• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25 
26 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
27 
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34 
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44 
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47 
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54 
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57 
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
63 
64 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
66 
67 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
68 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
74 			   efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
76 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
77 			   (_tx_queue)->queue)
78 
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80 
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88 				     unsigned int index)
89 {
90 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 			value, index);
92 }
93 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95 				     const efx_oword_t *mask)
96 {
97 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)101 int efx_farch_test_registers(struct efx_nic *efx,
102 			     const struct efx_farch_register_test *regs,
103 			     size_t n_regs)
104 {
105 	unsigned address = 0, i, j;
106 	efx_oword_t mask, imask, original, reg, buf;
107 
108 	for (i = 0; i < n_regs; ++i) {
109 		address = regs[i].address;
110 		mask = imask = regs[i].mask;
111 		EFX_INVERT_OWORD(imask);
112 
113 		efx_reado(efx, &original, address);
114 
115 		/* bit sweep on and off */
116 		for (j = 0; j < 128; j++) {
117 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
118 				continue;
119 
120 			/* Test this testable bit can be set in isolation */
121 			EFX_AND_OWORD(reg, original, mask);
122 			EFX_SET_OWORD32(reg, j, j, 1);
123 
124 			efx_writeo(efx, &reg, address);
125 			efx_reado(efx, &buf, address);
126 
127 			if (efx_masked_compare_oword(&reg, &buf, &mask))
128 				goto fail;
129 
130 			/* Test this testable bit can be cleared in isolation */
131 			EFX_OR_OWORD(reg, original, mask);
132 			EFX_SET_OWORD32(reg, j, j, 0);
133 
134 			efx_writeo(efx, &reg, address);
135 			efx_reado(efx, &buf, address);
136 
137 			if (efx_masked_compare_oword(&reg, &buf, &mask))
138 				goto fail;
139 		}
140 
141 		efx_writeo(efx, &original, address);
142 	}
143 
144 	return 0;
145 
146 fail:
147 	netif_err(efx, hw, efx->net_dev,
148 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151 	return -EIO;
152 }
153 
154 /**************************************************************************
155  *
156  * Special buffer handling
157  * Special buffers are used for event queues and the TX and RX
158  * descriptor rings.
159  *
160  *************************************************************************/
161 
162 /*
163  * Initialise a special buffer
164  *
165  * This will define a buffer (previously allocated via
166  * efx_alloc_special_buffer()) in the buffer table, allowing
167  * it to be used for event queues, descriptor rings etc.
168  */
169 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172 	efx_qword_t buf_desc;
173 	unsigned int index;
174 	dma_addr_t dma_addr;
175 	int i;
176 
177 	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178 
179 	/* Write buffer descriptors to NIC */
180 	for (i = 0; i < buffer->entries; i++) {
181 		index = buffer->index + i;
182 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183 		netif_dbg(efx, probe, efx->net_dev,
184 			  "mapping special buffer %d at %llx\n",
185 			  index, (unsigned long long)dma_addr);
186 		EFX_POPULATE_QWORD_3(buf_desc,
187 				     FRF_AZ_BUF_ADR_REGION, 0,
188 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190 		efx_write_buf_tbl(efx, &buf_desc, index);
191 	}
192 }
193 
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198 	efx_oword_t buf_tbl_upd;
199 	unsigned int start = buffer->index;
200 	unsigned int end = (buffer->index + buffer->entries - 1);
201 
202 	if (!buffer->entries)
203 		return;
204 
205 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206 		  buffer->index, buffer->index + buffer->entries - 1);
207 
208 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
209 			     FRF_AZ_BUF_UPD_CMD, 0,
210 			     FRF_AZ_BUF_CLR_CMD, 1,
211 			     FRF_AZ_BUF_CLR_END_ID, end,
212 			     FRF_AZ_BUF_CLR_START_ID, start);
213 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215 
216 /*
217  * Allocate a new special buffer
218  *
219  * This allocates memory for a new buffer, clears it and allocates a
220  * new buffer ID range.  It does not write into the buffer table.
221  *
222  * This call will allocate 4KB buffers, since 8KB buffers can't be
223  * used for event queues and descriptor rings.
224  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226 				    struct efx_special_buffer *buffer,
227 				    unsigned int len)
228 {
229 	len = ALIGN(len, EFX_BUF_SIZE);
230 
231 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
232 		return -ENOMEM;
233 	buffer->entries = len / EFX_BUF_SIZE;
234 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
235 
236 	/* Select new buffer ID */
237 	buffer->index = efx->next_buffer_table;
238 	efx->next_buffer_table += buffer->entries;
239 #ifdef CONFIG_SFC_SRIOV
240 	BUG_ON(efx_sriov_enabled(efx) &&
241 	       efx->vf_buftbl_base < efx->next_buffer_table);
242 #endif
243 
244 	netif_dbg(efx, probe, efx->net_dev,
245 		  "allocating special buffers %d-%d at %llx+%x "
246 		  "(virt %p phys %llx)\n", buffer->index,
247 		  buffer->index + buffer->entries - 1,
248 		  (u64)buffer->buf.dma_addr, len,
249 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
250 
251 	return 0;
252 }
253 
254 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)255 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
256 {
257 	if (!buffer->buf.addr)
258 		return;
259 
260 	netif_dbg(efx, hw, efx->net_dev,
261 		  "deallocating special buffers %d-%d at %llx+%x "
262 		  "(virt %p phys %llx)\n", buffer->index,
263 		  buffer->index + buffer->entries - 1,
264 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
265 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
266 
267 	efx_nic_free_buffer(efx, &buffer->buf);
268 	buffer->entries = 0;
269 }
270 
271 /**************************************************************************
272  *
273  * TX path
274  *
275  **************************************************************************/
276 
277 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)278 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
279 {
280 	unsigned write_ptr;
281 	efx_dword_t reg;
282 
283 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
284 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
285 	efx_writed_page(tx_queue->efx, &reg,
286 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
287 }
288 
289 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)290 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
291 					  const efx_qword_t *txd)
292 {
293 	unsigned write_ptr;
294 	efx_oword_t reg;
295 
296 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
297 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
298 
299 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
300 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
301 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
302 	reg.qword[0] = *txd;
303 	efx_writeo_page(tx_queue->efx, &reg,
304 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
305 }
306 
307 
308 /* For each entry inserted into the software descriptor ring, create a
309  * descriptor in the hardware TX descriptor ring (in host memory), and
310  * write a doorbell.
311  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)312 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
313 {
314 	struct efx_tx_buffer *buffer;
315 	efx_qword_t *txd;
316 	unsigned write_ptr;
317 	unsigned old_write_count = tx_queue->write_count;
318 
319 	tx_queue->xmit_more_available = false;
320 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
321 		return;
322 
323 	do {
324 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
325 		buffer = &tx_queue->buffer[write_ptr];
326 		txd = efx_tx_desc(tx_queue, write_ptr);
327 		++tx_queue->write_count;
328 
329 		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
330 
331 		/* Create TX descriptor ring entry */
332 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
333 		EFX_POPULATE_QWORD_4(*txd,
334 				     FSF_AZ_TX_KER_CONT,
335 				     buffer->flags & EFX_TX_BUF_CONT,
336 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
337 				     FSF_AZ_TX_KER_BUF_REGION, 0,
338 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
339 	} while (tx_queue->write_count != tx_queue->insert_count);
340 
341 	wmb(); /* Ensure descriptors are written before they are fetched */
342 
343 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
344 		txd = efx_tx_desc(tx_queue,
345 				  old_write_count & tx_queue->ptr_mask);
346 		efx_farch_push_tx_desc(tx_queue, txd);
347 		++tx_queue->pushes;
348 	} else {
349 		efx_farch_notify_tx_desc(tx_queue);
350 	}
351 }
352 
353 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)354 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
355 {
356 	struct efx_nic *efx = tx_queue->efx;
357 	unsigned entries;
358 
359 	entries = tx_queue->ptr_mask + 1;
360 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
361 					entries * sizeof(efx_qword_t));
362 }
363 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)364 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
365 {
366 	struct efx_nic *efx = tx_queue->efx;
367 	efx_oword_t reg;
368 
369 	/* Pin TX descriptor ring */
370 	efx_init_special_buffer(efx, &tx_queue->txd);
371 
372 	/* Push TX descriptor ring to card */
373 	EFX_POPULATE_OWORD_10(reg,
374 			      FRF_AZ_TX_DESCQ_EN, 1,
375 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
376 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
377 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
378 			      FRF_AZ_TX_DESCQ_EVQ_ID,
379 			      tx_queue->channel->channel,
380 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
381 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
382 			      FRF_AZ_TX_DESCQ_SIZE,
383 			      __ffs(tx_queue->txd.entries),
384 			      FRF_AZ_TX_DESCQ_TYPE, 0,
385 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
386 
387 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
388 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
389 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
390 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
391 				    !csum);
392 	}
393 
394 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
395 			 tx_queue->queue);
396 
397 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
398 		/* Only 128 bits in this register */
399 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
400 
401 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
402 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
403 			__clear_bit_le(tx_queue->queue, &reg);
404 		else
405 			__set_bit_le(tx_queue->queue, &reg);
406 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
407 	}
408 
409 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
410 		EFX_POPULATE_OWORD_1(reg,
411 				     FRF_BZ_TX_PACE,
412 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
413 				     FFE_BZ_TX_PACE_OFF :
414 				     FFE_BZ_TX_PACE_RESERVED);
415 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
416 				 tx_queue->queue);
417 	}
418 }
419 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)420 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
421 {
422 	struct efx_nic *efx = tx_queue->efx;
423 	efx_oword_t tx_flush_descq;
424 
425 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
426 	atomic_set(&tx_queue->flush_outstanding, 1);
427 
428 	EFX_POPULATE_OWORD_2(tx_flush_descq,
429 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
430 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
431 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
432 }
433 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)434 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
435 {
436 	struct efx_nic *efx = tx_queue->efx;
437 	efx_oword_t tx_desc_ptr;
438 
439 	/* Remove TX descriptor ring from card */
440 	EFX_ZERO_OWORD(tx_desc_ptr);
441 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
442 			 tx_queue->queue);
443 
444 	/* Unpin TX descriptor ring */
445 	efx_fini_special_buffer(efx, &tx_queue->txd);
446 }
447 
448 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)449 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
450 {
451 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
452 }
453 
454 /**************************************************************************
455  *
456  * RX path
457  *
458  **************************************************************************/
459 
460 /* This creates an entry in the RX descriptor queue */
461 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)462 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
463 {
464 	struct efx_rx_buffer *rx_buf;
465 	efx_qword_t *rxd;
466 
467 	rxd = efx_rx_desc(rx_queue, index);
468 	rx_buf = efx_rx_buffer(rx_queue, index);
469 	EFX_POPULATE_QWORD_3(*rxd,
470 			     FSF_AZ_RX_KER_BUF_SIZE,
471 			     rx_buf->len -
472 			     rx_queue->efx->type->rx_buffer_padding,
473 			     FSF_AZ_RX_KER_BUF_REGION, 0,
474 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
475 }
476 
477 /* This writes to the RX_DESC_WPTR register for the specified receive
478  * descriptor ring.
