm->cschannel);
90 edac_dbg(4, " dimm = %p\n", dimm);
91 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
92 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
93 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
94 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
95 }
96
edac_mc_dump_csrow(struct csrow_info * csrow)97 static void edac_mc_dump_csrow(struct csrow_info *csrow)
98 {
99 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
100 edac_dbg(4, " csrow = %p\n", csrow);
101 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
102 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
103 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
104 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
105 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
106 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
107 }
108
edac_mc_dump_mci(struct mem_ctl_info * mci)109 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
110 {
111 edac_dbg(3, "\tmci = %p\n", mci);
112 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
113 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
114 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
115 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
116 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
117 mci->nr_csrows, mci->csrows);
118 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
119 mci->tot_dimms, mci->dimms);
120 edac_dbg(3, "\tdev = %p\n", mci->pdev);
121 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
122 mci->mod_name, mci->ctl_name);
123 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
124 }
125
126 #endif /* CONFIG_EDAC_DEBUG */
127
128 /*
129 * keep those in sync with the enum mem_type
130 */
131 const char * const edac_mem_types[] = {
132 "Empty csrow",
133 "Reserved csrow type",
134 "Unknown csrow type",
135 "Fast page mode RAM",
136 "Extended data out RAM",
137 "Burst Extended data out RAM",
138 "Single data rate SDRAM",
139 "Registered single data rate SDRAM",
140 "Double data rate SDRAM",
141 "Registered Double data rate SDRAM",
142 "Rambus DRAM",
143 "Unbuffered DDR2 RAM",
144 "Fully buffered DDR2",
145 "Registered DDR2 RAM",
146 "Rambus XDR",
147 "Unbuffered DDR3 RAM",
148 "Registered DDR3 RAM",
149 };
150 EXPORT_SYMBOL_GPL(edac_mem_types);
151
152 /**
153 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
154 * @p: pointer to a pointer with the memory offset to be used. At
155 * return, this will be incremented to point to the next offset
156 * @size: Size of the data structure to be reserved
157 * @n_elems: Number of elements that should be reserved
158 *
159 * If 'size' is a constant, the compiler will optimize this whole function
160 * down to either a no-op or the addition of a constant to the value of '*p'.
161 *
162 * The 'p' pointer is absolutely needed to keep the proper advancing
163 * further in memory to the proper offsets when allocating the struct along
164 * with its embedded structs, as edac_device_alloc_ctl_info() does it
165 * above, for example.
166 *
167 * At return, the pointer 'p' will be incremented to be used on a next call
168 * to this function.
169 */
edac_align_ptr(void ** p,unsigned size,int n_elems)170 void *edac_align_ptr(void **p, unsigned size, int n_elems)
171 {
172 unsigned align, r;
173 void *ptr = *p;
174
175 *p += size * n_elems;
176
177 /*
178 * 'p' can possibly be an unaligned item X such that sizeof(X) is
179 * 'size'. Adjust 'p' so that its alignment is at least as
180 * stringent as what the compiler would provide for X and return
181 * the aligned result.
182 * Here we assume that the alignment of a "long long" is the most
183 * stringent alignment that the compiler will ever provide by default.
184 * As far as I know, this is a reasonable assumption.
185 */
186 if (size > sizeof(long))
187 align = sizeof(long long);
188 else if (size > sizeof(int))
189 align = sizeof(long);
190 else if (size > sizeof(short))
191 align = sizeof(int);
192 else if (size > sizeof(char))
193 align = sizeof(short);
194 else
195 return (char *)ptr;
196
197 r = (unsigned long)p % align;
198
199 if (r == 0)
200 return (char *)ptr;
201
202 *p += align - r;
203
204 return (void *)(((unsigned long)ptr) + align - r);
205 }
206
_edac_mc_free(struct mem_ctl_info * mci)207 static void _edac_mc_free(struct mem_ctl_info *mci)
208 {
209 int i, chn, row;
210 struct csrow_info *csr;
211 const unsigned int tot_dimms = mci->tot_dimms;
212 const unsigned int tot_channels = mci->num_cschannel;
213 const unsigned int tot_csrows = mci->nr_csrows;
214
215 if (mci->dimms) {
216 for (i = 0; i < tot_dimms; i++)
217 kfree(mci->dimms[i]);
218 kfree(mci->dimms);
219 }
220 if (mci->csrows) {
221 for (row = 0; row < tot_csrows; row++) {
222 csr = mci->csrows[row];
223 if (csr) {
224 if (csr->channels) {
225 for (chn = 0; chn < tot_channels; chn++)
226 kfree(csr->channels[chn]);
227 kfree(csr->channels);
228 }
229 kfree(csr);
230 }
231 }
232 kfree(mci->csrows);
233 }
234 kfree(mci);
235 }
236
237 /**
238 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
239 * @mc_num: Memory controller number
240 * @n_layers: Number of MC hierarchy layers
241 * layers: Describes each layer as seen by the Memory Controller
242 * @size_pvt: size of private storage needed
243 *
244 *
245 * Everything is kmalloc'ed as one big chunk - more efficient.
