1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49 #include <trace/events/android_fs.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u16 csum_lo;
58 __u16 csum_hi = 0;
59 __u32 csum;
60
61 csum_lo = le16_to_cpu(raw->i_checksum_lo);
62 raw->i_checksum_lo = 0;
63 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
64 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
65 csum_hi = le16_to_cpu(raw->i_checksum_hi);
66 raw->i_checksum_hi = 0;
67 }
68
69 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
70 EXT4_INODE_SIZE(inode->i_sb));
71
72 raw->i_checksum_lo = cpu_to_le16(csum_lo);
73 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
74 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
75 raw->i_checksum_hi = cpu_to_le16(csum_hi);
76
77 return csum;
78 }
79
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)80 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
81 struct ext4_inode_info *ei)
82 {
83 __u32 provided, calculated;
84
85 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
86 cpu_to_le32(EXT4_OS_LINUX) ||
87 !ext4_has_metadata_csum(inode->i_sb))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99 }
100
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103 {
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !ext4_has_metadata_csum(inode->i_sb))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120 {
121 trace_ext4_begin_ordered_truncate(inode, new_size);
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 */
ext4_inode_is_fast_symlink(struct inode * inode)145 int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
149
150 if (ext4_has_inline_data(inode))
151 return 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 int nblocks)
163 {
164 int ret;
165
166 /*
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 jbd_debug(2, "restarting handle %p\n", handle);
174 up_write(&EXT4_I(inode)->i_data_sem);
175 ret = ext4_journal_restart(handle, nblocks);
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode);
178
179 return ret;
180 }
181
182 /*
183 * Called at the last iput() if i_nlink is zero.
184 */
ext4_evict_inode(struct inode * inode)185 void ext4_evict_inode(struct inode *inode)
186 {
187 handle_t *handle;
188 int err;
189
190 trace_ext4_evict_inode(inode);
191
192 if (inode->i_nlink) {
193 /*
194 * When journalling data dirty buffers are tracked only in the
195 * journal. So although mm thinks everything is clean and
196 * ready for reaping the inode might still have some pages to
197 * write in the running transaction or waiting to be
198 * checkpointed. Thus calling jbd2_journal_invalidatepage()
199 * (via truncate_inode_pages()) to discard these buffers can
200 * cause data loss. Also even if we did not discard these
201 * buffers, we would have no way to find them after the inode
202 * is reaped and thus user could see stale data if he tries to
203 * read them before the transaction is checkpointed. So be
204 * careful and force everything to disk here... We use
205 * ei->i_datasync_tid to store the newest transaction
206 * containing inode's data.
207 *
208 * Note that directories do not have this problem because they
209 * don't use page cache.
210 */
211 if (inode->i_ino != EXT4_JOURNAL_INO &&
212 ext4_should_journal_data(inode) &&
213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
214 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
215 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
216
217 jbd2_complete_transaction(journal, commit_tid);
218 filemap_write_and_wait(&inode->i_data);
219 }
220 truncate_inode_pages_final(&inode->i_data);
221
222 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
223 goto no_delete;
224 }
225
226 if (is_bad_inode(inode))
227 goto no_delete;
228 dquot_initialize(inode);
229
230 if (ext4_should_order_data(inode))
231 ext4_begin_ordered_truncate(inode, 0);
232 truncate_inode_pages_final(&inode->i_data);
233
234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks)
265 ext4_truncate(inode);
266
267 /*
268 * ext4_ext_truncate() doesn't reserve any slop when it
269 * restarts journal transactions; therefore there may not be
270 * enough credits left in the handle to remove the inode from
271 * the orphan list and set the dtime field.
272 */
273 if (!ext4_handle_has_enough_credits(handle, 3)) {
274 err = ext4_journal_extend(handle, 3);
275 if (err > 0)
276 err = ext4_journal_restart(handle, 3);
277 if (err != 0) {
278 ext4_warning(inode->i_sb,
279 "couldn't extend journal (err %d)", err);
280 stop_handle:
281 ext4_journal_stop(handle);
282 ext4_orphan_del(NULL, inode);
283 sb_end_intwrite(inode->i_sb);
284 goto no_delete;
285 }
286 }
287
288 /*
289 * Kill off the orphan record which ext4_truncate created.
290 * AKPM: I think this can be inside the above `if'.
291 * Note that ext4_orphan_del() has to be able to cope with the
292 * deletion of a non-existent orphan - this is because we don't
293 * know if ext4_truncate() actually created an orphan record.
294 * (Well, we could do this if we need to, but heck - it works)
295 */
296 ext4_orphan_del(handle, inode);
297 EXT4_I(inode)->i_dtime = get_seconds();
298
299 /*
300 * One subtle ordering requirement: if anything has gone wrong
301 * (transaction abort, IO errors, whatever), then we can still
302 * do these next steps (the fs will already have been marked as
303 * having errors), but we can't free the inode if the mark_dirty
304 * fails.
305 */
306 if (ext4_mark_inode_dirty(handle, inode))
307 /* If that failed, just do the required in-core inode clear. */
308 ext4_clear_inode(inode);
309 else
310 ext4_free_inode(handle, inode);
311 ext4_journal_stop(handle);
312 sb_end_intwrite(inode->i_sb);
313 return;
314 no_delete:
315 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
316 }
317
318 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321 return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324
325 /*
326 * Called with i_data_sem down, which is important since we can call
327 * ext4_discard_preallocations() from here.
328 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)329 void ext4_da_update_reserve_space(struct inode *inode,
330 int used, int quota_claim)
331 {
332 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 struct ext4_inode_info *ei = EXT4_I(inode);
334
335 spin_lock(&ei->i_block_reservation_lock);
336 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337 if (unlikely(used > ei->i_reserved_data_blocks)) {
338 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339 "with only %d reserved data blocks",
340 __func__, inode->i_ino, used,
341 ei->i_reserved_data_blocks);
342 WARN_ON(1);
343 used = ei->i_reserved_data_blocks;
344 }
345
346 /* Update per-inode reservations */
347 ei->i_reserved_data_blocks -= used;
348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349
350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351
352 /* Update quota subsystem for data blocks */
353 if (quota_claim)
354 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 else {
356 /*
357 * We did fallocate with an offset that is already delayed
358 * allocated. So on delayed allocated writeback we should
359 * not re-claim the quota for fallocated blocks.
360 */
361 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 }
363
364 /*
365 * If we have done all the pending block allocations and if
366 * there aren't any writers on the inode, we can discard the
367 * inode's preallocations.
368 */
369 if ((ei->i_reserved_data_blocks == 0) &&
370 (atomic_read(&inode->i_writecount) == 0))
371 ext4_discard_preallocations(inode);
372 }
373
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)374 static int __check_block_validity(struct inode *inode, const char *func,
375 unsigned int line,
376 struct ext4_map_blocks *map)
377 {
378 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379 map->m_len)) {
380 ext4_error_inode(inode, func, line, map->m_pblk,
381 "lblock %lu mapped to illegal pblock "
382 "(length %d)", (unsigned long) map->m_lblk,
383 map->m_len);
384 return -EIO;
385 }
386 return 0;
387 }
388
389 #define check_block_validity(inode, map) \
390 __check_block_validity((inode), __func__, __LINE__, (map))
391
392 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)393 static void ext4_map_blocks_es_recheck(handle_t *handle,
394 struct inode *inode,
395 struct ext4_map_blocks *es_map,
396 struct ext4_map_blocks *map,
397 int flags)
398 {
399 int retval;
400
401 map->m_flags = 0;
402 /*
403 * There is a race window that the result is not the same.
404 * e.g. xfstests #223 when dioread_nolock enables. The reason
405 * is that we lookup a block mapping in extent status tree with
406 * out taking i_data_sem. So at the time the unwritten extent
407 * could be converted.
408 */
409 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
410 down_read(&EXT4_I(inode)->i_data_sem);
411 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
412 retval = ext4_ext_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
414 } else {
415 retval = ext4_ind_map_blocks(handle, inode, map, flags &
416 EXT4_GET_BLOCKS_KEEP_SIZE);
417 }
418 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
419 up_read((&EXT4_I(inode)->i_data_sem));
420 /*
421 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
422 * because it shouldn't be marked in es_map->m_flags.
423 */
424 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
425
426 /*
427 * We don't check m_len because extent will be collpased in status
428 * tree. So the m_len might not equal.
429 */
430 if (es_map->m_lblk != map->m_lblk ||
431 es_map->m_flags != map->m_flags ||
432 es_map->m_pblk != map->m_pblk) {
433 printk("ES cache assertion failed for inode: %lu "
434 "es_cached ex [%d/%d/%llu/%x] != "
435 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
436 inode->i_ino, es_map->m_lblk, es_map->m_len,
437 es_map->m_pblk, es_map->m_flags, map->m_lblk,
438 map->m_len, map->m_pblk, map->m_flags,
439 retval, flags);
440 }
441 }
442 #endif /* ES_AGGRESSIVE_TEST */
443
444 /*
445 * The ext4_map_blocks() function tries to look up the requested blocks,
446 * and returns if the blocks are already mapped.
447 *
448 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
449 * and store the allocated blocks in the result buffer head and mark it
450 * mapped.
451 *
452 * If file type is extents based, it will call ext4_ext_map_blocks(),
453 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
454 * based files
455 *
456 * On success, it returns the number of blocks being mapped or allocated.
457 * if create==0 and the blocks are pre-allocated and unwritten block,
458 * the result buffer head is unmapped. If the create ==1, it will make sure
459 * the buffer head is mapped.
460 *
461 * It returns 0 if plain look up failed (blocks have not been allocated), in
462 * that case, buffer head is unmapped
463 *
464 * It returns the error in case of allocation failure.
465 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)466 int ext4_map_blocks(handle_t *handle, struct inode *inode,
467 struct ext4_map_blocks *map, int flags)
468 {
469 struct extent_status es;
470 int retval;
471 int ret = 0;
472 #ifdef ES_AGGRESSIVE_TEST
473 struct ext4_map_blocks orig_map;
474
475 memcpy(&orig_map, map, sizeof(*map));
476 #endif
477
478 map->m_flags = 0;
479 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
480 "logical block %lu\n", inode->i_ino, flags, map->m_len,
481 (unsigned long) map->m_lblk);
482
483 /*
484 * ext4_map_blocks returns an int, and m_len is an unsigned int
485 */
486 if (unlikely(map->m_len > INT_MAX))
487 map->m_len = INT_MAX;
488
489 /* We can handle the block number less than EXT_MAX_BLOCKS */
490 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
491 return -EIO;
492
493 /* Lookup extent status tree firstly */
494 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
495 ext4_es_lru_add(inode);
496 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
497 map->m_pblk = ext4_es_pblock(&es) +
498 map->m_lblk - es.es_lblk;
499 map->m_flags |= ext4_es_is_written(&es) ?
500 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
501 retval = es.es_len - (map->m_lblk - es.es_lblk);
502 if (retval > map->m_len)
503 retval = map->m_len;
504 map->m_len = retval;
505 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
506 retval = 0;
507 } else {
508 BUG_ON(1);
509 }
510 #ifdef ES_AGGRESSIVE_TEST
511 ext4_map_blocks_es_recheck(handle, inode, map,
512 &orig_map, flags);
513 #endif
514 goto found;
515 }
516
517 /*
518 * Try to see if we can get the block without requesting a new
519 * file system block.
520 */
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read(&EXT4_I(inode)->i_data_sem);
523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
526 } else {
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
529 }
530 if (retval > 0) {
531 unsigned int status;
532
533 if (unlikely(retval != map->m_len)) {
534 ext4_warning(inode->i_sb,
535 "ES len assertion failed for inode "
536 "%lu: retval %d != map->m_len %d",
537 inode->i_ino, retval, map->m_len);
538 WARN_ON(1);
539 }
540
541 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
542 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
543 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
544 !(status & EXTENT_STATUS_WRITTEN) &&
545 ext4_find_delalloc_range(inode, map->m_lblk,
546 map->m_lblk + map->m_len - 1))
547 status |= EXTENT_STATUS_DELAYED;
548 ret = ext4_es_insert_extent(inode, map->m_lblk,
549 map->m_len, map->m_pblk, status);
550 if (ret < 0)
551 retval = ret;
552 }
553 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
554 up_read((&EXT4_I(inode)->i_data_sem));
555
556 found:
557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
558 ret = check_block_validity(inode, map);
559 if (ret != 0)
560 return ret;
561 }
562
563 /* If it is only a block(s) look up */
564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
565 return retval;
566
567 /*
568 * Returns if the blocks have already allocated
569 *
570 * Note that if blocks have been preallocated
571 * ext4_ext_get_block() returns the create = 0
572 * with buffer head unmapped.
573 */
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
575 /*
576 * If we need to convert extent to unwritten
577 * we continue and do the actual work in
578 * ext4_ext_map_blocks()
579 */
580 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
581 return retval;
582
583 /*
584 * Here we clear m_flags because after allocating an new extent,
585 * it will be set again.
586 */
587 map->m_flags &= ~EXT4_MAP_FLAGS;
588
589 /*
590 * New blocks allocate and/or writing to unwritten extent
591 * will possibly result in updating i_data, so we take
592 * the write lock of i_data_sem, and call get_block()
593 * with create == 1 flag.
594 */
595 down_write(&EXT4_I(inode)->i_data_sem);
596
597 /*
598 * We need to check for EXT4 here because migrate
599 * could have changed the inode type in between
600 */
601 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
602 retval = ext4_ext_map_blocks(handle, inode, map, flags);
603 } else {
604 retval = ext4_ind_map_blocks(handle, inode, map, flags);
605
606 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
607 /*
608 * We allocated new blocks which will result in
609 * i_data's format changing. Force the migrate
610 * to fail by clearing migrate flags
611 */
612 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
613 }
614
615 /*
616 * Update reserved blocks/metadata blocks after successful
617 * block allocation which had been deferred till now. We don't
618 * support fallocate for non extent files. So we can update
619 * reserve space here.
620 */
621 if ((retval > 0) &&
622 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
623 ext4_da_update_reserve_space(inode, retval, 1);
624 }
625
626 if (retval > 0) {
627 unsigned int status;
628
629 if (unlikely(retval != map->m_len)) {
630 ext4_warning(inode->i_sb,
631 "ES len assertion failed for inode "
632 "%lu: retval %d != map->m_len %d",
633 inode->i_ino, retval, map->m_len);
634 WARN_ON(1);
635 }
636
637 /*
638 * If the extent has been zeroed out, we don't need to update
639 * extent status tree.
640 */
641 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
642 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
643 if (ext4_es_is_written(&es))
644 goto has_zeroout;
645 }
646 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649 !(status & EXTENT_STATUS_WRITTEN) &&
650 ext4_find_delalloc_range(inode, map->m_lblk,
651 map->m_lblk + map->m_len - 1))
652 status |= EXTENT_STATUS_DELAYED;
653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
654 map->m_pblk, status);
655 if (ret < 0)
656 retval = ret;
657 }
658
659 has_zeroout:
660 up_write((&EXT4_I(inode)->i_data_sem));
661 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
662 ret = check_block_validity(inode, map);
663 if (ret != 0)
664 return ret;
665
666 /*
667 * Inodes with freshly allocated blocks where contents will be
668 * visible after transaction commit must be on transaction's
669 * ordered data list.