479  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)480 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
481 {
482 	struct efx_nic *efx = rx_queue->efx;
483 	efx_dword_t reg;
484 	unsigned write_ptr;
485 
486 	while (rx_queue->notified_count != rx_queue->added_count) {
487 		efx_farch_build_rx_desc(
488 			rx_queue,
489 			rx_queue->notified_count & rx_queue->ptr_mask);
490 		++rx_queue->notified_count;
491 	}
492 
493 	wmb();
494 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
495 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
496 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
497 			efx_rx_queue_index(rx_queue));
498 }
499 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)500 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
501 {
502 	struct efx_nic *efx = rx_queue->efx;
503 	unsigned entries;
504 
505 	entries = rx_queue->ptr_mask + 1;
506 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
507 					entries * sizeof(efx_qword_t));
508 }
509 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)510 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
511 {
512 	efx_oword_t rx_desc_ptr;
513 	struct efx_nic *efx = rx_queue->efx;
514 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
515 	bool iscsi_digest_en = is_b0;
516 	bool jumbo_en;
517 
518 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
519 	 * DMA to continue after a PCIe page boundary (and scattering
520 	 * is not possible).  In Falcon B0 and Siena, it enables
521 	 * scatter.
522 	 */
523 	jumbo_en = !is_b0 || efx->rx_scatter;
524 
525 	netif_dbg(efx, hw, efx->net_dev,
526 		  "RX queue %d ring in special buffers %d-%d\n",
527 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
528 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
529 
530 	rx_queue->scatter_n = 0;
531 
532 	/* Pin RX descriptor ring */
533 	efx_init_special_buffer(efx, &rx_queue->rxd);
534 
535 	/* Push RX descriptor ring to card */
536 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
537 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
538 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
539 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
540 			      FRF_AZ_RX_DESCQ_EVQ_ID,
541 			      efx_rx_queue_channel(rx_queue)->channel,
542 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
543 			      FRF_AZ_RX_DESCQ_LABEL,
544 			      efx_rx_queue_index(rx_queue),
545 			      FRF_AZ_RX_DESCQ_SIZE,
546 			      __ffs(rx_queue->rxd.entries),
547 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
548 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
549 			      FRF_AZ_RX_DESCQ_EN, 1);
550 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
551 			 efx_rx_queue_index(rx_queue));
552 }
553 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)554 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
555 {
556 	struct efx_nic *efx = rx_queue->efx;
557 	efx_oword_t rx_flush_descq;
558 
559 	EFX_POPULATE_OWORD_2(rx_flush_descq,
560 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
561 			     FRF_AZ_RX_FLUSH_DESCQ,
562 			     efx_rx_queue_index(rx_queue));
563 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
564 }
565 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)566 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
567 {
568 	efx_oword_t rx_desc_ptr;
569 	struct efx_nic *efx = rx_queue->efx;
570 
571 	/* Remove RX descriptor ring from card */
572 	EFX_ZERO_OWORD(rx_desc_ptr);
573 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
574 			 efx_rx_queue_index(rx_queue));
575 
576 	/* Unpin RX descriptor ring */
577 	efx_fini_special_buffer(efx, &rx_queue->rxd);
578 }
579 
580 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)581 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
582 {
583 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
584 }
585 
586 /**************************************************************************
587  *
588  * Flush handling
589  *
590  **************************************************************************/
591 
592 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
593  * or more RX flushes can be kicked off.
594  */
efx_farch_flush_wake(struct efx_nic * efx)595 static bool efx_farch_flush_wake(struct efx_nic *efx)
596 {
597 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
598 	smp_mb();
599 
600 	return (atomic_read(&efx->active_queues) == 0 ||
601 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
602 		 && atomic_read(&efx->rxq_flush_pending) > 0));
603 }
604 
efx_check_tx_flush_complete(struct efx_nic * efx)605 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
606 {
607 	bool i = true;
608 	efx_oword_t txd_ptr_tbl;
609 	struct efx_channel *channel;
610 	struct efx_tx_queue *tx_queue;
611 
612 	efx_for_each_channel(channel, efx) {
613 		efx_for_each_channel_tx_queue(tx_queue, channel) {
614 			efx_reado_table(efx, &txd_ptr_tbl,
615 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
616 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
617 					    FRF_AZ_TX_DESCQ_FLUSH) ||
618 			    EFX_OWORD_FIELD(txd_ptr_tbl,
619 					    FRF_AZ_TX_DESCQ_EN)) {
620 				netif_dbg(efx, hw, efx->net_dev,
621 					  "flush did not complete on TXQ %d\n",
622 					  tx_queue->queue);
623 				i = false;
624 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
625 						  1, 0)) {
626 				/* The flush is complete, but we didn't
627 				 * receive a flush completion event
628 				 */
629 				netif_dbg(efx, hw, efx->net_dev,
630 					  "flush complete on TXQ %d, so drain "
631 					  "the queue\n", tx_queue->queue);
632 				/* Don't need to increment active_queues as it
633 				 * has already been incremented for the queues
634 				 * which did not drain
635 				 */
636 				efx_farch_magic_event(channel,
637 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
638 							      tx_queue));
639 			}
640 		}
641 	}
642 
643 	return i;
644 }
645 
646 /* Flush all the transmit queues, and continue flushing receive queues until
647  * they're all flushed. Wait for the DRAIN events to be recieved so that there
648  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)649 static int efx_farch_do_flush(struct efx_nic *efx)
650 {
651 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
652 	struct efx_channel *channel;
653 	struct efx_rx_queue *rx_queue;
654 	struct efx_tx_queue *tx_queue;
655 	int rc = 0;
656 
657 	efx_for_each_channel(channel, efx) {
658 		efx_for_each_channel_tx_queue(tx_queue, channel) {
659 			efx_farch_flush_tx_queue(tx_queue);
660 		}
661 		efx_for_each_channel_rx_queue(rx_queue, channel) {
662 			rx_queue->flush_pending = true;
663 			atomic_inc(&efx->rxq_flush_pending);
664 		}
665 	}
666 
667 	while (timeout && atomic_read(&efx->active_queues) > 0) {
668 		/* If SRIOV is enabled, then offload receive queue flushing to
669 		 * the firmware (though we will still have to poll for
670 		 * completion). If that fails, fall back to the old scheme.
671 		 */
672 		if (efx_sriov_enabled(efx)) {
673 			rc = efx_mcdi_flush_rxqs(efx);
674 			if (!rc)
675 				goto wait;
676 		}
677 
678 		/* The hardware supports four concurrent rx flushes, each of
679 		 * which may need to be retried if there is an outstanding
680 		 * descriptor fetch
681 		 */
682 		efx_for_each_channel(channel, efx) {
683 			efx_for_each_channel_rx_queue(rx_queue, channel) {
684 				if (atomic_read(&efx->rxq_flush_outstanding) >=
685 				    EFX_RX_FLUSH_COUNT)
686 					break;
687 
688 				if (rx_queue->flush_pending) {
689 					rx_queue->flush_pending = false;
690 					atomic_dec(&efx->rxq_flush_pending);
691 					atomic_inc(&efx->rxq_flush_outstanding);
692 					efx_farch_flush_rx_queue(rx_queue);
693 				}
694 			}
695 		}
696 
697 	wait:
698 		timeout = wait_event_timeout(efx->flush_wq,
699 					     efx_farch_flush_wake(efx),
700 					     timeout);
701 	}
702 
703 	if (atomic_read(&efx->active_queues) &&
704 	    !efx_check_tx_flush_complete(efx)) {
705 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
706 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
707 			  atomic_read(&efx->rxq_flush_outstanding),
708 			  atomic_read(&efx->rxq_flush_pending));
709 		rc = -ETIMEDOUT;
710 
711 		atomic_set(&efx->active_queues, 0);
712 		atomic_set(&efx->rxq_flush_pending, 0);
713 		atomic_set(&efx->rxq_flush_outstanding, 0);
714 	}
715 
716 	return rc;
717 }
718 
efx_farch_fini_dmaq(struct efx_nic * efx)719 int efx_farch_fini_dmaq(struct efx_nic *efx)
720 {
721 	struct efx_channel *channel;
722 	struct efx_tx_queue *tx_queue;
723 	struct efx_rx_queue *rx_queue;
724 	int rc = 0;
725 
726 	/* Do not attempt to write to the NIC during EEH recovery */
727 	if (efx->state != STATE_RECOVERY) {
728 		/* Only perform flush if DMA is enabled */
729 		if (efx->pci_dev->is_busmaster) {
730 			efx->type->prepare_flush(efx);
731 			rc = efx_farch_do_flush(efx);
732 			efx->type->finish_flush(efx);
733 		}
734 
735 		efx_for_each_channel(channel, efx) {
736 			efx_for_each_channel_rx_queue(rx_queue, channel)
737 				efx_farch_rx_fini(rx_queue);
738 			efx_for_each_channel_tx_queue(tx_queue, channel)
739 				efx_farch_tx_fini(tx_queue);
740 		}
741 	}
742 
743 	return rc;
744 }
745 
746 /* Reset queue and flush accounting after FLR
747  *
748  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
749  * mastering was disabled), in which case we don't receive (RXQ) flush
750  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
751  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
752  * events were received, and we didn't go through efx_check_tx_flush_complete())
753  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
754  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
755  * for batched flush requests; and the efx->active_queues gets messed up because
756  * we keep incrementing for the newly initialised queues, but it never went to
757  * zero previously.  Then we get a timeout every time we try to restart the
758  * queues, as it doesn't go back to zero when we should be flushing the queues.
759  */
efx_farch_finish_flr(struct efx_nic * efx)760 void efx_farch_finish_flr(struct efx_nic *efx)
761 {
762 	atomic_set(&efx->rxq_flush_pending, 0);
763 	atomic_set(&efx->rxq_flush_outstanding, 0);
764 	atomic_set(&efx->active_queues, 0);
765 }
766 
767 
768 /**************************************************************************
769  *
770  * Event queue processing
771  * Event queues are processed by per-channel tasklets.
772  *
773  **************************************************************************/
774 
775 /* Update a channel's event queue's read pointer (RPTR) register
776  *
777  * This writes the EVQ_RPTR_REG register for the specified channel's
778  * event queue.