246 * Only can be used if all structures have the same lifetime - otherwise
247 * you have to allocate and initialize your own structures.
248 *
249 * Use edac_mc_free() to free mc structures allocated by this function.
250 *
251 * NOTE: drivers handle multi-rank memories in different ways: in some
252 * drivers, one multi-rank memory stick is mapped as one entry, while, in
253 * others, a single multi-rank memory stick would be mapped into several
254 * entries. Currently, this function will allocate multiple struct dimm_info
255 * on such scenarios, as grouping the multiple ranks require drivers change.
256 *
257 * Returns:
258 * On failure: NULL
259 * On success: struct mem_ctl_info pointer
260 */
edac_mc_alloc(unsigned mc_num,unsigned n_layers,struct edac_mc_layer * layers,unsigned sz_pvt)261 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
262 unsigned n_layers,
263 struct edac_mc_layer *layers,
264 unsigned sz_pvt)
265 {
266 struct mem_ctl_info *mci;
267 struct edac_mc_layer *layer;
268 struct csrow_info *csr;
269 struct rank_info *chan;
270 struct dimm_info *dimm;
271 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
272 unsigned pos[EDAC_MAX_LAYERS];
273 unsigned size, tot_dimms = 1, count = 1;
274 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
275 void *pvt, *p, *ptr = NULL;
276 int i, j, row, chn, n, len, off;
277 bool per_rank = false;
278
279 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
280 /*
281 * Calculate the total amount of dimms and csrows/cschannels while
282 * in the old API emulation mode
283 */
284 for (i = 0; i < n_layers; i++) {
285 tot_dimms *= layers[i].size;
286 if (layers[i].is_virt_csrow)
287 tot_csrows *= layers[i].size;
288 else
289 tot_channels *= layers[i].size;
290
291 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
292 per_rank = true;
293 }
294
295 /* Figure out the offsets of the various items from the start of an mc
296 * structure. We want the alignment of each item to be at least as
297 * stringent as what the compiler would provide if we could simply
298 * hardcode everything into a single struct.
299 */
300 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
301 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
302 for (i = 0; i < n_layers; i++) {
303 count *= layers[i].size;
304 edac_dbg(4, "errcount layer %d size %d\n", i, count);
305 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
306 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
307 tot_errcount += 2 * count;
308 }
309
310 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
311 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
312 size = ((unsigned long)pvt) + sz_pvt;
313
314 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
315 size,
316 tot_dimms,
317 per_rank ? "ranks" : "dimms",
318 tot_csrows * tot_channels);
319
320 mci = kzalloc(size, GFP_KERNEL);
321 if (mci == NULL)
322 return NULL;
323
324 /* Adjust pointers so they point within the memory we just allocated
325 * rather than an imaginary chunk of memory located at address 0.
326 */
327 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
328 for (i = 0; i < n_layers; i++) {
329 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
330 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
331 }
332 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
333
334 /* setup index and various internal pointers */
335 mci->mc_idx = mc_num;
336 mci->tot_dimms = tot_dimms;
337 mci->pvt_info = pvt;
338 mci->n_layers = n_layers;
339 mci->layers = layer;
340 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
341 mci->nr_csrows = tot_csrows;
342 mci->num_cschannel = tot_channels;
343 mci->csbased = per_rank;
344
345 /*
346 * Alocate and fill the csrow/channels structs
347 */
348 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
349 if (!mci->csrows)
350 goto error;
351 for (row = 0; row < tot_csrows; row++) {
352 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
353 if (!csr)
354 goto error;
355 mci->csrows[row] = csr;
356 csr->csrow_idx = row;
357 csr->mci = mci;
358 csr->nr_channels = tot_channels;
359 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
360 GFP_KERNEL);
361 if (!csr->channels)
362 goto error;
363
364 for (chn = 0; chn < tot_channels; chn++) {
365 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
366 if (!chan)
367 goto error;
368 csr->channels[chn] = chan;
369 chan->chan_idx = chn;
370 chan->csrow = csr;
371 }
372 }
373
374 /*
375 * Allocate and fill the dimm structs
376 */
377 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
378 if (!mci->dimms)
379 goto error;
380
381 memset(&pos, 0, sizeof(pos));
382 row = 0;
383 chn = 0;
384 for (i = 0; i < tot_dimms; i++) {
385 chan = mci->csrows[row]->channels[chn];
386 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
387 if (off < 0 || off >= tot_dimms) {
388 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
389 goto error;
390 }
391
392 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
393 if (!dimm)
394 goto error;
395 mci->dimms[off] = dimm;
396 dimm->mci = mci;
397
398 /*
399 * Copy DIMM location and initialize it.