670 */
671 if (map->m_flags & EXT4_MAP_NEW &&
672 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
673 !IS_NOQUOTA(inode) &&
674 ext4_should_order_data(inode)) {
675 ret = ext4_jbd2_file_inode(handle, inode);
676 if (ret)
677 return ret;
678 }
679 }
680 return retval;
681 }
682
683 /* Maximum number of blocks we map for direct IO at once. */
684 #define DIO_MAX_BLOCKS 4096
685
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)686 static int _ext4_get_block(struct inode *inode, sector_t iblock,
687 struct buffer_head *bh, int flags)
688 {
689 handle_t *handle = ext4_journal_current_handle();
690 struct ext4_map_blocks map;
691 int ret = 0, started = 0;
692 int dio_credits;
693
694 if (ext4_has_inline_data(inode))
695 return -ERANGE;
696
697 map.m_lblk = iblock;
698 map.m_len = bh->b_size >> inode->i_blkbits;
699
700 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
701 /* Direct IO write... */
702 if (map.m_len > DIO_MAX_BLOCKS)
703 map.m_len = DIO_MAX_BLOCKS;
704 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
705 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
706 dio_credits);
707 if (IS_ERR(handle)) {
708 ret = PTR_ERR(handle);
709 return ret;
710 }
711 started = 1;
712 }
713
714 ret = ext4_map_blocks(handle, inode, &map, flags);
715 if (ret > 0) {
716 ext4_io_end_t *io_end = ext4_inode_aio(inode);
717
718 map_bh(bh, inode->i_sb, map.m_pblk);
719 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
720 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
721 set_buffer_defer_completion(bh);
722 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
723 ret = 0;
724 }
725 if (started)
726 ext4_journal_stop(handle);
727 return ret;
728 }
729
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)730 int ext4_get_block(struct inode *inode, sector_t iblock,
731 struct buffer_head *bh, int create)
732 {
733 return _ext4_get_block(inode, iblock, bh,
734 create ? EXT4_GET_BLOCKS_CREATE : 0);
735 }
736
737 /*
738 * `handle' can be NULL if create is zero
739 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create)740 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
741 ext4_lblk_t block, int create)
742 {
743 struct ext4_map_blocks map;
744 struct buffer_head *bh;
745 int err;
746
747 J_ASSERT(handle != NULL || create == 0);
748
749 map.m_lblk = block;
750 map.m_len = 1;
751 err = ext4_map_blocks(handle, inode, &map,
752 create ? EXT4_GET_BLOCKS_CREATE : 0);
753
754 if (err == 0)
755 return create ? ERR_PTR(-ENOSPC) : NULL;
756 if (err < 0)
757 return ERR_PTR(err);
758
759 bh = sb_getblk(inode->i_sb, map.m_pblk);
760 if (unlikely(!bh))
761 return ERR_PTR(-ENOMEM);
762 if (map.m_flags & EXT4_MAP_NEW) {
763 J_ASSERT(create != 0);
764 J_ASSERT(handle != NULL);
765
766 /*
767 * Now that we do not always journal data, we should
768 * keep in mind whether this should always journal the
769 * new buffer as metadata. For now, regular file
770 * writes use ext4_get_block instead, so it's not a
771 * problem.
772 */
773 lock_buffer(bh);
774 BUFFER_TRACE(bh, "call get_create_access");
775 err = ext4_journal_get_create_access(handle, bh);
776 if (unlikely(err)) {
777 unlock_buffer(bh);
778 goto errout;
779 }
780 if (!buffer_uptodate(bh)) {
781 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
782 set_buffer_uptodate(bh);
783 }
784 unlock_buffer(bh);
785 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
786 err = ext4_handle_dirty_metadata(handle, inode, bh);
787 if (unlikely(err))
788 goto errout;
789 } else
790 BUFFER_TRACE(bh, "not a new buffer");
791 return bh;
792 errout:
793 brelse(bh);
794 return ERR_PTR(err);
795 }
796
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int create)797 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
798 ext4_lblk_t block, int create)
799 {
800 struct buffer_head *bh;
801
802 bh = ext4_getblk(handle, inode, block, create);
803 if (IS_ERR(bh))
804 return bh;
805 if (!bh || buffer_uptodate(bh))
806 return bh;
807 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
808 wait_on_buffer(bh);
809 if (buffer_uptodate(bh))
810 return bh;
811 put_bh(bh);
812 return ERR_PTR(-EIO);
813 }
814
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))815 int ext4_walk_page_buffers(handle_t *handle,
816 struct buffer_head *head,
817 unsigned from,
818 unsigned to,
819 int *partial,
820 int (*fn)(handle_t *handle,
821 struct buffer_head *bh))
822 {
823 struct buffer_head *bh;
824 unsigned block_start, block_end;
825 unsigned blocksize = head->b_size;
826 int err, ret = 0;
827 struct buffer_head *next;
828
829 for (bh = head, block_start = 0;
830 ret == 0 && (bh != head || !block_start);
831 block_start = block_end, bh = next) {
832 next = bh->b_this_page;
833 block_end = block_start + blocksize;
834 if (block_end <= from || block_start >= to) {
835 if (partial && !buffer_uptodate(bh))
836 *partial = 1;
837 continue;
838 }
839 err = (*fn)(handle, bh);
840 if (!ret)
841 ret = err;
842 }
843 return ret;
844 }
845
846 /*
847 * To preserve ordering, it is essential that the hole instantiation and
848 * the data write be encapsulated in a single transaction. We cannot
849 * close off a transaction and start a new one between the ext4_get_block()
850 * and the commit_write(). So doing the jbd2_journal_start at the start of
851 * prepare_write() is the right place.
852 *
853 * Also, this function can nest inside ext4_writepage(). In that case, we
854 * *know* that ext4_writepage() has generated enough buffer credits to do the
855 * whole page. So we won't block on the journal in that case, which is good,
856 * because the caller may be PF_MEMALLOC.
857 *
858 * By accident, ext4 can be reentered when a transaction is open via
859 * quota file writes. If we were to commit the transaction while thus
860 * reentered, there can be a deadlock - we would be holding a quota
861 * lock, and the commit would never complete if another thread had a
862 * transaction open and was blocking on the quota lock - a ranking
863 * violation.
864 *
865 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
866 * will _not_ run commit under these circumstances because handle->h_ref
867 * is elevated. We'll still have enough credits for the tiny quotafile
868 * write.
869 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)870 int do_journal_get_write_access(handle_t *handle,
871 struct buffer_head *bh)
872 {
873 int dirty = buffer_dirty(bh);
874 int ret;
875
876 if (!buffer_mapped(bh) || buffer_freed(bh))
877 return 0;
878 /*
879 * __block_write_begin() could have dirtied some buffers. Clean
880 * the dirty bit as jbd2_journal_get_write_access() could complain
881 * otherwise about fs integrity issues. Setting of the dirty bit
882 * by __block_write_begin() isn't a real problem here as we clear
883 * the bit before releasing a page lock and thus writeback cannot
884 * ever write the buffer.
885 */
886 if (dirty)
887 clear_buffer_dirty(bh);
888 BUFFER_TRACE(bh, "get write access");
889 ret = ext4_journal_get_write_access(handle, bh);
890 if (!ret && dirty)
891 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
892 return ret;
893 }
894
895 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
896 struct buffer_head *bh_result, int create);
897
898 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)899 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
900 get_block_t *get_block)
901 {
902 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
903 unsigned to = from + len;
904 struct inode *inode = page->mapping->host;
905 unsigned block_start, block_end;
906 sector_t block;
907 int err = 0;
908 unsigned blocksize = inode->i_sb->s_blocksize;
909 unsigned bbits;
910 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
911 bool decrypt = false;
912
913 BUG_ON(!PageLocked(page));
914 BUG_ON(from > PAGE_CACHE_SIZE);
915 BUG_ON(to > PAGE_CACHE_SIZE);
916 BUG_ON(from > to);
917
918 if (!page_has_buffers(page))
919 create_empty_buffers(page, blocksize, 0);
920 head = page_buffers(page);
921 bbits = ilog2(blocksize);
922 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
923
924 for (bh = head, block_start = 0; bh != head || !block_start;
925 block++, block_start = block_end, bh = bh->b_this_page) {
926 block_end = block_start + blocksize;
927 if (block_end <= from || block_start >= to) {
928 if (PageUptodate(page)) {
929 if (!buffer_uptodate(bh))
930 set_buffer_uptodate(bh);
931 }
932 continue;
933 }
934 if (buffer_new(bh))
935 clear_buffer_new(bh);
936 if (!buffer_mapped(bh)) {
937 WARN_ON(bh->b_size != blocksize);
938 err = get_block(inode, block, bh, 1);
939 if (err)
940 break;
941 if (buffer_new(bh)) {
942 unmap_underlying_metadata(bh->b_bdev,
943 bh->b_blocknr);
944 if (PageUptodate(page)) {
945 clear_buffer_new(bh);
946 set_buffer_uptodate(bh);
947 mark_buffer_dirty(bh);
948 continue;
949 }
950 if (block_end > to || block_start < from)
951 zero_user_segments(page, to, block_end,
952 block_start, from);
953 continue;
954 }
955 }
956 if (PageUptodate(page)) {
957 if (!buffer_uptodate(bh))
958 set_buffer_uptodate(bh);
959 continue;
960 }
961 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
962 !buffer_unwritten(bh) &&
963 (block_start < from || block_end > to)) {
964 ll_rw_block(READ, 1, &bh);
965 *wait_bh++ = bh;
966 decrypt = ext4_encrypted_inode(inode) &&
967 S_ISREG(inode->i_mode);
968 }
969 }
970 /*
971 * If we issued read requests, let them complete.
972 */
973 while (wait_bh > wait) {
974 wait_on_buffer(*--wait_bh);
975 if (!buffer_uptodate(*wait_bh))
976 err = -EIO;
977 }
978 if (unlikely(err))
979 page_zero_new_buffers(page, from, to);
980 else if (decrypt)
981 err = ext4_decrypt(page);
982 return err;
983 }
984 #endif
985
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)986 static int ext4_write_begin(struct file *file, struct address_space *mapping,
987 loff_t pos, unsigned len, unsigned flags,
988 struct page **pagep, void **fsdata)
989 {
990 struct inode *inode = mapping->host;
991 int ret, needed_blocks;
992 handle_t *handle;
993 int retries = 0;
994 struct page *page;
995 pgoff_t index;
996 unsigned from, to;
997
998 if (trace_android_fs_datawrite_start_enabled()) {
999 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1000
1001 path = android_fstrace_get_pathname(pathbuf,
1002 MAX_TRACE_PATHBUF_LEN,
1003 inode);
1004 trace_android_fs_datawrite_start(inode, pos, len,
1005 current->pid, path,
1006 current->comm);
1007 }
1008 trace_ext4_write_begin(inode, pos, len, flags);
1009 /*
1010 * Reserve one block more for addition to orphan list in case
1011 * we allocate blocks but write fails for some reason
1012 */
1013 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1014 index = pos >> PAGE_CACHE_SHIFT;
1015 from = pos & (PAGE_CACHE_SIZE - 1);
1016 to = from + len;
1017
1018 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1019 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1020 flags, pagep);
1021 if (ret < 0)
1022 return ret;
1023 if (ret == 1)
1024 return 0;
1025 }
1026
1027 /*
1028 * grab_cache_page_write_begin() can take a long time if the
1029 * system is thrashing due to memory pressure, or if the page
1030 * is being written back. So grab it first before we start
1031 * the transaction handle. This also allows us to allocate
1032 * the page (if needed) without using GFP_NOFS.
1033 */
1034 retry_grab:
1035 page = grab_cache_page_write_begin(mapping, index, flags);
1036 if (!page)
1037 return -ENOMEM;
1038 unlock_page(page);
1039
1040 retry_journal:
1041 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1042 if (IS_ERR(handle)) {
1043 page_cache_release(page);
1044 return PTR_ERR(handle);
1045 }
1046
1047 lock_page(page);
1048 if (page->mapping != mapping) {
1049 /* The page got truncated from under us */
1050 unlock_page(page);
1051 page_cache_release(page);
1052 ext4_journal_stop(handle);
1053 goto retry_grab;
1054 }
1055 /* In case writeback began while the page was unlocked */
1056 wait_for_stable_page(page);
1057
1058 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1059 if (ext4_should_dioread_nolock(inode))
1060 ret = ext4_block_write_begin(page, pos, len,
1061 ext4_get_block_write);
1062 else
1063 ret = ext4_block_write_begin(page, pos, len,
1064 ext4_get_block);
1065 #else
1066 if (ext4_should_dioread_nolock(inode))
1067 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1068 else
1069 ret = __block_write_begin(page, pos, len, ext4_get_block);
1070 #endif
1071 if (!ret && ext4_should_journal_data(inode)) {
1072 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1073 from, to, NULL,
1074 do_journal_get_write_access);
1075 }
1076
1077 if (ret) {
1078 unlock_page(page);
1079 /*
1080 * __block_write_begin may have instantiated a few blocks
1081 * outside i_size. Trim these off again. Don't need
1082 * i_size_read because we hold i_mutex.
1083 *
1084 * Add inode to orphan list in case we crash before
1085 * truncate finishes
1086 */
1087 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1088 ext4_orphan_add(handle, inode);
1089
1090 ext4_journal_stop(handle);
1091 if (pos + len > inode->i_size) {
1092 ext4_truncate_failed_write(inode);
1093 /*
1094 * If truncate failed early the inode might
1095 * still be on the orphan list; we need to
1096 * make sure the inode is removed from the
1097 * orphan list in that case.
1098 */
1099 if (inode->i_nlink)
1100 ext4_orphan_del(NULL, inode);
1101 }
1102
1103 if (ret == -ENOSPC &&
1104 ext4_should_retry_alloc(inode->i_sb, &retries))
1105 goto retry_journal;
1106 page_cache_release(page);
1107 return ret;
1108 }
1109 *pagep = page;
1110 return ret;
1111 }
1112
1113 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1114 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1115 {
1116 int ret;
1117 if (!buffer_mapped(bh) || buffer_freed(bh))
1118 return 0;
1119 set_buffer_uptodate(bh);
1120 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1121 clear_buffer_meta(bh);
1122 clear_buffer_prio(bh);
1123 return ret;
1124 }
1125
1126 /*
1127 * We need to pick up the new inode size which generic_commit_write gave us
1128 * `file' can be NULL - eg, when called from page_symlink().
1129 *
1130 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1131 * buffers are managed internally.
1132 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1133 static int ext4_write_end(struct file *file,
1134 struct address_space *mapping,
1135 loff_t pos, unsigned len, unsigned copied,
1136 struct page *page, void *fsdata)
1137 {
1138 handle_t *handle = ext4_journal_current_handle();
1139 struct inode *inode = mapping->host;
1140 int ret = 0, ret2;
1141 int i_size_changed = 0;
1142
1143 trace_android_fs_datawrite_end(inode, pos, len);
1144 trace_ext4_write_end(inode, pos, len, copied);
1145 if (ext4_has_inline_data(inode)) {
1146 ret = ext4_write_inline_data_end(inode, pos, len,
1147 copied, page);
1148 if (ret < 0)
1149 goto errout;
1150 copied = ret;
1151 } else
1152 copied = block_write_end(file, mapping, pos,
1153 len, copied, page, fsdata);
1154 /*
1155 * it's important to update i_size while still holding page lock:
1156 * page writeout could otherwise come in and zero beyond i_size.
