• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Helper functions used by the EFI stub on multiple
3  * architectures. This should be #included by the EFI stub
4  * implementation files.
5  *
6  * Copyright 2011 Intel Corporation; author Matt Fleming
7  *
8  * This file is part of the Linux kernel, and is made available
9  * under the terms of the GNU General Public License version 2.
10  *
11  */
12 
13 #include <linux/efi.h>
14 #include <asm/efi.h>
15 
16 #include "efistub.h"
17 
18 /*
19  * Some firmware implementations have problems reading files in one go.
20  * A read chunk size of 1MB seems to work for most platforms.
21  *
22  * Unfortunately, reading files in chunks triggers *other* bugs on some
23  * platforms, so we provide a way to disable this workaround, which can
24  * be done by passing "efi=nochunk" on the EFI boot stub command line.
25  *
26  * If you experience issues with initrd images being corrupt it's worth
27  * trying efi=nochunk, but chunking is enabled by default because there
28  * are far more machines that require the workaround than those that
29  * break with it enabled.
30  */
31 #define EFI_READ_CHUNK_SIZE	(1024 * 1024)
32 
33 static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
34 
35 /*
36  * Allow the platform to override the allocation granularity: this allows
37  * systems that have the capability to run with a larger page size to deal
38  * with the allocations for initrd and fdt more efficiently.
39  */
40 #ifndef EFI_ALLOC_ALIGN
41 #define EFI_ALLOC_ALIGN		EFI_PAGE_SIZE
42 #endif
43 
44 struct file_info {
45 	efi_file_handle_t *handle;
46 	u64 size;
47 };
48 
efi_printk(efi_system_table_t * sys_table_arg,char * str)49 void efi_printk(efi_system_table_t *sys_table_arg, char *str)
50 {
51 	char *s8;
52 
53 	for (s8 = str; *s8; s8++) {
54 		efi_char16_t ch[2] = { 0 };
55 
56 		ch[0] = *s8;
57 		if (*s8 == '\n') {
58 			efi_char16_t nl[2] = { '\r', 0 };
59 			efi_char16_printk(sys_table_arg, nl);
60 		}
61 
62 		efi_char16_printk(sys_table_arg, ch);
63 	}
64 }
65 
efi_get_memory_map(efi_system_table_t * sys_table_arg,efi_memory_desc_t ** map,unsigned long * map_size,unsigned long * desc_size,u32 * desc_ver,unsigned long * key_ptr)66 efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
67 				efi_memory_desc_t **map,
68 				unsigned long *map_size,
69 				unsigned long *desc_size,
70 				u32 *desc_ver,
71 				unsigned long *key_ptr)
72 {
73 	efi_memory_desc_t *m = NULL;
74 	efi_status_t status;
75 	unsigned long key;
76 	u32 desc_version;
77 
78 	*map_size = sizeof(*m) * 32;
79 again:
80 	/*
81 	 * Add an additional efi_memory_desc_t because we're doing an
82 	 * allocation which may be in a new descriptor region.
83 	 */
84 	*map_size += sizeof(*m);
85 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
86 				*map_size, (void **)&m);
87 	if (status != EFI_SUCCESS)
88 		goto fail;
89 
90 	*desc_size = 0;
91 	key = 0;
92 	status = efi_call_early(get_memory_map, map_size, m,
93 				&key, desc_size, &desc_version);
94 	if (status == EFI_BUFFER_TOO_SMALL) {
95 		efi_call_early(free_pool, m);
96 		goto again;
97 	}
98 
99 	if (status != EFI_SUCCESS)
100 		efi_call_early(free_pool, m);
101 
102 	if (key_ptr && status == EFI_SUCCESS)
103 		*key_ptr = key;
104 	if (desc_ver && status == EFI_SUCCESS)
105 		*desc_ver = desc_version;
106 
107 fail:
108 	*map = m;
109 	return status;
110 }
111 
112 
get_dram_base(efi_system_table_t * sys_table_arg)113 unsigned long __init get_dram_base(efi_system_table_t *sys_table_arg)
114 {
115 	efi_status_t status;
116 	unsigned long map_size;
117 	unsigned long membase  = EFI_ERROR;
118 	struct efi_memory_map map;
119 	efi_memory_desc_t *md;
120 
121 	status = efi_get_memory_map(sys_table_arg, (efi_memory_desc_t **)&map.map,
122 				    &map_size, &map.desc_size, NULL, NULL);
123 	if (status != EFI_SUCCESS)
124 		return membase;
125 
126 	map.map_end = map.map + map_size;
127 
128 	for_each_efi_memory_desc(&map, md)
129 		if (md->attribute & EFI_MEMORY_WB)
130 			if (membase > md->phys_addr)
131 				membase = md->phys_addr;
132 
133 	efi_call_early(free_pool, map.map);
134 
135 	return membase;
136 }
137 
138 /*
139  * Allocate at the highest possible address that is not above 'max'.