779  */
efx_farch_ev_read_ack(struct efx_channel * channel)780 void efx_farch_ev_read_ack(struct efx_channel *channel)
781 {
782 	efx_dword_t reg;
783 	struct efx_nic *efx = channel->efx;
784 
785 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
786 			     channel->eventq_read_ptr & channel->eventq_mask);
787 
788 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
789 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
790 	 */
791 	efx_writed(efx, &reg,
792 		   efx->type->evq_rptr_tbl_base +
793 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
794 }
795 
796 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)797 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
798 			      efx_qword_t *event)
799 {
800 	efx_oword_t drv_ev_reg;
801 
802 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
803 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
804 	drv_ev_reg.u32[0] = event->u32[0];
805 	drv_ev_reg.u32[1] = event->u32[1];
806 	drv_ev_reg.u32[2] = 0;
807 	drv_ev_reg.u32[3] = 0;
808 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
809 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
810 }
811 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)812 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
813 {
814 	efx_qword_t event;
815 
816 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
817 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
818 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
819 	efx_farch_generate_event(channel->efx, channel->channel, &event);
820 }
821 
822 /* Handle a transmit completion event
823  *
824  * The NIC batches TX completion events; the message we receive is of
825  * the form "complete all TX events up to this index".
826  */
827 static int
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)828 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
829 {
830 	unsigned int tx_ev_desc_ptr;
831 	unsigned int tx_ev_q_label;
832 	struct efx_tx_queue *tx_queue;
833 	struct efx_nic *efx = channel->efx;
834 	int tx_packets = 0;
835 
836 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
837 		return 0;
838 
839 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
840 		/* Transmit completion */
841 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
842 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
843 		tx_queue = efx_channel_get_tx_queue(
844 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
845 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
846 			      tx_queue->ptr_mask);
847 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
848 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
849 		/* Rewrite the FIFO write pointer */
850 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
851 		tx_queue = efx_channel_get_tx_queue(
852 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
853 
854 		netif_tx_lock(efx->net_dev);
855 		efx_farch_notify_tx_desc(tx_queue);
856 		netif_tx_unlock(efx->net_dev);
857 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
858 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
859 	} else {
860 		netif_err(efx, tx_err, efx->net_dev,
861 			  "channel %d unexpected TX event "
862 			  EFX_QWORD_FMT"\n", channel->channel,
863 			  EFX_QWORD_VAL(*event));
864 	}
865 
866 	return tx_packets;
867 }
868 
869 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)870 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
871 				      const efx_qword_t *event)
872 {
873 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
874 	struct efx_nic *efx = rx_queue->efx;
875 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
876 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
877 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
878 	bool rx_ev_other_err, rx_ev_pause_frm;
879 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
880 	unsigned rx_ev_pkt_type;
881 
882 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
883 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
884 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
885 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
886 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
887 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
888 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
889 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
890 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
891 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
892 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
893 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
894 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
895 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
896 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
897 
898 	/* Every error apart from tobe_disc and pause_frm */
899 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
900 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
901 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
902 
903 	/* Count errors that are not in MAC stats.  Ignore expected
904 	 * checksum errors during self-test. */
905 	if (rx_ev_frm_trunc)
906 		++channel->n_rx_frm_trunc;
907 	else if (rx_ev_tobe_disc)
908 		++channel->n_rx_tobe_disc;
909 	else if (!efx->loopback_selftest) {
910 		if (rx_ev_ip_hdr_chksum_err)
911 			++channel->n_rx_ip_hdr_chksum_err;
912 		else if (rx_ev_tcp_udp_chksum_err)
913 			++channel->n_rx_tcp_udp_chksum_err;
914 	}
915 
916 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
917 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
918 	 * to a FIFO overflow.
919 	 */
920 #ifdef DEBUG
921 	if (rx_ev_other_err && net_ratelimit()) {
922 		netif_dbg(efx, rx_err, efx->net_dev,
923 			  " RX queue %d unexpected RX event "
924 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
925 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
926 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
927 			  rx_ev_ip_hdr_chksum_err ?
928 			  " [IP_HDR_CHKSUM_ERR]" : "",
929 			  rx_ev_tcp_udp_chksum_err ?
930 			  " [TCP_UDP_CHKSUM_ERR]" : "",
931 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
932 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
933 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
934 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
935 			  rx_ev_pause_frm ? " [PAUSE]" : "");
936 	}
937 #endif
938 
939 	/* The frame must be discarded if any of these are true. */
940 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
941 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
942 		EFX_RX_PKT_DISCARD : 0;
943 }
944 
945 /* Handle receive events that are not in-order. Return true if this
946  * can be handled as a partial packet discard, false if it's more
947  * serious.
948  */
949 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)950 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
951 {
952 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
953 	struct efx_nic *efx = rx_queue->efx;
954 	unsigned expected, dropped;
955 
956 	if (rx_queue->scatter_n &&
957 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
958 		      rx_queue->ptr_mask)) {
959 		++channel->n_rx_nodesc_trunc;
960 		return true;
961 	}
962 
963 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
964 	dropped = (index - expected) & rx_queue->ptr_mask;
965 	netif_info(efx, rx_err, efx->net_dev,
966 		   "dropped %d events (index=%d expected=%d)\n",
967 		   dropped, index, expected);
968 
969 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
970 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
971 	return false;
972 }
973 
974 /* Handle a packet received event
975  *
976  * The NIC gives a "discard" flag if it's a unicast packet with the
977  * wrong destination address
978  * Also "is multicast" and "matches multicast filter" flags can be used to
979  * discard non-matching multicast packets.
980  */
981 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)982 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
983 {
984 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
985 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
986 	unsigned expected_ptr;
987 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
988 	u16 flags;
989 	struct efx_rx_queue *rx_queue;
990 	struct efx_nic *efx = channel->efx;
991 
992 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
993 		return;
994 
995 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
996 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
997 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
998 		channel->channel);
999 
1000 	rx_queue = efx_channel_get_rx_queue(channel);
1001 
1002 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1003 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1004 			rx_queue->ptr_mask);
1005 
1006 	/* Check for partial drops and other errors */
1007 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1008 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1009 		if (rx_ev_desc_ptr != expected_ptr &&
1010 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1011 			return;
1012 
1013 		/* Discard all pending fragments */
1014 		if (rx_queue->scatter_n) {
1015 			efx_rx_packet(
1016 				rx_queue,
1017 				rx_queue->removed_count & rx_queue->ptr_mask,
1018 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1019 			rx_queue->removed_count += rx_queue->scatter_n;
1020 			rx_queue->scatter_n = 0;
1021 		}
1022 
1023 		/* Return if there is no new fragment */
1024 		if (rx_ev_desc_ptr != expected_ptr)
1025 			return;
1026 
1027 		/* Discard new fragment if not SOP */
1028 		if (!rx_ev_sop) {
1029 			efx_rx_packet(
1030 				rx_queue,
1031 				rx_queue->removed_count & rx_queue->ptr_mask,
1032 				1, 0, EFX_RX_PKT_DISCARD);
1033 			++rx_queue->removed_count;
1034 			return;
1035 		}
1036 	}
1037 
1038 	++rx_queue->scatter_n;
1039 	if (rx_ev_cont)
1040 		return;
1041 
1042 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1043 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1044 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1045 
1046 	if (likely(rx_ev_pkt_ok)) {
1047 		/* If packet is marked as OK then we can rely on the
1048 		 * hardware checksum and classification.
1049 		 */
1050 		flags = 0;
1051 		switch (rx_ev_hdr_type) {
1052 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1053 			flags |= EFX_RX_PKT_TCP;
1054 			/* fall through */
1055 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1056 			flags |= EFX_RX_PKT_CSUMMED;
1057 			/* fall through */
1058 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1059 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1060 			break;
1061 		}
1062 	} else {
1063 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1064 	}
1065 
1066 	/* Detect multicast packets that didn't match the filter */
1067 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1068 	if (rx_ev_mcast_pkt) {
1069 		unsigned int rx_ev_mcast_hash_match =
1070 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1071 
1072 		if (unlikely(!rx_ev_mcast_hash_match)) {
1073 			++channel->n_rx_mcast_mismatch;
1074 			flags |= EFX_RX_PKT_DISCARD;
1075 		}
1076 	}
1077 
1078 	channel->irq_mod_score += 2;
1079 
1080 	/* Handle received packet */
1081 	efx_rx_packet(rx_queue,
1082 		      rx_queue->removed_count & rx_queue->ptr_mask,
1083 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1084 	rx_queue->removed_count += rx_queue->scatter_n;
1085 	rx_queue->scatter_n = 0;
1086 }
1087 
1088 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1089  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1090  * of all transmit completions.
1091  */
1092 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1093 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1094 {
1095 	struct efx_tx_queue *tx_queue;
1096 	int qid;
1097 
1098 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1099 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1100 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1101 					    qid % EFX_TXQ_TYPES);
1102 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1103 			efx_farch_magic_event(tx_queue->channel,
1104 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1105 		}
1106 	}
1107 }
1108 
1109 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1110  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1111  * the RX queue back to the mask of RX queues in need of flushing.
1112  */
1113 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1114 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1115 {
1116 	struct efx_channel *channel;
1117 	struct efx_rx_queue *rx_queue;
1118 	int qid;
1119 	bool failed;
1120 
1121 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1122 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1123 	if (qid >= efx->n_channels)
1124 		return;
1125 	channel = efx_get_channel(efx, qid);
1126 	if (!efx_channel_has_rx_queue(channel))
1127 		return;
1128 	rx_queue = efx_channel_get_rx_queue(channel);
1129 
1130 	if (failed) {
1131 		netif_info(efx, hw, efx->net_dev,
1132 			   "RXQ %d flush retry\n", qid);
1133 		rx_queue->flush_pending = true;
1134 		atomic_inc(&efx->rxq_flush_pending);
1135 	} else {
1136 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1137 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1138 	}
1139 	atomic_dec(&efx->rxq_flush_outstanding);
1140 	if (efx_farch_flush_wake(efx))
1141 		wake_up(&efx->flush_wq);
1142 }
1143 
1144 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1145 efx_farch_handle_drain_event(struct efx_channel *channel)
1146 {
1147 	struct efx_nic *efx = channel->efx;
1148 
1149 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1150 	atomic_dec(&efx->active_queues);
1151 	if (efx_farch_flush_wake(efx))
1152 		wake_up(&efx->flush_wq);
1153 }
1154 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1155 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1156 					     efx_qword_t *event)
1157 {
1158 	struct efx_nic *efx = channel->efx;
1159 	struct efx_rx_queue *rx_queue =
1160 		efx_channel_has_rx_queue(channel) ?