1157 */
1158 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1159 unlock_page(page);
1160 page_cache_release(page);
1161
1162 /*
1163 * Don't mark the inode dirty under page lock. First, it unnecessarily
1164 * makes the holding time of page lock longer. Second, it forces lock
1165 * ordering of page lock and transaction start for journaling
1166 * filesystems.
1167 */
1168 if (i_size_changed)
1169 ext4_mark_inode_dirty(handle, inode);
1170
1171 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1172 /* if we have allocated more blocks and copied
1173 * less. We will have blocks allocated outside
1174 * inode->i_size. So truncate them
1175 */
1176 ext4_orphan_add(handle, inode);
1177 errout:
1178 ret2 = ext4_journal_stop(handle);
1179 if (!ret)
1180 ret = ret2;
1181
1182 if (pos + len > inode->i_size) {
1183 ext4_truncate_failed_write(inode);
1184 /*
1185 * If truncate failed early the inode might still be
1186 * on the orphan list; we need to make sure the inode
1187 * is removed from the orphan list in that case.
1188 */
1189 if (inode->i_nlink)
1190 ext4_orphan_del(NULL, inode);
1191 }
1192
1193 return ret ? ret : copied;
1194 }
1195
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1196 static int ext4_journalled_write_end(struct file *file,
1197 struct address_space *mapping,
1198 loff_t pos, unsigned len, unsigned copied,
1199 struct page *page, void *fsdata)
1200 {
1201 handle_t *handle = ext4_journal_current_handle();
1202 struct inode *inode = mapping->host;
1203 int ret = 0, ret2;
1204 int partial = 0;
1205 unsigned from, to;
1206 int size_changed = 0;
1207
1208 trace_android_fs_datawrite_end(inode, pos, len);
1209 trace_ext4_journalled_write_end(inode, pos, len, copied);
1210 from = pos & (PAGE_CACHE_SIZE - 1);
1211 to = from + len;
1212
1213 BUG_ON(!ext4_handle_valid(handle));
1214
1215 if (ext4_has_inline_data(inode))
1216 copied = ext4_write_inline_data_end(inode, pos, len,
1217 copied, page);
1218 else {
1219 if (copied < len) {
1220 if (!PageUptodate(page))
1221 copied = 0;
1222 page_zero_new_buffers(page, from+copied, to);
1223 }
1224
1225 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1226 to, &partial, write_end_fn);
1227 if (!partial)
1228 SetPageUptodate(page);
1229 }
1230 size_changed = ext4_update_inode_size(inode, pos + copied);
1231 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1232 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1233 unlock_page(page);
1234 page_cache_release(page);
1235
1236 if (size_changed) {
1237 ret2 = ext4_mark_inode_dirty(handle, inode);
1238 if (!ret)
1239 ret = ret2;
1240 }
1241
1242 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1243 /* if we have allocated more blocks and copied
1244 * less. We will have blocks allocated outside
1245 * inode->i_size. So truncate them
1246 */
1247 ext4_orphan_add(handle, inode);
1248
1249 ret2 = ext4_journal_stop(handle);
1250 if (!ret)
1251 ret = ret2;
1252 if (pos + len > inode->i_size) {
1253 ext4_truncate_failed_write(inode);
1254 /*
1255 * If truncate failed early the inode might still be
1256 * on the orphan list; we need to make sure the inode
1257 * is removed from the orphan list in that case.
1258 */
1259 if (inode->i_nlink)
1260 ext4_orphan_del(NULL, inode);
1261 }
1262
1263 return ret ? ret : copied;
1264 }
1265
1266 /*
1267 * Reserve a single cluster located at lblock
1268 */
ext4_da_reserve_space(struct inode * inode,ext4_lblk_t lblock)1269 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1270 {
1271 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1272 struct ext4_inode_info *ei = EXT4_I(inode);
1273 unsigned int md_needed;
1274 int ret;
1275
1276 /*
1277 * We will charge metadata quota at writeout time; this saves
1278 * us from metadata over-estimation, though we may go over by
1279 * a small amount in the end. Here we just reserve for data.
1280 */
1281 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1282 if (ret)
1283 return ret;
1284
1285 /*
1286 * recalculate the amount of metadata blocks to reserve
1287 * in order to allocate nrblocks
1288 * worse case is one extent per block
1289 */
1290 spin_lock(&ei->i_block_reservation_lock);
1291 /*
1292 * ext4_calc_metadata_amount() has side effects, which we have
1293 * to be prepared undo if we fail to claim space.
1294 */
1295 md_needed = 0;
1296 trace_ext4_da_reserve_space(inode, 0);
1297
1298 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1299 spin_unlock(&ei->i_block_reservation_lock);
1300 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1301 return -ENOSPC;
1302 }
1303 ei->i_reserved_data_blocks++;
1304 spin_unlock(&ei->i_block_reservation_lock);
1305
1306 return 0; /* success */
1307 }
1308
ext4_da_release_space(struct inode * inode,int to_free)1309 static void ext4_da_release_space(struct inode *inode, int to_free)
1310 {
1311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1312 struct ext4_inode_info *ei = EXT4_I(inode);
1313
1314 if (!to_free)
1315 return; /* Nothing to release, exit */
1316
1317 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1318
1319 trace_ext4_da_release_space(inode, to_free);
1320 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1321 /*
1322 * if there aren't enough reserved blocks, then the
1323 * counter is messed up somewhere. Since this
1324 * function is called from invalidate page, it's
1325 * harmless to return without any action.
1326 */
1327 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1328 "ino %lu, to_free %d with only %d reserved "
1329 "data blocks", inode->i_ino, to_free,
1330 ei->i_reserved_data_blocks);
1331 WARN_ON(1);
1332 to_free = ei->i_reserved_data_blocks;
1333 }
1334 ei->i_reserved_data_blocks -= to_free;
1335
1336 /* update fs dirty data blocks counter */
1337 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1338
1339 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1340
1341 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1342 }
1343
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1344 static void ext4_da_page_release_reservation(struct page *page,
1345 unsigned int offset,
1346 unsigned int length)
1347 {
1348 int to_release = 0, contiguous_blks = 0;
1349 struct buffer_head *head, *bh;
1350 unsigned int curr_off = 0;
1351 struct inode *inode = page->mapping->host;
1352 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1353 unsigned int stop = offset + length;
1354 int num_clusters;
1355 ext4_fsblk_t lblk;
1356
1357 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1358
1359 head = page_buffers(page);
1360 bh = head;
1361 do {
1362 unsigned int next_off = curr_off + bh->b_size;
1363
1364 if (next_off > stop)
1365 break;
1366
1367 if ((offset <= curr_off) && (buffer_delay(bh))) {
1368 to_release++;
1369 contiguous_blks++;
1370 clear_buffer_delay(bh);
1371 } else if (contiguous_blks) {
1372 lblk = page->index <<
1373 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1374 lblk += (curr_off >> inode->i_blkbits) -
1375 contiguous_blks;
1376 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1377 contiguous_blks = 0;
1378 }
1379 curr_off = next_off;
1380 } while ((bh = bh->b_this_page) != head);
1381
1382 if (contiguous_blks) {
1383 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1384 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1385 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1386 }
1387
1388 /* If we have released all the blocks belonging to a cluster, then we
1389 * need to release the reserved space for that cluster. */
1390 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1391 while (num_clusters > 0) {
1392 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1393 ((num_clusters - 1) << sbi->s_cluster_bits);
1394 if (sbi->s_cluster_ratio == 1 ||
1395 !ext4_find_delalloc_cluster(inode, lblk))
1396 ext4_da_release_space(inode, 1);
1397
1398 num_clusters--;
1399 }
1400 }
1401
1402 /*
1403 * Delayed allocation stuff
1404 */
1405
1406 struct mpage_da_data {
1407 struct inode *inode;
1408 struct writeback_control *wbc;
1409
1410 pgoff_t first_page; /* The first page to write */
1411 pgoff_t next_page; /* Current page to examine */
1412 pgoff_t last_page; /* Last page to examine */
1413 /*
1414 * Extent to map - this can be after first_page because that can be
1415 * fully mapped. We somewhat abuse m_flags to store whether the extent
1416 * is delalloc or unwritten.
1417 */
1418 struct ext4_map_blocks map;
1419 struct ext4_io_submit io_submit; /* IO submission data */
1420 };
1421
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1422 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1423 bool invalidate)
1424 {
1425 int nr_pages, i;
1426 pgoff_t index, end;
1427 struct pagevec pvec;
1428 struct inode *inode = mpd->inode;
1429 struct address_space *mapping = inode->i_mapping;
1430
1431 /* This is necessary when next_page == 0. */
1432 if (mpd->first_page >= mpd->next_page)
1433 return;
1434
1435 index = mpd->first_page;
1436 end = mpd->next_page - 1;
1437 if (invalidate) {
1438 ext4_lblk_t start, last;
1439 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1440 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1441 ext4_es_remove_extent(inode, start, last - start + 1);
1442 }
1443
1444 pagevec_init(&pvec, 0);
1445 while (index <= end) {
1446 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1447 if (nr_pages == 0)
1448 break;
1449 for (i = 0; i < nr_pages; i++) {
1450 struct page *page = pvec.pages[i];
1451 if (page->index > end)
1452 break;
1453 BUG_ON(!PageLocked(page));
1454 BUG_ON(PageWriteback(page));
1455 if (invalidate) {
1456 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1457 ClearPageUptodate(page);
1458 }
1459 unlock_page(page);
1460 }
1461 index = pvec.pages[nr_pages - 1]->index + 1;
1462 pagevec_release(&pvec);
1463 }
1464 }
1465
ext4_print_free_blocks(struct inode * inode)1466 static void ext4_print_free_blocks(struct inode *inode)
1467 {
1468 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1469 struct super_block *sb = inode->i_sb;
1470 struct ext4_inode_info *ei = EXT4_I(inode);
1471
1472 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1473 EXT4_C2B(EXT4_SB(inode->i_sb),
1474 ext4_count_free_clusters(sb)));
1475 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1476 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1477 (long long) EXT4_C2B(EXT4_SB(sb),
1478 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1479 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1480 (long long) EXT4_C2B(EXT4_SB(sb),
1481 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1482 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1483 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1484 ei->i_reserved_data_blocks);
1485 return;
1486 }
1487
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1488 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1489 {
1490 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1491 }
1492
1493 /*
1494 * This function is grabs code from the very beginning of
1495 * ext4_map_blocks, but assumes that the caller is from delayed write
1496 * time. This function looks up the requested blocks and sets the
1497 * buffer delay bit under the protection of i_data_sem.
1498 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1499 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1500 struct ext4_map_blocks *map,
1501 struct buffer_head *bh)
1502 {
1503 struct extent_status es;
1504 int retval;
1505 sector_t invalid_block = ~((sector_t) 0xffff);
1506 #ifdef ES_AGGRESSIVE_TEST
1507 struct ext4_map_blocks orig_map;
1508
1509 memcpy(&orig_map, map, sizeof(*map));
1510 #endif
1511
1512 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1513 invalid_block = ~0;
1514
1515 map->m_flags = 0;
1516 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1517 "logical block %lu\n", inode->i_ino, map->m_len,
1518 (unsigned long) map->m_lblk);
1519
1520 /* Lookup extent status tree firstly */
1521 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1522 ext4_es_lru_add(inode);
1523 if (ext4_es_is_hole(&es)) {
1524 retval = 0;
1525 down_read(&EXT4_I(inode)->i_data_sem);
1526 goto add_delayed;
1527 }
1528
1529 /*
1530 * Delayed extent could be allocated by fallocate.
1531 * So we need to check it.
1532 */
1533 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1534 map_bh(bh, inode->i_sb, invalid_block);
1535 set_buffer_new(bh);
1536 set_buffer_delay(bh);
1537 return 0;
1538 }
1539
1540 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1541 retval = es.es_len - (iblock - es.es_lblk);
1542 if (retval > map->m_len)
1543 retval = map->m_len;
1544 map->m_len = retval;
1545 if (ext4_es_is_written(&es))
1546 map->m_flags |= EXT4_MAP_MAPPED;
1547 else if (ext4_es_is_unwritten(&es))
1548 map->m_flags |= EXT4_MAP_UNWRITTEN;
1549 else
1550 BUG_ON(1);
1551
1552 #ifdef ES_AGGRESSIVE_TEST
1553 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1554 #endif
1555 return retval;
1556 }
1557
1558 /*
1559 * Try to see if we can get the block without requesting a new
1560 * file system block.
1561 */
1562 down_read(&EXT4_I(inode)->i_data_sem);
1563 if (ext4_has_inline_data(inode)) {
1564 /*
1565 * We will soon create blocks for this page, and let
1566 * us pretend as if the blocks aren't allocated yet.
1567 * In case of clusters, we have to handle the work
1568 * of mapping from cluster so that the reserved space
1569 * is calculated properly.
1570 */
1571 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1572 ext4_find_delalloc_cluster(inode, map->m_lblk))
1573 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1574 retval = 0;
1575 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1576 retval = ext4_ext_map_blocks(NULL, inode, map,
1577 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1578 else
1579 retval = ext4_ind_map_blocks(NULL, inode, map,
1580 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1581
1582 add_delayed:
1583 if (retval == 0) {
1584 int ret;
1585 /*
1586 * XXX: __block_prepare_write() unmaps passed block,
1587 * is it OK?
1588 */
1589 /*
1590 * If the block was allocated from previously allocated cluster,
1591 * then we don't need to reserve it again. However we still need
1592 * to reserve metadata for every block we're going to write.
1593 */
1594 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1595 ret = ext4_da_reserve_space(inode, iblock);
1596 if (ret) {
1597 /* not enough space to reserve */
1598 retval = ret;
1599 goto out_unlock;
1600 }
1601 }
1602
1603 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1604 ~0, EXTENT_STATUS_DELAYED);
1605 if (ret) {
1606 retval = ret;
1607 goto out_unlock;
1608 }
1609
1610 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1611 * and it should not appear on the bh->b_state.
1612 */
1613 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1614
1615 map_bh(bh, inode->i_sb, invalid_block);
1616 set_buffer_new(bh);
1617 set_buffer_delay(bh);
1618 } else if (retval > 0) {
1619 int ret;
1620 unsigned int status;
1621
1622 if (unlikely(retval != map->m_len)) {
1623 ext4_warning(inode->i_sb,
1624 "ES len assertion failed for inode "
1625 "%lu: retval %d != map->m_len %d",
1626 inode->i_ino, retval, map->m_len);
1627 WARN_ON(1);
1628 }
1629
1630 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1631 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1632 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1633 map->m_pblk, status);
1634 if (ret != 0)
1635 retval = ret;
1636 }
1637
1638 out_unlock:
1639 up_read((&EXT4_I(inode)->i_data_sem));
1640
1641 return retval;
1642 }
1643
1644 /*
1645 * This is a special get_block_t callback which is used by
1646 * ext4_da_write_begin(). It will either return mapped block or
1647 * reserve space for a single block.
1648 *
1649 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1650 * We also have b_blocknr = -1 and b_bdev initialized properly
1651 *
1652 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1653 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1654 * initialized properly.