140  */
efi_high_alloc(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long align,unsigned long * addr,unsigned long max)141 efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
142 			    unsigned long size, unsigned long align,
143 			    unsigned long *addr, unsigned long max)
144 {
145 	unsigned long map_size, desc_size;
146 	efi_memory_desc_t *map;
147 	efi_status_t status;
148 	unsigned long nr_pages;
149 	u64 max_addr = 0;
150 	int i;
151 
152 	status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
153 				    NULL, NULL);
154 	if (status != EFI_SUCCESS)
155 		goto fail;
156 
157 	/*
158 	 * Enforce minimum alignment that EFI requires when requesting
159 	 * a specific address.  We are doing page-based allocations,
160 	 * so we must be aligned to a page.
161 	 */
162 	if (align < EFI_ALLOC_ALIGN)
163 		align = EFI_ALLOC_ALIGN;
164 
165 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
166 again:
167 	for (i = 0; i < map_size / desc_size; i++) {
168 		efi_memory_desc_t *desc;
169 		unsigned long m = (unsigned long)map;
170 		u64 start, end;
171 
172 		desc = (efi_memory_desc_t *)(m + (i * desc_size));
173 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
174 			continue;
175 
176 		if (desc->num_pages < nr_pages)
177 			continue;
178 
179 		start = desc->phys_addr;
180 		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
181 
182 		if (end > max)
183 			end = max;
184 
185 		if ((start + size) > end)
186 			continue;
187 
188 		if (round_down(end - size, align) < start)
189 			continue;
190 
191 		start = round_down(end - size, align);
192 
193 		/*
194 		 * Don't allocate at 0x0. It will confuse code that
195 		 * checks pointers against NULL.
196 		 */
197 		if (start == 0x0)
198 			continue;
199 
200 		if (start > max_addr)
201 			max_addr = start;
202 	}
203 
204 	if (!max_addr)
205 		status = EFI_NOT_FOUND;
206 	else {
207 		status = efi_call_early(allocate_pages,
208 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
209 					nr_pages, &max_addr);
210 		if (status != EFI_SUCCESS) {
211 			max = max_addr;
212 			max_addr = 0;
213 			goto again;
214 		}
215 
216 		*addr = max_addr;
217 	}
218 
219 	efi_call_early(free_pool, map);
220 fail:
221 	return status;
222 }
223 
224 /*
225  * Allocate at the lowest possible address.
226  */
efi_low_alloc(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long align,unsigned long * addr)227 efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
228 			   unsigned long size, unsigned long align,
229 			   unsigned long *addr)
230 {
231 	unsigned long map_size, desc_size;
232 	efi_memory_desc_t *map;
233 	efi_status_t status;
234 	unsigned long nr_pages;
235 	int i;
236 
237 	status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
238 				    NULL, NULL);
239 	if (status != EFI_SUCCESS)
240 		goto fail;
241 
242 	/*
243 	 * Enforce minimum alignment that EFI requires when requesting
244 	 * a specific address.  We are doing page-based allocations,
245 	 * so we must be aligned to a page.
246 	 */
247 	if (align < EFI_ALLOC_ALIGN)
248 		align = EFI_ALLOC_ALIGN;
249 
250 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
251 	for (i = 0; i < map_size / desc_size; i++) {
252 		efi_memory_desc_t *desc;
253 		unsigned long m = (unsigned long)map;
254 		u64 start, end;
255 
256 		desc = (efi_memory_desc_t *)(m + (i * desc_size));
257 
258 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
259 			continue;
260 
261 		if (desc->num_pages < nr_pages)
262 			continue;
263 
264 		start = desc->phys_addr;
265 		end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
266 
267 		/*
268 		 * Don't allocate at 0x0. It will confuse code that
269 		 * checks pointers against NULL. Skip the first 8
270 		 * bytes so we start at a nice even number.
