1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
edac_mc_get_log_ue(void)32 int edac_mc_get_log_ue(void)
33 {
34 return edac_mc_log_ue;
35 }
36
edac_mc_get_log_ce(void)37 int edac_mc_get_log_ce(void)
38 {
39 return edac_mc_log_ce;
40 }
41
edac_mc_get_panic_on_ue(void)42 int edac_mc_get_panic_on_ue(void)
43 {
44 return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
edac_mc_get_poll_msec(void)48 int edac_mc_get_poll_msec(void)
49 {
50 return edac_mc_poll_msec;
51 }
52
edac_set_poll_msec(const char * val,struct kernel_param * kp)53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 unsigned long l;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = kstrtoul(val, 0, &l);
62 if (ret)
63 return ret;
64
65 if (l < 1000)
66 return -EINVAL;
67
68 *((unsigned long *)kp->arg) = l;
69
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(l);
72
73 return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92 * various constants for Memory Controllers
93 */
94 static const char * const mem_types[] = {
95 [MEM_EMPTY] = "Empty",
96 [MEM_RESERVED] = "Reserved",
97 [MEM_UNKNOWN] = "Unknown",
98 [MEM_FPM] = "FPM",
99 [MEM_EDO] = "EDO",
100 [MEM_BEDO] = "BEDO",
101 [MEM_SDR] = "Unbuffered-SDR",
102 [MEM_RDR] = "Registered-SDR",
103 [MEM_DDR] = "Unbuffered-DDR",
104 [MEM_RDDR] = "Registered-DDR",
105 [MEM_RMBS] = "RMBS",
106 [MEM_DDR2] = "Unbuffered-DDR2",
107 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 [MEM_RDDR2] = "Registered-DDR2",
109 [MEM_XDR] = "XDR",
110 [MEM_DDR3] = "Unbuffered-DDR3",
111 [MEM_RDDR3] = "Registered-DDR3",
112 [MEM_DDR4] = "Unbuffered-DDR4",
113 [MEM_RDDR4] = "Registered-DDR4"
114 };
115
116 static const char * const dev_types[] = {
117 [DEV_UNKNOWN] = "Unknown",
118 [DEV_X1] = "x1",
119 [DEV_X2] = "x2",
120 [DEV_X4] = "x4",
121 [DEV_X8] = "x8",
122 [DEV_X16] = "x16",
123 [DEV_X32] = "x32",
124 [DEV_X64] = "x64"
125 };
126
127 static const char * const edac_caps[] = {
128 [EDAC_UNKNOWN] = "Unknown",
129 [EDAC_NONE] = "None",
130 [EDAC_RESERVED] = "Reserved",
131 [EDAC_PARITY] = "PARITY",
132 [EDAC_EC] = "EC",
133 [EDAC_SECDED] = "SECDED",
134 [EDAC_S2ECD2ED] = "S2ECD2ED",
135 [EDAC_S4ECD4ED] = "S4ECD4ED",
136 [EDAC_S8ECD8ED] = "S8ECD8ED",
137 [EDAC_S16ECD16ED] = "S16ECD16ED"
138 };
139
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
141 /*
142 * EDAC sysfs CSROW data structures and methods
143 */
144
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
146
147 /*
148 * We need it to avoid namespace conflicts between the legacy API
149 * and the per-dimm/per-rank one
150 */
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
153
154 struct dev_ch_attribute {
155 struct device_attribute attr;
156 int channel;
157 };
158
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 struct dev_ch_attribute dev_attr_legacy_##_name = \
161 { __ATTR(_name, _mode, _show, _store), (_var) }
162
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
164
165 /* Set of more default csrow<id> attribute show/store functions */
csrow_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)166 static ssize_t csrow_ue_count_show(struct device *dev,
167 struct device_attribute *mattr, char *data)
168 {
169 struct csrow_info *csrow = to_csrow(dev);
170
171 return sprintf(data, "%u\n", csrow->ue_count);
172 }
173
csrow_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)174 static ssize_t csrow_ce_count_show(struct device *dev,
175 struct device_attribute *mattr, char *data)
176 {
177 struct csrow_info *csrow = to_csrow(dev);
178
179 return sprintf(data, "%u\n", csrow->ce_count);
180 }
181
csrow_size_show(struct device * dev,struct device_attribute * mattr,char * data)182 static ssize_t csrow_size_show(struct device *dev,
183 struct device_attribute *mattr, char *data)
184 {
185 struct csrow_info *csrow = to_csrow(dev);
186 int i;
187 u32 nr_pages = 0;
188
189 for (i = 0; i < csrow->nr_channels; i++)
190 nr_pages += csrow->channels[i]->dimm->nr_pages;
191 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
192 }
193