1655 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1656 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1657 struct buffer_head *bh, int create)
1658 {
1659 struct ext4_map_blocks map;
1660 int ret = 0;
1661
1662 BUG_ON(create == 0);
1663 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1664
1665 map.m_lblk = iblock;
1666 map.m_len = 1;
1667
1668 /*
1669 * first, we need to know whether the block is allocated already
1670 * preallocated blocks are unmapped but should treated
1671 * the same as allocated blocks.
1672 */
1673 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1674 if (ret <= 0)
1675 return ret;
1676
1677 map_bh(bh, inode->i_sb, map.m_pblk);
1678 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1679
1680 if (buffer_unwritten(bh)) {
1681 /* A delayed write to unwritten bh should be marked
1682 * new and mapped. Mapped ensures that we don't do
1683 * get_block multiple times when we write to the same
1684 * offset and new ensures that we do proper zero out
1685 * for partial write.
1686 */
1687 set_buffer_new(bh);
1688 set_buffer_mapped(bh);
1689 }
1690 return 0;
1691 }
1692
bget_one(handle_t * handle,struct buffer_head * bh)1693 static int bget_one(handle_t *handle, struct buffer_head *bh)
1694 {
1695 get_bh(bh);
1696 return 0;
1697 }
1698
bput_one(handle_t * handle,struct buffer_head * bh)1699 static int bput_one(handle_t *handle, struct buffer_head *bh)
1700 {
1701 put_bh(bh);
1702 return 0;
1703 }
1704
__ext4_journalled_writepage(struct page * page,unsigned int len)1705 static int __ext4_journalled_writepage(struct page *page,
1706 unsigned int len)
1707 {
1708 struct address_space *mapping = page->mapping;
1709 struct inode *inode = mapping->host;
1710 struct buffer_head *page_bufs = NULL;
1711 handle_t *handle = NULL;
1712 int ret = 0, err = 0;
1713 int inline_data = ext4_has_inline_data(inode);
1714 struct buffer_head *inode_bh = NULL;
1715
1716 ClearPageChecked(page);
1717
1718 if (inline_data) {
1719 BUG_ON(page->index != 0);
1720 BUG_ON(len > ext4_get_max_inline_size(inode));
1721 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1722 if (inode_bh == NULL)
1723 goto out;
1724 } else {
1725 page_bufs = page_buffers(page);
1726 if (!page_bufs) {
1727 BUG();
1728 goto out;
1729 }
1730 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1731 NULL, bget_one);
1732 }
1733 /*
1734 * We need to release the page lock before we start the
1735 * journal, so grab a reference so the page won't disappear
1736 * out from under us.
1737 */
1738 get_page(page);
1739 unlock_page(page);
1740
1741 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1742 ext4_writepage_trans_blocks(inode));
1743 if (IS_ERR(handle)) {
1744 ret = PTR_ERR(handle);
1745 put_page(page);
1746 goto out_no_pagelock;
1747 }
1748 BUG_ON(!ext4_handle_valid(handle));
1749
1750 lock_page(page);
1751 put_page(page);
1752 if (page->mapping != mapping) {
1753 /* The page got truncated from under us */
1754 ext4_journal_stop(handle);
1755 ret = 0;
1756 goto out;
1757 }
1758
1759 if (inline_data) {
1760 BUFFER_TRACE(inode_bh, "get write access");
1761 ret = ext4_journal_get_write_access(handle, inode_bh);
1762
1763 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1764
1765 } else {
1766 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1767 do_journal_get_write_access);
1768
1769 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1770 write_end_fn);
1771 }
1772 if (ret == 0)
1773 ret = err;
1774 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1775 err = ext4_journal_stop(handle);
1776 if (!ret)
1777 ret = err;
1778
1779 if (!ext4_has_inline_data(inode))
1780 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1781 NULL, bput_one);
1782 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1783 out:
1784 unlock_page(page);
1785 out_no_pagelock:
1786 brelse(inode_bh);
1787 return ret;
1788 }
1789
1790 /*
1791 * Note that we don't need to start a transaction unless we're journaling data
1792 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1793 * need to file the inode to the transaction's list in ordered mode because if
1794 * we are writing back data added by write(), the inode is already there and if
1795 * we are writing back data modified via mmap(), no one guarantees in which
1796 * transaction the data will hit the disk. In case we are journaling data, we
1797 * cannot start transaction directly because transaction start ranks above page
1798 * lock so we have to do some magic.
1799 *
1800 * This function can get called via...
1801 * - ext4_writepages after taking page lock (have journal handle)
1802 * - journal_submit_inode_data_buffers (no journal handle)
1803 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1804 * - grab_page_cache when doing write_begin (have journal handle)
1805 *
1806 * We don't do any block allocation in this function. If we have page with
1807 * multiple blocks we need to write those buffer_heads that are mapped. This
1808 * is important for mmaped based write. So if we do with blocksize 1K
1809 * truncate(f, 1024);
1810 * a = mmap(f, 0, 4096);
1811 * a[0] = 'a';
1812 * truncate(f, 4096);
1813 * we have in the page first buffer_head mapped via page_mkwrite call back
1814 * but other buffer_heads would be unmapped but dirty (dirty done via the
1815 * do_wp_page). So writepage should write the first block. If we modify
1816 * the mmap area beyond 1024 we will again get a page_fault and the
1817 * page_mkwrite callback will do the block allocation and mark the
1818 * buffer_heads mapped.
1819 *
1820 * We redirty the page if we have any buffer_heads that is either delay or
1821 * unwritten in the page.
1822 *
1823 * We can get recursively called as show below.
1824 *
1825 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1826 * ext4_writepage()
1827 *
1828 * But since we don't do any block allocation we should not deadlock.
1829 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1830 */
ext4_writepage(struct page * page,struct writeback_control * wbc)1831 static int ext4_writepage(struct page *page,
1832 struct writeback_control *wbc)
1833 {
1834 int ret = 0;
1835 loff_t size;
1836 unsigned int len;
1837 struct buffer_head *page_bufs = NULL;
1838 struct inode *inode = page->mapping->host;
1839 struct ext4_io_submit io_submit;
1840 bool keep_towrite = false;
1841
1842 trace_ext4_writepage(page);
1843 size = i_size_read(inode);
1844 if (page->index == size >> PAGE_CACHE_SHIFT)
1845 len = size & ~PAGE_CACHE_MASK;
1846 else
1847 len = PAGE_CACHE_SIZE;
1848
1849 page_bufs = page_buffers(page);
1850 /*
1851 * We cannot do block allocation or other extent handling in this
1852 * function. If there are buffers needing that, we have to redirty
1853 * the page. But we may reach here when we do a journal commit via
1854 * journal_submit_inode_data_buffers() and in that case we must write
1855 * allocated buffers to achieve data=ordered mode guarantees.
1856 *
1857 * Also, if there is only one buffer per page (the fs block
1858 * size == the page size), if one buffer needs block
1859 * allocation or needs to modify the extent tree to clear the
1860 * unwritten flag, we know that the page can't be written at
1861 * all, so we might as well refuse the write immediately.
1862 * Unfortunately if the block size != page size, we can't as
1863 * easily detect this case using ext4_walk_page_buffers(), but
1864 * for the extremely common case, this is an optimization that
1865 * skips a useless round trip through ext4_bio_write_page().
1866 */
1867 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1868 ext4_bh_delay_or_unwritten)) {
1869 redirty_page_for_writepage(wbc, page);
1870 if ((current->flags & PF_MEMALLOC) ||
1871 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1872 /*
1873 * For memory cleaning there's no point in writing only
1874 * some buffers. So just bail out. Warn if we came here
1875 * from direct reclaim.
1876 */
1877 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1878 == PF_MEMALLOC);
1879 unlock_page(page);
1880 return 0;
1881 }
1882 keep_towrite = true;
1883 }
1884
1885 if (PageChecked(page) && ext4_should_journal_data(inode))
1886 /*
1887 * It's mmapped pagecache. Add buffers and journal it. There
1888 * doesn't seem much point in redirtying the page here.
1889 */
1890 return __ext4_journalled_writepage(page, len);
1891
1892 ext4_io_submit_init(&io_submit, wbc);
1893 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1894 if (!io_submit.io_end) {
1895 redirty_page_for_writepage(wbc, page);
1896 unlock_page(page);
1897 return -ENOMEM;
1898 }
1899 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1900 ext4_io_submit(&io_submit);
1901 /* Drop io_end reference we got from init */
1902 ext4_put_io_end_defer(io_submit.io_end);
1903 return ret;
1904 }
1905
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)1906 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1907 {
1908 int len;
1909 loff_t size;
1910 int err;
1911
1912 BUG_ON(page->index != mpd->first_page);
1913 clear_page_dirty_for_io(page);
1914 /*
1915 * We have to be very careful here! Nothing protects writeback path
1916 * against i_size changes and the page can be writeably mapped into
1917 * page tables. So an application can be growing i_size and writing
1918 * data through mmap while writeback runs. clear_page_dirty_for_io()
1919 * write-protects our page in page tables and the page cannot get
1920 * written to again until we release page lock. So only after
1921 * clear_page_dirty_for_io() we are safe to sample i_size for
1922 * ext4_bio_write_page() to zero-out tail of the written page. We rely
1923 * on the barrier provided by TestClearPageDirty in
1924 * clear_page_dirty_for_io() to make sure i_size is really sampled only
1925 * after page tables are updated.
1926 */
1927 size = i_size_read(mpd->inode);
1928 if (page->index == size >> PAGE_SHIFT)
1929 len = size & ~PAGE_MASK;
1930 else
1931 len = PAGE_SIZE;
1932 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1933 if (!err)
1934 mpd->wbc->nr_to_write--;
1935 mpd->first_page++;
1936
1937 return err;
1938 }
1939
1940 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1941
1942 /*
1943 * mballoc gives us at most this number of blocks...
1944 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1945 * The rest of mballoc seems to handle chunks up to full group size.
1946 */
1947 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1948
1949 /*
1950 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1951 *
1952 * @mpd - extent of blocks
1953 * @lblk - logical number of the block in the file
1954 * @bh - buffer head we want to add to the extent
1955 *
1956 * The function is used to collect contig. blocks in the same state. If the
1957 * buffer doesn't require mapping for writeback and we haven't started the
1958 * extent of buffers to map yet, the function returns 'true' immediately - the
1959 * caller can write the buffer right away. Otherwise the function returns true
1960 * if the block has been added to the extent, false if the block couldn't be
1961 * added.
1962 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1963 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1964 struct buffer_head *bh)
1965 {
1966 struct ext4_map_blocks *map = &mpd->map;
1967
1968 /* Buffer that doesn't need mapping for writeback? */
1969 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1970 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1971 /* So far no extent to map => we write the buffer right away */
1972 if (map->m_len == 0)
1973 return true;
1974 return false;
1975 }
1976
1977 /* First block in the extent? */
1978 if (map->m_len == 0) {
1979 map->m_lblk = lblk;
1980 map->m_len = 1;
1981 map->m_flags = bh->b_state & BH_FLAGS;
1982 return true;
1983 }
1984
1985 /* Don't go larger than mballoc is willing to allocate */
1986 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1987 return false;
1988
1989 /* Can we merge the block to our big extent? */
1990 if (lblk == map->m_lblk + map->m_len &&
1991 (bh->b_state & BH_FLAGS) == map->m_flags) {
1992 map->m_len++;
1993 return true;
1994 }
1995 return false;
1996 }
1997
1998 /*
1999 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2000 *
2001 * @mpd - extent of blocks for mapping
2002 * @head - the first buffer in the page
2003 * @bh - buffer we should start processing from
2004 * @lblk - logical number of the block in the file corresponding to @bh
2005 *
2006 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2007 * the page for IO if all buffers in this page were mapped and there's no
2008 * accumulated extent of buffers to map or add buffers in the page to the
2009 * extent of buffers to map. The function returns 1 if the caller can continue
2010 * by processing the next page, 0 if it should stop adding buffers to the
2011 * extent to map because we cannot extend it anymore. It can also return value
2012 * < 0 in case of error during IO submission.
2013 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2014 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2015 struct buffer_head *head,
2016 struct buffer_head *bh,
2017 ext4_lblk_t lblk)
2018 {
2019 struct inode *inode = mpd->inode;
2020 int err;
2021 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2022 >> inode->i_blkbits;
2023
2024 do {
2025 BUG_ON(buffer_locked(bh));
2026
2027 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2028 /* Found extent to map? */
2029 if (mpd->map.m_len)
2030 return 0;
2031 /* Everything mapped so far and we hit EOF */
2032 break;
2033 }
2034 } while (lblk++, (bh = bh->b_this_page) != head);
2035 /* So far everything mapped? Submit the page for IO. */
2036 if (mpd->map.m_len == 0) {
2037 err = mpage_submit_page(mpd, head->b_page);
2038 if (err < 0)
2039 return err;
2040 }
2041 return lblk < blocks;
2042 }
2043
2044 /*
2045 * mpage_map_buffers - update buffers corresponding to changed extent and
2046 * submit fully mapped pages for IO
2047 *
2048 * @mpd - description of extent to map, on return next extent to map
2049 *
2050 * Scan buffers corresponding to changed extent (we expect corresponding pages
2051 * to be already locked) and update buffer state according to new extent state.
2052 * We map delalloc buffers to their physical location, clear unwritten bits,
2053 * and mark buffers as uninit when we perform writes to unwritten extents
2054 * and do extent conversion after IO is finished. If the last page is not fully
2055 * mapped, we update @map to the next extent in the last page that needs
2056 * mapping. Otherwise we submit the page for IO.
2057 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2058 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2059 {
2060 struct pagevec pvec;
2061 int nr_pages, i;
2062 struct inode *inode = mpd->inode;
2063 struct buffer_head *head, *bh;
2064 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2065 pgoff_t start, end;
2066 ext4_lblk_t lblk;
2067 sector_t pblock;
2068 int err;
2069
2070 start = mpd->map.m_lblk >> bpp_bits;
2071 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2072 lblk = start << bpp_bits;
2073 pblock = mpd->map.m_pblk;
2074
2075 pagevec_init(&pvec, 0);
2076 while (start <= end) {
2077 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2078 PAGEVEC_SIZE);
2079 if (nr_pages == 0)
2080 break;
2081 for (i = 0; i < nr_pages; i++) {
2082 struct page *page = pvec.pages[i];
2083
2084 if (page->index > end)
2085 break;
2086 /* Up to 'end' pages must be contiguous */
2087 BUG_ON(page->index != start);
2088 bh = head = page_buffers(page);
2089 do {
2090 if (lblk < mpd->map.m_lblk)
2091 continue;
2092 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2093 /*
2094 * Buffer after end of mapped extent.
2095 * Find next buffer in the page to map.
2096 */
2097 mpd->map.m_len = 0;
2098 mpd->map.m_flags = 0;
2099 /*
2100 * FIXME: If dioread_nolock supports
2101 * blocksize < pagesize, we need to make
2102 * sure we add size mapped so far to
2103 * io_end->size as the following call
2104 * can submit the page for IO.