271 		 */
272 		if (start == 0x0)
273 			start += 8;
274 
275 		start = round_up(start, align);
276 		if ((start + size) > end)
277 			continue;
278 
279 		status = efi_call_early(allocate_pages,
280 					EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
281 					nr_pages, &start);
282 		if (status == EFI_SUCCESS) {
283 			*addr = start;
284 			break;
285 		}
286 	}
287 
288 	if (i == map_size / desc_size)
289 		status = EFI_NOT_FOUND;
290 
291 	efi_call_early(free_pool, map);
292 fail:
293 	return status;
294 }
295 
efi_free(efi_system_table_t * sys_table_arg,unsigned long size,unsigned long addr)296 void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
297 	      unsigned long addr)
298 {
299 	unsigned long nr_pages;
300 
301 	if (!size)
302 		return;
303 
304 	nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
305 	efi_call_early(free_pages, addr, nr_pages);
306 }
307 
308 /*
309  * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
310  * option, e.g. efi=nochunk.
311  *
312  * It should be noted that efi= is parsed in two very different
313  * environments, first in the early boot environment of the EFI boot
314  * stub, and subsequently during the kernel boot.
315  */
efi_parse_options(char * cmdline)316 efi_status_t efi_parse_options(char *cmdline)
317 {
318 	char *str;
319 
320 	/*
321 	 * If no EFI parameters were specified on the cmdline we've got
322 	 * nothing to do.
323 	 */
324 	str = strstr(cmdline, "efi=");
325 	if (!str)
326 		return EFI_SUCCESS;
327 
328 	/* Skip ahead to first argument */
329 	str += strlen("efi=");
330 
331 	/*
332 	 * Remember, because efi= is also used by the kernel we need to
333 	 * skip over arguments we don't understand.
334 	 */
335 	while (*str) {
336 		if (!strncmp(str, "nochunk", 7)) {
337 			str += strlen("nochunk");
338 			__chunk_size = -1UL;
339 		}
340 
341 		/* Group words together, delimited by "," */
342 		while (*str && *str != ',')
343 			str++;
344 
345 		if (*str == ',')
346 			str++;
347 	}
348 
349 	return EFI_SUCCESS;
350 }
351 
352 /*
353  * Check the cmdline for a LILO-style file= arguments.
354  *
355  * We only support loading a file from the same filesystem as
356  * the kernel image.
357  */
handle_cmdline_files(efi_system_table_t * sys_table_arg,efi_loaded_image_t * image,char * cmd_line,char * option_string,unsigned long max_addr,unsigned long * load_addr,unsigned long * load_size)358 efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
359 				  efi_loaded_image_t *image,
360 				  char *cmd_line, char *option_string,
361 				  unsigned long max_addr,
362 				  unsigned long *load_addr,
363 				  unsigned long *load_size)
364 {
365 	struct file_info *files;
366 	unsigned long file_addr;
367 	u64 file_size_total;
368 	efi_file_handle_t *fh = NULL;
369 	efi_status_t status;
370 	int nr_files;
371 	char *str;
372 	int i, j, k;
373 
374 	file_addr = 0;
375 	file_size_total = 0;
376 
377 	str = cmd_line;
378 
379 	j = 0;			/* See close_handles */
380 
381 	if (!load_addr || !load_size)
382 		return EFI_INVALID_PARAMETER;
383 
384 	*load_addr = 0;
385 	*load_size = 0;
386 
387 	if (!str || !*str)
388 		return EFI_SUCCESS;
389 
390 	for (nr_files = 0; *str; nr_files++) {
391 		str = strstr(str, option_string);
392 		if (!str)
393 			break;
394 
395 		str += strlen(option_string);
396 
397 		/* Skip any leading slashes */
398 		while (*str == '/' || *str == '\\')
399 			str++;
400 
401 		while (*str && *str != ' ' && *str != '\n')
402 			str++;
403 	}
404 
405 	if (!nr_files)
406 		return EFI_SUCCESS;
407 
408 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
409 				nr_files * sizeof(*files), (void **)&files);
410 	if (status != EFI_SUCCESS) {
411 		pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
412 		goto fail;
413 	}
414 
415 	str = cmd_line;
416 	for (i = 0; i < nr_files; i++) {
417 		struct file_info *file;
418 		efi_char16_t filename_16[256];
419 		efi_char16_t *p;
420 
421 		str = strstr(str, option_string);
422 		if (!str)
423 			break;
424 
425 		str += strlen(option_string);
426 
427 		file = &files[i];
428 		p = filename_16;
429 
430 		/* Skip any leading slashes */
431 		while (*str == '/' || *str == '\\')
432 			str++;
433 
434 		while (*str && *str != ' ' && *str != '\n') {
435 			if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
436 				break;
437 
438 			if (*str == '/') {
439 				*p++ = '\\';
440 				str++;
441 			} else {
442 				*p++ = *str++;
443 			}
444 		}
445 
446 		*p = '\0';
447 
448 		/* Only open the volume once. */
449 		if (!i) {
450 			status = efi_open_volume(sys_table_arg, image,
451 						 (void **)&fh);
452 			if (status != EFI_SUCCESS)
453 				goto free_files;
454 		}
455 
456 		status = efi_file_size(sys_table_arg, fh, filename_16,
457 				       (void **)&file->handle, &file->size);
458 		if (status != EFI_SUCCESS)
459 			goto close_handles;
460 
461 		file_size_total += file->size;
462 	}
463 
464 	if (file_size_total) {
465 		unsigned long addr;
466 
467 		/*
468 		 * Multiple files need to be at consecutive addresses in memory,
469 		 * so allocate enough memory for all the files.  This is used
470 		 * for loading multiple files.