400 */
401 len = sizeof(dimm->label);
402 p = dimm->label;
403 n = snprintf(p, len, "mc#%u", mc_num);
404 p += n;
405 len -= n;
406 for (j = 0; j < n_layers; j++) {
407 n = snprintf(p, len, "%s#%u",
408 edac_layer_name[layers[j].type],
409 pos[j]);
410 p += n;
411 len -= n;
412 dimm->location[j] = pos[j];
413
414 if (len <= 0)
415 break;
416 }
417
418 /* Link it to the csrows old API data */
419 chan->dimm = dimm;
420 dimm->csrow = row;
421 dimm->cschannel = chn;
422
423 /* Increment csrow location */
424 if (layers[0].is_virt_csrow) {
425 chn++;
426 if (chn == tot_channels) {
427 chn = 0;
428 row++;
429 }
430 } else {
431 row++;
432 if (row == tot_csrows) {
433 row = 0;
434 chn++;
435 }
436 }
437
438 /* Increment dimm location */
439 for (j = n_layers - 1; j >= 0; j--) {
440 pos[j]++;
441 if (pos[j] < layers[j].size)
442 break;
443 pos[j] = 0;
444 }
445 }
446
447 mci->op_state = OP_ALLOC;
448
449 return mci;
450
451 error:
452 _edac_mc_free(mci);
453
454 return NULL;
455 }
456 EXPORT_SYMBOL_GPL(edac_mc_alloc);
457
458 /**
459 * edac_mc_free
460 * 'Free' a previously allocated 'mci' structure
461 * @mci: pointer to a struct mem_ctl_info structure
462 */
edac_mc_free(struct mem_ctl_info * mci)463 void edac_mc_free(struct mem_ctl_info *mci)
464 {
465 edac_dbg(1, "\n");
466
467 /* If we're not yet registered with sysfs free only what was allocated
468 * in edac_mc_alloc().
469 */
470 if (!device_is_registered(&mci->dev)) {
471 _edac_mc_free(mci);
472 return;
473 }
474
475 /* the mci instance is freed here, when the sysfs object is dropped */
476 edac_unregister_sysfs(mci);
477 }
478 EXPORT_SYMBOL_GPL(edac_mc_free);
479
480
481 /**
482 * find_mci_by_dev
483 *
484 * scan list of controllers looking for the one that manages
485 * the 'dev' device
486 * @dev: pointer to a struct device related with the MCI
487 */
find_mci_by_dev(struct device * dev)488 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
489 {
490 struct mem_ctl_info *mci;
491 struct list_head *item;
492
493 edac_dbg(3, "\n");
494
495 list_for_each(item, &mc_devices) {
496 mci = list_entry(item, struct mem_ctl_info, link);
497
498 if (mci->pdev == dev)
499 return mci;
500 }
501
502 return NULL;
503 }
504 EXPORT_SYMBOL_GPL(find_mci_by_dev);
505
506 /*
507 * handler for EDAC to check if NMI type handler has asserted interrupt
508 */
edac_mc_assert_error_check_and_clear(void)509 static int edac_mc_assert_error_check_and_clear(void)
510 {
511 int old_state;
512
513 if (edac_op_state == EDAC_OPSTATE_POLL)
514 return 1;
515
516 old_state = edac_err_assert;
517 edac_err_assert = 0;
518
519 return old_state;
520 }
521
522 /*
523 * edac_mc_workq_function
524 * performs the operation scheduled by a workq request
525 */
edac_mc_workq_function(struct work_struct * work_req)526 static void edac_mc_workq_function(struct work_struct *work_req)
527 {
528 struct delayed_work *d_work = to_delayed_work(work_req);
529 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
530
531 mutex_lock(&mem_ctls_mutex);
532
533 /* if this control struct has movd to offline state, we are done */
534 if (mci->op_state == OP_OFFLINE) {
535 mutex_unlock(&mem_ctls_mutex);
536 return;
537 }
538
539 /* Only poll controllers that are running polled and have a check */
540 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
541 mci->edac_check(mci);
542
543 mutex_unlock(&mem_ctls_mutex);
544
545 /* Reschedule */
546 queue_delayed_work(edac_workqueue, &mci->work,
547 msecs_to_jiffies(edac_mc_get_poll_msec()));
548 }
549
550 /*
551 * edac_mc_workq_setup
552 * initialize a workq item for this mci
553 * passing in the new delay period in msec
554 *
555 * locking model:
556 *
557 * called with the mem_ctls_mutex held
558 */
edac_mc_workq_setup(struct mem_ctl_info * mci,unsigned msec,bool init)559 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
560 bool init)
561 {
562 edac_dbg(0, "\n");
563
564 /* if this instance is not in the POLL state, then simply return */
565 if (mci->op_state != OP_RUNNING_POLL)
566 return;
567
568 if (init)
569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570
571 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
572 }
573
574 /*
575 * edac_mc_workq_teardown
576 * stop the workq processing on this mci
577 *
578 * locking model:
579 *
580 * called WITHOUT lock held
581 */
edac_mc_workq_teardown(struct mem_ctl_info * mci)582 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
583 {
584 mci->op_state = OP_OFFLINE;
585
586 cancel_delayed_work_sync(&mci->work);
587 flush_workqueue(edac_workqueue);
588 }
589
590 /*
591 * edac_mc_reset_delay_period(unsigned long value)
592 *
593 * user space has updated our poll period value, need to
594 * reset our workq delays
595 */
edac_mc_reset_delay_period(unsigned long value)596 void edac_mc_reset_delay_period(unsigned long value)
597 {
598 struct mem_ctl_info *mci;
599 struct list_head *item;
600
601 mutex_lock(&mem_ctls_mutex);
602
603 list_for_each(item, &mc_devices) {
604 mci = list_entry(item, struct mem_ctl_info, link);
605
606 edac_mc_workq_setup(mci, value, false);
607 }
608
609 mutex_unlock(&mem_ctls_mutex);
610 }
611
612
613
614 /* Return 0 on success, 1 on failure.