2105 */
2106 err = mpage_process_page_bufs(mpd, head,
2107 bh, lblk);
2108 pagevec_release(&pvec);
2109 if (err > 0)
2110 err = 0;
2111 return err;
2112 }
2113 if (buffer_delay(bh)) {
2114 clear_buffer_delay(bh);
2115 bh->b_blocknr = pblock++;
2116 }
2117 clear_buffer_unwritten(bh);
2118 } while (lblk++, (bh = bh->b_this_page) != head);
2119
2120 /*
2121 * FIXME: This is going to break if dioread_nolock
2122 * supports blocksize < pagesize as we will try to
2123 * convert potentially unmapped parts of inode.
2124 */
2125 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2126 /* Page fully mapped - let IO run! */
2127 err = mpage_submit_page(mpd, page);
2128 if (err < 0) {
2129 pagevec_release(&pvec);
2130 return err;
2131 }
2132 start++;
2133 }
2134 pagevec_release(&pvec);
2135 }
2136 /* Extent fully mapped and matches with page boundary. We are done. */
2137 mpd->map.m_len = 0;
2138 mpd->map.m_flags = 0;
2139 return 0;
2140 }
2141
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2142 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2143 {
2144 struct inode *inode = mpd->inode;
2145 struct ext4_map_blocks *map = &mpd->map;
2146 int get_blocks_flags;
2147 int err, dioread_nolock;
2148
2149 trace_ext4_da_write_pages_extent(inode, map);
2150 /*
2151 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2152 * to convert an unwritten extent to be initialized (in the case
2153 * where we have written into one or more preallocated blocks). It is
2154 * possible that we're going to need more metadata blocks than
2155 * previously reserved. However we must not fail because we're in
2156 * writeback and there is nothing we can do about it so it might result
2157 * in data loss. So use reserved blocks to allocate metadata if
2158 * possible.
2159 *
2160 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2161 * the blocks in question are delalloc blocks. This indicates
2162 * that the blocks and quotas has already been checked when
2163 * the data was copied into the page cache.
2164 */
2165 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2166 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2167 dioread_nolock = ext4_should_dioread_nolock(inode);
2168 if (dioread_nolock)
2169 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2170 if (map->m_flags & (1 << BH_Delay))
2171 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2172
2173 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2174 if (err < 0)
2175 return err;
2176 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2177 if (!mpd->io_submit.io_end->handle &&
2178 ext4_handle_valid(handle)) {
2179 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2180 handle->h_rsv_handle = NULL;
2181 }
2182 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2183 }
2184
2185 BUG_ON(map->m_len == 0);
2186 if (map->m_flags & EXT4_MAP_NEW) {
2187 struct block_device *bdev = inode->i_sb->s_bdev;
2188 int i;
2189
2190 for (i = 0; i < map->m_len; i++)
2191 unmap_underlying_metadata(bdev, map->m_pblk + i);
2192 }
2193 return 0;
2194 }
2195
2196 /*
2197 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2198 * mpd->len and submit pages underlying it for IO
2199 *
2200 * @handle - handle for journal operations
2201 * @mpd - extent to map
2202 * @give_up_on_write - we set this to true iff there is a fatal error and there
2203 * is no hope of writing the data. The caller should discard
2204 * dirty pages to avoid infinite loops.
2205 *
2206 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2207 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2208 * them to initialized or split the described range from larger unwritten
2209 * extent. Note that we need not map all the described range since allocation
2210 * can return less blocks or the range is covered by more unwritten extents. We
2211 * cannot map more because we are limited by reserved transaction credits. On
2212 * the other hand we always make sure that the last touched page is fully
2213 * mapped so that it can be written out (and thus forward progress is
2214 * guaranteed). After mapping we submit all mapped pages for IO.
2215 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2216 static int mpage_map_and_submit_extent(handle_t *handle,
2217 struct mpage_da_data *mpd,
2218 bool *give_up_on_write)
2219 {
2220 struct inode *inode = mpd->inode;
2221 struct ext4_map_blocks *map = &mpd->map;
2222 int err;
2223 loff_t disksize;
2224 int progress = 0;
2225
2226 mpd->io_submit.io_end->offset =
2227 ((loff_t)map->m_lblk) << inode->i_blkbits;
2228 do {
2229 err = mpage_map_one_extent(handle, mpd);
2230 if (err < 0) {
2231 struct super_block *sb = inode->i_sb;
2232
2233 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2234 goto invalidate_dirty_pages;
2235 /*
2236 * Let the uper layers retry transient errors.
2237 * In the case of ENOSPC, if ext4_count_free_blocks()
2238 * is non-zero, a commit should free up blocks.
2239 */
2240 if ((err == -ENOMEM) ||
2241 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2242 if (progress)
2243 goto update_disksize;
2244 return err;
2245 }
2246 ext4_msg(sb, KERN_CRIT,
2247 "Delayed block allocation failed for "
2248 "inode %lu at logical offset %llu with"
2249 " max blocks %u with error %d",
2250 inode->i_ino,
2251 (unsigned long long)map->m_lblk,
2252 (unsigned)map->m_len, -err);
2253 ext4_msg(sb, KERN_CRIT,
2254 "This should not happen!! Data will "
2255 "be lost\n");
2256 if (err == -ENOSPC)
2257 ext4_print_free_blocks(inode);
2258 invalidate_dirty_pages:
2259 *give_up_on_write = true;
2260 return err;
2261 }
2262 progress = 1;
2263 /*
2264 * Update buffer state, submit mapped pages, and get us new
2265 * extent to map
2266 */
2267 err = mpage_map_and_submit_buffers(mpd);
2268 if (err < 0)
2269 goto update_disksize;
2270 } while (map->m_len);
2271
2272 update_disksize:
2273 /*
2274 * Update on-disk size after IO is submitted. Races with
2275 * truncate are avoided by checking i_size under i_data_sem.
2276 */
2277 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2278 if (disksize > EXT4_I(inode)->i_disksize) {
2279 int err2;
2280 loff_t i_size;
2281
2282 down_write(&EXT4_I(inode)->i_data_sem);
2283 i_size = i_size_read(inode);
2284 if (disksize > i_size)
2285 disksize = i_size;
2286 if (disksize > EXT4_I(inode)->i_disksize)
2287 EXT4_I(inode)->i_disksize = disksize;
2288 err2 = ext4_mark_inode_dirty(handle, inode);
2289 up_write(&EXT4_I(inode)->i_data_sem);
2290 if (err2)
2291 ext4_error(inode->i_sb,
2292 "Failed to mark inode %lu dirty",
2293 inode->i_ino);
2294 if (!err)
2295 err = err2;
2296 }
2297 return err;
2298 }
2299
2300 /*
2301 * Calculate the total number of credits to reserve for one writepages
2302 * iteration. This is called from ext4_writepages(). We map an extent of
2303 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2304 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2305 * bpp - 1 blocks in bpp different extents.
2306 */
ext4_da_writepages_trans_blocks(struct inode * inode)2307 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2308 {
2309 int bpp = ext4_journal_blocks_per_page(inode);
2310
2311 return ext4_meta_trans_blocks(inode,
2312 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2313 }
2314
2315 /*
2316 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2317 * and underlying extent to map
2318 *
2319 * @mpd - where to look for pages
2320 *
2321 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2322 * IO immediately. When we find a page which isn't mapped we start accumulating
2323 * extent of buffers underlying these pages that needs mapping (formed by
2324 * either delayed or unwritten buffers). We also lock the pages containing
2325 * these buffers. The extent found is returned in @mpd structure (starting at
2326 * mpd->lblk with length mpd->len blocks).
2327 *
2328 * Note that this function can attach bios to one io_end structure which are
2329 * neither logically nor physically contiguous. Although it may seem as an
2330 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2331 * case as we need to track IO to all buffers underlying a page in one io_end.
2332 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2333 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2334 {
2335 struct address_space *mapping = mpd->inode->i_mapping;
2336 struct pagevec pvec;
2337 unsigned int nr_pages;
2338 long left = mpd->wbc->nr_to_write;
2339 pgoff_t index = mpd->first_page;
2340 pgoff_t end = mpd->last_page;
2341 int tag;
2342 int i, err = 0;
2343 int blkbits = mpd->inode->i_blkbits;
2344 ext4_lblk_t lblk;
2345 struct buffer_head *head;
2346
2347 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2348 tag = PAGECACHE_TAG_TOWRITE;
2349 else
2350 tag = PAGECACHE_TAG_DIRTY;
2351
2352 pagevec_init(&pvec, 0);
2353 mpd->map.m_len = 0;
2354 mpd->next_page = index;
2355 while (index <= end) {
2356 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2358 if (nr_pages == 0)
2359 goto out;
2360
2361 for (i = 0; i < nr_pages; i++) {
2362 struct page *page = pvec.pages[i];
2363
2364 /*
2365 * At this point, the page may be truncated or
2366 * invalidated (changing page->mapping to NULL), or
2367 * even swizzled back from swapper_space to tmpfs file
2368 * mapping. However, page->index will not change
2369 * because we have a reference on the page.
2370 */
2371 if (page->index > end)
2372 goto out;
2373
2374 /*
2375 * Accumulated enough dirty pages? This doesn't apply
2376 * to WB_SYNC_ALL mode. For integrity sync we have to
2377 * keep going because someone may be concurrently
2378 * dirtying pages, and we might have synced a lot of
2379 * newly appeared dirty pages, but have not synced all
2380 * of the old dirty pages.
2381 */
2382 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2383 goto out;
2384
2385 /* If we can't merge this page, we are done. */
2386 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2387 goto out;
2388
2389 lock_page(page);
2390 /*
2391 * If the page is no longer dirty, or its mapping no
2392 * longer corresponds to inode we are writing (which
2393 * means it has been truncated or invalidated), or the
2394 * page is already under writeback and we are not doing
2395 * a data integrity writeback, skip the page
2396 */
2397 if (!PageDirty(page) ||
2398 (PageWriteback(page) &&
2399 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2400 unlikely(page->mapping != mapping)) {
2401 unlock_page(page);
2402 continue;
2403 }
2404
2405 wait_on_page_writeback(page);
2406 BUG_ON(PageWriteback(page));
2407
2408 if (mpd->map.m_len == 0)
2409 mpd->first_page = page->index;
2410 mpd->next_page = page->index + 1;
2411 /* Add all dirty buffers to mpd */
2412 lblk = ((ext4_lblk_t)page->index) <<
2413 (PAGE_CACHE_SHIFT - blkbits);
2414 head = page_buffers(page);
2415 err = mpage_process_page_bufs(mpd, head, head, lblk);
2416 if (err <= 0)
2417 goto out;
2418 err = 0;
2419 left--;
2420 }
2421 pagevec_release(&pvec);
2422 cond_resched();
2423 }
2424 return 0;
2425 out:
2426 pagevec_release(&pvec);
2427 return err;
2428 }
2429
__writepage(struct page * page,struct writeback_control * wbc,void * data)2430 static int __writepage(struct page *page, struct writeback_control *wbc,
2431 void *data)
2432 {
2433 struct address_space *mapping = data;
2434 int ret = ext4_writepage(page, wbc);
2435 mapping_set_error(mapping, ret);
2436 return ret;
2437 }
2438
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2439 static int ext4_writepages(struct address_space *mapping,
2440 struct writeback_control *wbc)
2441 {
2442 pgoff_t writeback_index = 0;
2443 long nr_to_write = wbc->nr_to_write;
2444 int range_whole = 0;
2445 int cycled = 1;
2446 handle_t *handle = NULL;
2447 struct mpage_da_data mpd;
2448 struct inode *inode = mapping->host;
2449 int needed_blocks, rsv_blocks = 0, ret = 0;
2450 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2451 bool done;
2452 struct blk_plug plug;
2453 bool give_up_on_write = false;
2454
2455 trace_ext4_writepages(inode, wbc);
2456
2457 /*
2458 * No pages to write? This is mainly a kludge to avoid starting
2459 * a transaction for special inodes like journal inode on last iput()
2460 * because that could violate lock ordering on umount
2461 */
2462 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2463 goto out_writepages;
2464
2465 if (ext4_should_journal_data(inode)) {
2466 struct blk_plug plug;
2467
2468 blk_start_plug(&plug);
2469 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2470 blk_finish_plug(&plug);
2471 goto out_writepages;
2472 }
2473
2474 /*
2475 * If the filesystem has aborted, it is read-only, so return
2476 * right away instead of dumping stack traces later on that
2477 * will obscure the real source of the problem. We test
2478 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2479 * the latter could be true if the filesystem is mounted
2480 * read-only, and in that case, ext4_writepages should
2481 * *never* be called, so if that ever happens, we would want
2482 * the stack trace.
2483 */
2484 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2485 ret = -EROFS;
2486 goto out_writepages;
2487 }
2488
2489 if (ext4_should_dioread_nolock(inode)) {
2490 /*
2491 * We may need to convert up to one extent per block in
2492 * the page and we may dirty the inode.
2493 */
2494 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2495 }
2496
2497 /*
2498 * If we have inline data and arrive here, it means that
2499 * we will soon create the block for the 1st page, so
2500 * we'd better clear the inline data here.
2501 */
2502 if (ext4_has_inline_data(inode)) {
2503 /* Just inode will be modified... */
2504 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2505 if (IS_ERR(handle)) {
2506 ret = PTR_ERR(handle);
2507 goto out_writepages;
2508 }
2509 BUG_ON(ext4_test_inode_state(inode,
2510 EXT4_STATE_MAY_INLINE_DATA));
2511 ext4_destroy_inline_data(handle, inode);
2512 ext4_journal_stop(handle);
2513 }
2514
2515 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2516 range_whole = 1;
2517
2518 if (wbc->range_cyclic) {
2519 writeback_index = mapping->writeback_index;
2520 if (writeback_index)
2521 cycled = 0;
2522 mpd.first_page = writeback_index;
2523 mpd.last_page = -1;
2524 } else {
2525 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2526 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2527 }
2528
2529 mpd.inode = inode;
2530 mpd.wbc = wbc;
2531 ext4_io_submit_init(&mpd.io_submit, wbc);
2532 retry:
2533 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2534 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2535 done = false;
2536 blk_start_plug(&plug);
2537 while (!done && mpd.first_page <= mpd.last_page) {
2538 /* For each extent of pages we use new io_end */
2539 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2540 if (!mpd.io_submit.io_end) {
2541 ret = -ENOMEM;
2542 break;
2543 }
2544
2545 /*
2546 * We have two constraints: We find one extent to map and we
2547 * must always write out whole page (makes a difference when
2548 * blocksize < pagesize) so that we don't block on IO when we
2549 * try to write out the rest of the page. Journalled mode is
2550 * not supported by delalloc.
2551 */
2552 BUG_ON(ext4_should_journal_data(inode));
2553 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2554
2555 /* start a new transaction */
2556 handle = ext4_journal_start_with_reserve(inode,
2557 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2558 if (IS_ERR(handle)) {
2559 ret = PTR_ERR(handle);
2560 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2561 "%ld pages, ino %lu; err %d", __func__,
2562 wbc->nr_to_write, inode->i_ino, ret);
2563 /* Release allocated io_end */
2564 ext4_put_io_end(mpd.io_submit.io_end);
2565 break;
2566 }
2567
2568 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2569 ret = mpage_prepare_extent_to_map(&mpd);
2570 if (!ret) {
2571 if (mpd.map.m_len)
2572 ret = mpage_map_and_submit_extent(handle, &mpd,
2573 &give_up_on_write);
2574 else {
2575 /*
2576 * We scanned the whole range (or exhausted
2577 * nr_to_write), submitted what was mapped and
2578 * didn't find anything needing mapping. We are
2579 * done.
