• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2010-2012 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 #include <linux/pci.h>
10 #include <linux/module.h>
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "mcdi.h"
16 #include "filter.h"
17 #include "mcdi_pcol.h"
18 #include "farch_regs.h"
19 #include "vfdi.h"
20 
21 /* Number of longs required to track all the VIs in a VF */
22 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
23 
24 /* Maximum number of RX queues supported */
25 #define VF_MAX_RX_QUEUES 63
26 
27 /**
28  * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
29  * @VF_TX_FILTER_OFF: Disabled
30  * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
31  *	2 TX queues allowed per VF.
32  * @VF_TX_FILTER_ON: Enabled
33  */
34 enum efx_vf_tx_filter_mode {
35 	VF_TX_FILTER_OFF,
36 	VF_TX_FILTER_AUTO,
37 	VF_TX_FILTER_ON,
38 };
39 
40 /**
41  * struct efx_vf - Back-end resource and protocol state for a PCI VF
42  * @efx: The Efx NIC owning this VF
43  * @pci_rid: The PCI requester ID for this VF
44  * @pci_name: The PCI name (formatted address) of this VF
45  * @index: Index of VF within its port and PF.
46  * @req: VFDI incoming request work item. Incoming USR_EV events are received
47  *	by the NAPI handler, but must be handled by executing MCDI requests
48  *	inside a work item.
49  * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
50  * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
51  * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
52  * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
53  *	@status_lock
54  * @busy: VFDI request queued to be processed or being processed. Receiving
55  *	a VFDI request when @busy is set is an error condition.
56  * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
57  * @buftbl_base: Buffer table entries for this VF start at this index.
58  * @rx_filtering: Receive filtering has been requested by the VF driver.
59  * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
60  * @rx_filter_qid: VF relative qid for RX filter requested by VF.
61  * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
62  * @tx_filter_mode: Transmit MAC filtering mode.
63  * @tx_filter_id: Transmit MAC filter ID.
64  * @addr: The MAC address and outer vlan tag of the VF.
65  * @status_addr: VF DMA address of page for &struct vfdi_status updates.
66  * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
67  *	@peer_page_addrs and @peer_page_count from simultaneous
68  *	updates by the VM and consumption by
69  *	efx_sriov_update_vf_addr()
70  * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
71  * @peer_page_count: Number of entries in @peer_page_count.
72  * @evq0_addrs: Array of guest pages backing evq0.
73  * @evq0_count: Number of entries in @evq0_addrs.
74  * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
75  *	to wait for flush completions.
76  * @txq_lock: Mutex for TX queue allocation.
77  * @txq_mask: Mask of initialized transmit queues.
78  * @txq_count: Number of initialized transmit queues.
79  * @rxq_mask: Mask of initialized receive queues.
80  * @rxq_count: Number of initialized receive queues.
81  * @rxq_retry_mask: Mask or receive queues that need to be flushed again
82  *	due to flush failure.
83  * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
84  * @reset_work: Work item to schedule a VF reset.
85  */
86 struct efx_vf {
87 	struct efx_nic *efx;
88 	unsigned int pci_rid;
89 	char pci_name[13]; /* dddd:bb:dd.f */
90 	unsigned int index;
91 	struct work_struct req;
92 	u64 req_addr;
93 	int req_type;
94 	unsigned req_seqno;
95 	unsigned msg_seqno;
96 	bool busy;
97 	struct efx_buffer buf;
98 	unsigned buftbl_base;
99 	bool rx_filtering;
100 	enum efx_filter_flags rx_filter_flags;
101 	unsigned rx_filter_qid;
102 	int rx_filter_id;
103 	enum efx_vf_tx_filter_mode tx_filter_mode;
104 	int tx_filter_id;
105 	struct vfdi_endpoint addr;
106 	u64 status_addr;
107 	struct mutex status_lock;
108 	u64 *peer_page_addrs;
109 	unsigned peer_page_count;
110 	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
111 		       EFX_BUF_SIZE];
112 	unsigned evq0_count;
113 	wait_queue_head_t flush_waitq;
114 	struct mutex txq_lock;
115 	unsigned long txq_mask[VI_MASK_LENGTH];
116 	unsigned txq_count;
117 	unsigned long rxq_mask[VI_MASK_LENGTH];
118 	unsigned rxq_count;
119 	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
120 	atomic_t rxq_retry_count;
121 	struct work_struct reset_work;
122 };
123 
124 struct efx_memcpy_req {
125 	unsigned int from_rid;
126 	void *from_buf;
127 	u64 from_addr;
128 	unsigned int to_rid;
129 	u64 to_addr;
130 	unsigned length;
131 };
132 
133 /**
134  * struct efx_local_addr - A MAC address on the vswitch without a VF.
135  *
136  * Siena does not have a switch, so VFs can't transmit data to each
137  * other. Instead the VFs must be made aware of the local addresses
138  * on the vswitch, so that they can arrange for an alternative
139  * software datapath to be used.
140  *
141  * @link: List head for insertion into efx->local_addr_list.
142  * @addr: Ethernet address
143  */
144 struct efx_local_addr {
145 	struct list_head link;
146 	u8 addr[ETH_ALEN];
147 };
148 
149 /**
150  * struct efx_endpoint_page - Page of vfdi_endpoint structures
151  *
152  * @link: List head for insertion into efx->local_page_list.
153  * @ptr: Pointer to page.
154  * @addr: DMA address of page.
155  */
156 struct efx_endpoint_page {
157 	struct list_head link;
158 	void *ptr;
159 	dma_addr_t addr;
160 };
161 
162 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
163 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
164 	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
165 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
166 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
167 	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
168 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
169 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
170 	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
171 
172 #define EFX_FIELD_MASK(_field)			\
173 	((1 << _field ## _WIDTH) - 1)
174 
175 /* VFs can only use this many transmit channels */
176 static unsigned int vf_max_tx_channels = 2;
177 module_param(vf_max_tx_channels, uint, 0444);
178 MODULE_PARM_DESC(vf_max_tx_channels,
179 		 "Limit the number of TX channels VFs can use");
180 
181 static int max_vfs = -1;
182 module_param(max_vfs, int, 0444);
183 MODULE_PARM_DESC(max_vfs,
184 		 "Reduce the number of VFs initialized by the driver");
185 
186 /* Workqueue used by VFDI communication.  We can't use the global
187  * workqueue because it may be running the VF driver's probe()
188  * routine, which will be blocked there waiting for a VFDI response.