1161 		efx_channel_get_rx_queue(channel) : NULL;
1162 	unsigned magic, code;
1163 
1164 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1165 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1166 
1167 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1168 		channel->event_test_cpu = raw_smp_processor_id();
1169 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1170 		/* The queue must be empty, so we won't receive any rx
1171 		 * events, so efx_process_channel() won't refill the
1172 		 * queue. Refill it here */
1173 		efx_fast_push_rx_descriptors(rx_queue, true);
1174 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1175 		efx_farch_handle_drain_event(channel);
1176 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1177 		efx_farch_handle_drain_event(channel);
1178 	} else {
1179 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1180 			  "generated event "EFX_QWORD_FMT"\n",
1181 			  channel->channel, EFX_QWORD_VAL(*event));
1182 	}
1183 }
1184 
1185 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1186 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1187 {
1188 	struct efx_nic *efx = channel->efx;
1189 	unsigned int ev_sub_code;
1190 	unsigned int ev_sub_data;
1191 
1192 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1193 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1194 
1195 	switch (ev_sub_code) {
1196 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1197 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1198 			   channel->channel, ev_sub_data);
1199 		efx_farch_handle_tx_flush_done(efx, event);
1200 		efx_sriov_tx_flush_done(efx, event);
1201 		break;
1202 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1203 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1204 			   channel->channel, ev_sub_data);
1205 		efx_farch_handle_rx_flush_done(efx, event);
1206 		efx_sriov_rx_flush_done(efx, event);
1207 		break;
1208 	case FSE_AZ_EVQ_INIT_DONE_EV:
1209 		netif_dbg(efx, hw, efx->net_dev,
1210 			  "channel %d EVQ %d initialised\n",
1211 			  channel->channel, ev_sub_data);
1212 		break;
1213 	case FSE_AZ_SRM_UPD_DONE_EV:
1214 		netif_vdbg(efx, hw, efx->net_dev,
1215 			   "channel %d SRAM update done\n", channel->channel);
1216 		break;
1217 	case FSE_AZ_WAKE_UP_EV:
1218 		netif_vdbg(efx, hw, efx->net_dev,
1219 			   "channel %d RXQ %d wakeup event\n",
1220 			   channel->channel, ev_sub_data);
1221 		break;
1222 	case FSE_AZ_TIMER_EV:
1223 		netif_vdbg(efx, hw, efx->net_dev,
1224 			   "channel %d RX queue %d timer expired\n",
1225 			   channel->channel, ev_sub_data);
1226 		break;
1227 	case FSE_AA_RX_RECOVER_EV:
1228 		netif_err(efx, rx_err, efx->net_dev,
1229 			  "channel %d seen DRIVER RX_RESET event. "
1230 			"Resetting.\n", channel->channel);
1231 		atomic_inc(&efx->rx_reset);
1232 		efx_schedule_reset(efx,
1233 				   EFX_WORKAROUND_6555(efx) ?
1234 				   RESET_TYPE_RX_RECOVERY :
1235 				   RESET_TYPE_DISABLE);
1236 		break;
1237 	case FSE_BZ_RX_DSC_ERROR_EV:
1238 		if (ev_sub_data < EFX_VI_BASE) {
1239 			netif_err(efx, rx_err, efx->net_dev,
1240 				  "RX DMA Q %d reports descriptor fetch error."
1241 				  " RX Q %d is disabled.\n", ev_sub_data,
1242 				  ev_sub_data);
1243 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1244 		} else
1245 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1246 		break;
1247 	case FSE_BZ_TX_DSC_ERROR_EV:
1248 		if (ev_sub_data < EFX_VI_BASE) {
1249 			netif_err(efx, tx_err, efx->net_dev,
1250 				  "TX DMA Q %d reports descriptor fetch error."
1251 				  " TX Q %d is disabled.\n", ev_sub_data,
1252 				  ev_sub_data);
1253 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1254 		} else
1255 			efx_sriov_desc_fetch_err(efx, ev_sub_data);
1256 		break;
1257 	default:
1258 		netif_vdbg(efx, hw, efx->net_dev,
1259 			   "channel %d unknown driver event code %d "
1260 			   "data %04x\n", channel->channel, ev_sub_code,
1261 			   ev_sub_data);
1262 		break;
1263 	}
1264 }
1265 
efx_farch_ev_process(struct efx_channel * channel,int budget)1266 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1267 {
1268 	struct efx_nic *efx = channel->efx;
1269 	unsigned int read_ptr;
1270 	efx_qword_t event, *p_event;
1271 	int ev_code;
1272 	int tx_packets = 0;
1273 	int spent = 0;
1274 
1275 	if (budget <= 0)
1276 		return spent;
1277 
1278 	read_ptr = channel->eventq_read_ptr;
1279 
1280 	for (;;) {
1281 		p_event = efx_event(channel, read_ptr);
1282 		event = *p_event;
1283 
1284 		if (!efx_event_present(&event))
1285 			/* End of events */
1286 			break;
1287 
1288 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1289 			   "channel %d event is "EFX_QWORD_FMT"\n",
1290 			   channel->channel, EFX_QWORD_VAL(event));
1291 
1292 		/* Clear this event by marking it all ones */
1293 		EFX_SET_QWORD(*p_event);
1294 
1295 		++read_ptr;
1296 
1297 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1298 
1299 		switch (ev_code) {
1300 		case FSE_AZ_EV_CODE_RX_EV:
1301 			efx_farch_handle_rx_event(channel, &event);
1302 			if (++spent == budget)
1303 				goto out;
1304 			break;
1305 		case FSE_AZ_EV_CODE_TX_EV:
1306 			tx_packets += efx_farch_handle_tx_event(channel,
1307 								&event);
1308 			if (tx_packets > efx->txq_entries) {
1309 				spent = budget;
1310 				goto out;
1311 			}
1312 			break;
1313 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1314 			efx_farch_handle_generated_event(channel, &event);
1315 			break;
1316 		case FSE_AZ_EV_CODE_DRIVER_EV:
1317 			efx_farch_handle_driver_event(channel, &event);
1318 			break;
1319 		case FSE_CZ_EV_CODE_USER_EV:
1320 			efx_sriov_event(channel, &event);
1321 			break;
1322 		case FSE_CZ_EV_CODE_MCDI_EV:
1323 			efx_mcdi_process_event(channel, &event);
1324 			break;
1325 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1326 			if (efx->type->handle_global_event &&
1327 			    efx->type->handle_global_event(channel, &event))
1328 				break;
1329 			/* else fall through */
1330 		default:
1331 			netif_err(channel->efx, hw, channel->efx->net_dev,
1332 				  "channel %d unknown event type %d (data "
1333 				  EFX_QWORD_FMT ")\n", channel->channel,
1334 				  ev_code, EFX_QWORD_VAL(event));
1335 		}
1336 	}
1337 
1338 out:
1339 	channel->eventq_read_ptr = read_ptr;
1340 	return spent;
1341 }
1342 
1343 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1344 int efx_farch_ev_probe(struct efx_channel *channel)
1345 {
1346 	struct efx_nic *efx = channel->efx;
1347 	unsigned entries;
1348 
1349 	entries = channel->eventq_mask + 1;
1350 	return efx_alloc_special_buffer(efx, &channel->eventq,
1351 					entries * sizeof(efx_qword_t));
1352 }
1353 
efx_farch_ev_init(struct efx_channel * channel)1354 int efx_farch_ev_init(struct efx_channel *channel)
1355 {
1356 	efx_oword_t reg;
1357 	struct efx_nic *efx = channel->efx;
1358 
1359 	netif_dbg(efx, hw, efx->net_dev,
1360 		  "channel %d event queue in special buffers %d-%d\n",
1361 		  channel->channel, channel->eventq.index,
1362 		  channel->eventq.index + channel->eventq.entries - 1);
1363 
1364 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1365 		EFX_POPULATE_OWORD_3(reg,
1366 				     FRF_CZ_TIMER_Q_EN, 1,
1367 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1368 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1369 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1370 	}
1371 
1372 	/* Pin event queue buffer */
1373 	efx_init_special_buffer(efx, &channel->eventq);
1374 
1375 	/* Fill event queue with all ones (i.e. empty events) */
1376 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1377 
1378 	/* Push event queue to card */
1379 	EFX_POPULATE_OWORD_3(reg,
1380 			     FRF_AZ_EVQ_EN, 1,
1381 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1382 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1383 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1384 			 channel->channel);
1385 
1386 	return 0;
1387 }
1388 
efx_farch_ev_fini(struct efx_channel * channel)1389 void efx_farch_ev_fini(struct efx_channel *channel)
1390 {
1391 	efx_oword_t reg;
1392 	struct efx_nic *efx = channel->efx;
1393 
1394 	/* Remove event queue from card */
1395 	EFX_ZERO_OWORD(reg);
1396 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1397 			 channel->channel);
1398 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1399 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1400 
1401 	/* Unpin event queue */
1402 	efx_fini_special_buffer(efx, &channel->eventq);
1403 }
1404 
1405 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1406 void efx_farch_ev_remove(struct efx_channel *channel)
1407 {
1408 	efx_free_special_buffer(channel->efx, &channel->eventq);
1409 }
1410 
1411 
efx_farch_ev_test_generate(struct efx_channel * channel)1412 void efx_farch_ev_test_generate(struct efx_channel *channel)
1413 {
1414 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1415 }
1416 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1417 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1418 {
1419 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1420 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1421 }
1422 
1423 /**************************************************************************
1424  *
1425  * Hardware interrupts
1426  * The hardware interrupt handler does very little work; all the event
1427  * queue processing is carried out by per-channel tasklets.
1428  *
1429  **************************************************************************/
1430 
1431 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1432 static inline void efx_farch_interrupts(struct efx_nic *efx,
1433 				      bool enabled, bool force)
1434 {
1435 	efx_oword_t int_en_reg_ker;
1436 
1437 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1438 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1439 			     FRF_AZ_KER_INT_KER, force,
1440 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1441 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1442 }
1443 
efx_farch_irq_enable_master(struct efx_nic * efx)1444 void efx_farch_irq_enable_master(struct efx_nic *efx)
1445 {
1446 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1447 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1448 
1449 	efx_farch_interrupts(efx, true, false);
1450 }
1451 
efx_farch_irq_disable_master(struct efx_nic * efx)1452 void efx_farch_irq_disable_master(struct efx_nic *efx)
1453 {
1454 	/* Disable interrupts */
1455 	efx_farch_interrupts(efx, false, false);
1456 }
1457 
1458 /* Generate a test interrupt
1459  * Interrupt must already have been enabled, otherwise nasty things
1460  * may happen.