2580 */
2581 done = true;
2582 }
2583 }
2584 /*
2585 * Caution: If the handle is synchronous,
2586 * ext4_journal_stop() can wait for transaction commit
2587 * to finish which may depend on writeback of pages to
2588 * complete or on page lock to be released. In that
2589 * case, we have to wait until after after we have
2590 * submitted all the IO, released page locks we hold,
2591 * and dropped io_end reference (for extent conversion
2592 * to be able to complete) before stopping the handle.
2593 */
2594 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2595 ext4_journal_stop(handle);
2596 handle = NULL;
2597 }
2598 /* Submit prepared bio */
2599 ext4_io_submit(&mpd.io_submit);
2600 /* Unlock pages we didn't use */
2601 mpage_release_unused_pages(&mpd, give_up_on_write);
2602 /*
2603 * Drop our io_end reference we got from init. We have
2604 * to be careful and use deferred io_end finishing if
2605 * we are still holding the transaction as we can
2606 * release the last reference to io_end which may end
2607 * up doing unwritten extent conversion.
2608 */
2609 if (handle) {
2610 ext4_put_io_end_defer(mpd.io_submit.io_end);
2611 ext4_journal_stop(handle);
2612 } else
2613 ext4_put_io_end(mpd.io_submit.io_end);
2614
2615 if (ret == -ENOSPC && sbi->s_journal) {
2616 /*
2617 * Commit the transaction which would
2618 * free blocks released in the transaction
2619 * and try again
2620 */
2621 jbd2_journal_force_commit_nested(sbi->s_journal);
2622 ret = 0;
2623 continue;
2624 }
2625 /* Fatal error - ENOMEM, EIO... */
2626 if (ret)
2627 break;
2628 }
2629 blk_finish_plug(&plug);
2630 if (!ret && !cycled && wbc->nr_to_write > 0) {
2631 cycled = 1;
2632 mpd.last_page = writeback_index - 1;
2633 mpd.first_page = 0;
2634 goto retry;
2635 }
2636
2637 /* Update index */
2638 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2639 /*
2640 * Set the writeback_index so that range_cyclic
2641 * mode will write it back later
2642 */
2643 mapping->writeback_index = mpd.first_page;
2644
2645 out_writepages:
2646 trace_ext4_writepages_result(inode, wbc, ret,
2647 nr_to_write - wbc->nr_to_write);
2648 return ret;
2649 }
2650
ext4_nonda_switch(struct super_block * sb)2651 static int ext4_nonda_switch(struct super_block *sb)
2652 {
2653 s64 free_clusters, dirty_clusters;
2654 struct ext4_sb_info *sbi = EXT4_SB(sb);
2655
2656 /*
2657 * switch to non delalloc mode if we are running low
2658 * on free block. The free block accounting via percpu
2659 * counters can get slightly wrong with percpu_counter_batch getting
2660 * accumulated on each CPU without updating global counters
2661 * Delalloc need an accurate free block accounting. So switch
2662 * to non delalloc when we are near to error range.
2663 */
2664 free_clusters =
2665 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2666 dirty_clusters =
2667 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2668 /*
2669 * Start pushing delalloc when 1/2 of free blocks are dirty.
2670 */
2671 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2672 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2673
2674 if (2 * free_clusters < 3 * dirty_clusters ||
2675 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2676 /*
2677 * free block count is less than 150% of dirty blocks
2678 * or free blocks is less than watermark
2679 */
2680 return 1;
2681 }
2682 return 0;
2683 }
2684
2685 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)2686 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2687 {
2688 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2689 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2690 return 1;
2691
2692 if (pos + len <= 0x7fffffffULL)
2693 return 1;
2694
2695 /* We might need to update the superblock to set LARGE_FILE */
2696 return 2;
2697 }
2698
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2699 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2700 loff_t pos, unsigned len, unsigned flags,
2701 struct page **pagep, void **fsdata)
2702 {
2703 int ret, retries = 0;
2704 struct page *page;
2705 pgoff_t index;
2706 struct inode *inode = mapping->host;
2707 handle_t *handle;
2708
2709 index = pos >> PAGE_CACHE_SHIFT;
2710
2711 if (ext4_nonda_switch(inode->i_sb)) {
2712 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2713 return ext4_write_begin(file, mapping, pos,
2714 len, flags, pagep, fsdata);
2715 }
2716 *fsdata = (void *)0;
2717 if (trace_android_fs_datawrite_start_enabled()) {
2718 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2719
2720 path = android_fstrace_get_pathname(pathbuf,
2721 MAX_TRACE_PATHBUF_LEN,
2722 inode);
2723 trace_android_fs_datawrite_start(inode, pos, len,
2724 current->pid,
2725 path, current->comm);
2726 }
2727 trace_ext4_da_write_begin(inode, pos, len, flags);
2728
2729 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2730 ret = ext4_da_write_inline_data_begin(mapping, inode,
2731 pos, len, flags,
2732 pagep, fsdata);
2733 if (ret < 0)
2734 return ret;
2735 if (ret == 1)
2736 return 0;
2737 }
2738
2739 /*
2740 * grab_cache_page_write_begin() can take a long time if the
2741 * system is thrashing due to memory pressure, or if the page
2742 * is being written back. So grab it first before we start
2743 * the transaction handle. This also allows us to allocate
2744 * the page (if needed) without using GFP_NOFS.
2745 */
2746 retry_grab:
2747 page = grab_cache_page_write_begin(mapping, index, flags);
2748 if (!page)
2749 return -ENOMEM;
2750 unlock_page(page);
2751
2752 /*
2753 * With delayed allocation, we don't log the i_disksize update
2754 * if there is delayed block allocation. But we still need
2755 * to journalling the i_disksize update if writes to the end
2756 * of file which has an already mapped buffer.
2757 */
2758 retry_journal:
2759 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2760 ext4_da_write_credits(inode, pos, len));
2761 if (IS_ERR(handle)) {
2762 page_cache_release(page);
2763 return PTR_ERR(handle);
2764 }
2765
2766 lock_page(page);
2767 if (page->mapping != mapping) {
2768 /* The page got truncated from under us */
2769 unlock_page(page);
2770 page_cache_release(page);
2771 ext4_journal_stop(handle);
2772 goto retry_grab;
2773 }
2774 /* In case writeback began while the page was unlocked */
2775 wait_for_stable_page(page);
2776
2777 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2778 ret = ext4_block_write_begin(page, pos, len,
2779 ext4_da_get_block_prep);
2780 #else
2781 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2782 #endif
2783 if (ret < 0) {
2784 unlock_page(page);
2785 ext4_journal_stop(handle);
2786 /*
2787 * block_write_begin may have instantiated a few blocks
2788 * outside i_size. Trim these off again. Don't need
2789 * i_size_read because we hold i_mutex.
2790 */
2791 if (pos + len > inode->i_size)
2792 ext4_truncate_failed_write(inode);
2793
2794 if (ret == -ENOSPC &&
2795 ext4_should_retry_alloc(inode->i_sb, &retries))
2796 goto retry_journal;
2797
2798 page_cache_release(page);
2799 return ret;
2800 }
2801
2802 *pagep = page;
2803 return ret;
2804 }
2805
2806 /*
2807 * Check if we should update i_disksize
2808 * when write to the end of file but not require block allocation
2809 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2810 static int ext4_da_should_update_i_disksize(struct page *page,
2811 unsigned long offset)
2812 {
2813 struct buffer_head *bh;
2814 struct inode *inode = page->mapping->host;
2815 unsigned int idx;
2816 int i;
2817
2818 bh = page_buffers(page);
2819 idx = offset >> inode->i_blkbits;
2820
2821 for (i = 0; i < idx; i++)
2822 bh = bh->b_this_page;
2823
2824 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2825 return 0;
2826 return 1;
2827 }
2828
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2829 static int ext4_da_write_end(struct file *file,
2830 struct address_space *mapping,
2831 loff_t pos, unsigned len, unsigned copied,
2832 struct page *page, void *fsdata)
2833 {
2834 struct inode *inode = mapping->host;
2835 int ret = 0, ret2;
2836 handle_t *handle = ext4_journal_current_handle();
2837 loff_t new_i_size;
2838 unsigned long start, end;
2839 int write_mode = (int)(unsigned long)fsdata;
2840
2841 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2842 return ext4_write_end(file, mapping, pos,
2843 len, copied, page, fsdata);
2844
2845 trace_android_fs_datawrite_end(inode, pos, len);
2846 trace_ext4_da_write_end(inode, pos, len, copied);
2847 start = pos & (PAGE_CACHE_SIZE - 1);
2848 end = start + copied - 1;
2849
2850 /*
2851 * generic_write_end() will run mark_inode_dirty() if i_size
2852 * changes. So let's piggyback the i_disksize mark_inode_dirty
2853 * into that.
2854 */
2855 new_i_size = pos + copied;
2856 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2857 if (ext4_has_inline_data(inode) ||
2858 ext4_da_should_update_i_disksize(page, end)) {
2859 ext4_update_i_disksize(inode, new_i_size);
2860 /* We need to mark inode dirty even if
2861 * new_i_size is less that inode->i_size
2862 * bu greater than i_disksize.(hint delalloc)
2863 */
2864 ext4_mark_inode_dirty(handle, inode);
2865 }
2866 }
2867
2868 if (write_mode != CONVERT_INLINE_DATA &&
2869 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2870 ext4_has_inline_data(inode))
2871 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2872 page);
2873 else
2874 ret2 = generic_write_end(file, mapping, pos, len, copied,
2875 page, fsdata);
2876
2877 copied = ret2;
2878 if (ret2 < 0)
2879 ret = ret2;
2880 ret2 = ext4_journal_stop(handle);
2881 if (!ret)
2882 ret = ret2;
2883
2884 return ret ? ret : copied;
2885 }
2886
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2887 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2888 unsigned int length)
2889 {
2890 /*
2891 * Drop reserved blocks
2892 */
2893 BUG_ON(!PageLocked(page));
2894 if (!page_has_buffers(page))
2895 goto out;
2896
2897 ext4_da_page_release_reservation(page, offset, length);
2898
2899 out:
2900 ext4_invalidatepage(page, offset, length);
2901
2902 return;
2903 }
2904
2905 /*
2906 * Force all delayed allocation blocks to be allocated for a given inode.
2907 */
ext4_alloc_da_blocks(struct inode * inode)2908 int ext4_alloc_da_blocks(struct inode *inode)
2909 {
2910 trace_ext4_alloc_da_blocks(inode);
2911
2912 if (!EXT4_I(inode)->i_reserved_data_blocks)
2913 return 0;
2914
2915 /*
2916 * We do something simple for now. The filemap_flush() will
2917 * also start triggering a write of the data blocks, which is
2918 * not strictly speaking necessary (and for users of
2919 * laptop_mode, not even desirable). However, to do otherwise
2920 * would require replicating code paths in:
2921 *
2922 * ext4_writepages() ->
2923 * write_cache_pages() ---> (via passed in callback function)
2924 * __mpage_da_writepage() -->
2925 * mpage_add_bh_to_extent()
2926 * mpage_da_map_blocks()
2927 *
2928 * The problem is that write_cache_pages(), located in
2929 * mm/page-writeback.c, marks pages clean in preparation for
2930 * doing I/O, which is not desirable if we're not planning on
2931 * doing I/O at all.
2932 *
2933 * We could call write_cache_pages(), and then redirty all of
2934 * the pages by calling redirty_page_for_writepage() but that
2935 * would be ugly in the extreme. So instead we would need to
2936 * replicate parts of the code in the above functions,
2937 * simplifying them because we wouldn't actually intend to
2938 * write out the pages, but rather only collect contiguous
2939 * logical block extents, call the multi-block allocator, and
2940 * then update the buffer heads with the block allocations.
2941 *
2942 * For now, though, we'll cheat by calling filemap_flush(),
2943 * which will map the blocks, and start the I/O, but not
2944 * actually wait for the I/O to complete.
2945 */
2946 return filemap_flush(inode->i_mapping);
2947 }
2948
2949 /*
2950 * bmap() is special. It gets used by applications such as lilo and by
2951 * the swapper to find the on-disk block of a specific piece of data.
2952 *
2953 * Naturally, this is dangerous if the block concerned is still in the
2954 * journal. If somebody makes a swapfile on an ext4 data-journaling
2955 * filesystem and enables swap, then they may get a nasty shock when the
2956 * data getting swapped to that swapfile suddenly gets overwritten by
2957 * the original zero's written out previously to the journal and
2958 * awaiting writeback in the kernel's buffer cache.
2959 *
2960 * So, if we see any bmap calls here on a modified, data-journaled file,
2961 * take extra steps to flush any blocks which might be in the cache.
2962 */
ext4_bmap(struct address_space * mapping,sector_t block)2963 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2964 {
2965 struct inode *inode = mapping->host;
2966 journal_t *journal;
2967 int err;
2968
2969 /*
2970 * We can get here for an inline file via the FIBMAP ioctl
2971 */
2972 if (ext4_has_inline_data(inode))
2973 return 0;
2974
2975 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2976 test_opt(inode->i_sb, DELALLOC)) {
2977 /*
2978 * With delalloc we want to sync the file
2979 * so that we can make sure we allocate
2980 * blocks for file
2981 */
2982 filemap_write_and_wait(mapping);
2983 }
2984
2985 if (EXT4_JOURNAL(inode) &&
2986 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2987 /*
2988 * This is a REALLY heavyweight approach, but the use of
2989 * bmap on dirty files is expected to be extremely rare:
2990 * only if we run lilo or swapon on a freshly made file
2991 * do we expect this to happen.
2992 *
2993 * (bmap requires CAP_SYS_RAWIO so this does not
2994 * represent an unprivileged user DOS attack --- we'd be
2995 * in trouble if mortal users could trigger this path at
2996 * will.)
2997 *
2998 * NB. EXT4_STATE_JDATA is not set on files other than
2999 * regular files. If somebody wants to bmap a directory
3000 * or symlink and gets confused because the buffer
3001 * hasn't yet been flushed to disk, they deserve
3002 * everything they get.