615 * Before calling this function, caller must
616 * assign a unique value to mci->mc_idx.
617 *
618 * locking model:
619 *
620 * called with the mem_ctls_mutex lock held
621 */
add_mc_to_global_list(struct mem_ctl_info * mci)622 static int add_mc_to_global_list(struct mem_ctl_info *mci)
623 {
624 struct list_head *item, *insert_before;
625 struct mem_ctl_info *p;
626
627 insert_before = &mc_devices;
628
629 p = find_mci_by_dev(mci->pdev);
630 if (unlikely(p != NULL))
631 goto fail0;
632
633 list_for_each(item, &mc_devices) {
634 p = list_entry(item, struct mem_ctl_info, link);
635
636 if (p->mc_idx >= mci->mc_idx) {
637 if (unlikely(p->mc_idx == mci->mc_idx))
638 goto fail1;
639
640 insert_before = item;
641 break;
642 }
643 }
644
645 list_add_tail_rcu(&mci->link, insert_before);
646 atomic_inc(&edac_handlers);
647 return 0;
648
649 fail0:
650 edac_printk(KERN_WARNING, EDAC_MC,
651 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
652 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
653 return 1;
654
655 fail1:
656 edac_printk(KERN_WARNING, EDAC_MC,
657 "bug in low-level driver: attempt to assign\n"
658 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
659 return 1;
660 }
661
del_mc_from_global_list(struct mem_ctl_info * mci)662 static int del_mc_from_global_list(struct mem_ctl_info *mci)
663 {
664 int handlers = atomic_dec_return(&edac_handlers);
665 list_del_rcu(&mci->link);
666
667 /* these are for safe removal of devices from global list while
668 * NMI handlers may be traversing list
669 */
670 synchronize_rcu();
671 INIT_LIST_HEAD(&mci->link);
672
673 return handlers;
674 }
675
676 /**
677 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
678 *
679 * If found, return a pointer to the structure.
680 * Else return NULL.
681 *
682 * Caller must hold mem_ctls_mutex.
683 */
edac_mc_find(int idx)684 struct mem_ctl_info *edac_mc_find(int idx)
685 {
686 struct list_head *item;
687 struct mem_ctl_info *mci;
688
689 list_for_each(item, &mc_devices) {
690 mci = list_entry(item, struct mem_ctl_info, link);
691
692 if (mci->mc_idx >= idx) {
693 if (mci->mc_idx == idx)
694 return mci;
695
696 break;
697 }
698 }
699
700 return NULL;
701 }
702 EXPORT_SYMBOL(edac_mc_find);
703
704 /**
705 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
706 * create sysfs entries associated with mci structure
707 * @mci: pointer to the mci structure to be added to the list
708 *
709 * Return:
710 * 0 Success
711 * !0 Failure
712 */
713
714 /* FIXME - should a warning be printed if no error detection? correction? */
edac_mc_add_mc(struct mem_ctl_info * mci)715 int edac_mc_add_mc(struct mem_ctl_info *mci)
716 {
717 int ret = -EINVAL;
718 edac_dbg(0, "\n");
719
720 if (mci->mc_idx >= EDAC_MAX_MCS) {
721 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
722 return -ENODEV;
723 }
724
725 #ifdef CONFIG_EDAC_DEBUG
726 if (edac_debug_level >= 3)
727 edac_mc_dump_mci(mci);
728
729 if (edac_debug_level >= 4) {
730 int i;
731
732 for (i = 0; i < mci->nr_csrows; i++) {
733 struct csrow_info *csrow = mci->csrows[i];
734 u32 nr_pages = 0;
735 int j;
736
737 for (j = 0; j < csrow->nr_channels; j++)
738 nr_pages += csrow->channels[j]->dimm->nr_pages;
739 if (!nr_pages)
740 continue;
741 edac_mc_dump_csrow(csrow);
742 for (j = 0; j < csrow->nr_channels; j++)
743 if (csrow->channels[j]->dimm->nr_pages)
744 edac_mc_dump_channel(csrow->channels[j]);
745 }
746 for (i = 0; i < mci->tot_dimms; i++)
747 if (mci->dimms[i]->nr_pages)
748 edac_mc_dump_dimm(mci->dimms[i], i);
749 }
750 #endif
751 mutex_lock(&mem_ctls_mutex);
752
753 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
754 ret = -EPERM;
755 goto fail0;
756 }
757
758 if (add_mc_to_global_list(mci))