189  */
190 static struct workqueue_struct *vfdi_workqueue;
191 
abs_index(struct efx_vf * vf,unsigned index)192 static unsigned abs_index(struct efx_vf *vf, unsigned index)
193 {
194 	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
195 }
196 
efx_sriov_cmd(struct efx_nic * efx,bool enable,unsigned * vi_scale_out,unsigned * vf_total_out)197 static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
198 			 unsigned *vi_scale_out, unsigned *vf_total_out)
199 {
200 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
201 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
202 	unsigned vi_scale, vf_total;
203 	size_t outlen;
204 	int rc;
205 
206 	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
207 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
208 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
209 
210 	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
211 			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
212 	if (rc)
213 		return rc;
214 	if (outlen < MC_CMD_SRIOV_OUT_LEN)
215 		return -EIO;
216 
217 	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
218 	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
219 	if (vi_scale > EFX_VI_SCALE_MAX)
220 		return -EOPNOTSUPP;
221 
222 	if (vi_scale_out)
223 		*vi_scale_out = vi_scale;
224 	if (vf_total_out)
225 		*vf_total_out = vf_total;
226 
227 	return 0;
228 }
229 
efx_sriov_usrev(struct efx_nic * efx,bool enabled)230 static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
231 {
232 	efx_oword_t reg;
233 
234 	EFX_POPULATE_OWORD_2(reg,
235 			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
236 			     FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
237 	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
238 }
239 
efx_sriov_memcpy(struct efx_nic * efx,struct efx_memcpy_req * req,unsigned int count)240 static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
241 			    unsigned int count)
242 {
243 	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
244 	MCDI_DECLARE_STRUCT_PTR(record);
245 	unsigned int index, used;
246 	u64 from_addr;
247 	u32 from_rid;
248 	int rc;
249 
250 	mb();	/* Finish writing source/reading dest before DMA starts */
251 
252 	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
253 		return -ENOBUFS;
254 	used = MC_CMD_MEMCPY_IN_LEN(count);
255 
256 	for (index = 0; index < count; index++) {
257 		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
258 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
259 			       count);
260 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
261 			       req->to_rid);
262 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
263 			       req->to_addr);
264 		if (req->from_buf == NULL) {
265 			from_rid = req->from_rid;
266 			from_addr = req->from_addr;
267 		} else {
268 			if (WARN_ON(used + req->length >
269 				    MCDI_CTL_SDU_LEN_MAX_V1)) {
270 				rc = -ENOBUFS;
271 				goto out;
272 			}
273 
274 			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
275 			from_addr = used;
276 			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
277 			       req->length);
278 			used += req->length;
279 		}
280 
281 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
282 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
283 			       from_addr);
284 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
285 			       req->length);
286 
287 		++req;
288 	}
289 
290 	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
291 out:
292 	mb();	/* Don't write source/read dest before DMA is complete */
293 
294 	return rc;
295 }
296 
297 /* The TX filter is entirely controlled by this driver, and is modified
298  * underneath the feet of the VF
299  */
efx_sriov_reset_tx_filter(struct efx_vf * vf)300 static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
301 {
302 	struct efx_nic *efx = vf->efx;
303 	struct efx_filter_spec filter;
304 	u16 vlan;
305 	int rc;
306 
307 	if (vf->tx_filter_id != -1) {
308 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
309 					  vf->tx_filter_id);
310 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
311 			  vf->pci_name, vf->tx_filter_id);
312 		vf->tx_filter_id = -1;
313 	}
314 
315 	if (is_zero_ether_addr(vf->addr.mac_addr))
316 		return;
317 
318 	/* Turn on TX filtering automatically if not explicitly
319 	 * enabled or disabled.
320 	 */
321 	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
322 		vf->tx_filter_mode = VF_TX_FILTER_ON;
323 
324 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
325 	efx_filter_init_tx(&filter, abs_index(vf, 0));
326 	rc = efx_filter_set_eth_local(&filter,
327 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
328 				      vf->addr.mac_addr);
329 	BUG_ON(rc);
330 
331 	rc = efx_filter_insert_filter(efx, &filter, true);
332 	if (rc < 0) {
333 		netif_warn(efx, hw, efx->net_dev,
334 			   "Unable to migrate tx filter for vf %s\n",
335 			   vf->pci_name);
336 	} else {
337 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
338 			  vf->pci_name, rc);
339 		vf->tx_filter_id = rc;
340 	}
341 }
342 
343 /* The RX filter is managed here on behalf of the VF driver */
efx_sriov_reset_rx_filter(struct efx_vf * vf)344 static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
345 {
346 	struct efx_nic *efx = vf->efx;
347 	struct efx_filter_spec filter;
348 	u16 vlan;
349 	int rc;
350 
351 	if (vf->rx_filter_id != -1) {
352 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
353 					  vf->rx_filter_id);
354 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
355 			  vf->pci_name, vf->rx_filter_id);
356 		vf->rx_filter_id = -1;
357 	}
358 
359 	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
360 		return;
361 
362 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
363 	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
364 			   vf->rx_filter_flags,
365 			   abs_index(vf, vf->rx_filter_qid));
366 	rc = efx_filter_set_eth_local(&filter,
367 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
368 				      vf->addr.mac_addr);
369 	BUG_ON(rc);
370 
371 	rc = efx_filter_insert_filter(efx, &filter, true);
372 	if (rc < 0) {
373 		netif_warn(efx, hw, efx->net_dev,
374 			   "Unable to insert rx filter for vf %s\n",
375 			   vf->pci_name);
376 	} else {
377 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
378 			  vf->pci_name, rc);
379 		vf->rx_filter_id = rc;
380 	}
381 }
382 
__efx_sriov_update_vf_addr(struct efx_vf * vf)383 static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
384 {
385 	efx_sriov_reset_tx_filter(vf);
386 	efx_sriov_reset_rx_filter(vf);
387 	queue_work(vfdi_workqueue, &vf->efx->peer_work);
388 }
389 
390 /* Push the peer list to this VF. The caller must hold status_lock to interlock
391  * with VFDI requests, and they must be serialised against manipulation of
392  * local_page_list, either by acquiring local_lock or by running from
393  * efx_sriov_peer_work()
394  */
__efx_sriov_push_vf_status(struct efx_vf * vf)395 static void __efx_sriov_push_vf_status(struct efx_vf *vf)
396 {
397 	struct efx_nic *efx = vf->efx;
398 	struct vfdi_status *status = efx->vfdi_status.addr;
399 	struct efx_memcpy_req copy[4];
400 	struct efx_endpoint_page *epp;
401 	unsigned int pos, count;
402 	unsigned data_offset;
403 	efx_qword_t event;
404 
405 	WARN_ON(!mutex_is_locked(&vf->status_lock));
406 	WARN_ON(!vf->status_addr);
407 
408 	status->local = vf->addr;
409 	status->generation_end = ++status->generation_start;
410 
411 	memset(copy, '\0', sizeof(copy));
412 	/* Write generation_start */
413 	copy[0].from_buf = &status->generation_start;
414 	copy[0].to_rid = vf->pci_rid;
415 	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
416 						     generation_start);
417 	copy[0].length = sizeof(status->generation_start);
418 	/* DMA the rest of the structure (excluding the generations). This
419 	 * assumes that the non-generation portion of vfdi_status is in
420 	 * one chunk starting at the version member.
421 	 */
422 	data_offset = offsetof(struct vfdi_status, version);
423 	copy[1].from_rid = efx->pci_dev->devfn;
424 	copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
425 	copy[1].to_rid = vf->pci_rid;
426 	copy[1].to_addr = vf->status_addr + data_offset;
427 	copy[1].length =  status->length - data_offset;
428 
429 	/* Copy the peer pages */
430 	pos = 2;
431 	count = 0;
432 	list_for_each_entry(epp, &efx->local_page_list, link) {
433 		if (count == vf->peer_page_count) {
434 			/* The VF driver will know they need to provide more
435 			 * pages because peer_addr_count is too large.