3003 */
3004
3005 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3006 journal = EXT4_JOURNAL(inode);
3007 jbd2_journal_lock_updates(journal);
3008 err = jbd2_journal_flush(journal);
3009 jbd2_journal_unlock_updates(journal);
3010
3011 if (err)
3012 return 0;
3013 }
3014
3015 return generic_block_bmap(mapping, block, ext4_get_block);
3016 }
3017
ext4_readpage(struct file * file,struct page * page)3018 static int ext4_readpage(struct file *file, struct page *page)
3019 {
3020 int ret = -EAGAIN;
3021 struct inode *inode = page->mapping->host;
3022
3023 trace_ext4_readpage(page);
3024
3025 if (ext4_has_inline_data(inode))
3026 ret = ext4_readpage_inline(inode, page);
3027
3028 if (ret == -EAGAIN)
3029 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3030
3031 return ret;
3032 }
3033
3034 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3035 ext4_readpages(struct file *file, struct address_space *mapping,
3036 struct list_head *pages, unsigned nr_pages)
3037 {
3038 struct inode *inode = mapping->host;
3039
3040 /* If the file has inline data, no need to do readpages. */
3041 if (ext4_has_inline_data(inode))
3042 return 0;
3043
3044 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3045 }
3046
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3047 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3048 unsigned int length)
3049 {
3050 trace_ext4_invalidatepage(page, offset, length);
3051
3052 /* No journalling happens on data buffers when this function is used */
3053 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3054
3055 block_invalidatepage(page, offset, length);
3056 }
3057
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3058 static int __ext4_journalled_invalidatepage(struct page *page,
3059 unsigned int offset,
3060 unsigned int length)
3061 {
3062 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3063
3064 trace_ext4_journalled_invalidatepage(page, offset, length);
3065
3066 /*
3067 * If it's a full truncate we just forget about the pending dirtying
3068 */
3069 if (offset == 0 && length == PAGE_CACHE_SIZE)
3070 ClearPageChecked(page);
3071
3072 return jbd2_journal_invalidatepage(journal, page, offset, length);
3073 }
3074
3075 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3076 static void ext4_journalled_invalidatepage(struct page *page,
3077 unsigned int offset,
3078 unsigned int length)
3079 {
3080 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3081 }
3082
ext4_releasepage(struct page * page,gfp_t wait)3083 static int ext4_releasepage(struct page *page, gfp_t wait)
3084 {
3085 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3086
3087 trace_ext4_releasepage(page);
3088
3089 /* Page has dirty journalled data -> cannot release */
3090 if (PageChecked(page))
3091 return 0;
3092 if (journal)
3093 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3094 else
3095 return try_to_free_buffers(page);
3096 }
3097
3098 /*
3099 * ext4_get_block used when preparing for a DIO write or buffer write.
3100 * We allocate an uinitialized extent if blocks haven't been allocated.
3101 * The extent will be converted to initialized after the IO is complete.
3102 */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3103 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3104 struct buffer_head *bh_result, int create)
3105 {
3106 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3107 inode->i_ino, create);
3108 return _ext4_get_block(inode, iblock, bh_result,
3109 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3110 }
3111
ext4_get_block_write_nolock(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3112 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3113 struct buffer_head *bh_result, int create)
3114 {
3115 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3116 inode->i_ino, create);
3117 return _ext4_get_block(inode, iblock, bh_result,
3118 EXT4_GET_BLOCKS_NO_LOCK);
3119 }
3120
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3121 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3122 ssize_t size, void *private)
3123 {
3124 ext4_io_end_t *io_end = iocb->private;
3125
3126 /* if not async direct IO just return */
3127 if (!io_end)
3128 return;
3129
3130 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3131 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3132 iocb->private, io_end->inode->i_ino, iocb, offset,
3133 size);
3134
3135 iocb->private = NULL;
3136 io_end->offset = offset;
3137 io_end->size = size;
3138 ext4_put_io_end(io_end);
3139 }
3140
3141 /*
3142 * For ext4 extent files, ext4 will do direct-io write to holes,
3143 * preallocated extents, and those write extend the file, no need to
3144 * fall back to buffered IO.
3145 *
3146 * For holes, we fallocate those blocks, mark them as unwritten
3147 * If those blocks were preallocated, we mark sure they are split, but
3148 * still keep the range to write as unwritten.
3149 *
3150 * The unwritten extents will be converted to written when DIO is completed.
3151 * For async direct IO, since the IO may still pending when return, we
3152 * set up an end_io call back function, which will do the conversion
3153 * when async direct IO completed.
3154 *
3155 * If the O_DIRECT write will extend the file then add this inode to the
3156 * orphan list. So recovery will truncate it back to the original size
3157 * if the machine crashes during the write.
3158 *
3159 */
ext4_ext_direct_IO(int rw,struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3160 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3161 struct iov_iter *iter, loff_t offset)
3162 {
3163 struct file *file = iocb->ki_filp;
3164 struct inode *inode = file->f_mapping->host;
3165 ssize_t ret;
3166 size_t count = iov_iter_count(iter);
3167 int overwrite = 0;
3168 get_block_t *get_block_func = NULL;
3169 int dio_flags = 0;
3170 loff_t final_size = offset + count;
3171 ext4_io_end_t *io_end = NULL;
3172
3173 /* Use the old path for reads and writes beyond i_size. */
3174 if (rw != WRITE || final_size > inode->i_size)
3175 return ext4_ind_direct_IO(rw, iocb, iter, offset);
3176
3177 BUG_ON(iocb->private == NULL);
3178
3179 /*
3180 * Make all waiters for direct IO properly wait also for extent
3181 * conversion. This also disallows race between truncate() and
3182 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3183 */
3184 if (rw == WRITE)
3185 atomic_inc(&inode->i_dio_count);
3186
3187 /* If we do a overwrite dio, i_mutex locking can be released */
3188 overwrite = *((int *)iocb->private);
3189
3190 if (overwrite) {
3191 down_read(&EXT4_I(inode)->i_data_sem);
3192 mutex_unlock(&inode->i_mutex);
3193 }
3194
3195 /*
3196 * We could direct write to holes and fallocate.
3197 *
3198 * Allocated blocks to fill the hole are marked as
3199 * unwritten to prevent parallel buffered read to expose
3200 * the stale data before DIO complete the data IO.
3201 *
3202 * As to previously fallocated extents, ext4 get_block will
3203 * just simply mark the buffer mapped but still keep the
3204 * extents unwritten.
3205 *
3206 * For non AIO case, we will convert those unwritten extents
3207 * to written after return back from blockdev_direct_IO.
3208 *
3209 * For async DIO, the conversion needs to be deferred when the
3210 * IO is completed. The ext4 end_io callback function will be
3211 * called to take care of the conversion work. Here for async
3212 * case, we allocate an io_end structure to hook to the iocb.
3213 */
3214 iocb->private = NULL;
3215 if (overwrite) {
3216 get_block_func = ext4_get_block_write_nolock;
3217 } else {
3218 ext4_inode_aio_set(inode, NULL);
3219 if (!is_sync_kiocb(iocb)) {
3220 io_end = ext4_init_io_end(inode, GFP_NOFS);
3221 if (!io_end) {
3222 ret = -ENOMEM;
3223 goto retake_lock;
3224 }
3225 /*
3226 * Grab reference for DIO. Will be dropped in
3227 * ext4_end_io_dio()
3228 */
3229 iocb->private = ext4_get_io_end(io_end);
3230 /*
3231 * we save the io structure for current async direct
3232 * IO, so that later ext4_map_blocks() could flag the
3233 * io structure whether there is a unwritten extents
3234 * needs to be converted when IO is completed.
3235 */
3236 ext4_inode_aio_set(inode, io_end);
3237 }
3238 get_block_func = ext4_get_block_write;
3239 dio_flags = DIO_LOCKING;
3240 }
3241 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3242 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3243 #endif
3244 ret = __blockdev_direct_IO(rw, iocb, inode,
3245 inode->i_sb->s_bdev, iter,
3246 offset,
3247 get_block_func,
3248 ext4_end_io_dio,
3249 NULL,
3250 dio_flags);
3251
3252 /*
3253 * Put our reference to io_end. This can free the io_end structure e.g.
3254 * in sync IO case or in case of error. It can even perform extent
3255 * conversion if all bios we submitted finished before we got here.
3256 * Note that in that case iocb->private can be already set to NULL
3257 * here.
3258 */
3259 if (io_end) {
3260 ext4_inode_aio_set(inode, NULL);
3261 ext4_put_io_end(io_end);
3262 /*
3263 * When no IO was submitted ext4_end_io_dio() was not
3264 * called so we have to put iocb's reference.
3265 */
3266 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3267 WARN_ON(iocb->private != io_end);
3268 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3269 ext4_put_io_end(io_end);
3270 iocb->private = NULL;
3271 }
3272 }
3273 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3274 EXT4_STATE_DIO_UNWRITTEN)) {
3275 int err;
3276 /*
3277 * for non AIO case, since the IO is already
3278 * completed, we could do the conversion right here
3279 */
3280 err = ext4_convert_unwritten_extents(NULL, inode,
3281 offset, ret);
3282 if (err < 0)
3283 ret = err;
3284 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3285 }
3286
3287 retake_lock:
3288 if (rw == WRITE)
3289 inode_dio_done(inode);
3290 /* take i_mutex locking again if we do a ovewrite dio */
3291 if (overwrite) {
3292 up_read(&EXT4_I(inode)->i_data_sem);
3293 mutex_lock(&inode->i_mutex);
3294 }
3295
3296 return ret;
3297 }
3298
ext4_direct_IO(int rw,struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3299 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3300 struct iov_iter *iter, loff_t offset)
3301 {
3302 struct file *file = iocb->ki_filp;
3303 struct inode *inode = file->f_mapping->host;
3304 size_t count = iov_iter_count(iter);
3305 ssize_t ret;
3306
3307 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3308 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3309 return 0;
3310 #endif
3311
3312 /*
3313 * If we are doing data journalling we don't support O_DIRECT
3314 */
3315 if (ext4_should_journal_data(inode))
3316 return 0;
3317
3318 /* Let buffer I/O handle the inline data case. */
3319 if (ext4_has_inline_data(inode))
3320 return 0;
3321
3322 if (trace_android_fs_dataread_start_enabled() && (rw == READ)) {
3323 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3324
3325 path = android_fstrace_get_pathname(pathbuf,
3326 MAX_TRACE_PATHBUF_LEN,
3327 inode);
3328 trace_android_fs_dataread_start(inode, offset, count,
3329 current->pid, path,
3330 current->comm);
3331 }
3332 if (trace_android_fs_datawrite_start_enabled() && (rw == WRITE)) {
3333 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3334
3335 path = android_fstrace_get_pathname(pathbuf,
3336 MAX_TRACE_PATHBUF_LEN,
3337 inode);
3338 trace_android_fs_datawrite_start(inode, offset, count,
3339 current->pid, path,
3340 current->comm);
3341 }
3342
3343 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3344 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3345 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3346 else
3347 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3348 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3349
3350 if (trace_android_fs_dataread_start_enabled() && (rw == READ))
3351 trace_android_fs_dataread_end(inode, offset, count);
3352 if (trace_android_fs_datawrite_start_enabled() && (rw == WRITE))
3353 trace_android_fs_datawrite_end(inode, offset, count);
3354
3355 return ret;
3356 }
3357
3358 /*
3359 * Pages can be marked dirty completely asynchronously from ext4's journalling
3360 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3361 * much here because ->set_page_dirty is called under VFS locks. The page is
3362 * not necessarily locked.
3363 *
3364 * We cannot just dirty the page and leave attached buffers clean, because the
3365 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3366 * or jbddirty because all the journalling code will explode.
3367 *
3368 * So what we do is to mark the page "pending dirty" and next time writepage
3369 * is called, propagate that into the buffers appropriately.
3370 */
ext4_journalled_set_page_dirty(struct page * page)3371 static int ext4_journalled_set_page_dirty(struct page *page)
3372 {
3373 SetPageChecked(page);
3374 return __set_page_dirty_nobuffers(page);
3375 }
3376
3377 static const struct address_space_operations ext4_aops = {
3378 .readpage = ext4_readpage,
3379 .readpages = ext4_readpages,
3380 .writepage = ext4_writepage,
3381 .writepages = ext4_writepages,
3382 .write_begin = ext4_write_begin,
3383 .write_end = ext4_write_end,
3384 .bmap = ext4_bmap,
3385 .invalidatepage = ext4_invalidatepage,
3386 .releasepage = ext4_releasepage,
3387 .direct_IO = ext4_direct_IO,
3388 .migratepage = buffer_migrate_page,
3389 .is_partially_uptodate = block_is_partially_uptodate,
3390 .error_remove_page = generic_error_remove_page,
3391 };
3392
3393 static const struct address_space_operations ext4_journalled_aops = {
3394 .readpage = ext4_readpage,
3395 .readpages = ext4_readpages,
3396 .writepage = ext4_writepage,
3397 .writepages = ext4_writepages,
3398 .write_begin = ext4_write_begin,
3399 .write_end = ext4_journalled_write_end,
3400 .set_page_dirty = ext4_journalled_set_page_dirty,
3401 .bmap = ext4_bmap,
3402 .invalidatepage = ext4_journalled_invalidatepage,
3403 .releasepage = ext4_releasepage,
3404 .direct_IO = ext4_direct_IO,
3405 .is_partially_uptodate = block_is_partially_uptodate,
3406 .error_remove_page = generic_error_remove_page,
3407 };
3408
3409 static const struct address_space_operations ext4_da_aops = {
3410 .readpage = ext4_readpage,
3411 .readpages = ext4_readpages,
3412 .writepage = ext4_writepage,
3413 .writepages = ext4_writepages,
3414 .write_begin = ext4_da_write_begin,
3415 .write_end = ext4_da_write_end,
3416 .bmap = ext4_bmap,
3417 .invalidatepage = ext4_da_invalidatepage,
3418 .releasepage = ext4_releasepage,
3419 .direct_IO = ext4_direct_IO,
3420 .migratepage = buffer_migrate_page,
3421 .is_partially_uptodate = block_is_partially_uptodate,
3422 .error_remove_page = generic_error_remove_page,
3423 };
3424
ext4_set_aops(struct inode * inode)3425 void ext4_set_aops(struct inode *inode)
3426 {
3427 switch (ext4_inode_journal_mode(inode)) {
3428 case EXT4_INODE_ORDERED_DATA_MODE:
3429 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3430 break;
3431 case EXT4_INODE_WRITEBACK_DATA_MODE:
3432 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3433 break;
3434 case EXT4_INODE_JOURNAL_DATA_MODE:
3435 inode->i_mapping->a_ops = &ext4_journalled_aops;
3436 return;
3437 default:
3438 BUG();
3439 }
3440 if (test_opt(inode->i_sb, DELALLOC))
3441 inode->i_mapping->a_ops = &ext4_da_aops;
3442 else
3443 inode->i_mapping->a_ops = &ext4_aops;
3444 }
3445
3446 /*
3447 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3448 * starting from file offset 'from'. The range to be zero'd must
3449 * be contained with in one block. If the specified range exceeds
3450 * the end of the block it will be shortened to end of the block
3451 * that cooresponds to 'from'
3452 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3453 static int ext4_block_zero_page_range(handle_t *handle,
3454 struct address_space *mapping, loff_t from, loff_t length)
3455 {
3456 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3457 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3458 unsigned blocksize, max, pos;
3459 ext4_lblk_t iblock;
3460 struct inode *inode = mapping->host;
3461 struct buffer_head *bh;
3462 struct page *page;
3463 int err = 0;
3464
3465 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3466 mapping_gfp_mask(mapping) & ~__GFP_FS);
3467 if (!page)
3468 return -ENOMEM;
3469
3470 blocksize = inode->i_sb->s_blocksize;
3471 max = blocksize - (offset & (blocksize - 1));
3472
3473 /*
3474 * correct length if it does not fall between
3475 * 'from' and the end of the block
3476 */
3477 if (length > max || length < 0)
3478 length = max;
3479
3480 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3481
3482 if (!page_has_buffers(page))
3483 create_empty_buffers(page, blocksize, 0);
3484
3485 /* Find the buffer that contains "offset" */
3486 bh = page_buffers(page);
3487 pos = blocksize;
3488 while (offset >= pos) {
3489 bh = bh->b_this_page;
3490 iblock++;
3491 pos += blocksize;
3492 }
3493 if (buffer_freed(bh)) {
3494 BUFFER_TRACE(bh, "freed: skip");
3495 goto unlock;
3496 }
3497 if (!buffer_mapped(bh)) {
3498 BUFFER_TRACE(bh, "unmapped");
3499 ext4_get_block(inode, iblock, bh, 0);
3500 /* unmapped? It's a hole - nothing to do */
3501 if (!buffer_mapped(bh)) {
3502 BUFFER_TRACE(bh, "still unmapped");
3503 goto unlock;
3504 }
3505 }
3506
3507 /* Ok, it's mapped. Make sure it's up-to-date */
3508 if (PageUptodate(page))
3509 set_buffer_uptodate(bh);
3510
3511 if (!buffer_uptodate(bh)) {
3512 err = -EIO;
3513 ll_rw_block(READ, 1, &bh);
3514 wait_on_buffer(bh);
3515 /* Uhhuh. Read error. Complain and punt. */
3516 if (!buffer_uptodate(bh))
3517 goto unlock;
3518 if (S_ISREG(inode->i_mode) &&
3519 ext4_encrypted_inode(inode)) {
3520 /* We expect the key to be set. */
3521 BUG_ON(!ext4_has_encryption_key(inode));
3522 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3523 WARN_ON_ONCE(ext4_decrypt(page));
3524 }
3525 }
3526 if (ext4_should_journal_data(inode)) {
3527 BUFFER_TRACE(bh, "get write access");
3528 err = ext4_journal_get_write_access(handle, bh);
3529 if (err)
3530 goto unlock;
3531 }
3532 zero_user(page, offset, length);
3533 BUFFER_TRACE(bh, "zeroed end of block");
3534
3535 if (ext4_should_journal_data(inode)) {
3536 err = ext4_handle_dirty_metadata(handle, inode, bh);
3537 } else {
3538 err = 0;
3539 mark_buffer_dirty(bh);
3540 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3541 err = ext4_jbd2_file_inode(handle, inode);
3542 }
3543
3544 unlock:
3545 unlock_page(page);
3546 page_cache_release(page);
3547 return err;
3548 }
3549
3550 /*
3551 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3552 * up to the end of the block which corresponds to `from'.