csrow_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)194 static ssize_t csrow_mem_type_show(struct device *dev,
195 struct device_attribute *mattr, char *data)
196 {
197 struct csrow_info *csrow = to_csrow(dev);
198
199 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
200 }
201
csrow_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)202 static ssize_t csrow_dev_type_show(struct device *dev,
203 struct device_attribute *mattr, char *data)
204 {
205 struct csrow_info *csrow = to_csrow(dev);
206
207 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
208 }
209
csrow_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 struct device_attribute *mattr,
212 char *data)
213 {
214 struct csrow_info *csrow = to_csrow(dev);
215
216 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
217 }
218
219 /* show/store functions for DIMM Label attributes */
channel_dimm_label_show(struct device * dev,struct device_attribute * mattr,char * data)220 static ssize_t channel_dimm_label_show(struct device *dev,
221 struct device_attribute *mattr,
222 char *data)
223 {
224 struct csrow_info *csrow = to_csrow(dev);
225 unsigned chan = to_channel(mattr);
226 struct rank_info *rank = csrow->channels[chan];
227
228 /* if field has not been initialized, there is nothing to send */
229 if (!rank->dimm->label[0])
230 return 0;
231
232 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
233 rank->dimm->label);
234 }
235
channel_dimm_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)236 static ssize_t channel_dimm_label_store(struct device *dev,
237 struct device_attribute *mattr,
238 const char *data, size_t count)
239 {
240 struct csrow_info *csrow = to_csrow(dev);
241 unsigned chan = to_channel(mattr);
242 struct rank_info *rank = csrow->channels[chan];
243
244 ssize_t max_size = 0;
245
246 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
247 strncpy(rank->dimm->label, data, max_size);
248 rank->dimm->label[max_size] = '\0';
249
250 return max_size;
251 }
252
253 /* show function for dynamic chX_ce_count attribute */
channel_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)254 static ssize_t channel_ce_count_show(struct device *dev,
255 struct device_attribute *mattr, char *data)
256 {
257 struct csrow_info *csrow = to_csrow(dev);
258 unsigned chan = to_channel(mattr);
259 struct rank_info *rank = csrow->channels[chan];
260
261 return sprintf(data, "%u\n", rank->ce_count);
262 }
263
264 /* cwrow<id>/attribute files */
265 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
266 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
267 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
268 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
269 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
270 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
271
272 /* default attributes of the CSROW<id> object */
273 static struct attribute *csrow_attrs[] = {
274 &dev_attr_legacy_dev_type.attr,
275 &dev_attr_legacy_mem_type.attr,
276 &dev_attr_legacy_edac_mode.attr,
277 &dev_attr_legacy_size_mb.attr,
278 &dev_attr_legacy_ue_count.attr,
279 &dev_attr_legacy_ce_count.attr,
280 NULL,
281 };
282
283 static struct attribute_group csrow_attr_grp = {
284 .attrs = csrow_attrs,
285 };
286
287 static const struct attribute_group *csrow_attr_groups[] = {
288 &csrow_attr_grp,
289 NULL
290 };
291
csrow_attr_release(struct device * dev)292 static void csrow_attr_release(struct device *dev)
293 {
294 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
295
296 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
297 kfree(csrow);
298 }
299
300 static struct device_type csrow_attr_type = {
301 .groups = csrow_attr_groups,
302 .release = csrow_attr_release,
303 };
304
305 /*
306 * possible dynamic channel DIMM Label attribute files
307 *
308 */
309
310 #define EDAC_NR_CHANNELS 6
311
312 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
313 channel_dimm_label_show, channel_dimm_label_store, 0);
314 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