1461  */
efx_farch_irq_test_generate(struct efx_nic * efx)1462 void efx_farch_irq_test_generate(struct efx_nic *efx)
1463 {
1464 	efx_farch_interrupts(efx, true, true);
1465 }
1466 
1467 /* Process a fatal interrupt
1468  * Disable bus mastering ASAP and schedule a reset
1469  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1470 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1471 {
1472 	struct falcon_nic_data *nic_data = efx->nic_data;
1473 	efx_oword_t *int_ker = efx->irq_status.addr;
1474 	efx_oword_t fatal_intr;
1475 	int error, mem_perr;
1476 
1477 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1478 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1479 
1480 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1481 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1482 		  EFX_OWORD_VAL(fatal_intr),
1483 		  error ? "disabling bus mastering" : "no recognised error");
1484 
1485 	/* If this is a memory parity error dump which blocks are offending */
1486 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1487 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1488 	if (mem_perr) {
1489 		efx_oword_t reg;
1490 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1491 		netif_err(efx, hw, efx->net_dev,
1492 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1493 			  EFX_OWORD_VAL(reg));
1494 	}
1495 
1496 	/* Disable both devices */
1497 	pci_clear_master(efx->pci_dev);
1498 	if (efx_nic_is_dual_func(efx))
1499 		pci_clear_master(nic_data->pci_dev2);
1500 	efx_farch_irq_disable_master(efx);
1501 
1502 	/* Count errors and reset or disable the NIC accordingly */
1503 	if (efx->int_error_count == 0 ||
1504 	    time_after(jiffies, efx->int_error_expire)) {
1505 		efx->int_error_count = 0;
1506 		efx->int_error_expire =
1507 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1508 	}
1509 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1510 		netif_err(efx, hw, efx->net_dev,
1511 			  "SYSTEM ERROR - reset scheduled\n");
1512 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1513 	} else {
1514 		netif_err(efx, hw, efx->net_dev,
1515 			  "SYSTEM ERROR - max number of errors seen."
1516 			  "NIC will be disabled\n");
1517 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1518 	}
1519 
1520 	return IRQ_HANDLED;
1521 }
1522 
1523 /* Handle a legacy interrupt
1524  * Acknowledges the interrupt and schedule event queue processing.
1525  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1526 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1527 {
1528 	struct efx_nic *efx = dev_id;
1529 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1530 	efx_oword_t *int_ker = efx->irq_status.addr;
1531 	irqreturn_t result = IRQ_NONE;
1532 	struct efx_channel *channel;
1533 	efx_dword_t reg;
1534 	u32 queues;
1535 	int syserr;
1536 
1537 	/* Read the ISR which also ACKs the interrupts */
1538 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1539 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1540 
1541 	/* Legacy interrupts are disabled too late by the EEH kernel
1542 	 * code. Disable them earlier.
1543 	 * If an EEH error occurred, the read will have returned all ones.
1544 	 */
1545 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1546 	    !efx->eeh_disabled_legacy_irq) {
1547 		disable_irq_nosync(efx->legacy_irq);
1548 		efx->eeh_disabled_legacy_irq = true;
1549 	}
1550 
1551 	/* Handle non-event-queue sources */
1552 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1553 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1554 		if (unlikely(syserr))
1555 			return efx_farch_fatal_interrupt(efx);
1556 		efx->last_irq_cpu = raw_smp_processor_id();
1557 	}
1558 
1559 	if (queues != 0) {
1560 		efx->irq_zero_count = 0;
1561 
1562 		/* Schedule processing of any interrupting queues */
1563 		if (likely(soft_enabled)) {
1564 			efx_for_each_channel(channel, efx) {
1565 				if (queues & 1)
1566 					efx_schedule_channel_irq(channel);
1567 				queues >>= 1;
1568 			}
1569 		}
1570 		result = IRQ_HANDLED;
1571 
1572 	} else {
1573 		efx_qword_t *event;
1574 
1575 		/* Legacy ISR read can return zero once (SF bug 15783) */
1576 
1577 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1578 		 * because this might be a shared interrupt. */
1579 		if (efx->irq_zero_count++ == 0)
1580 			result = IRQ_HANDLED;
1581 
1582 		/* Ensure we schedule or rearm all event queues */
1583 		if (likely(soft_enabled)) {
1584 			efx_for_each_channel(channel, efx) {
1585 				event = efx_event(channel,
1586 						  channel->eventq_read_ptr);
1587 				if (efx_event_present(event))
1588 					efx_schedule_channel_irq(channel);
1589 				else
1590 					efx_farch_ev_read_ack(channel);
1591 			}
1592 		}
1593 	}
1594 
1595 	if (result == IRQ_HANDLED)
1596 		netif_vdbg(efx, intr, efx->net_dev,
1597 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1598 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1599 
1600 	return result;
1601 }
1602 
1603 /* Handle an MSI interrupt
1604  *
1605  * Handle an MSI hardware interrupt.  This routine schedules event
1606  * queue processing.  No interrupt acknowledgement cycle is necessary.
1607  * Also, we never need to check that the interrupt is for us, since
1608  * MSI interrupts cannot be shared.
1609  */
efx_farch_msi_interrupt(int irq,void * dev_id)1610 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1611 {
1612 	struct efx_msi_context *context = dev_id;
1613 	struct efx_nic *efx = context->efx;
1614 	efx_oword_t *int_ker = efx->irq_status.addr;
1615 	int syserr;
1616 
1617 	netif_vdbg(efx, intr, efx->net_dev,
1618 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1619 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1620 
1621 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1622 		return IRQ_HANDLED;
1623 
1624 	/* Handle non-event-queue sources */
1625 	if (context->index == efx->irq_level) {
1626 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1627 		if (unlikely(syserr))
1628 			return efx_farch_fatal_interrupt(efx);
1629 		efx->last_irq_cpu = raw_smp_processor_id();
1630 	}
1631 
1632 	/* Schedule processing of the channel */
1633 	efx_schedule_channel_irq(efx->channel[context->index]);
1634 
1635 	return IRQ_HANDLED;
1636 }
1637 
1638 /* Setup RSS indirection table.
1639  * This maps from the hash value of the packet to RXQ
1640  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1641 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1642 {
1643 	size_t i = 0;
1644 	efx_dword_t dword;
1645 
1646 	BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1647 
1648 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1649 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1650 
1651 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1652 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1653 				     efx->rx_indir_table[i]);
1654 		efx_writed(efx, &dword,
1655 			   FR_BZ_RX_INDIRECTION_TBL +
1656 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1657 	}
1658 }
1659 
1660 /* Looks at available SRAM resources and works out how many queues we
1661  * can support, and where things like descriptor caches should live.
1662  *
1663  * SRAM is split up as follows:
1664  * 0                          buftbl entries for channels
1665  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1666  * efx->rx_dc_base            RX descriptor caches
1667  * efx->tx_dc_base            TX descriptor caches
1668  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1669 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1670 {
1671 	unsigned vi_count, buftbl_min;
1672 
1673 	/* Account for the buffer table entries backing the datapath channels
1674 	 * and the descriptor caches for those channels.
1675 	 */
1676 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1677 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1678 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1679 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1680 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1681 
1682 #ifdef CONFIG_SFC_SRIOV
1683 	if (efx_sriov_wanted(efx)) {
1684 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1685 
1686 		efx->vf_buftbl_base = buftbl_min;
1687 
1688 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1689 		vi_count = max(vi_count, EFX_VI_BASE);
1690 		buftbl_free = (sram_lim_qw - buftbl_min -
1691 			       vi_count * vi_dc_entries);
1692 
1693 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1694 				  efx_vf_size(efx));
1695 		vf_limit = min(buftbl_free / entries_per_vf,
1696 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1697 
1698 		if (efx->vf_count > vf_limit) {
1699 			netif_err(efx, probe, efx->net_dev,
1700 				  "Reducing VF count from from %d to %d\n",
1701 				  efx->vf_count, vf_limit);
1702 			efx->vf_count = vf_limit;
1703 		}
1704 		vi_count += efx->vf_count * efx_vf_size(efx);
1705 	}
1706 #endif
1707 
1708 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1709 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1710 }
1711 
efx_farch_fpga_ver(struct efx_nic * efx)1712 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1713 {
1714 	efx_oword_t altera_build;
1715 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1716 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1717 }
1718 
efx_farch_init_common(struct efx_nic * efx)1719 void efx_farch_init_common(struct efx_nic *efx)
1720 {
1721 	efx_oword_t temp;
1722 
1723 	/* Set positions of descriptor caches in SRAM. */
1724 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1725 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1726 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1727 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1728 
1729 	/* Set TX descriptor cache size. */
1730 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1731 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1732 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1733 
1734 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1735 	 * this allows most efficient prefetching.
1736 	 */
1737 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1738 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1739 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1740 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1741 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1742 
1743 	/* Program INT_KER address */
1744 	EFX_POPULATE_OWORD_2(temp,
1745 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1746 			     EFX_INT_MODE_USE_MSI(efx),
1747 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1748 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1749 
1750 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1751 		/* Use an interrupt level unused by event queues */
1752 		efx->irq_level = 0x1f;
1753 	else
1754 		/* Use a valid MSI-X vector */
1755 		efx->irq_level = 0;
1756 
1757 	/* Enable all the genuinely fatal interrupts.  (They are still
1758 	 * masked by the overall interrupt mask, controlled by
1759 	 * falcon_interrupts()).
1760 	 *
1761 	 * Note: All other fatal interrupts are enabled
1762 	 */
1763 	EFX_POPULATE_OWORD_3(temp,
1764 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1765 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1766 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1767 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1768 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1769 	EFX_INVERT_OWORD(temp);
1770 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1771 
1772 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1773 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1774 	 */
1775 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1776 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1777 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1778 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1779 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1780 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1781 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1782 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1783 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1784 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1785 	/* Disable hardware watchdog which can misfire */
1786 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1787 	/* Squash TX of packets of 16 bytes or less */
1788 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1789 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1790 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1791 
1792 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1793 		EFX_POPULATE_OWORD_4(temp,
1794 				     /* Default values */
1795 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1796 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1797 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1798 				     /* Allow large pace values in the
1799 				      * fast bin. */
1800 				     FRF_BZ_TX_PACE_BIN_TH,
1801 				     FFE_BZ_TX_PACE_RESERVED);
1802 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1803 	}
1804 }
1805 
1806 /**************************************************************************
1807  *
1808  * Filter tables
1809  *
1810  **************************************************************************
1811  */
1812 
1813 /* "Fudge factors" - difference between programmed value and actual depth.
1814  * Due to pipelined implementation we need to program H/W with a value that
1815  * is larger than the hop limit we want.
1816  */
1817 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1818 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1819 
1820 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1821  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1822  * table is full.