436 			 */
437 			break;
438 		}
439 		copy[pos].from_buf = NULL;
440 		copy[pos].from_rid = efx->pci_dev->devfn;
441 		copy[pos].from_addr = epp->addr;
442 		copy[pos].to_rid = vf->pci_rid;
443 		copy[pos].to_addr = vf->peer_page_addrs[count];
444 		copy[pos].length = EFX_PAGE_SIZE;
445 
446 		if (++pos == ARRAY_SIZE(copy)) {
447 			efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
448 			pos = 0;
449 		}
450 		++count;
451 	}
452 
453 	/* Write generation_end */
454 	copy[pos].from_buf = &status->generation_end;
455 	copy[pos].to_rid = vf->pci_rid;
456 	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
457 						       generation_end);
458 	copy[pos].length = sizeof(status->generation_end);
459 	efx_sriov_memcpy(efx, copy, pos + 1);
460 
461 	/* Notify the guest */
462 	EFX_POPULATE_QWORD_3(event,
463 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
464 			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
465 			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
466 	++vf->msg_seqno;
467 	efx_farch_generate_event(efx,
468 				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
469 				 &event);
470 }
471 
efx_sriov_bufs(struct efx_nic * efx,unsigned offset,u64 * addr,unsigned count)472 static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
473 			   u64 *addr, unsigned count)
474 {
475 	efx_qword_t buf;
476 	unsigned pos;
477 
478 	for (pos = 0; pos < count; ++pos) {
479 		EFX_POPULATE_QWORD_3(buf,
480 				     FRF_AZ_BUF_ADR_REGION, 0,
481 				     FRF_AZ_BUF_ADR_FBUF,
482 				     addr ? addr[pos] >> 12 : 0,
483 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
484 		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
485 				&buf, offset + pos);
486 	}
487 }
488 
bad_vf_index(struct efx_nic * efx,unsigned index)489 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
490 {
491 	return index >= efx_vf_size(efx);
492 }
493 
bad_buf_count(unsigned buf_count,unsigned max_entry_count)494 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
495 {
496 	unsigned max_buf_count = max_entry_count *
497 		sizeof(efx_qword_t) / EFX_BUF_SIZE;
498 
499 	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
500 }
501 
502 /* Check that VI specified by per-port index belongs to a VF.
503  * Optionally set VF index and VI index within the VF.
504  */
map_vi_index(struct efx_nic * efx,unsigned abs_index,struct efx_vf ** vf_out,unsigned * rel_index_out)505 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
506 			 struct efx_vf **vf_out, unsigned *rel_index_out)
507 {
508 	unsigned vf_i;
509 
510 	if (abs_index < EFX_VI_BASE)
511 		return true;
512 	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
513 	if (vf_i >= efx->vf_init_count)
514 		return true;
515 
516 	if (vf_out)
517 		*vf_out = efx->vf + vf_i;
518 	if (rel_index_out)
519 		*rel_index_out = abs_index % efx_vf_size(efx);
520 	return false;
521 }
522 
efx_vfdi_init_evq(struct efx_vf * vf)523 static int efx_vfdi_init_evq(struct efx_vf *vf)
524 {
525 	struct efx_nic *efx = vf->efx;
526 	struct vfdi_req *req = vf->buf.addr;
527 	unsigned vf_evq = req->u.init_evq.index;
528 	unsigned buf_count = req->u.init_evq.buf_count;
529 	unsigned abs_evq = abs_index(vf, vf_evq);
530 	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
531 	efx_oword_t reg;
532 
533 	if (bad_vf_index(efx, vf_evq) ||
534 	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
535 		if (net_ratelimit())
536 			netif_err(efx, hw, efx->net_dev,
537 				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
538 				  vf->pci_name, vf_evq, buf_count);
539 		return VFDI_RC_EINVAL;
540 	}
541 
542 	efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
543 
544 	EFX_POPULATE_OWORD_3(reg,
545 			     FRF_CZ_TIMER_Q_EN, 1,
546 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
547 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
548 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
549 	EFX_POPULATE_OWORD_3(reg,
550 			     FRF_AZ_EVQ_EN, 1,
551 			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
552 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
553 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
554 
555 	if (vf_evq == 0) {
556 		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
557 		       buf_count * sizeof(u64));
558 		vf->evq0_count = buf_count;
559 	}
560 
561 	return VFDI_RC_SUCCESS;
562 }
563 
efx_vfdi_init_rxq(struct efx_vf * vf)564 static int efx_vfdi_init_rxq(struct efx_vf *vf)
565 {
566 	struct efx_nic *efx = vf->efx;
567 	struct vfdi_req *req = vf->buf.addr;
568 	unsigned vf_rxq = req->u.init_rxq.index;
569 	unsigned vf_evq = req->u.init_rxq.evq;
570 	unsigned buf_count = req->u.init_rxq.buf_count;
571 	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
572 	unsigned label;
573 	efx_oword_t reg;
574 
575 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
576 	    vf_rxq >= VF_MAX_RX_QUEUES ||
577 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
578 		if (net_ratelimit())
579 			netif_err(efx, hw, efx->net_dev,
580 				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
581 				  "buf_count %d\n", vf->pci_name, vf_rxq,
582 				  vf_evq, buf_count);
583 		return VFDI_RC_EINVAL;
584 	}
585 	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
586 		++vf->rxq_count;
587 	efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
588 
589 	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
590 	EFX_POPULATE_OWORD_6(reg,
591 			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
592 			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
593 			     FRF_AZ_RX_DESCQ_LABEL, label,
594 			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
595 			     FRF_AZ_RX_DESCQ_JUMBO,
596 			     !!(req->u.init_rxq.flags &
597 				VFDI_RXQ_FLAG_SCATTER_EN),
598 			     FRF_AZ_RX_DESCQ_EN, 1);
599 	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
600 			 abs_index(vf, vf_rxq));
601 
602 	return VFDI_RC_SUCCESS;
603 }
604 
efx_vfdi_init_txq(struct efx_vf * vf)605 static int efx_vfdi_init_txq(struct efx_vf *vf)
606 {
607 	struct efx_nic *efx = vf->efx;
608 	struct vfdi_req *req = vf->buf.addr;
609 	unsigned vf_txq = req->u.init_txq.index;
610 	unsigned vf_evq = req->u.init_txq.evq;
611 	unsigned buf_count = req->u.init_txq.buf_count;
612 	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
613 	unsigned label, eth_filt_en;
614 	efx_oword_t reg;
615 
616 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
617 	    vf_txq >= vf_max_tx_channels ||
618 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
619 		if (net_ratelimit())
620 			netif_err(efx, hw, efx->net_dev,
621 				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
622 				  "buf_count %d\n", vf->pci_name, vf_txq,
623 				  vf_evq, buf_count);
624 		return VFDI_RC_EINVAL;
625 	}
626 
627 	mutex_lock(&vf->txq_lock);
628 	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
629 		++vf->txq_count;
630 	mutex_unlock(&vf->txq_lock);
631 	efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
632 
633 	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
634 
635 	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
636 	EFX_POPULATE_OWORD_8(reg,
637 			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
638 			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