315 channel_dimm_label_show, channel_dimm_label_store, 1);
316 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
317 channel_dimm_label_show, channel_dimm_label_store, 2);
318 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
319 channel_dimm_label_show, channel_dimm_label_store, 3);
320 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
321 channel_dimm_label_show, channel_dimm_label_store, 4);
322 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
323 channel_dimm_label_show, channel_dimm_label_store, 5);
324
325 /* Total possible dynamic DIMM Label attribute file table */
326 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
327 &dev_attr_legacy_ch0_dimm_label.attr,
328 &dev_attr_legacy_ch1_dimm_label.attr,
329 &dev_attr_legacy_ch2_dimm_label.attr,
330 &dev_attr_legacy_ch3_dimm_label.attr,
331 &dev_attr_legacy_ch4_dimm_label.attr,
332 &dev_attr_legacy_ch5_dimm_label.attr
333 };
334
335 /* possible dynamic channel ce_count attribute files */
336 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
337 channel_ce_count_show, NULL, 0);
338 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
339 channel_ce_count_show, NULL, 1);
340 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
341 channel_ce_count_show, NULL, 2);
342 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
343 channel_ce_count_show, NULL, 3);
344 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
345 channel_ce_count_show, NULL, 4);
346 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
347 channel_ce_count_show, NULL, 5);
348
349 /* Total possible dynamic ce_count attribute file table */
350 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
351 &dev_attr_legacy_ch0_ce_count.attr,
352 &dev_attr_legacy_ch1_ce_count.attr,
353 &dev_attr_legacy_ch2_ce_count.attr,
354 &dev_attr_legacy_ch3_ce_count.attr,
355 &dev_attr_legacy_ch4_ce_count.attr,
356 &dev_attr_legacy_ch5_ce_count.attr
357 };
358
nr_pages_per_csrow(struct csrow_info * csrow)359 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
360 {
361 int chan, nr_pages = 0;
362
363 for (chan = 0; chan < csrow->nr_channels; chan++)
364 nr_pages += csrow->channels[chan]->dimm->nr_pages;
365
366 return nr_pages;
367 }
368
369 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_object(struct mem_ctl_info * mci,struct csrow_info * csrow,int index)370 static int edac_create_csrow_object(struct mem_ctl_info *mci,
371 struct csrow_info *csrow, int index)
372 {
373 int err, chan;
374
375 if (csrow->nr_channels >= EDAC_NR_CHANNELS)
376 return -ENODEV;
377
378 csrow->dev.type = &csrow_attr_type;
379 csrow->dev.bus = mci->bus;
380 device_initialize(&csrow->dev);
381 csrow->dev.parent = &mci->dev;
382 csrow->mci = mci;
383 dev_set_name(&csrow->dev, "csrow%d", index);
384 dev_set_drvdata(&csrow->dev, csrow);
385
386 edac_dbg(0, "creating (virtual) csrow node %s\n",
387 dev_name(&csrow->dev));
388
389 err = device_add(&csrow->dev);
390 if (err < 0)
391 return err;
392
393 for (chan = 0; chan < csrow->nr_channels; chan++) {
394 /* Only expose populated DIMMs */
395 if (!csrow->channels[chan]->dimm->nr_pages)
396 continue;
397 err = device_create_file(&csrow->dev,
398 dynamic_csrow_dimm_attr[chan]);
399 if (err < 0)
400 goto error;
401 err = device_create_file(&csrow->dev,
402 dynamic_csrow_ce_count_attr[chan]);
403 if (err < 0) {
404 device_remove_file(&csrow->dev,
405 dynamic_csrow_dimm_attr[chan]);
406 goto error;
407 }
408 }
409
410 return 0;
411
412 error:
413 for (--chan; chan >= 0; chan--) {
414 device_remove_file(&csrow->dev,
415 dynamic_csrow_dimm_attr[chan]);
416 device_remove_file(&csrow->dev,
417 dynamic_csrow_ce_count_attr[chan]);
418 }
419 put_device(&csrow->dev);
420
421 return err;
422 }
423
424 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_objects(struct mem_ctl_info * mci)425 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
426 {
427 int err, i, chan;
428 struct csrow_info *csrow;
429
430 for (i = 0; i < mci->nr_csrows; i++) {
431 csrow = mci->csrows[i];
432 if (!nr_pages_per_csrow(csrow))
433 continue;