1823  */
1824 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1825 
1826 /* Don't try very hard to find space for performance hints, as this is
1827  * counter-productive. */
1828 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1829 
1830 enum efx_farch_filter_type {
1831 	EFX_FARCH_FILTER_TCP_FULL = 0,
1832 	EFX_FARCH_FILTER_TCP_WILD,
1833 	EFX_FARCH_FILTER_UDP_FULL,
1834 	EFX_FARCH_FILTER_UDP_WILD,
1835 	EFX_FARCH_FILTER_MAC_FULL = 4,
1836 	EFX_FARCH_FILTER_MAC_WILD,
1837 	EFX_FARCH_FILTER_UC_DEF = 8,
1838 	EFX_FARCH_FILTER_MC_DEF,
1839 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1840 };
1841 
1842 enum efx_farch_filter_table_id {
1843 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1844 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1845 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1846 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1847 	EFX_FARCH_FILTER_TABLE_COUNT,
1848 };
1849 
1850 enum efx_farch_filter_index {
1851 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1852 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1853 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1854 };
1855 
1856 struct efx_farch_filter_spec {
1857 	u8	type:4;
1858 	u8	priority:4;
1859 	u8	flags;
1860 	u16	dmaq_id;
1861 	u32	data[3];
1862 };
1863 
1864 struct efx_farch_filter_table {
1865 	enum efx_farch_filter_table_id id;
1866 	u32		offset;		/* address of table relative to BAR */
1867 	unsigned	size;		/* number of entries */
1868 	unsigned	step;		/* step between entries */
1869 	unsigned	used;		/* number currently used */
1870 	unsigned long	*used_bitmap;
1871 	struct efx_farch_filter_spec *spec;
1872 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1873 };
1874 
1875 struct efx_farch_filter_state {
1876 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1877 };
1878 
1879 static void
1880 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1881 				   struct efx_farch_filter_table *table,
1882 				   unsigned int filter_idx);
1883 
1884 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1885  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1886 static u16 efx_farch_filter_hash(u32 key)
1887 {
1888 	u16 tmp;
1889 
1890 	/* First 16 rounds */
1891 	tmp = 0x1fff ^ key >> 16;
1892 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1893 	tmp = tmp ^ tmp >> 9;
1894 	/* Last 16 rounds */
1895 	tmp = tmp ^ tmp << 13 ^ key;
1896 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1897 	return tmp ^ tmp >> 9;
1898 }
1899 
1900 /* To allow for hash collisions, filter search continues at these
1901  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1902 static u16 efx_farch_filter_increment(u32 key)
1903 {
1904 	return key * 2 - 1;
1905 }
1906 
1907 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1908 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1909 {
1910 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1911 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1912 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1913 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1914 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1915 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1916 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1918 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1919 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1920 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1921 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1922 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1923 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1924 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1925 }
1926 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1927 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1928 {
1929 	struct efx_farch_filter_state *state = efx->filter_state;
1930 	struct efx_farch_filter_table *table;
1931 	efx_oword_t filter_ctl;
1932 
1933 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1934 
1935 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1936 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1937 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1938 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1939 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1940 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1941 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1942 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1943 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1944 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1945 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1946 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1947 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1948 
1949 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1950 	if (table->size) {
1951 		EFX_SET_OWORD_FIELD(
1952 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1953 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1954 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1955 		EFX_SET_OWORD_FIELD(
1956 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1957 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1958 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1959 	}
1960 
1961 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1962 	if (table->size) {
1963 		EFX_SET_OWORD_FIELD(
1964 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1965 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1966 		EFX_SET_OWORD_FIELD(
1967 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1968 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1969 			   EFX_FILTER_FLAG_RX_RSS));
1970 		EFX_SET_OWORD_FIELD(
1971 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1972 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1973 		EFX_SET_OWORD_FIELD(
1974 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1975 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1976 			   EFX_FILTER_FLAG_RX_RSS));
1977 
1978 		/* There is a single bit to enable RX scatter for all
1979 		 * unmatched packets.  Only set it if scatter is
1980 		 * enabled in both filter specs.
1981 		 */
1982 		EFX_SET_OWORD_FIELD(
1983 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1984 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1985 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1986 			   EFX_FILTER_FLAG_RX_SCATTER));
1987 	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1988 		/* We don't expose 'default' filters because unmatched
1989 		 * packets always go to the queue number found in the
1990 		 * RSS table.  But we still need to set the RX scatter
1991 		 * bit here.
1992 		 */
1993 		EFX_SET_OWORD_FIELD(
1994 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1995 			efx->rx_scatter);
1996 	}
1997 
1998 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1999 }
2000 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2001 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2002 {
2003 	struct efx_farch_filter_state *state = efx->filter_state;
2004 	struct efx_farch_filter_table *table;
2005 	efx_oword_t tx_cfg;
2006 
2007 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2008 
2009 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2010 	if (table->size) {
2011 		EFX_SET_OWORD_FIELD(
2012 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2013 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2014 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2015 		EFX_SET_OWORD_FIELD(
2016 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2017 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2018 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2019 	}
2020 
2021 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2022 }
2023 
2024 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2025 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2026 			       const struct efx_filter_spec *gen_spec)
2027 {
2028 	bool is_full = false;
2029 
2030 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2031 	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2032 		return -EINVAL;
2033 
2034 	spec->priority = gen_spec->priority;
2035 	spec->flags = gen_spec->flags;
2036 	spec->dmaq_id = gen_spec->dmaq_id;
2037 
2038 	switch (gen_spec->match_flags) {
2039 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2040 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2041 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2042 		is_full = true;
2043 		/* fall through */
2044 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2046 		__be32 rhost, host1, host2;
2047 		__be16 rport, port1, port2;
2048 
2049 		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2050 
2051 		if (gen_spec->ether_type != htons(ETH_P_IP))
2052 			return -EPROTONOSUPPORT;
2053 		if (gen_spec->loc_port == 0 ||
2054 		    (is_full && gen_spec->rem_port == 0))
2055 			return -EADDRNOTAVAIL;
2056 		switch (gen_spec->ip_proto) {
2057 		case IPPROTO_TCP:
2058 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2059 				      EFX_FARCH_FILTER_TCP_WILD);
2060 			break;
2061 		case IPPROTO_UDP:
2062 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2063 				      EFX_FARCH_FILTER_UDP_WILD);
2064 			break;
2065 		default:
2066 			return -EPROTONOSUPPORT;
2067 		}
2068 
2069 		/* Filter is constructed in terms of source and destination,
2070 		 * with the odd wrinkle that the ports are swapped in a UDP
2071 		 * wildcard filter.  We need to convert from local and remote
2072 		 * (= zero for wildcard) addresses.
2073 		 */
2074 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2075 		rport = is_full ? gen_spec->rem_port : 0;
2076 		host1 = rhost;
2077 		host2 = gen_spec->loc_host[0];
2078 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2079 			port1 = gen_spec->loc_port;
2080 			port2 = rport;
2081 		} else {
2082 			port1 = rport;
2083 			port2 = gen_spec->loc_port;
2084 		}
2085 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2086 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2087 		spec->data[2] = ntohl(host2);
2088 
2089 		break;
2090 	}
2091 
2092 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2093 		is_full = true;
2094 		/* fall through */
2095 	case EFX_FILTER_MATCH_LOC_MAC:
2096 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2097 			      EFX_FARCH_FILTER_MAC_WILD);
2098 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2099 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2100 				 gen_spec->loc_mac[3] << 16 |
2101 				 gen_spec->loc_mac[4] << 8 |
2102 				 gen_spec->loc_mac[5]);
2103 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2104 				 gen_spec->loc_mac[1]);
2105 		break;
2106 
2107 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2108 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2109 			      EFX_FARCH_FILTER_MC_DEF :
2110 			      EFX_FARCH_FILTER_UC_DEF);
2111 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2112 		break;
2113 
2114 	default:
2115 		return -EPROTONOSUPPORT;
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2122 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2123 			     const struct efx_farch_filter_spec *spec)
2124 {
2125 	bool is_full = false;
2126 
2127 	/* *gen_spec should be completely initialised, to be consistent
2128 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2129 	 * it back to userland.
2130 	 */
2131 	memset(gen_spec, 0, sizeof(*gen_spec));
2132 
2133 	gen_spec->priority = spec->priority;
2134 	gen_spec->flags = spec->flags;
2135 	gen_spec->dmaq_id = spec->dmaq_id;
2136 
2137 	switch (spec->type) {
2138 	case EFX_FARCH_FILTER_TCP_FULL:
2139 	case EFX_FARCH_FILTER_UDP_FULL:
2140 		is_full = true;
2141 		/* fall through */
2142 	case EFX_FARCH_FILTER_TCP_WILD:
2143 	case EFX_FARCH_FILTER_UDP_WILD: {
2144 		__be32 host1, host2;
2145 		__be16 port1, port2;
2146 
2147 		gen_spec->match_flags =
2148 			EFX_FILTER_MATCH_ETHER_TYPE |
2149 			EFX_FILTER_MATCH_IP_PROTO |
2150 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2151 		if (is_full)
2152 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2153 						  EFX_FILTER_MATCH_REM_PORT);
2154 		gen_spec->ether_type = htons(ETH_P_IP);
2155 		gen_spec->ip_proto =
2156 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2157 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2158 			IPPROTO_TCP : IPPROTO_UDP;
2159 
2160 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2161 		port1 = htons(spec->data[0]);
2162 		host2 = htonl(spec->data[2]);
2163 		port2 = htons(spec->data[1] >> 16);
2164 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2165 			gen_spec->loc_host[0] = host1;
2166 			gen_spec->rem_host[0] = host2;
2167 		} else {
2168 			gen_spec->loc_host[0] = host2;
2169 			gen_spec->rem_host[0] = host1;
2170 		}
2171 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2172 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2173 			gen_spec->loc_port = port1;
2174 			gen_spec->rem_port = port2;
2175 		} else {
2176 			gen_spec->loc_port = port2;
2177 			gen_spec->rem_port = port1;
2178 		}
2179 
2180 		break;
2181 	}
2182 
2183 	case EFX_FARCH_FILTER_MAC_FULL:
2184 		is_full = true;
2185 		/* fall through */
2186 	case EFX_FARCH_FILTER_MAC_WILD:
2187 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2188 		if (is_full)
2189 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2190 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2191 		gen_spec->loc_mac[1] = spec->data[2];
2192 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2193 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2194 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2195 		gen_spec->loc_mac[5] = spec->data[1];
2196 		gen_spec->outer_vid = htons(spec->data[0]);
2197 		break;
2198 
2199 	case EFX_FARCH_FILTER_UC_DEF:
2200 	case EFX_FARCH_FILTER_MC_DEF:
2201 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2202 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2203 		break;
2204 
2205 	default:
2206 		WARN_ON(1);
2207 		break;
2208 	}
2209 }
2210 
2211 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2212 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2213 			      struct efx_farch_filter_spec *spec)
2214 {
2215 	/* If there's only one channel then disable RSS for non VF
2216 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2217 	 */
2218 	spec->priority = EFX_FILTER_PRI_AUTO;
2219 	spec->flags = (EFX_FILTER_FLAG_RX |
2220 		       (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2221 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2222 	spec->dmaq_id = 0;
2223 }
2224 
2225 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2226 static u32 efx_farch_filter_build(efx_oword_t *filter,
2227 				  struct efx_farch_filter_spec *spec)
2228 {
2229 	u32 data3;
2230 
2231 	switch (efx_farch_filter_spec_table_id(spec)) {
2232 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2233 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2234 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2235 		EFX_POPULATE_OWORD_7(
2236 			*filter,
2237 			FRF_BZ_RSS_EN,
2238 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2239 			FRF_BZ_SCATTER_EN,
2240 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2241 			FRF_BZ_TCP_UDP, is_udp,
2242 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2243 			EFX_DWORD_2, spec->data[2],
2244 			EFX_DWORD_1, spec->data[1],
2245 			EFX_DWORD_0, spec->data[0]);
2246 		data3 = is_udp;
2247 		break;
2248 	}
2249 
2250 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2251 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2252 		EFX_POPULATE_OWORD_7(
2253 			*filter,
2254 			FRF_CZ_RMFT_RSS_EN,
2255 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2256 			FRF_CZ_RMFT_SCATTER_EN,
2257 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2258 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2259 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2260 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2261 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2262 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2263 		data3 = is_wild;
2264 		break;
2265 	}
2266 
2267 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2268 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2269 		EFX_POPULATE_OWORD_5(*filter,
2270 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2271 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2272 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2273 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2274 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2275 		data3 = is_wild | spec->dmaq_id << 1;
2276 		break;
2277 	}
2278 
2279 	default:
2280 		BUG();
2281 	}
2282 
2283 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2284 }
2285 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2286 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2287 				   const struct efx_farch_filter_spec *right)
2288 {
2289 	if (left->type != right->type ||
2290 	    memcmp(left->data, right->data, sizeof(left->data)))
2291 		return false;
2292 
2293 	if (left->flags & EFX_FILTER_FLAG_TX &&
2294 	    left->dmaq_id != right->dmaq_id)
2295 		return false;
2296 
2297 	return true;
2298 }
2299 
2300 /*
2301  * Construct/deconstruct external filter IDs.  At least the RX filter
2302  * IDs must be ordered by matching priority, for RX NFC semantics.