639 			     FRF_AZ_TX_DESCQ_EN, 1,
640 			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
641 			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
642 			     FRF_AZ_TX_DESCQ_LABEL, label,
643 			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
644 			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
645 	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
646 			 abs_index(vf, vf_txq));
647 
648 	return VFDI_RC_SUCCESS;
649 }
650 
651 /* Returns true when efx_vfdi_fini_all_queues should wake */
efx_vfdi_flush_wake(struct efx_vf * vf)652 static bool efx_vfdi_flush_wake(struct efx_vf *vf)
653 {
654 	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
655 	smp_mb();
656 
657 	return (!vf->txq_count && !vf->rxq_count) ||
658 		atomic_read(&vf->rxq_retry_count);
659 }
660 
efx_vfdi_flush_clear(struct efx_vf * vf)661 static void efx_vfdi_flush_clear(struct efx_vf *vf)
662 {
663 	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
664 	vf->txq_count = 0;
665 	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
666 	vf->rxq_count = 0;
667 	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
668 	atomic_set(&vf->rxq_retry_count, 0);
669 }
670 
efx_vfdi_fini_all_queues(struct efx_vf * vf)671 static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
672 {
673 	struct efx_nic *efx = vf->efx;
674 	efx_oword_t reg;
675 	unsigned count = efx_vf_size(efx);
676 	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
677 	unsigned timeout = HZ;
678 	unsigned index, rxqs_count;
679 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
680 	int rc;
681 
682 	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
683 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
684 
685 	rtnl_lock();
686 	siena_prepare_flush(efx);
687 	rtnl_unlock();
688 
689 	/* Flush all the initialized queues */
690 	rxqs_count = 0;
691 	for (index = 0; index < count; ++index) {
692 		if (test_bit(index, vf->txq_mask)) {
693 			EFX_POPULATE_OWORD_2(reg,
694 					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
695 					     FRF_AZ_TX_FLUSH_DESCQ,
696 					     vf_offset + index);
697 			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
698 		}
699 		if (test_bit(index, vf->rxq_mask)) {
700 			MCDI_SET_ARRAY_DWORD(
701 				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
702 				rxqs_count, vf_offset + index);
703 			rxqs_count++;
704 		}
705 	}
706 
707 	atomic_set(&vf->rxq_retry_count, 0);
708 	while (timeout && (vf->rxq_count || vf->txq_count)) {
709 		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
710 				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
711 				  NULL, 0, NULL);
712 		WARN_ON(rc < 0);
713 
714 		timeout = wait_event_timeout(vf->flush_waitq,
715 					     efx_vfdi_flush_wake(vf),
716 					     timeout);
717 		rxqs_count = 0;
718 		for (index = 0; index < count; ++index) {
719 			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
720 				atomic_dec(&vf->rxq_retry_count);
721 				MCDI_SET_ARRAY_DWORD(
722 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
723 					rxqs_count, vf_offset + index);
724 				rxqs_count++;
725 			}
726 		}
727 	}
728 
729 	rtnl_lock();
730 	siena_finish_flush(efx);
731 	rtnl_unlock();
732 
733 	/* Irrespective of success/failure, fini the queues */
734 	EFX_ZERO_OWORD(reg);
735 	for (index = 0; index < count; ++index) {
736 		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
737 				 vf_offset + index);
738 		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
739 				 vf_offset + index);
740 		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
741 				 vf_offset + index);
742 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
743 				 vf_offset + index);
744 	}
745 	efx_sriov_bufs(efx, vf->buftbl_base, NULL,
746 		       EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
747 	efx_vfdi_flush_clear(vf);
748 
749 	vf->evq0_count = 0;
750 
751 	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
752 }
753 
efx_vfdi_insert_filter(struct efx_vf * vf)754 static int efx_vfdi_insert_filter(struct efx_vf *vf)
755 {
756 	struct efx_nic *efx = vf->efx;
757 	struct vfdi_req *req = vf->buf.addr;
758 	unsigned vf_rxq = req->u.mac_filter.rxq;
759 	unsigned flags;
760 
761 	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
762 		if (net_ratelimit())
763 			netif_err(efx, hw, efx->net_dev,
764 				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
765 				  "flags 0x%x\n", vf->pci_name, vf_rxq,
766 				  req->u.mac_filter.flags);
767 		return VFDI_RC_EINVAL;
768 	}
769 
770 	flags = 0;
771 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
772 		flags |= EFX_FILTER_FLAG_RX_RSS;
773 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
774 		flags |= EFX_FILTER_FLAG_RX_SCATTER;
775 	vf->rx_filter_flags = flags;
776 	vf->rx_filter_qid = vf_rxq;
777 	vf->rx_filtering = true;
778 
779 	efx_sriov_reset_rx_filter(vf);
780 	queue_work(vfdi_workqueue, &efx->peer_work);
781 
782 	return VFDI_RC_SUCCESS;
783 }
784 
efx_vfdi_remove_all_filters(struct efx_vf * vf)785 static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
786 {
787 	vf->rx_filtering = false;
788 	efx_sriov_reset_rx_filter(vf);
789 	queue_work(vfdi_workqueue, &vf->efx->peer_work);
790 
791 	return VFDI_RC_SUCCESS;
792 }
793 
efx_vfdi_set_status_page(struct efx_vf * vf)794 static int efx_vfdi_set_status_page(struct efx_vf *vf)
795 {
796 	struct efx_nic *efx = vf->efx;
797 	struct vfdi_req *req = vf->buf.addr;
798 	u64 page_count = req->u.set_status_page.peer_page_count;
799 	u64 max_page_count =
800 		(EFX_PAGE_SIZE -
801 		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
802 		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
803 
804 	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
805 		if (net_ratelimit())
806 			netif_err(efx, hw, efx->net_dev,
807 				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
808 				  vf->pci_name);
809 		return VFDI_RC_EINVAL;
810 	}
811 
812 	mutex_lock(&efx->local_lock);
813 	mutex_lock(&vf->status_lock);
814 	vf->status_addr = req->u.set_status_page.dma_addr;
815 
816 	kfree(vf->peer_page_addrs);
817 	vf->peer_page_addrs = NULL;
818 	vf->peer_page_count = 0;
819 
820 	if (page_count) {
821 		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
822 					      GFP_KERNEL);
823 		if (vf->peer_page_addrs) {
824 			memcpy(vf->peer_page_addrs,
825 			       req->u.set_status_page.peer_page_addr,
826 			       page_count * sizeof(u64));
827 			vf->peer_page_count = page_count;
828 		}
829 	}
830 
831 	__efx_sriov_push_vf_status(vf);
832 	mutex_unlock(&vf->status_lock);
833 	mutex_unlock(&efx->local_lock);
834 
835 	return VFDI_RC_SUCCESS;
836 }
837 
efx_vfdi_clear_status_page(struct efx_vf * vf)838 static int efx_vfdi_clear_status_page(struct efx_vf *vf)
839 {
840 	mutex_lock(&vf->status_lock);
841 	vf->status_addr = 0;
842 	mutex_unlock(&vf->status_lock);
843 
844 	return VFDI_RC_SUCCESS;
845 }
846 
847 typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
848 
849 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
850 	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
851 	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
852 	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