759 goto fail0;
760
761 /* set load time so that error rate can be tracked */
762 mci->start_time = jiffies;
763
764 mci->bus = &mc_bus[mci->mc_idx];
765
766 if (edac_create_sysfs_mci_device(mci)) {
767 edac_mc_printk(mci, KERN_WARNING,
768 "failed to create sysfs device\n");
769 goto fail1;
770 }
771
772 /* If there IS a check routine, then we are running POLLED */
773 if (mci->edac_check != NULL) {
774 /* This instance is NOW RUNNING */
775 mci->op_state = OP_RUNNING_POLL;
776
777 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
778 } else {
779 mci->op_state = OP_RUNNING_INTERRUPT;
780 }
781
782 /* Report action taken */
783 edac_mc_printk(mci, KERN_INFO,
784 "Giving out device to module %s controller %s: DEV %s (%s)\n",
785 mci->mod_name, mci->ctl_name, mci->dev_name,
786 edac_op_state_to_string(mci->op_state));
787
788 edac_mc_owner = mci->mod_name;
789
790 mutex_unlock(&mem_ctls_mutex);
791 return 0;
792
793 fail1:
794 del_mc_from_global_list(mci);
795
796 fail0:
797 mutex_unlock(&mem_ctls_mutex);
798 return ret;
799 }
800 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
801
802 /**
803 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
804 * remove mci structure from global list
805 * @pdev: Pointer to 'struct device' representing mci structure to remove.
806 *
807 * Return pointer to removed mci structure, or NULL if device not found.
808 */
edac_mc_del_mc(struct device * dev)809 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
810 {
811 struct mem_ctl_info *mci;
812
813 edac_dbg(0, "\n");
814
815 mutex_lock(&mem_ctls_mutex);
816
817 /* find the requested mci struct in the global list */
818 mci = find_mci_by_dev(dev);
819 if (mci == NULL) {
820 mutex_unlock(&mem_ctls_mutex);
821 return NULL;
822 }
823
824 if (!del_mc_from_global_list(mci))
825 edac_mc_owner = NULL;
826 mutex_unlock(&mem_ctls_mutex);
827
828 /* flush workq processes */
829 edac_mc_workq_teardown(mci);
830
831 /* marking MCI offline */
832 mci->op_state = OP_OFFLINE;
833
834 /* remove from sysfs */
835 edac_remove_sysfs_mci_device(mci);
836
837 edac_printk(KERN_INFO, EDAC_MC,
838 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
839 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
840
841 return mci;
842 }
843 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
844
edac_mc_scrub_block(unsigned long page,unsigned long offset,u32 size)845 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
846 u32 size)
847 {
848 struct page *pg;
849 void *virt_addr;
850 unsigned long flags = 0;
851
852 edac_dbg(3, "\n");
853
854 /* ECC error page was not in our memory. Ignore it. */
855 if (!pfn_valid(page))
856 return;
857
858 /* Find the actual page structure then map it and fix */
859 pg = pfn_to_page(page);
860
861 if (PageHighMem(pg))
862 local_irq_save(flags);
863
864 virt_addr = kmap_atomic(pg);
865
866 /* Perform architecture specific atomic scrub operation */
867 atomic_scrub(virt_addr + offset, size);
868
869 /* Unmap and complete */
870 kunmap_atomic(virt_addr);
871
872 if (PageHighMem(pg))
873 local_irq_restore(flags);
874 }
875
876 /* FIXME - should return -1 */
edac_mc_find_csrow_by_page(struct mem_ctl_info * mci,unsigned long page)877 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
878 {
879 struct csrow_info **csrows = mci->csrows;
880 int row, i, j, n;
881
882 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
883 row = -1;
884
885 for (i = 0; i < mci->nr_csrows; i++) {
886 struct csrow_info *csrow = csrows[i];
887 n = 0;
888 for (j = 0; j < csrow->nr_channels; j++) {
889 struct dimm_info *dimm = csrow->channels[j]->dimm;
890 n += dimm->nr_pages;
891 }
892 if (n == 0)
893 continue;
894
895 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