434 err = edac_create_csrow_object(mci, mci->csrows[i], i);
435 if (err < 0) {
436 edac_dbg(1,
437 "failure: create csrow objects for csrow %d\n",
438 i);
439 goto error;
440 }
441 }
442 return 0;
443
444 error:
445 for (--i; i >= 0; i--) {
446 csrow = mci->csrows[i];
447 if (!nr_pages_per_csrow(csrow))
448 continue;
449 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
450 if (!csrow->channels[chan]->dimm->nr_pages)
451 continue;
452 device_remove_file(&csrow->dev,
453 dynamic_csrow_dimm_attr[chan]);
454 device_remove_file(&csrow->dev,
455 dynamic_csrow_ce_count_attr[chan]);
456 }
457 put_device(&mci->csrows[i]->dev);
458 }
459
460 return err;
461 }
462
edac_delete_csrow_objects(struct mem_ctl_info * mci)463 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
464 {
465 int i, chan;
466 struct csrow_info *csrow;
467
468 for (i = mci->nr_csrows - 1; i >= 0; i--) {
469 csrow = mci->csrows[i];
470 if (!nr_pages_per_csrow(csrow))
471 continue;
472 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
473 if (!csrow->channels[chan]->dimm->nr_pages)
474 continue;
475 edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
476 i, chan);
477 device_remove_file(&csrow->dev,
478 dynamic_csrow_dimm_attr[chan]);
479 device_remove_file(&csrow->dev,
480 dynamic_csrow_ce_count_attr[chan]);
481 }
482 device_unregister(&mci->csrows[i]->dev);
483 }
484 }
485 #endif
486
487 /*
488 * Per-dimm (or per-rank) devices
489 */
490
491 #define to_dimm(k) container_of(k, struct dimm_info, dev)
492
493 /* show/store functions for DIMM Label attributes */
dimmdev_location_show(struct device * dev,struct device_attribute * mattr,char * data)494 static ssize_t dimmdev_location_show(struct device *dev,
495 struct device_attribute *mattr, char *data)
496 {
497 struct dimm_info *dimm = to_dimm(dev);
498
499 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
500 }
501
dimmdev_label_show(struct device * dev,struct device_attribute * mattr,char * data)502 static ssize_t dimmdev_label_show(struct device *dev,
503 struct device_attribute *mattr, char *data)
504 {
505 struct dimm_info *dimm = to_dimm(dev);
506
507 /* if field has not been initialized, there is nothing to send */
508 if (!dimm->label[0])
509 return 0;
510
511 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
512 }
513
dimmdev_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)514 static ssize_t dimmdev_label_store(struct device *dev,
515 struct device_attribute *mattr,
516 const char *data,
517 size_t count)
518 {
519 struct dimm_info *dimm = to_dimm(dev);
520
521 ssize_t max_size = 0;
522
523 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
524 strncpy(dimm->label, data, max_size);
525 dimm->label[max_size] = '\0';
526
527 return max_size;
528 }
529
dimmdev_size_show(struct device * dev,struct device_attribute * mattr,char * data)530 static ssize_t dimmdev_size_show(struct device *dev,
531 struct device_attribute *mattr, char *data)
532 {
533 struct dimm_info *dimm = to_dimm(dev);
534
535 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
536 }
537
dimmdev_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)538 static ssize_t dimmdev_mem_type_show(struct device *dev,
539 struct device_attribute *mattr, char *data)
540 {
541 struct dimm_info *dimm = to_dimm(dev);
542
543 return sprintf(data, "%s\n", mem_types[dimm->mtype]);
544 }
545
dimmdev_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)546 static ssize_t dimmdev_dev_type_show(struct device *dev,
547 struct device_attribute *mattr, char *data)
548 {
549 struct dimm_info *dimm = to_dimm(dev);
550
551 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
552 }
553
dimmdev_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)554 static ssize_t dimmdev_edac_mode_show(struct device *dev,
555 struct device_attribute *mattr,
556 char *data)
557 {
558 struct dimm_info *dimm = to_dimm(dev);
559
560 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
561 }
562
563 /* dimm/rank attribute files */
564 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