853 	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
854 	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
855 	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
856 	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
857 	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
858 };
859 
efx_sriov_vfdi(struct work_struct * work)860 static void efx_sriov_vfdi(struct work_struct *work)
861 {
862 	struct efx_vf *vf = container_of(work, struct efx_vf, req);
863 	struct efx_nic *efx = vf->efx;
864 	struct vfdi_req *req = vf->buf.addr;
865 	struct efx_memcpy_req copy[2];
866 	int rc;
867 
868 	/* Copy this page into the local address space */
869 	memset(copy, '\0', sizeof(copy));
870 	copy[0].from_rid = vf->pci_rid;
871 	copy[0].from_addr = vf->req_addr;
872 	copy[0].to_rid = efx->pci_dev->devfn;
873 	copy[0].to_addr = vf->buf.dma_addr;
874 	copy[0].length = EFX_PAGE_SIZE;
875 	rc = efx_sriov_memcpy(efx, copy, 1);
876 	if (rc) {
877 		/* If we can't get the request, we can't reply to the caller */
878 		if (net_ratelimit())
879 			netif_err(efx, hw, efx->net_dev,
880 				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
881 				  vf->pci_name, -rc);
882 		vf->busy = false;
883 		return;
884 	}
885 
886 	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
887 		rc = vfdi_ops[req->op](vf);
888 		if (rc == 0) {
889 			netif_dbg(efx, hw, efx->net_dev,
890 				  "vfdi request %d from %s ok\n",
891 				  req->op, vf->pci_name);
892 		}
893 	} else {
894 		netif_dbg(efx, hw, efx->net_dev,
895 			  "ERROR: Unrecognised request %d from VF %s addr "
896 			  "%llx\n", req->op, vf->pci_name,
897 			  (unsigned long long)vf->req_addr);
898 		rc = VFDI_RC_EOPNOTSUPP;
899 	}
900 
901 	/* Allow subsequent VF requests */
902 	vf->busy = false;
903 	smp_wmb();
904 
905 	/* Respond to the request */
906 	req->rc = rc;
907 	req->op = VFDI_OP_RESPONSE;
908 
909 	memset(copy, '\0', sizeof(copy));
910 	copy[0].from_buf = &req->rc;
911 	copy[0].to_rid = vf->pci_rid;
912 	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
913 	copy[0].length = sizeof(req->rc);
914 	copy[1].from_buf = &req->op;
915 	copy[1].to_rid = vf->pci_rid;
916 	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
917 	copy[1].length = sizeof(req->op);
918 
919 	(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
920 }
921 
922 
923 
924 /* After a reset the event queues inside the guests no longer exist. Fill the
925  * event ring in guest memory with VFDI reset events, then (re-initialise) the
926  * event queue to raise an interrupt. The guest driver will then recover.
927  */
efx_sriov_reset_vf(struct efx_vf * vf,struct efx_buffer * buffer)928 static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
929 {
930 	struct efx_nic *efx = vf->efx;
931 	struct efx_memcpy_req copy_req[4];
932 	efx_qword_t event;
933 	unsigned int pos, count, k, buftbl, abs_evq;
934 	efx_oword_t reg;
935 	efx_dword_t ptr;
936 	int rc;
937 
938 	BUG_ON(buffer->len != EFX_PAGE_SIZE);
939 
940 	if (!vf->evq0_count)
941 		return;
942 	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
943 
944 	mutex_lock(&vf->status_lock);
945 	EFX_POPULATE_QWORD_3(event,
946 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
947 			     VFDI_EV_SEQ, vf->msg_seqno,
948 			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
949 	vf->msg_seqno++;
950 	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
951 		memcpy(buffer->addr + pos, &event, sizeof(event));
952 
953 	for (pos = 0; pos < vf->evq0_count; pos += count) {
954 		count = min_t(unsigned, vf->evq0_count - pos,
955 			      ARRAY_SIZE(copy_req));
956 		for (k = 0; k < count; k++) {
957 			copy_req[k].from_buf = NULL;
958 			copy_req[k].from_rid = efx->pci_dev->devfn;
959 			copy_req[k].from_addr = buffer->dma_addr;
960 			copy_req[k].to_rid = vf->pci_rid;
961 			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
962 			copy_req[k].length = EFX_PAGE_SIZE;
963 		}
964 		rc = efx_sriov_memcpy(efx, copy_req, count);
965 		if (rc) {
966 			if (net_ratelimit())
967 				netif_err(efx, hw, efx->net_dev,
968 					  "ERROR: Unable to notify %s of reset"
969 					  ": %d\n", vf->pci_name, -rc);
970 			break;
971 		}
972 	}
973 
974 	/* Reinitialise, arm and trigger evq0 */
975 	abs_evq = abs_index(vf, 0);
976 	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
977 	efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
978 
979 	EFX_POPULATE_OWORD_3(reg,
980 			     FRF_CZ_TIMER_Q_EN, 1,
981 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
982 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
983 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
984 	EFX_POPULATE_OWORD_3(reg,
985 			     FRF_AZ_EVQ_EN, 1,
986 			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
987 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
988 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
989 	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
990 	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
991 
992 	mutex_unlock(&vf->status_lock);
993 }
994 
efx_sriov_reset_vf_work(struct work_struct * work)995 static void efx_sriov_reset_vf_work(struct work_struct *work)
996 {
997 	struct efx_vf *vf = container_of(work, struct efx_vf, req);
998 	struct efx_nic *efx = vf->efx;
999 	struct efx_buffer buf;
1000 
1001 	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1002 		efx_sriov_reset_vf(vf, &buf);
1003 		efx_nic_free_buffer(efx, &buf);
1004 	}
1005 }
1006 
efx_sriov_handle_no_channel(struct efx_nic * efx)1007 static void efx_sriov_handle_no_channel(struct efx_nic *efx)
1008 {
1009 	netif_err(efx, drv, efx->net_dev,
1010 		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1011 		  "vector. IOV disabled\n");
1012 	efx->vf_count = 0;
1013 }
1014 
efx_sriov_probe_channel(struct efx_channel * channel)1015 static int efx_sriov_probe_channel(struct efx_channel *channel)
1016 {
1017 	channel->efx->vfdi_channel = channel;
1018 	return 0;
1019 }
1020 
1021 static void
efx_sriov_get_channel_name(struct efx_channel * channel,char * buf,size_t len)1022 efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
1023 {
1024 	snprintf(buf, len, "%s-iov", channel->efx->name);
1025 }
1026 
1027 static const struct efx_channel_type efx_sriov_channel_type = {
1028 	.handle_no_channel	= efx_sriov_handle_no_channel,
1029 	.pre_probe		= efx_sriov_probe_channel,
1030 	.post_remove		= efx_channel_dummy_op_void,
1031 	.get_name		= efx_sriov_get_channel_name,
1032 	/* no copy operation; channel must not be reallocated */
1033 	.keep_eventq		= true,
1034 };
1035 
efx_sriov_probe(struct efx_nic * efx)1036 void efx_sriov_probe(struct efx_nic *efx)
1037 {
1038 	unsigned count;
1039 
1040 	if (!max_vfs)
1041 		return;
1042 
1043 	if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
1044 		return;
1045 	if (count > 0 && count > max_vfs)
1046 		count = max_vfs;
1047 
1048 	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1049 	efx->vf_count = count;
1050 
1051 	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
1052 }
1053 
1054 /* Copy the list of individual addresses into the vfdi_status.peers
1055  * array and auxillary pages, protected by %local_lock. Drop that lock
1056  * and then broadcast the address list to every VF.