471 		 */
472 		status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
473 				    &file_addr, max_addr);
474 		if (status != EFI_SUCCESS) {
475 			pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
476 			goto close_handles;
477 		}
478 
479 		/* We've run out of free low memory. */
480 		if (file_addr > max_addr) {
481 			pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
482 			status = EFI_INVALID_PARAMETER;
483 			goto free_file_total;
484 		}
485 
486 		addr = file_addr;
487 		for (j = 0; j < nr_files; j++) {
488 			unsigned long size;
489 
490 			size = files[j].size;
491 			while (size) {
492 				unsigned long chunksize;
493 				if (size > __chunk_size)
494 					chunksize = __chunk_size;
495 				else
496 					chunksize = size;
497 
498 				status = efi_file_read(files[j].handle,
499 						       &chunksize,
500 						       (void *)addr);
501 				if (status != EFI_SUCCESS) {
502 					pr_efi_err(sys_table_arg, "Failed to read file\n");
503 					goto free_file_total;
504 				}
505 				addr += chunksize;
506 				size -= chunksize;
507 			}
508 
509 			efi_file_close(files[j].handle);
510 		}
511 
512 	}
513 
514 	efi_call_early(free_pool, files);
515 
516 	*load_addr = file_addr;
517 	*load_size = file_size_total;
518 
519 	return status;
520 
521 free_file_total:
522 	efi_free(sys_table_arg, file_size_total, file_addr);
523 
524 close_handles:
525 	for (k = j; k < i; k++)
526 		efi_file_close(files[k].handle);
527 free_files:
528 	efi_call_early(free_pool, files);
529 fail:
530 	*load_addr = 0;
531 	*load_size = 0;
532 
533 	return status;
534 }
535 /*
536  * Relocate a kernel image, either compressed or uncompressed.
537  * In the ARM64 case, all kernel images are currently
538  * uncompressed, and as such when we relocate it we need to
539  * allocate additional space for the BSS segment. Any low
540  * memory that this function should avoid needs to be
541  * unavailable in the EFI memory map, as if the preferred
542  * address is not available the lowest available address will
543  * be used.
544  */
efi_relocate_kernel(efi_system_table_t * sys_table_arg,unsigned long * image_addr,unsigned long image_size,unsigned long alloc_size,unsigned long preferred_addr,unsigned long alignment)545 efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
546 				 unsigned long *image_addr,
547 				 unsigned long image_size,
548 				 unsigned long alloc_size,
549 				 unsigned long preferred_addr,
550 				 unsigned long alignment)
551 {
552 	unsigned long cur_image_addr;
553 	unsigned long new_addr = 0;
554 	efi_status_t status;
555 	unsigned long nr_pages;
556 	efi_physical_addr_t efi_addr = preferred_addr;
557 
558 	if (!image_addr || !image_size || !alloc_size)
559 		return EFI_INVALID_PARAMETER;
560 	if (alloc_size < image_size)
561 		return EFI_INVALID_PARAMETER;
562 
563 	cur_image_addr = *image_addr;
564 
565 	/*
566 	 * The EFI firmware loader could have placed the kernel image
567 	 * anywhere in memory, but the kernel has restrictions on the
568 	 * max physical address it can run at.  Some architectures
569 	 * also have a prefered address, so first try to relocate
570 	 * to the preferred address.  If that fails, allocate as low
571 	 * as possible while respecting the required alignment.