565 dimmdev_label_show, dimmdev_label_store);
566 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
567 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
568 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
569 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
570 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
571
572 /* attributes of the dimm<id>/rank<id> object */
573 static struct attribute *dimm_attrs[] = {
574 &dev_attr_dimm_label.attr,
575 &dev_attr_dimm_location.attr,
576 &dev_attr_size.attr,
577 &dev_attr_dimm_mem_type.attr,
578 &dev_attr_dimm_dev_type.attr,
579 &dev_attr_dimm_edac_mode.attr,
580 NULL,
581 };
582
583 static struct attribute_group dimm_attr_grp = {
584 .attrs = dimm_attrs,
585 };
586
587 static const struct attribute_group *dimm_attr_groups[] = {
588 &dimm_attr_grp,
589 NULL
590 };
591
dimm_attr_release(struct device * dev)592 static void dimm_attr_release(struct device *dev)
593 {
594 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
595
596 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
597 kfree(dimm);
598 }
599
600 static struct device_type dimm_attr_type = {
601 .groups = dimm_attr_groups,
602 .release = dimm_attr_release,
603 };
604
605 /* Create a DIMM object under specifed memory controller device */
edac_create_dimm_object(struct mem_ctl_info * mci,struct dimm_info * dimm,int index)606 static int edac_create_dimm_object(struct mem_ctl_info *mci,
607 struct dimm_info *dimm,
608 int index)
609 {
610 int err;
611 dimm->mci = mci;
612
613 dimm->dev.type = &dimm_attr_type;
614 dimm->dev.bus = mci->bus;
615 device_initialize(&dimm->dev);
616
617 dimm->dev.parent = &mci->dev;
618 if (mci->csbased)
619 dev_set_name(&dimm->dev, "rank%d", index);
620 else
621 dev_set_name(&dimm->dev, "dimm%d", index);
622 dev_set_drvdata(&dimm->dev, dimm);
623 pm_runtime_forbid(&mci->dev);
624
625 err = device_add(&dimm->dev);
626
627 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
628
629 return err;
630 }
631
632 /*
633 * Memory controller device
634 */
635
636 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
637
mci_reset_counters_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)638 static ssize_t mci_reset_counters_store(struct device *dev,
639 struct device_attribute *mattr,
640 const char *data, size_t count)
641 {
642 struct mem_ctl_info *mci = to_mci(dev);
643 int cnt, row, chan, i;
644 mci->ue_mc = 0;
645 mci->ce_mc = 0;
646 mci->ue_noinfo_count = 0;
647 mci->ce_noinfo_count = 0;
648
649 for (row = 0; row < mci->nr_csrows; row++) {
650 struct csrow_info *ri = mci->csrows[row];
651
652 ri->ue_count = 0;
653 ri->ce_count = 0;
654
655 for (chan = 0; chan < ri->nr_channels; chan++)
656 ri->channels[chan]->ce_count = 0;
657 }
658
659 cnt = 1;
660 for (i = 0; i < mci->n_layers; i++) {
661 cnt *= mci->layers[i].size;
662 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
663 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
664 }
665
666 mci->start_time = jiffies;
667 return count;
668 }
669
670 /* Memory scrubbing interface:
671 *
672 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
673 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
674 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
675 *
676 * Negative value still means that an error has occurred while setting
677 * the scrub rate.
678 */
mci_sdram_scrub_rate_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)679 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
680 struct device_attribute *mattr,
681 const char *data, size_t count)
682 {
683 struct mem_ctl_info *mci = to_mci(dev);
684 unsigned long bandwidth = 0;
685 int new_bw = 0;
686
687 if (kstrtoul(data, 10, &bandwidth) < 0)
688 return -EINVAL;
689
690 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
691 if (new_bw < 0) {
692 edac_printk(KERN_WARNING, EDAC_MC,
693 "Error setting scrub rate to: %lu\n", bandwidth);
694 return -EINVAL;
695 }
696
697 return count;
698 }
699
700 /*
701 * ->get_sdram_scrub_rate() return value semantics same as above.