1057  */
efx_sriov_peer_work(struct work_struct * data)1058 static void efx_sriov_peer_work(struct work_struct *data)
1059 {
1060 	struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
1061 	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1062 	struct efx_vf *vf;
1063 	struct efx_local_addr *local_addr;
1064 	struct vfdi_endpoint *peer;
1065 	struct efx_endpoint_page *epp;
1066 	struct list_head pages;
1067 	unsigned int peer_space;
1068 	unsigned int peer_count;
1069 	unsigned int pos;
1070 
1071 	mutex_lock(&efx->local_lock);
1072 
1073 	/* Move the existing peer pages off %local_page_list */
1074 	INIT_LIST_HEAD(&pages);
1075 	list_splice_tail_init(&efx->local_page_list, &pages);
1076 
1077 	/* Populate the VF addresses starting from entry 1 (entry 0 is
1078 	 * the PF address)
1079 	 */
1080 	peer = vfdi_status->peers + 1;
1081 	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1082 	peer_count = 1;
1083 	for (pos = 0; pos < efx->vf_count; ++pos) {
1084 		vf = efx->vf + pos;
1085 
1086 		mutex_lock(&vf->status_lock);
1087 		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1088 			*peer++ = vf->addr;
1089 			++peer_count;
1090 			--peer_space;
1091 			BUG_ON(peer_space == 0);
1092 		}
1093 		mutex_unlock(&vf->status_lock);
1094 	}
1095 
1096 	/* Fill the remaining addresses */
1097 	list_for_each_entry(local_addr, &efx->local_addr_list, link) {
1098 		ether_addr_copy(peer->mac_addr, local_addr->addr);
1099 		peer->tci = 0;
1100 		++peer;
1101 		++peer_count;
1102 		if (--peer_space == 0) {
1103 			if (list_empty(&pages)) {
1104 				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1105 				if (!epp)
1106 					break;
1107 				epp->ptr = dma_alloc_coherent(
1108 					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1109 					&epp->addr, GFP_KERNEL);
1110 				if (!epp->ptr) {
1111 					kfree(epp);
1112 					break;
1113 				}
1114 			} else {
1115 				epp = list_first_entry(
1116 					&pages, struct efx_endpoint_page, link);
1117 				list_del(&epp->link);
1118 			}
1119 
1120 			list_add_tail(&epp->link, &efx->local_page_list);
1121 			peer = (struct vfdi_endpoint *)epp->ptr;
1122 			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1123 		}
1124 	}
1125 	vfdi_status->peer_count = peer_count;
1126 	mutex_unlock(&efx->local_lock);
1127 
1128 	/* Free any now unused endpoint pages */
1129 	while (!list_empty(&pages)) {
1130 		epp = list_first_entry(
1131 			&pages, struct efx_endpoint_page, link);
1132 		list_del(&epp->link);
1133 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1134 				  epp->ptr, epp->addr);
1135 		kfree(epp);
1136 	}
1137 
1138 	/* Finally, push the pages */
1139 	for (pos = 0; pos < efx->vf_count; ++pos) {
1140 		vf = efx->vf + pos;
1141 
1142 		mutex_lock(&vf->status_lock);
1143 		if (vf->status_addr)
1144 			__efx_sriov_push_vf_status(vf);
1145 		mutex_unlock(&vf->status_lock);
1146 	}
1147 }
1148 
efx_sriov_free_local(struct efx_nic * efx)1149 static void efx_sriov_free_local(struct efx_nic *efx)
1150 {
1151 	struct efx_local_addr *local_addr;
1152 	struct efx_endpoint_page *epp;
1153 
1154 	while (!list_empty(&efx->local_addr_list)) {
1155 		local_addr = list_first_entry(&efx->local_addr_list,
1156 					      struct efx_local_addr, link);
1157 		list_del(&local_addr->link);
1158 		kfree(local_addr);
1159 	}
1160 
1161 	while (!list_empty(&efx->local_page_list)) {
1162 		epp = list_first_entry(&efx->local_page_list,
1163 				       struct efx_endpoint_page, link);
1164 		list_del(&epp->link);
1165 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1166 				  epp->ptr, epp->addr);
1167 		kfree(epp);
1168 	}
1169 }
1170 
efx_sriov_vf_alloc(struct efx_nic * efx)1171 static int efx_sriov_vf_alloc(struct efx_nic *efx)
1172 {
1173 	unsigned index;
1174 	struct efx_vf *vf;
1175 
1176 	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
1177 	if (!efx->vf)
1178 		return -ENOMEM;
1179 
1180 	for (index = 0; index < efx->vf_count; ++index) {
1181 		vf = efx->vf + index;
1182 
1183 		vf->efx = efx;
1184 		vf->index = index;
1185 		vf->rx_filter_id = -1;
1186 		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1187 		vf->tx_filter_id = -1;
1188 		INIT_WORK(&vf->req, efx_sriov_vfdi);
1189 		INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
1190 		init_waitqueue_head(&vf->flush_waitq);
1191 		mutex_init(&vf->status_lock);
1192 		mutex_init(&vf->txq_lock);
1193 	}
1194 
1195 	return 0;
1196 }
1197 
efx_sriov_vfs_fini(struct efx_nic * efx)1198 static void efx_sriov_vfs_fini(struct efx_nic *efx)
1199 {
1200 	struct efx_vf *vf;
1201 	unsigned int pos;
1202 
1203 	for (pos = 0; pos < efx->vf_count; ++pos) {
1204 		vf = efx->vf + pos;
1205 
1206 		efx_nic_free_buffer(efx, &vf->buf);
1207 		kfree(vf->peer_page_addrs);
1208 		vf->peer_page_addrs = NULL;
1209 		vf->peer_page_count = 0;
1210 
1211 		vf->evq0_count = 0;
1212 	}
1213 }
1214 
efx_sriov_vfs_init(struct efx_nic * efx)1215 static int efx_sriov_vfs_init(struct efx_nic *efx)
1216 {
1217 	struct pci_dev *pci_dev = efx->pci_dev;
1218 	unsigned index, devfn, sriov, buftbl_base;
1219 	u16 offset, stride;
1220 	struct efx_vf *vf;
1221 	int rc;
1222 
1223 	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1224 	if (!sriov)
1225 		return -ENOENT;
1226 
1227 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1228 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1229 
1230 	buftbl_base = efx->vf_buftbl_base;
1231 	devfn = pci_dev->devfn + offset;
1232 	for (index = 0; index < efx->vf_count; ++index) {
1233 		vf = efx->vf + index;
1234 
1235 		/* Reserve buffer entries */
1236 		vf->buftbl_base = buftbl_base;
1237 		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1238 
1239 		vf->pci_rid = devfn;
1240 		snprintf(vf->pci_name, sizeof(vf->pci_name),
1241 			 "%04x:%02x:%02x.%d",
1242 			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1243 			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1244 