896 mci->mc_idx,
897 csrow->first_page, page, csrow->last_page,
898 csrow->page_mask);
899
900 if ((page >= csrow->first_page) &&
901 (page <= csrow->last_page) &&
902 ((page & csrow->page_mask) ==
903 (csrow->first_page & csrow->page_mask))) {
904 row = i;
905 break;
906 }
907 }
908
909 if (row == -1)
910 edac_mc_printk(mci, KERN_ERR,
911 "could not look up page error address %lx\n",
912 (unsigned long)page);
913
914 return row;
915 }
916 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
917
918 const char *edac_layer_name[] = {
919 [EDAC_MC_LAYER_BRANCH] = "branch",
920 [EDAC_MC_LAYER_CHANNEL] = "channel",
921 [EDAC_MC_LAYER_SLOT] = "slot",
922 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
923 [EDAC_MC_LAYER_ALL_MEM] = "memory",
924 };
925 EXPORT_SYMBOL_GPL(edac_layer_name);
926
edac_inc_ce_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)927 static void edac_inc_ce_error(struct mem_ctl_info *mci,
928 bool enable_per_layer_report,
929 const int pos[EDAC_MAX_LAYERS],
930 const u16 count)
931 {
932 int i, index = 0;
933
934 mci->ce_mc += count;
935
936 if (!enable_per_layer_report) {
937 mci->ce_noinfo_count += count;
938 return;
939 }
940
941 for (i = 0; i < mci->n_layers; i++) {
942 if (pos[i] < 0)
943 break;
944 index += pos[i];
945 mci->ce_per_layer[i][index] += count;
946
947 if (i < mci->n_layers - 1)
948 index *= mci->layers[i + 1].size;
949 }
950 }
951
edac_inc_ue_error(struct mem_ctl_info * mci,bool enable_per_layer_report,const int pos[EDAC_MAX_LAYERS],const u16 count)952 static void edac_inc_ue_error(struct mem_ctl_info *mci,
953 bool enable_per_layer_report,
954 const int pos[EDAC_MAX_LAYERS],
955 const u16 count)
956 {
957 int i, index = 0;
958
959 mci->ue_mc += count;
960
961 if (!enable_per_layer_report) {
962 mci->ce_noinfo_count += count;
963 return;
964 }
965
966 for (i = 0; i < mci->n_layers; i++) {
967 if (pos[i] < 0)
968 break;
969 index += pos[i];
970 mci->ue_per_layer[i][index] += count;
971
972 if (i < mci->n_layers - 1)
973 index *= mci->layers[i + 1].size;
974 }
975 }
976
edac_ce_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report,const unsigned long page_frame_number,const unsigned long offset_in_page,long grain)977 static void edac_ce_error(struct mem_ctl_info *mci,
978 const u16 error_count,
979 const int pos[EDAC_MAX_LAYERS],
980 const char *msg,
981 const char *location,
982 const char *label,
983 const char *detail,
984 const char *other_detail,
985 const bool enable_per_layer_report,
986 const unsigned long page_frame_number,
987 const unsigned long offset_in_page,
988 long grain)
989 {
990 unsigned long remapped_page;
991 char *msg_aux = "";
992
993 if (*msg)
994 msg_aux = " ";
995
996 if (edac_mc_get_log_ce()) {
997 if (other_detail && *other_detail)
998 edac_mc_printk(mci, KERN_WARNING,
999 "%d CE %s%son %s (%s %s - %s)\n",
1000 error_count, msg, msg_aux, label,
1001 location, detail, other_detail);
1002 else
1003 edac_mc_printk(mci, KERN_WARNING,
1004 "%d CE %s%son %s (%s %s)\n",
1005 error_count, msg, msg_aux, label,
1006 location, detail);
1007 }
1008 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1009
1010 if (mci->scrub_mode == SCRUB_SW_SRC) {
1011 /*
1012 * Some memory controllers (called MCs below) can remap
1013 * memory so that it is still available at a different
1014 * address when PCI devices map into memory.
1015 * MC's that can't do this, lose the memory where PCI
1016 * devices are mapped. This mapping is MC-dependent
1017 * and so we call back into the MC driver for it to
1018 * map the MC page to a physical (CPU) page which can
1019 * then be mapped to a virtual page - which can then
1020 * be scrubbed.
1021 */
1022 remapped_page = mci->ctl_page_to_phys ?