702 */
mci_sdram_scrub_rate_show(struct device * dev,struct device_attribute * mattr,char * data)703 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
704 struct device_attribute *mattr,
705 char *data)
706 {
707 struct mem_ctl_info *mci = to_mci(dev);
708 int bandwidth = 0;
709
710 bandwidth = mci->get_sdram_scrub_rate(mci);
711 if (bandwidth < 0) {
712 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
713 return bandwidth;
714 }
715
716 return sprintf(data, "%d\n", bandwidth);
717 }
718
719 /* default attribute files for the MCI object */
mci_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)720 static ssize_t mci_ue_count_show(struct device *dev,
721 struct device_attribute *mattr,
722 char *data)
723 {
724 struct mem_ctl_info *mci = to_mci(dev);
725
726 return sprintf(data, "%d\n", mci->ue_mc);
727 }
728
mci_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)729 static ssize_t mci_ce_count_show(struct device *dev,
730 struct device_attribute *mattr,
731 char *data)
732 {
733 struct mem_ctl_info *mci = to_mci(dev);
734
735 return sprintf(data, "%d\n", mci->ce_mc);
736 }
737
mci_ce_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)738 static ssize_t mci_ce_noinfo_show(struct device *dev,
739 struct device_attribute *mattr,
740 char *data)
741 {
742 struct mem_ctl_info *mci = to_mci(dev);
743
744 return sprintf(data, "%d\n", mci->ce_noinfo_count);
745 }
746
mci_ue_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)747 static ssize_t mci_ue_noinfo_show(struct device *dev,
748 struct device_attribute *mattr,
749 char *data)
750 {
751 struct mem_ctl_info *mci = to_mci(dev);
752
753 return sprintf(data, "%d\n", mci->ue_noinfo_count);
754 }
755
mci_seconds_show(struct device * dev,struct device_attribute * mattr,char * data)756 static ssize_t mci_seconds_show(struct device *dev,
757 struct device_attribute *mattr,
758 char *data)
759 {
760 struct mem_ctl_info *mci = to_mci(dev);
761
762 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
763 }
764
mci_ctl_name_show(struct device * dev,struct device_attribute * mattr,char * data)765 static ssize_t mci_ctl_name_show(struct device *dev,
766 struct device_attribute *mattr,
767 char *data)
768 {
769 struct mem_ctl_info *mci = to_mci(dev);
770
771 return sprintf(data, "%s\n", mci->ctl_name);
772 }
773
mci_size_mb_show(struct device * dev,struct device_attribute * mattr,char * data)774 static ssize_t mci_size_mb_show(struct device *dev,
775 struct device_attribute *mattr,
776 char *data)
777 {
778 struct mem_ctl_info *mci = to_mci(dev);
779 int total_pages = 0, csrow_idx, j;
780
781 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
782 struct csrow_info *csrow = mci->csrows[csrow_idx];
783
784 for (j = 0; j < csrow->nr_channels; j++) {
785 struct dimm_info *dimm = csrow->channels[j]->dimm;
786
787 total_pages += dimm->nr_pages;
788 }
789 }
790
791 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
792 }
793
mci_max_location_show(struct device * dev,struct device_attribute * mattr,char * data)794 static ssize_t mci_max_location_show(struct device *dev,
795 struct device_attribute *mattr,
796 char *data)
797 {
798 struct mem_ctl_info *mci = to_mci(dev);
799 int i;
800 char *p = data;
801
802 for (i = 0; i < mci->n_layers; i++) {
803 p += sprintf(p, "%s %d ",
804 edac_layer_name[mci->layers[i].type],
805 mci->layers[i].size - 1);
806 }
807
808 return p - data;
809 }
810
811 #ifdef CONFIG_EDAC_DEBUG
edac_fake_inject_write(struct file * file,const char __user * data,size_t count,loff_t * ppos)812 static ssize_t edac_fake_inject_write(struct file *file,
813 const char __user *data,
814 size_t count, loff_t *ppos)
815 {
816 struct device *dev = file->private_data;
817 struct mem_ctl_info *mci = to_mci(dev);
818 static enum hw_event_mc_err_type type;
819 u16 errcount = mci->fake_inject_count;
820
821 if (!errcount)
822 errcount = 1;
823
824 type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
825 : HW_EVENT_ERR_CORRECTED;
826
827 printk(KERN_DEBUG
828 "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
829 errcount,
830 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
831 errcount > 1 ? "s" : "",
832 mci->fake_inject_layer[0],
833 mci->fake_inject_layer[1],
834 mci->fake_inject_layer[2]
835 );
836 edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
837 mci->fake_inject_layer[0],
838 mci->fake_inject_layer[1],
839 mci->fake_inject_layer[2],
840 "FAKE ERROR", "for EDAC testing only");
841
842 return count;