1245 		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1246 					  GFP_KERNEL);
1247 		if (rc)
1248 			goto fail;
1249 
1250 		devfn += stride;
1251 	}
1252 
1253 	return 0;
1254 
1255 fail:
1256 	efx_sriov_vfs_fini(efx);
1257 	return rc;
1258 }
1259 
efx_sriov_init(struct efx_nic * efx)1260 int efx_sriov_init(struct efx_nic *efx)
1261 {
1262 	struct net_device *net_dev = efx->net_dev;
1263 	struct vfdi_status *vfdi_status;
1264 	int rc;
1265 
1266 	/* Ensure there's room for vf_channel */
1267 	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1268 	/* Ensure that VI_BASE is aligned on VI_SCALE */
1269 	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1270 
1271 	if (efx->vf_count == 0)
1272 		return 0;
1273 
1274 	rc = efx_sriov_cmd(efx, true, NULL, NULL);
1275 	if (rc)
1276 		goto fail_cmd;
1277 
1278 	rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status),
1279 				  GFP_KERNEL);
1280 	if (rc)
1281 		goto fail_status;
1282 	vfdi_status = efx->vfdi_status.addr;
1283 	memset(vfdi_status, 0, sizeof(*vfdi_status));
1284 	vfdi_status->version = 1;
1285 	vfdi_status->length = sizeof(*vfdi_status);
1286 	vfdi_status->max_tx_channels = vf_max_tx_channels;
1287 	vfdi_status->vi_scale = efx->vi_scale;
1288 	vfdi_status->rss_rxq_count = efx->rss_spread;
1289 	vfdi_status->peer_count = 1 + efx->vf_count;
1290 	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1291 
1292 	rc = efx_sriov_vf_alloc(efx);
1293 	if (rc)
1294 		goto fail_alloc;
1295 
1296 	mutex_init(&efx->local_lock);
1297 	INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
1298 	INIT_LIST_HEAD(&efx->local_addr_list);
1299 	INIT_LIST_HEAD(&efx->local_page_list);
1300 
1301 	rc = efx_sriov_vfs_init(efx);
1302 	if (rc)
1303 		goto fail_vfs;
1304 
1305 	rtnl_lock();
1306 	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1307 	efx->vf_init_count = efx->vf_count;
1308 	rtnl_unlock();
1309 
1310 	efx_sriov_usrev(efx, true);
1311 
1312 	/* At this point we must be ready to accept VFDI requests */
1313 
1314 	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1315 	if (rc)
1316 		goto fail_pci;
1317 
1318 	netif_info(efx, probe, net_dev,
1319 		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1320 		   efx->vf_count, efx_vf_size(efx));
1321 	return 0;
1322 
1323 fail_pci:
1324 	efx_sriov_usrev(efx, false);
1325 	rtnl_lock();
1326 	efx->vf_init_count = 0;
1327 	rtnl_unlock();
1328 	efx_sriov_vfs_fini(efx);
1329 fail_vfs:
1330 	cancel_work_sync(&efx->peer_work);
1331 	efx_sriov_free_local(efx);
1332 	kfree(efx->vf);
1333 fail_alloc:
1334 	efx_nic_free_buffer(efx, &efx->vfdi_status);
1335 fail_status:
1336 	efx_sriov_cmd(efx, false, NULL, NULL);
1337 fail_cmd:
1338 	return rc;
1339 }
1340 
efx_sriov_fini(struct efx_nic * efx)1341 void efx_sriov_fini(struct efx_nic *efx)
1342 {
1343 	struct efx_vf *vf;
1344 	unsigned int pos;
1345 
1346 	if (efx->vf_init_count == 0)
1347 		return;
1348 
1349 	/* Disable all interfaces to reconfiguration */
1350 	BUG_ON(efx->vfdi_channel->enabled);
1351 	efx_sriov_usrev(efx, false);
1352 	rtnl_lock();
1353 	efx->vf_init_count = 0;
1354 	rtnl_unlock();
1355 
1356 	/* Flush all reconfiguration work */
1357 	for (pos = 0; pos < efx->vf_count; ++pos) {
1358 		vf = efx->vf + pos;
1359 		cancel_work_sync(&vf->req);
1360 		cancel_work_sync(&vf->reset_work);
1361 	}
1362 	cancel_work_sync(&efx->peer_work);
1363 
1364 	pci_disable_sriov(efx->pci_dev);
1365 
1366 	/* Tear down back-end state */
1367 	efx_sriov_vfs_fini(efx);
1368 	efx_sriov_free_local(efx);
1369 	kfree(efx->vf);
1370 	efx_nic_free_buffer(efx, &efx->vfdi_status);
1371 	efx_sriov_cmd(efx, false, NULL, NULL);
1372 }
1373 
efx_sriov_event(struct efx_channel * channel,efx_qword_t * event)1374 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1375 {
1376 	struct efx_nic *efx = channel->efx;
1377 	struct efx_vf *vf;
1378 	unsigned qid, seq, type, data;
1379 
1380 	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1381 
1382 	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1383 	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1384 	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1385 	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1386 	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1387 
1388 	netif_vdbg(efx, hw, efx->net_dev,
1389 		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1390 		   qid, seq, type, data);
1391 
1392 	if (map_vi_index(efx, qid, &vf, NULL))
1393 		return;
1394 	if (vf->busy)
1395 		goto error;
1396 
1397 	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1398 		/* Resynchronise */
1399 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1400 		vf->req_seqno = seq + 1;
1401 		vf->req_addr = 0;
1402 	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1403 		goto error;
1404 
1405 	switch (vf->req_type) {
1406 	case VFDI_EV_TYPE_REQ_WORD0:
1407 	case VFDI_EV_TYPE_REQ_WORD1:
1408 	case VFDI_EV_TYPE_REQ_WORD2:
1409 		vf->req_addr |= (u64)data << (vf->req_type << 4);
1410 		++vf->req_type;
1411 		return;
1412 
1413 	case VFDI_EV_TYPE_REQ_WORD3:
1414 		vf->req_addr |= (u64)data << 48;
1415 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1416 		vf->busy = true;
1417 		queue_work(vfdi_workqueue, &vf->req);
1418 		return;
1419 	}
1420 
1421 error:
1422 	if (net_ratelimit())
1423 		netif_err(efx, hw, efx->net_dev,
1424 			  "ERROR: Screaming VFDI request from %s\n",
1425 			  vf->pci_name);
1426 	/* Reset the request and sequence number */
1427 	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1428 	vf->req_seqno = seq + 1;
1429 }
1430 
efx_sriov_flr(struct efx_nic * efx,unsigned vf_i)1431 void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1432 {
1433 	struct efx_vf *vf;
1434 
1435 	if (vf_i > efx->vf_init_count)
1436 		return;
1437 	vf = efx->vf + vf_i;
1438 	netif_info(efx, hw, efx->net_dev,
1439 		   "FLR on VF %s\n", vf->pci_name);
1440 
1441 	vf->status_addr = 0;
1442 	efx_vfdi_remove_all_filters(vf);
1443 	efx_vfdi_flush_clear(vf);
1444 