1023 mci->ctl_page_to_phys(mci, page_frame_number) :
1024 page_frame_number;
1025
1026 edac_mc_scrub_block(remapped_page,
1027 offset_in_page, grain);
1028 }
1029 }
1030
edac_ue_error(struct mem_ctl_info * mci,const u16 error_count,const int pos[EDAC_MAX_LAYERS],const char * msg,const char * location,const char * label,const char * detail,const char * other_detail,const bool enable_per_layer_report)1031 static void edac_ue_error(struct mem_ctl_info *mci,
1032 const u16 error_count,
1033 const int pos[EDAC_MAX_LAYERS],
1034 const char *msg,
1035 const char *location,
1036 const char *label,
1037 const char *detail,
1038 const char *other_detail,
1039 const bool enable_per_layer_report)
1040 {
1041 char *msg_aux = "";
1042
1043 if (*msg)
1044 msg_aux = " ";
1045
1046 if (edac_mc_get_log_ue()) {
1047 if (other_detail && *other_detail)
1048 edac_mc_printk(mci, KERN_WARNING,
1049 "%d UE %s%son %s (%s %s - %s)\n",
1050 error_count, msg, msg_aux, label,
1051 location, detail, other_detail);
1052 else
1053 edac_mc_printk(mci, KERN_WARNING,
1054 "%d UE %s%son %s (%s %s)\n",
1055 error_count, msg, msg_aux, label,
1056 location, detail);
1057 }
1058
1059 if (edac_mc_get_panic_on_ue()) {
1060 if (other_detail && *other_detail)
1061 panic("UE %s%son %s (%s%s - %s)\n",
1062 msg, msg_aux, label, location, detail, other_detail);
1063 else
1064 panic("UE %s%son %s (%s%s)\n",
1065 msg, msg_aux, label, location, detail);
1066 }
1067
1068 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1069 }
1070
1071 /**
1072 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1073 * anything to discover the error location
1074 *
1075 * @type: severity of the error (CE/UE/Fatal)
1076 * @mci: a struct mem_ctl_info pointer
1077 * @e: error description
1078 *
1079 * This raw function is used internally by edac_mc_handle_error(). It should
1080 * only be called directly when the hardware error come directly from BIOS,
1081 * like in the case of APEI GHES driver.
1082 */
edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,struct edac_raw_error_desc * e)1083 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1084 struct mem_ctl_info *mci,
1085 struct edac_raw_error_desc *e)
1086 {
1087 char detail[80];
1088 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1089
1090 /* Memory type dependent details about the error */
1091 if (type == HW_EVENT_ERR_CORRECTED) {
1092 snprintf(detail, sizeof(detail),
1093 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1094 e->page_frame_number, e->offset_in_page,
1095 e->grain, e->syndrome);
1096 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1097 detail, e->other_detail, e->enable_per_layer_report,
1098 e->page_frame_number, e->offset_in_page, e->grain);
1099 } else {
1100 snprintf(detail, sizeof(detail),
1101 "page:0x%lx offset:0x%lx grain:%ld",
1102 e->page_frame_number, e->offset_in_page, e->grain);
1103
1104 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1105 detail, e->other_detail, e->enable_per_layer_report);
1106 }
1107
1108
1109 }
1110 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1111
1112 /**
1113 * edac_mc_handle_error - reports a memory event to userspace
1114 *
1115 * @type: severity of the error (CE/UE/Fatal)
1116 * @mci: a struct mem_ctl_info pointer
1117 * @error_count: Number of errors of the same type
1118 * @page_frame_number: mem page where the error occurred
1119 * @offset_in_page: offset of the error inside the page
1120 * @syndrome: ECC syndrome
1121 * @top_layer: Memory layer[0] position
1122 * @mid_layer: Memory layer[1] position
1123 * @low_layer: Memory layer[2] position
1124 * @msg: Message meaningful to the end users that
1125 * explains the event
1126 * @other_detail: Technical details about the event that
1127 * may help hardware manufacturers and
1128 * EDAC developers to analyse the event
1129 */
edac_mc_handle_error(const enum hw_event_mc_err_type type,struct mem_ctl_info * mci,const u16 error_count,const unsigned long page_frame_number,const unsigned long offset_in_page,const unsigned long syndrome,const int top_layer,const int mid_layer,const int low_layer,const char * msg,const char * other_detail)1130 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1131 struct mem_ctl_info *mci,
1132 const u16 error_count,
1133 const unsigned long page_frame_number,
1134 const unsigned long offset_in_page,
1135 const unsigned long syndrome,
1136 const int top_layer,
1137 const int mid_layer,
1138 const int low_layer,
1139 const char *msg,
1140 const char *other_detail)
1141 {
1142 char *p;
1143 int row = -1, chan = -1;
1144 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1145 int i, n_labels = 0;
1146 u8 grain_bits;
1147 struct edac_raw_error_desc *e = &mci->error_desc;
1148
1149 edac_dbg(3, "MC%d\n", mci->mc_idx);
1150
1151 /* Fills the error report buffer */
1152 memset(e, 0, sizeof (*e));
1153 e->error_count = error_count;
1154 e->top_layer = top_layer;
1155 e->mid_layer = mid_layer;
1156 e->low_layer = low_layer;
1157 e->page_frame_number = page_frame_number;
1158 e->offset_in_page = offset_in_page;
1159 e->syndrome = syndrome;
1160 e->msg = msg;
1161 e->other_detail = other_detail;
1162
1163 /*
1164 * Check if the event report is consistent and if the memory
1165 * location is known. If it is known, enable_per_layer_report will be
1166 * true, the DIMM(s) label info will be filled and the per-layer
1167 * error counters will be incremented.