572 	 */
573 	nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
574 	status = efi_call_early(allocate_pages,
575 				EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
576 				nr_pages, &efi_addr);
577 	new_addr = efi_addr;
578 	/*
579 	 * If preferred address allocation failed allocate as low as
580 	 * possible.
581 	 */
582 	if (status != EFI_SUCCESS) {
583 		status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
584 				       &new_addr);
585 	}
586 	if (status != EFI_SUCCESS) {
587 		pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
588 		return status;
589 	}
590 
591 	/*
592 	 * We know source/dest won't overlap since both memory ranges
593 	 * have been allocated by UEFI, so we can safely use memcpy.
594 	 */
595 	memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
596 
597 	/* Return the new address of the relocated image. */
598 	*image_addr = new_addr;
599 
600 	return status;
601 }
602 
603 /*
604  * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
605  * This overestimates for surrogates, but that is okay.
606  */
efi_utf8_bytes(u16 c)607 static int efi_utf8_bytes(u16 c)
608 {
609 	return 1 + (c >= 0x80) + (c >= 0x800);
610 }
611 
612 /*
613  * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
614  */
efi_utf16_to_utf8(u8 * dst,const u16 * src,int n)615 static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
616 {
617 	unsigned int c;
618 
619 	while (n--) {
620 		c = *src++;
621 		if (n && c >= 0xd800 && c <= 0xdbff &&
622 		    *src >= 0xdc00 && *src <= 0xdfff) {
623 			c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
624 			src++;
625 			n--;
626 		}
627 		if (c >= 0xd800 && c <= 0xdfff)
628 			c = 0xfffd; /* Unmatched surrogate */
629 		if (c < 0x80) {
630 			*dst++ = c;
631 			continue;
632 		}
633 		if (c < 0x800) {
634 			*dst++ = 0xc0 + (c >> 6);
635 			goto t1;
636 		}
637 		if (c < 0x10000) {
638 			*dst++ = 0xe0 + (c >> 12);
639 			goto t2;
640 		}
641 		*dst++ = 0xf0 + (c >> 18);
642 		*dst++ = 0x80 + ((c >> 12) & 0x3f);
643 	t2:
644 		*dst++ = 0x80 + ((c >> 6) & 0x3f);
645 	t1:
646 		*dst++ = 0x80 + (c & 0x3f);
647 	}
648 
649 	return dst;
650 }
651 
652 /*
653  * Convert the unicode UEFI command line to ASCII to pass to kernel.
654  * Size of memory allocated return in *cmd_line_len.
655  * Returns NULL on error.
656  */
efi_convert_cmdline(efi_system_table_t * sys_table_arg,efi_loaded_image_t * image,int * cmd_line_len)657 char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
658 			  efi_loaded_image_t *image,
659 			  int *cmd_line_len)
660 {
661 	const u16 *s2;
662 	u8 *s1 = NULL;
663 	unsigned long cmdline_addr = 0;
664 	int load_options_chars = image->load_options_size / 2; /* UTF-16 */
665 	const u16 *options = image->load_options;
666 	int options_bytes = 0;  /* UTF-8 bytes */
667 	int options_chars = 0;  /* UTF-16 chars */
668 	efi_status_t status;
669 	u16 zero = 0;
670 
671 	if (options) {
672 		s2 = options;
673 		while (*s2 && *s2 != '\n'
674 		       && options_chars < load_options_chars) {
675 			options_bytes += efi_utf8_bytes(*s2++);
676 			options_chars++;
677 		}
678 	}
679 
680 	if (!options_chars) {
681 		/* No command line options, so return empty string*/
682 		options = &zero;
683 	}
684 
685 	options_bytes++;	/* NUL termination */
686 
687 	status = efi_low_alloc(sys_table_arg, options_bytes, 0, &cmdline_addr);
688 	if (status != EFI_SUCCESS)
689 		return NULL;
690 
691 	s1 = (u8 *)cmdline_addr;
692 	s2 = (const u16 *)options;
693 
694 	s1 = efi_utf16_to_utf8(s1, s2, options_chars);
695 	*s1 = '\0';
696 
697 	*cmd_line_len = options_bytes;
698 	return (char *)cmdline_addr;
699 }
700