2303  *
2304  * Deconstruction needs to be robust against invalid IDs so that
2305  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2306  * accept user-provided IDs.
2307  */
2308 
2309 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2310 
2311 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2312 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2313 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2314 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2315 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2316 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2317 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2318 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2319 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2320 };
2321 
2322 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2323 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2324 	EFX_FARCH_FILTER_TABLE_RX_IP,
2325 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2326 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2327 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2328 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2329 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2330 };
2331 
2332 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2333 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2334 
2335 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2336 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2337 			 unsigned int index)
2338 {
2339 	unsigned int range;
2340 
2341 	range = efx_farch_filter_type_match_pri[spec->type];
2342 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2343 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2344 
2345 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2346 }
2347 
2348 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2349 efx_farch_filter_id_table_id(u32 id)
2350 {
2351 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2352 
2353 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2354 		return efx_farch_filter_range_table[range];
2355 	else
2356 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2357 }
2358 
efx_farch_filter_id_index(u32 id)2359 static inline unsigned int efx_farch_filter_id_index(u32 id)
2360 {
2361 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2362 }
2363 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2364 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2365 {
2366 	struct efx_farch_filter_state *state = efx->filter_state;
2367 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2368 	enum efx_farch_filter_table_id table_id;
2369 
2370 	do {
2371 		table_id = efx_farch_filter_range_table[range];
2372 		if (state->table[table_id].size != 0)
2373 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2374 				state->table[table_id].size;
2375 	} while (range--);
2376 
2377 	return 0;
2378 }
2379 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2380 s32 efx_farch_filter_insert(struct efx_nic *efx,
2381 			    struct efx_filter_spec *gen_spec,
2382 			    bool replace_equal)
2383 {
2384 	struct efx_farch_filter_state *state = efx->filter_state;
2385 	struct efx_farch_filter_table *table;
2386 	struct efx_farch_filter_spec spec;
2387 	efx_oword_t filter;
2388 	int rep_index, ins_index;
2389 	unsigned int depth = 0;
2390 	int rc;
2391 
2392 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2393 	if (rc)
2394 		return rc;
2395 
2396 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2397 	if (table->size == 0)
2398 		return -EINVAL;
2399 
2400 	netif_vdbg(efx, hw, efx->net_dev,
2401 		   "%s: type %d search_limit=%d", __func__, spec.type,
2402 		   table->search_limit[spec.type]);
2403 
2404 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2405 		/* One filter spec per type */
2406 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2407 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2408 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2409 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2410 		ins_index = rep_index;
2411 
2412 		spin_lock_bh(&efx->filter_lock);
2413 	} else {
2414 		/* Search concurrently for
2415 		 * (1) a filter to be replaced (rep_index): any filter
2416 		 *     with the same match values, up to the current
2417 		 *     search depth for this type, and
2418 		 * (2) the insertion point (ins_index): (1) or any
2419 		 *     free slot before it or up to the maximum search
2420 		 *     depth for this priority
2421 		 * We fail if we cannot find (2).
2422 		 *
2423 		 * We can stop once either
2424 		 * (a) we find (1), in which case we have definitely
2425 		 *     found (2) as well; or
2426 		 * (b) we have searched exhaustively for (1), and have
2427 		 *     either found (2) or searched exhaustively for it
2428 		 */
2429 		u32 key = efx_farch_filter_build(&filter, &spec);
2430 		unsigned int hash = efx_farch_filter_hash(key);
2431 		unsigned int incr = efx_farch_filter_increment(key);
2432 		unsigned int max_rep_depth = table->search_limit[spec.type];
2433 		unsigned int max_ins_depth =
2434 			spec.priority <= EFX_FILTER_PRI_HINT ?
2435 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2436 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2437 		unsigned int i = hash & (table->size - 1);
2438 
2439 		ins_index = -1;
2440 		depth = 1;
2441 
2442 		spin_lock_bh(&efx->filter_lock);
2443 
2444 		for (;;) {
2445 			if (!test_bit(i, table->used_bitmap)) {
2446 				if (ins_index < 0)
2447 					ins_index = i;
2448 			} else if (efx_farch_filter_equal(&spec,
2449 							  &table->spec[i])) {
2450 				/* Case (a) */
2451 				if (ins_index < 0)
2452 					ins_index = i;
2453 				rep_index = i;
2454 				break;
2455 			}
2456 
2457 			if (depth >= max_rep_depth &&
2458 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2459 				/* Case (b) */
2460 				if (ins_index < 0) {
2461 					rc = -EBUSY;
2462 					goto out;
2463 				}
2464 				rep_index = -1;
2465 				break;
2466 			}
2467 
2468 			i = (i + incr) & (table->size - 1);
2469 			++depth;
2470 		}
2471 	}
2472 
2473 	/* If we found a filter to be replaced, check whether we
2474 	 * should do so
2475 	 */
2476 	if (rep_index >= 0) {
2477 		struct efx_farch_filter_spec *saved_spec =
2478 			&table->spec[rep_index];
2479 
2480 		if (spec.priority == saved_spec->priority && !replace_equal) {
2481 			rc = -EEXIST;
2482 			goto out;
2483 		}
2484 		if (spec.priority < saved_spec->priority) {
2485 			rc = -EPERM;
2486 			goto out;
2487 		}
2488 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2489 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2490 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2491 	}
2492 
2493 	/* Insert the filter */
2494 	if (ins_index != rep_index) {
2495 		__set_bit(ins_index, table->used_bitmap);
2496 		++table->used;
2497 	}
2498 	table->spec[ins_index] = spec;
2499 
2500 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2501 		efx_farch_filter_push_rx_config(efx);
2502 	} else {
2503 		if (table->search_limit[spec.type] < depth) {
2504 			table->search_limit[spec.type] = depth;
2505 			if (spec.flags & EFX_FILTER_FLAG_TX)
2506 				efx_farch_filter_push_tx_limits(efx);
2507 			else
2508 				efx_farch_filter_push_rx_config(efx);
2509 		}
2510 
2511 		efx_writeo(efx, &filter,
2512 			   table->offset + table->step * ins_index);
2513 
2514 		/* If we were able to replace a filter by inserting
2515 		 * at a lower depth, clear the replaced filter
2516 		 */
2517 		if (ins_index != rep_index && rep_index >= 0)
2518 			efx_farch_filter_table_clear_entry(efx, table,
2519 							   rep_index);
2520 	}
2521 
2522 	netif_vdbg(efx, hw, efx->net_dev,
2523 		   "%s: filter type %d index %d rxq %u set",
2524 		   __func__, spec.type, ins_index, spec.dmaq_id);
2525 	rc = efx_farch_filter_make_id(&spec, ins_index);
2526 
2527 out:
2528 	spin_unlock_bh(&efx->filter_lock);
2529 	return rc;
2530 }
2531 
2532 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2533 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2534 				   struct efx_farch_filter_table *table,
2535 				   unsigned int filter_idx)
2536 {
2537 	static efx_oword_t filter;
2538 
2539 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2540 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2541 
2542 	__clear_bit(filter_idx, table->used_bitmap);
2543 	--table->used;
2544 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2545 
2546 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2547 
2548 	/* If this filter required a greater search depth than
2549 	 * any other, the search limit for its type can now be
2550 	 * decreased.  However, it is hard to determine that
2551 	 * unless the table has become completely empty - in
2552 	 * which case, all its search limits can be set to 0.