1445 	vf->evq0_count = 0;
1446 }
1447 
efx_sriov_mac_address_changed(struct efx_nic * efx)1448 void efx_sriov_mac_address_changed(struct efx_nic *efx)
1449 {
1450 	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1451 
1452 	if (!efx->vf_init_count)
1453 		return;
1454 	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1455 			efx->net_dev->dev_addr);
1456 	queue_work(vfdi_workqueue, &efx->peer_work);
1457 }
1458 
efx_sriov_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1459 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1460 {
1461 	struct efx_vf *vf;
1462 	unsigned queue, qid;
1463 
1464 	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1465 	if (map_vi_index(efx, queue, &vf, &qid))
1466 		return;
1467 	/* Ignore flush completions triggered by an FLR */
1468 	if (!test_bit(qid, vf->txq_mask))
1469 		return;
1470 
1471 	__clear_bit(qid, vf->txq_mask);
1472 	--vf->txq_count;
1473 
1474 	if (efx_vfdi_flush_wake(vf))
1475 		wake_up(&vf->flush_waitq);
1476 }
1477 
efx_sriov_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1478 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1479 {
1480 	struct efx_vf *vf;
1481 	unsigned ev_failed, queue, qid;
1482 
1483 	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1484 	ev_failed = EFX_QWORD_FIELD(*event,
1485 				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1486 	if (map_vi_index(efx, queue, &vf, &qid))
1487 		return;
1488 	if (!test_bit(qid, vf->rxq_mask))
1489 		return;
1490 
1491 	if (ev_failed) {
1492 		set_bit(qid, vf->rxq_retry_mask);
1493 		atomic_inc(&vf->rxq_retry_count);
1494 	} else {
1495 		__clear_bit(qid, vf->rxq_mask);
1496 		--vf->rxq_count;
1497 	}
1498 	if (efx_vfdi_flush_wake(vf))
1499 		wake_up(&vf->flush_waitq);
1500 }
1501 
1502 /* Called from napi. Schedule the reset work item */
efx_sriov_desc_fetch_err(struct efx_nic * efx,unsigned dmaq)1503 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1504 {
1505 	struct efx_vf *vf;
1506 	unsigned int rel;
1507 
1508 	if (map_vi_index(efx, dmaq, &vf, &rel))
1509 		return;
1510 
1511 	if (net_ratelimit())
1512 		netif_err(efx, hw, efx->net_dev,
1513 			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1514 			  vf->index, rel);
1515 	queue_work(vfdi_workqueue, &vf->reset_work);
1516 }
1517 
1518 /* Reset all VFs */
efx_sriov_reset(struct efx_nic * efx)1519 void efx_sriov_reset(struct efx_nic *efx)
1520 {
1521 	unsigned int vf_i;
1522 	struct efx_buffer buf;
1523 	struct efx_vf *vf;
1524 
1525 	ASSERT_RTNL();
1526 
1527 	if (efx->vf_init_count == 0)
1528 		return;
1529 
1530 	efx_sriov_usrev(efx, true);
1531 	(void)efx_sriov_cmd(efx, true, NULL, NULL);
1532 
1533 	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1534 		return;
1535 
1536 	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1537 		vf = efx->vf + vf_i;
1538 		efx_sriov_reset_vf(vf, &buf);
1539 	}
1540 
1541 	efx_nic_free_buffer(efx, &buf);
1542 }
1543 
efx_init_sriov(void)1544 int efx_init_sriov(void)
1545 {
1546 	/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
1547 	 * efx_sriov_peer_work() spend almost all their time sleeping for
1548 	 * MCDI to complete anyway
1549 	 */
1550 	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1551 	if (!vfdi_workqueue)
1552 		return -ENOMEM;
1553 
1554 	return 0;
1555 }
1556 
efx_fini_sriov(void)1557 void efx_fini_sriov(void)
1558 {
1559 	destroy_workqueue(vfdi_workqueue);
1560 }
1561 
efx_sriov_set_vf_mac(struct net_device * net_dev,int vf_i,u8 * mac)1562 int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
1563 {
1564 	struct efx_nic *efx = netdev_priv(net_dev);
1565 	struct efx_vf *vf;
1566 
1567 	if (vf_i >= efx->vf_init_count)
1568 		return -EINVAL;
1569 	vf = efx->vf + vf_i;
1570 
1571 	mutex_lock(&vf->status_lock);
1572 	ether_addr_copy(vf->addr.mac_addr, mac);
1573 	__efx_sriov_update_vf_addr(vf);
1574 	mutex_unlock(&vf->status_lock);
1575 
1576 	return 0;
1577 }
1578 
efx_sriov_set_vf_vlan(struct net_device * net_dev,int vf_i,u16 vlan,u8 qos)1579 int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
1580 			  u16 vlan, u8 qos)
1581 {
1582 	struct efx_nic *efx = netdev_priv(net_dev);
1583 	struct efx_vf *vf;
1584 	u16 tci;
1585 
1586 	if (vf_i >= efx->vf_init_count)
1587 		return -EINVAL;
1588 	vf = efx->vf + vf_i;
1589 
1590 	mutex_lock(&vf->status_lock);
1591 	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1592 	vf->addr.tci = htons(tci);
1593 	__efx_sriov_update_vf_addr(vf);
1594 	mutex_unlock(&vf->status_lock);
1595 
1596 	return 0;
1597 }
1598 
efx_sriov_set_vf_spoofchk(struct net_device * net_dev,int vf_i,bool spoofchk)1599 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
1600 			      bool spoofchk)
1601 {
1602 	struct efx_nic *efx = netdev_priv(net_dev);
1603 	struct efx_vf *vf;
1604 	int rc;
1605 
1606 	if (vf_i >= efx->vf_init_count)
1607 		return -EINVAL;
1608 	vf = efx->vf + vf_i;
1609 
1610 	mutex_lock(&vf->txq_lock);
1611 	if (vf->txq_count == 0) {
1612 		vf->tx_filter_mode =
1613 			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1614 		rc = 0;
1615 	} else {
1616 		/* This cannot be changed while TX queues are running */
1617 		rc = -EBUSY;
1618 	}
1619 	mutex_unlock(&vf->txq_lock);
1620 	return rc;
1621 }
1622 
efx_sriov_get_vf_config(struct net_device * net_dev,int vf_i,struct ifla_vf_info * ivi)1623 int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
1624 			    struct ifla_vf_info *ivi)
1625 {
1626 	struct efx_nic *efx = netdev_priv(net_dev);
1627 	struct efx_vf *vf;
1628 	u16 tci;
1629 
1630 	if (vf_i >= efx->vf_init_count)
1631 		return -EINVAL;
1632 	vf = efx->vf + vf_i;
1633 
1634 	ivi->vf = vf_i;
1635 	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1636 	ivi->max_tx_rate = 0;
1637 	ivi->min_tx_rate = 0;
1638 	tci = ntohs(vf->addr.tci);
1639 	ivi->vlan = tci & VLAN_VID_MASK;
1640 	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1641 	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1642 
1643 	return 0;
1644 }
1645 
1646