843 }
844
845 static const struct file_operations debug_fake_inject_fops = {
846 .open = simple_open,
847 .write = edac_fake_inject_write,
848 .llseek = generic_file_llseek,
849 };
850 #endif
851
852 /* default Control file */
853 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
854
855 /* default Attribute files */
856 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
857 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
858 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
859 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
860 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
861 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
862 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
863 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
864
865 /* memory scrubber attribute file */
866 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
867
868 static struct attribute *mci_attrs[] = {
869 &dev_attr_reset_counters.attr,
870 &dev_attr_mc_name.attr,
871 &dev_attr_size_mb.attr,
872 &dev_attr_seconds_since_reset.attr,
873 &dev_attr_ue_noinfo_count.attr,
874 &dev_attr_ce_noinfo_count.attr,
875 &dev_attr_ue_count.attr,
876 &dev_attr_ce_count.attr,
877 &dev_attr_max_location.attr,
878 NULL
879 };
880
881 static struct attribute_group mci_attr_grp = {
882 .attrs = mci_attrs,
883 };
884
885 static const struct attribute_group *mci_attr_groups[] = {
886 &mci_attr_grp,
887 NULL
888 };
889
mci_attr_release(struct device * dev)890 static void mci_attr_release(struct device *dev)
891 {
892 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
893
894 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
895 kfree(mci);
896 }
897
898 static struct device_type mci_attr_type = {
899 .groups = mci_attr_groups,
900 .release = mci_attr_release,
901 };
902
903 #ifdef CONFIG_EDAC_DEBUG
904 static struct dentry *edac_debugfs;
905
edac_debugfs_init(void)906 int __init edac_debugfs_init(void)
907 {
908 edac_debugfs = debugfs_create_dir("edac", NULL);
909 if (IS_ERR(edac_debugfs)) {
910 edac_debugfs = NULL;
911 return -ENOMEM;
912 }
913 return 0;
914 }
915
edac_debugfs_exit(void)916 void __exit edac_debugfs_exit(void)
917 {
918 debugfs_remove(edac_debugfs);
919 }
920
edac_create_debug_nodes(struct mem_ctl_info * mci)921 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
922 {
923 struct dentry *d, *parent;
924 char name[80];
925 int i;
926
927 if (!edac_debugfs)
928 return -ENODEV;
929
930 d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
931 if (!d)
932 return -ENOMEM;
933 parent = d;
934
935 for (i = 0; i < mci->n_layers; i++) {
936 sprintf(name, "fake_inject_%s",
937 edac_layer_name[mci->layers[i].type]);
938 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
939 &mci->fake_inject_layer[i]);
940 if (!d)
941 goto nomem;
942 }
943
944 d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
945 &mci->fake_inject_ue);
946 if (!d)
947 goto nomem;
948
949 d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
950 &mci->fake_inject_count);
951 if (!d)
952 goto nomem;
953
954 d = debugfs_create_file("fake_inject", S_IWUSR, parent,
955 &mci->dev,
956 &debug_fake_inject_fops);
957 if (!d)
958 goto nomem;
959
960 mci->debugfs = parent;
961 return 0;
962 nomem:
963 debugfs_remove(mci->debugfs);
964 return -ENOMEM;
965 }
966 #endif
967
968 /*
969 * Create a new Memory Controller kobject instance,
970 * mc<id> under the 'mc' directory
971 *
972 * Return:
973 * 0 Success
974 * !0 Failure
975 */
edac_create_sysfs_mci_device(struct mem_ctl_info * mci)976 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
977 {
978 int i, err;
979
980 /*
981 * The memory controller needs its own bus, in order to avoid
982 * namespace conflicts at /sys/bus/edac.
983 */
984 mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
985 if (!mci->bus->name)
986 return -ENOMEM;
987
988 edac_dbg(0, "creating bus %s\n", mci->bus->name);
989
990 err = bus_register(mci->bus);
991 if (err < 0)
992 return err;
993
994 /* get the /sys/devices/system/edac subsys reference */
995 mci->dev.type = &mci_attr_type;
996 device_initialize(&mci->dev);
997
998 mci->dev.parent = mci_pdev;
999 mci->dev.bus = mci->bus;
1000 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1001 dev_set_drvdata(&mci->dev, mci);
1002 pm_runtime_forbid(&mci->dev);
1003
1004 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1005 err = device_add(&mci->dev);
1006 if (err < 0) {
1007 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1008 bus_unregister(mci->bus);