2553 	 */
2554 	if (unlikely(table->used == 0)) {
2555 		memset(table->search_limit, 0, sizeof(table->search_limit));
2556 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2557 			efx_farch_filter_push_tx_limits(efx);
2558 		else
2559 			efx_farch_filter_push_rx_config(efx);
2560 	}
2561 }
2562 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2563 static int efx_farch_filter_remove(struct efx_nic *efx,
2564 				   struct efx_farch_filter_table *table,
2565 				   unsigned int filter_idx,
2566 				   enum efx_filter_priority priority)
2567 {
2568 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2569 
2570 	if (!test_bit(filter_idx, table->used_bitmap) ||
2571 	    spec->priority != priority)
2572 		return -ENOENT;
2573 
2574 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2575 		efx_farch_filter_init_rx_auto(efx, spec);
2576 		efx_farch_filter_push_rx_config(efx);
2577 	} else {
2578 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2584 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2585 				 enum efx_filter_priority priority,
2586 				 u32 filter_id)
2587 {
2588 	struct efx_farch_filter_state *state = efx->filter_state;
2589 	enum efx_farch_filter_table_id table_id;
2590 	struct efx_farch_filter_table *table;
2591 	unsigned int filter_idx;
2592 	struct efx_farch_filter_spec *spec;
2593 	int rc;
2594 
2595 	table_id = efx_farch_filter_id_table_id(filter_id);
2596 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2597 		return -ENOENT;
2598 	table = &state->table[table_id];
2599 
2600 	filter_idx = efx_farch_filter_id_index(filter_id);
2601 	if (filter_idx >= table->size)
2602 		return -ENOENT;
2603 	spec = &table->spec[filter_idx];
2604 
2605 	spin_lock_bh(&efx->filter_lock);
2606 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2607 	spin_unlock_bh(&efx->filter_lock);
2608 
2609 	return rc;
2610 }
2611 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2612 int efx_farch_filter_get_safe(struct efx_nic *efx,
2613 			      enum efx_filter_priority priority,
2614 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2615 {
2616 	struct efx_farch_filter_state *state = efx->filter_state;
2617 	enum efx_farch_filter_table_id table_id;
2618 	struct efx_farch_filter_table *table;
2619 	struct efx_farch_filter_spec *spec;
2620 	unsigned int filter_idx;
2621 	int rc;
2622 
2623 	table_id = efx_farch_filter_id_table_id(filter_id);
2624 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2625 		return -ENOENT;
2626 	table = &state->table[table_id];
2627 
2628 	filter_idx = efx_farch_filter_id_index(filter_id);
2629 	if (filter_idx >= table->size)
2630 		return -ENOENT;
2631 	spec = &table->spec[filter_idx];
2632 
2633 	spin_lock_bh(&efx->filter_lock);
2634 
2635 	if (test_bit(filter_idx, table->used_bitmap) &&
2636 	    spec->priority == priority) {
2637 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2638 		rc = 0;
2639 	} else {
2640 		rc = -ENOENT;
2641 	}
2642 
2643 	spin_unlock_bh(&efx->filter_lock);
2644 
2645 	return rc;
2646 }
2647 
2648 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2649 efx_farch_filter_table_clear(struct efx_nic *efx,
2650 			     enum efx_farch_filter_table_id table_id,
2651 			     enum efx_filter_priority priority)
2652 {
2653 	struct efx_farch_filter_state *state = efx->filter_state;
2654 	struct efx_farch_filter_table *table = &state->table[table_id];
2655 	unsigned int filter_idx;
2656 
2657 	spin_lock_bh(&efx->filter_lock);
2658 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2659 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2660 			efx_farch_filter_remove(efx, table,
2661 						filter_idx, priority);
2662 	}
2663 	spin_unlock_bh(&efx->filter_lock);
2664 }
2665 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2666 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2667 			       enum efx_filter_priority priority)
2668 {
2669 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2670 				     priority);
2671 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2672 				     priority);
2673 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2674 				     priority);
2675 	return 0;
2676 }
2677 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2678 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2679 				   enum efx_filter_priority priority)
2680 {
2681 	struct efx_farch_filter_state *state = efx->filter_state;
2682 	enum efx_farch_filter_table_id table_id;
2683 	struct efx_farch_filter_table *table;
2684 	unsigned int filter_idx;
2685 	u32 count = 0;
2686 
2687 	spin_lock_bh(&efx->filter_lock);
2688 
2689 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2690 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2691 	     table_id++) {
2692 		table = &state->table[table_id];
2693 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2694 			if (test_bit(filter_idx, table->used_bitmap) &&
2695 			    table->spec[filter_idx].priority == priority)
2696 				++count;
2697 		}
2698 	}
2699 
2700 	spin_unlock_bh(&efx->filter_lock);
2701 
2702 	return count;
2703 }
2704 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2705 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2706 				enum efx_filter_priority priority,
2707 				u32 *buf, u32 size)
2708 {
2709 	struct efx_farch_filter_state *state = efx->filter_state;
2710 	enum efx_farch_filter_table_id table_id;
2711 	struct efx_farch_filter_table *table;
2712 	unsigned int filter_idx;
2713 	s32 count = 0;
2714 
2715 	spin_lock_bh(&efx->filter_lock);
2716 
2717 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2718 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2719 	     table_id++) {
2720 		table = &state->table[table_id];
2721 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2722 			if (test_bit(filter_idx, table->used_bitmap) &&
2723 			    table->spec[filter_idx].priority == priority) {
2724 				if (count == size) {
2725 					count = -EMSGSIZE;
2726 					goto out;
2727 				}
2728 				buf[count++] = efx_farch_filter_make_id(
2729 					&table->spec[filter_idx], filter_idx);
2730 			}
2731 		}
2732 	}
2733 out:
2734 	spin_unlock_bh(&efx->filter_lock);
2735 
2736 	return count;
2737 }
2738 
2739 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2740 void efx_farch_filter_table_restore(struct efx_nic *efx)
2741 {
2742 	struct efx_farch_filter_state *state = efx->filter_state;
2743 	enum efx_farch_filter_table_id table_id;
2744 	struct efx_farch_filter_table *table;
2745 	efx_oword_t filter;
2746 	unsigned int filter_idx;
2747 
2748 	spin_lock_bh(&efx->filter_lock);
2749 
2750 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2751 		table = &state->table[table_id];
2752 
2753 		/* Check whether this is a regular register table */
2754 		if (table->step == 0)
2755 			continue;
2756 
2757 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2758 			if (!test_bit(filter_idx, table->used_bitmap))
2759 				continue;
2760 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2761 			efx_writeo(efx, &filter,
2762 				   table->offset + table->step * filter_idx);
2763 		}
2764 	}
2765 
2766 	efx_farch_filter_push_rx_config(efx);
2767 	efx_farch_filter_push_tx_limits(efx);
2768 
2769 	spin_unlock_bh(&efx->filter_lock);
2770 }
2771 
efx_farch_filter_table_remove(struct efx_nic * efx)2772 void efx_farch_filter_table_remove(struct efx_nic *efx)
2773 {
2774 	struct efx_farch_filter_state *state = efx->filter_state;
2775 	enum efx_farch_filter_table_id table_id;
2776 
2777 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778 		kfree(state->table[table_id].used_bitmap);
2779 		vfree(state->table[table_id].spec);
2780 	}
2781 	kfree(state);
2782 }
2783 
efx_farch_filter_table_probe(struct efx_nic * efx)2784 int efx_farch_filter_table_probe(struct efx_nic *efx)
2785 {
2786 	struct efx_farch_filter_state *state;
2787 	struct efx_farch_filter_table *table;
2788 	unsigned table_id;
2789 
2790 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2791 	if (!state)
2792 		return -ENOMEM;
2793 	efx->filter_state = state;
2794 
2795 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2796 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2797 		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2798 		table->offset = FR_BZ_RX_FILTER_TBL0;
2799 		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2800 		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2801 	}
2802 
2803 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2804 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2805 		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2806 		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2807 		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2808 		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2809 
2810 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2811 		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2812 		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2813 
2814 		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2815 		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2816 		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2817 		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2818 		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2819 	}
2820 
2821 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2822 		table = &state->table[table_id];
2823 		if (table->size == 0)
2824 			continue;
2825 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2826 					     sizeof(unsigned long),
2827 					     GFP_KERNEL);
2828 		if (!table->used_bitmap)
2829 			goto fail;
2830 		table->spec = vzalloc(table->size * sizeof(*table->spec));
2831 		if (!table->spec)
2832 			goto fail;
2833 	}
2834 
2835 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2836 	if (table->size) {
2837 		/* RX default filters must always exist */
2838 		struct efx_farch_filter_spec *spec;
2839 		unsigned i;
2840 
2841 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2842 			spec = &table->spec[i];
2843 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2844 			efx_farch_filter_init_rx_auto(efx, spec);
2845 			__set_bit(i, table->used_bitmap);
2846 		}
2847 	}
2848 
2849 	efx_farch_filter_push_rx_config(efx);
2850 
2851 	return 0;
2852 
2853 fail:
2854 	efx_farch_filter_table_remove(efx);
2855 	return -ENOMEM;
2856 }
2857 
2858 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2859 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2860 {
2861 	struct efx_farch_filter_state *state = efx->filter_state;
2862 	enum efx_farch_filter_table_id table_id;
2863 	struct efx_farch_filter_table *table;
2864 	efx_oword_t filter;
2865 	unsigned int filter_idx;
2866 
2867 	spin_lock_bh(&efx->filter_lock);
2868 
2869 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2870 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2871 	     table_id++) {
2872 		table = &state->table[table_id];
2873 
2874 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2875 			if (!test_bit(filter_idx, table->used_bitmap) ||
2876 			    table->spec[filter_idx].dmaq_id >=
2877 			    efx->n_rx_channels)
2878 				continue;
2879 
2880 			if (efx->rx_scatter)
2881 				table->spec[filter_idx].flags |=
2882 					EFX_FILTER_FLAG_RX_SCATTER;
2883 			else
2884 				table->spec[filter_idx].flags &=
2885 					~EFX_FILTER_FLAG_RX_SCATTER;
2886 
2887 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2888 				/* Pushed by efx_farch_filter_push_rx_config() */
2889 				continue;
2890 
2891 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2892 			efx_writeo(efx, &filter,
2893 				   table->offset + table->step * filter_idx);
2894 		}
2895 	}
2896 
2897 	efx_farch_filter_push_rx_config(efx);
2898 
2899 	spin_unlock_bh(&efx->filter_lock);
2900 }
2901 
2902 #ifdef CONFIG_RFS_ACCEL
2903 
efx_farch_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec)2904 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2905 				struct efx_filter_spec *gen_spec)
2906 {
2907 	return efx_farch_filter_insert(efx, gen_spec, true);
2908 }
2909 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2910 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2911 				     unsigned int index)
2912 {
2913 	struct efx_farch_filter_state *state = efx->filter_state;
2914 	struct efx_farch_filter_table *table =
2915 		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2916 
2917 	if (test_bit(index, table->used_bitmap) &&
2918 	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2919 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2920 				flow_id, index)) {
2921 		efx_farch_filter_table_clear_entry(efx, table, index);
2922 		return true;
2923 	}
2924 
2925 	return false;
2926 }
2927 
2928 #endif /* CONFIG_RFS_ACCEL */
2929 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2930 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2931 {
2932 	struct net_device *net_dev = efx->net_dev;
2933 	struct netdev_hw_addr *ha;
2934 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2935 	u32 crc;
2936 	int bit;
2937 
2938 	if (!efx_dev_registered(efx))
2939 		return;
2940 
2941 	netif_addr_lock_bh(net_dev);
2942 
2943 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2944 
2945 	/* Build multicast hash table */
2946 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2947 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2948 	} else {
2949 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2950 		netdev_for_each_mc_addr(ha, net_dev) {
2951 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2952 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2953 			__set_bit_le(bit, mc_hash);
2954 		}
2955 
2956 		/* Broadcast packets go through the multicast hash filter.
2957 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2958 		 * so we always add bit 0xff to the mask.
2959 		 */
2960 		__set_bit_le(0xff, mc_hash);
2961 	}
2962 
2963 	netif_addr_unlock_bh(net_dev);
2964 }
2965