1168 */
1169 for (i = 0; i < mci->n_layers; i++) {
1170 if (pos[i] >= (int)mci->layers[i].size) {
1171
1172 edac_mc_printk(mci, KERN_ERR,
1173 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1174 edac_layer_name[mci->layers[i].type],
1175 pos[i], mci->layers[i].size);
1176 /*
1177 * Instead of just returning it, let's use what's
1178 * known about the error. The increment routines and
1179 * the DIMM filter logic will do the right thing by
1180 * pointing the likely damaged DIMMs.
1181 */
1182 pos[i] = -1;
1183 }
1184 if (pos[i] >= 0)
1185 e->enable_per_layer_report = true;
1186 }
1187
1188 /*
1189 * Get the dimm label/grain that applies to the match criteria.
1190 * As the error algorithm may not be able to point to just one memory
1191 * stick, the logic here will get all possible labels that could
1192 * pottentially be affected by the error.
1193 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1194 * to have only the MC channel and the MC dimm (also called "branch")
1195 * but the channel is not known, as the memory is arranged in pairs,
1196 * where each memory belongs to a separate channel within the same
1197 * branch.
1198 */
1199 p = e->label;
1200 *p = '\0';
1201
1202 for (i = 0; i < mci->tot_dimms; i++) {
1203 struct dimm_info *dimm = mci->dimms[i];
1204
1205 if (top_layer >= 0 && top_layer != dimm->location[0])
1206 continue;
1207 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1208 continue;
1209 if (low_layer >= 0 && low_layer != dimm->location[2])
1210 continue;
1211
1212 /* get the max grain, over the error match range */
1213 if (dimm->grain > e->grain)
1214 e->grain = dimm->grain;
1215
1216 /*
1217 * If the error is memory-controller wide, there's no need to
1218 * seek for the affected DIMMs because the whole
1219 * channel/memory controller/... may be affected.
1220 * Also, don't show errors for empty DIMM slots.
1221 */
1222 if (e->enable_per_layer_report && dimm->nr_pages) {
1223 if (n_labels >= EDAC_MAX_LABELS) {
1224 e->enable_per_layer_report = false;
1225 break;
1226 }
1227 n_labels++;
1228 if (p != e->label) {
1229 strcpy(p, OTHER_LABEL);
1230 p += strlen(OTHER_LABEL);
1231 }
1232 strcpy(p, dimm->label);
1233 p += strlen(p);
1234 *p = '\0';
1235
1236 /*
1237 * get csrow/channel of the DIMM, in order to allow
1238 * incrementing the compat API counters
1239 */
1240 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1241 mci->csbased ? "rank" : "dimm",
1242 dimm->csrow, dimm->cschannel);
1243 if (row == -1)
1244 row = dimm->csrow;
1245 else if (row >= 0 && row != dimm->csrow)
1246 row = -2;
1247
1248 if (chan == -1)
1249 chan = dimm->cschannel;
1250 else if (chan >= 0 && chan != dimm->cschannel)
1251 chan = -2;
1252 }
1253 }
1254
1255 if (!e->enable_per_layer_report) {
1256 strcpy(e->label, "any memory");
1257 } else {
1258 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1259 if (p == e->label)
1260 strcpy(e->label, "unknown memory");
1261 if (type == HW_EVENT_ERR_CORRECTED) {
1262 if (row >= 0) {
1263 mci->csrows[row]->ce_count += error_count;
1264 if (chan >= 0)
1265 mci->csrows[row]->channels[chan]->ce_count += error_count;
1266 }
1267 } else
1268 if (row >= 0)
1269 mci->csrows[row]->ue_count += error_count;
1270 }
1271
1272 /* Fill the RAM location data */
1273 p = e->location;
1274
1275 for (i = 0; i < mci->n_layers; i++) {
1276 if (pos[i] < 0)
1277 continue;
1278
1279 p += sprintf(p, "%s:%d ",
1280 edac_layer_name[mci->layers[i].type],
1281 pos[i]);
1282 }
1283 if (p > e->location)
1284 *(p - 1) = '\0';
1285
1286 /* Report the error via the trace interface */
1287 grain_bits = fls_long(e->grain) + 1;
1288 trace_mc_event(type, e->msg, e->label, e->error_count,
1289 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1290 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1291 grain_bits, e->syndrome, e->other_detail);
1292
1293 edac_raw_mc_handle_error(type, mci, e);
1294 }
1295 EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1296