1009 kfree(mci->bus->name);
1010 return err;
1011 }
1012
1013 if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1014 if (mci->get_sdram_scrub_rate) {
1015 dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1016 dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1017 }
1018 if (mci->set_sdram_scrub_rate) {
1019 dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1020 dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1021 }
1022 err = device_create_file(&mci->dev,
1023 &dev_attr_sdram_scrub_rate);
1024 if (err) {
1025 edac_dbg(1, "failure: create sdram_scrub_rate\n");
1026 goto fail2;
1027 }
1028 }
1029 /*
1030 * Create the dimm/rank devices
1031 */
1032 for (i = 0; i < mci->tot_dimms; i++) {
1033 struct dimm_info *dimm = mci->dimms[i];
1034 /* Only expose populated DIMMs */
1035 if (dimm->nr_pages == 0)
1036 continue;
1037 #ifdef CONFIG_EDAC_DEBUG
1038 edac_dbg(1, "creating dimm%d, located at ", i);
1039 if (edac_debug_level >= 1) {
1040 int lay;
1041 for (lay = 0; lay < mci->n_layers; lay++)
1042 printk(KERN_CONT "%s %d ",
1043 edac_layer_name[mci->layers[lay].type],
1044 dimm->location[lay]);
1045 printk(KERN_CONT "\n");
1046 }
1047 #endif
1048 err = edac_create_dimm_object(mci, dimm, i);
1049 if (err) {
1050 edac_dbg(1, "failure: create dimm %d obj\n", i);
1051 goto fail;
1052 }
1053 }
1054
1055 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1056 err = edac_create_csrow_objects(mci);
1057 if (err < 0)
1058 goto fail;
1059 #endif
1060
1061 #ifdef CONFIG_EDAC_DEBUG
1062 edac_create_debug_nodes(mci);
1063 #endif
1064 return 0;
1065
1066 fail:
1067 for (i--; i >= 0; i--) {
1068 struct dimm_info *dimm = mci->dimms[i];
1069 if (dimm->nr_pages == 0)
1070 continue;
1071 device_unregister(&dimm->dev);
1072 }
1073 fail2:
1074 device_unregister(&mci->dev);
1075 bus_unregister(mci->bus);
1076 kfree(mci->bus->name);
1077 return err;
1078 }
1079
1080 /*
1081 * remove a Memory Controller instance
1082 */
edac_remove_sysfs_mci_device(struct mem_ctl_info * mci)1083 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1084 {
1085 int i;
1086
1087 edac_dbg(0, "\n");
1088
1089 #ifdef CONFIG_EDAC_DEBUG
1090 debugfs_remove(mci->debugfs);
1091 #endif
1092 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1093 edac_delete_csrow_objects(mci);
1094 #endif
1095
1096 for (i = 0; i < mci->tot_dimms; i++) {
1097 struct dimm_info *dimm = mci->dimms[i];
1098 if (dimm->nr_pages == 0)
1099 continue;
1100 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1101 device_unregister(&dimm->dev);
1102 }
1103 }
1104
edac_unregister_sysfs(struct mem_ctl_info * mci)1105 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1106 {
1107 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1108 device_unregister(&mci->dev);
1109 bus_unregister(mci->bus);
1110 kfree(mci->bus->name);
1111 }
1112
mc_attr_release(struct device * dev)1113 static void mc_attr_release(struct device *dev)
1114 {
1115 /*
1116 * There's no container structure here, as this is just the mci
1117 * parent device, used to create the /sys/devices/mc sysfs node.
1118 * So, there are no attributes on it.
1119 */
1120 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1121 kfree(dev);
1122 }
1123
1124 static struct device_type mc_attr_type = {
1125 .release = mc_attr_release,
1126 };
1127 /*
1128 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1129 */
edac_mc_sysfs_init(void)1130 int __init edac_mc_sysfs_init(void)
1131 {
1132 struct bus_type *edac_subsys;
1133 int err;
1134
1135 /* get the /sys/devices/system/edac subsys reference */
1136 edac_subsys = edac_get_sysfs_subsys();
1137 if (edac_subsys == NULL) {
1138 edac_dbg(1, "no edac_subsys\n");
1139 err = -EINVAL;
1140 goto out;
1141 }
1142
1143 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1144 if (!mci_pdev) {
1145 err = -ENOMEM;
1146 goto out_put_sysfs;
1147 }
1148
1149 mci_pdev->bus = edac_subsys;
1150 mci_pdev->type = &mc_attr_type;
1151 device_initialize(mci_pdev);
1152 dev_set_name(mci_pdev, "mc");
1153
1154 err = device_add(mci_pdev);
1155 if (err < 0)
1156 goto out_dev_free;
1157
1158 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1159
1160 return 0;
1161
1162 out_dev_free:
1163 kfree(mci_pdev);
1164 out_put_sysfs:
1165 edac_put_sysfs_subsys();
1166 out:
1167 return err;
1168 }
1169
edac_mc_sysfs_exit(void)1170 void __exit edac_mc_sysfs_exit(void)
1171 {
1172 device_unregister(mci_pdev);
1173 edac_put_sysfs_subsys();
1174 }
1175