3553 * This required during truncate. We need to physically zero the tail end
3554 * of that block so it doesn't yield old data if the file is later grown.
3555 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3556 static int ext4_block_truncate_page(handle_t *handle,
3557 struct address_space *mapping, loff_t from)
3558 {
3559 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3560 unsigned length;
3561 unsigned blocksize;
3562 struct inode *inode = mapping->host;
3563
3564 /* If we are processing an encrypted inode during orphan list
3565 * handling */
3566 if (ext4_encrypted_inode(inode) && !ext4_has_encryption_key(inode))
3567 return 0;
3568
3569 blocksize = inode->i_sb->s_blocksize;
3570 length = blocksize - (offset & (blocksize - 1));
3571
3572 return ext4_block_zero_page_range(handle, mapping, from, length);
3573 }
3574
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3575 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3576 loff_t lstart, loff_t length)
3577 {
3578 struct super_block *sb = inode->i_sb;
3579 struct address_space *mapping = inode->i_mapping;
3580 unsigned partial_start, partial_end;
3581 ext4_fsblk_t start, end;
3582 loff_t byte_end = (lstart + length - 1);
3583 int err = 0;
3584
3585 partial_start = lstart & (sb->s_blocksize - 1);
3586 partial_end = byte_end & (sb->s_blocksize - 1);
3587
3588 start = lstart >> sb->s_blocksize_bits;
3589 end = byte_end >> sb->s_blocksize_bits;
3590
3591 /* Handle partial zero within the single block */
3592 if (start == end &&
3593 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3594 err = ext4_block_zero_page_range(handle, mapping,
3595 lstart, length);
3596 return err;
3597 }
3598 /* Handle partial zero out on the start of the range */
3599 if (partial_start) {
3600 err = ext4_block_zero_page_range(handle, mapping,
3601 lstart, sb->s_blocksize);
3602 if (err)
3603 return err;
3604 }
3605 /* Handle partial zero out on the end of the range */
3606 if (partial_end != sb->s_blocksize - 1)
3607 err = ext4_block_zero_page_range(handle, mapping,
3608 byte_end - partial_end,
3609 partial_end + 1);
3610 return err;
3611 }
3612
ext4_can_truncate(struct inode * inode)3613 int ext4_can_truncate(struct inode *inode)
3614 {
3615 if (S_ISREG(inode->i_mode))
3616 return 1;
3617 if (S_ISDIR(inode->i_mode))
3618 return 1;
3619 if (S_ISLNK(inode->i_mode))
3620 return !ext4_inode_is_fast_symlink(inode);
3621 return 0;
3622 }
3623
3624 /*
3625 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3626 * associated with the given offset and length
3627 *
3628 * @inode: File inode
3629 * @offset: The offset where the hole will begin
3630 * @len: The length of the hole
3631 *
3632 * Returns: 0 on success or negative on failure
3633 */
3634
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3635 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3636 {
3637 #if 0
3638 struct super_block *sb = inode->i_sb;
3639 ext4_lblk_t first_block, stop_block;
3640 struct address_space *mapping = inode->i_mapping;
3641 loff_t first_block_offset, last_block_offset;
3642 handle_t *handle;
3643 unsigned int credits;
3644 int ret = 0;
3645
3646 if (!S_ISREG(inode->i_mode))
3647 return -EOPNOTSUPP;
3648
3649 trace_ext4_punch_hole(inode, offset, length, 0);
3650
3651 /*
3652 * Write out all dirty pages to avoid race conditions
3653 * Then release them.
3654 */
3655 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3656 ret = filemap_write_and_wait_range(mapping, offset,
3657 offset + length - 1);
3658 if (ret)
3659 return ret;
3660 }
3661
3662 mutex_lock(&inode->i_mutex);
3663
3664 /* No need to punch hole beyond i_size */
3665 if (offset >= inode->i_size)
3666 goto out_mutex;
3667
3668 /*
3669 * If the hole extends beyond i_size, set the hole
3670 * to end after the page that contains i_size
3671 */
3672 if (offset + length > inode->i_size) {
3673 length = inode->i_size +
3674 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3675 offset;
3676 }
3677
3678 if (offset & (sb->s_blocksize - 1) ||
3679 (offset + length) & (sb->s_blocksize - 1)) {
3680 /*
3681 * Attach jinode to inode for jbd2 if we do any zeroing of
3682 * partial block
3683 */
3684 ret = ext4_inode_attach_jinode(inode);
3685 if (ret < 0)
3686 goto out_mutex;
3687
3688 }
3689
3690 first_block_offset = round_up(offset, sb->s_blocksize);
3691 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3692
3693 /* Now release the pages and zero block aligned part of pages*/
3694 if (last_block_offset > first_block_offset)
3695 truncate_pagecache_range(inode, first_block_offset,
3696 last_block_offset);
3697
3698 /* Wait all existing dio workers, newcomers will block on i_mutex */
3699 ext4_inode_block_unlocked_dio(inode);
3700 inode_dio_wait(inode);
3701
3702 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3703 credits = ext4_writepage_trans_blocks(inode);
3704 else
3705 credits = ext4_blocks_for_truncate(inode);
3706 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3707 if (IS_ERR(handle)) {
3708 ret = PTR_ERR(handle);
3709 ext4_std_error(sb, ret);
3710 goto out_dio;
3711 }
3712
3713 ret = ext4_zero_partial_blocks(handle, inode, offset,
3714 length);
3715 if (ret)
3716 goto out_stop;
3717
3718 first_block = (offset + sb->s_blocksize - 1) >>
3719 EXT4_BLOCK_SIZE_BITS(sb);
3720 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3721
3722 /* If there are no blocks to remove, return now */
3723 if (first_block >= stop_block)
3724 goto out_stop;
3725
3726 down_write(&EXT4_I(inode)->i_data_sem);
3727 ext4_discard_preallocations(inode);
3728
3729 ret = ext4_es_remove_extent(inode, first_block,
3730 stop_block - first_block);
3731 if (ret) {
3732 up_write(&EXT4_I(inode)->i_data_sem);
3733 goto out_stop;
3734 }
3735
3736 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3737 ret = ext4_ext_remove_space(inode, first_block,
3738 stop_block - 1);
3739 else
3740 ret = ext4_ind_remove_space(handle, inode, first_block,
3741 stop_block);
3742
3743 up_write(&EXT4_I(inode)->i_data_sem);
3744 if (IS_SYNC(inode))
3745 ext4_handle_sync(handle);
3746
3747 /* Now release the pages again to reduce race window */
3748 if (last_block_offset > first_block_offset)
3749 truncate_pagecache_range(inode, first_block_offset,
3750 last_block_offset);
3751
3752 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3753 ext4_mark_inode_dirty(handle, inode);
3754 out_stop:
3755 ext4_journal_stop(handle);
3756 out_dio:
3757 ext4_inode_resume_unlocked_dio(inode);
3758 out_mutex:
3759 mutex_unlock(&inode->i_mutex);
3760 return ret;
3761 #else
3762 /*
3763 * Disabled as per b/28760453
3764 */
3765 return -EOPNOTSUPP;
3766 #endif
3767 }
3768
ext4_inode_attach_jinode(struct inode * inode)3769 int ext4_inode_attach_jinode(struct inode *inode)
3770 {
3771 struct ext4_inode_info *ei = EXT4_I(inode);
3772 struct jbd2_inode *jinode;
3773
3774 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3775 return 0;
3776
3777 jinode = jbd2_alloc_inode(GFP_KERNEL);
3778 spin_lock(&inode->i_lock);
3779 if (!ei->jinode) {
3780 if (!jinode) {
3781 spin_unlock(&inode->i_lock);
3782 return -ENOMEM;
3783 }
3784 ei->jinode = jinode;
3785 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3786 jinode = NULL;
3787 }
3788 spin_unlock(&inode->i_lock);
3789 if (unlikely(jinode != NULL))
3790 jbd2_free_inode(jinode);
3791 return 0;
3792 }
3793
3794 /*
3795 * ext4_truncate()
3796 *
3797 * We block out ext4_get_block() block instantiations across the entire
3798 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3799 * simultaneously on behalf of the same inode.
3800 *
3801 * As we work through the truncate and commit bits of it to the journal there
3802 * is one core, guiding principle: the file's tree must always be consistent on
3803 * disk. We must be able to restart the truncate after a crash.
3804 *
3805 * The file's tree may be transiently inconsistent in memory (although it
3806 * probably isn't), but whenever we close off and commit a journal transaction,
3807 * the contents of (the filesystem + the journal) must be consistent and
3808 * restartable. It's pretty simple, really: bottom up, right to left (although
3809 * left-to-right works OK too).
3810 *
3811 * Note that at recovery time, journal replay occurs *before* the restart of
3812 * truncate against the orphan inode list.
3813 *
3814 * The committed inode has the new, desired i_size (which is the same as
3815 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3816 * that this inode's truncate did not complete and it will again call
3817 * ext4_truncate() to have another go. So there will be instantiated blocks
3818 * to the right of the truncation point in a crashed ext4 filesystem. But
3819 * that's fine - as long as they are linked from the inode, the post-crash
3820 * ext4_truncate() run will find them and release them.
3821 */
ext4_truncate(struct inode * inode)3822 void ext4_truncate(struct inode *inode)
3823 {
3824 struct ext4_inode_info *ei = EXT4_I(inode);
3825 unsigned int credits;
3826 handle_t *handle;
3827 struct address_space *mapping = inode->i_mapping;
3828
3829 /*
3830 * There is a possibility that we're either freeing the inode
3831 * or it's a completely new inode. In those cases we might not
3832 * have i_mutex locked because it's not necessary.
3833 */
3834 if (!(inode->i_state & (I_NEW|I_FREEING)))
3835 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3836 trace_ext4_truncate_enter(inode);
3837
3838 if (!ext4_can_truncate(inode))
3839 return;
3840
3841 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3842
3843 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3844 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3845
3846 if (ext4_has_inline_data(inode)) {
3847 int has_inline = 1;
3848
3849 ext4_inline_data_truncate(inode, &has_inline);
3850 if (has_inline)
3851 return;
3852 }
3853
3854 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3855 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3856 if (ext4_inode_attach_jinode(inode) < 0)
3857 return;
3858 }
3859
3860 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3861 credits = ext4_writepage_trans_blocks(inode);
3862 else
3863 credits = ext4_blocks_for_truncate(inode);
3864
3865 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3866 if (IS_ERR(handle)) {
3867 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3868 return;
3869 }
3870
3871 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3872 ext4_block_truncate_page(handle, mapping, inode->i_size);
3873
3874 /*
3875 * We add the inode to the orphan list, so that if this
3876 * truncate spans multiple transactions, and we crash, we will
3877 * resume the truncate when the filesystem recovers. It also
3878 * marks the inode dirty, to catch the new size.
3879 *
3880 * Implication: the file must always be in a sane, consistent
3881 * truncatable state while each transaction commits.
3882 */
3883 if (ext4_orphan_add(handle, inode))
3884 goto out_stop;
3885
3886 down_write(&EXT4_I(inode)->i_data_sem);
3887
3888 ext4_discard_preallocations(inode);
3889
3890 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3891 ext4_ext_truncate(handle, inode);
3892 else
3893 ext4_ind_truncate(handle, inode);
3894
3895 up_write(&ei->i_data_sem);
3896
3897 if (IS_SYNC(inode))
3898 ext4_handle_sync(handle);
3899
3900 out_stop:
3901 /*
3902 * If this was a simple ftruncate() and the file will remain alive,
3903 * then we need to clear up the orphan record which we created above.
3904 * However, if this was a real unlink then we were called by
3905 * ext4_delete_inode(), and we allow that function to clean up the
3906 * orphan info for us.
3907 */
3908 if (inode->i_nlink)
3909 ext4_orphan_del(handle, inode);
3910
3911 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3912 ext4_mark_inode_dirty(handle, inode);
3913 ext4_journal_stop(handle);
3914
3915 trace_ext4_truncate_exit(inode);
3916 }
3917
3918 /*
3919 * ext4_get_inode_loc returns with an extra refcount against the inode's
3920 * underlying buffer_head on success. If 'in_mem' is true, we have all
3921 * data in memory that is needed to recreate the on-disk version of this
3922 * inode.
3923 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)3924 static int __ext4_get_inode_loc(struct inode *inode,
3925 struct ext4_iloc *iloc, int in_mem)
3926 {
3927 struct ext4_group_desc *gdp;
3928 struct buffer_head *bh;
3929 struct super_block *sb = inode->i_sb;
3930 ext4_fsblk_t block;
3931 int inodes_per_block, inode_offset;
3932
3933 iloc->bh = NULL;
3934 if (!ext4_valid_inum(sb, inode->i_ino))
3935 return -EIO;
3936
3937 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3938 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3939 if (!gdp)
3940 return -EIO;
3941
3942 /*
3943 * Figure out the offset within the block group inode table
3944 */
3945 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3946 inode_offset = ((inode->i_ino - 1) %
3947 EXT4_INODES_PER_GROUP(sb));
3948 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3949 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3950
3951 bh = sb_getblk(sb, block);
3952 if (unlikely(!bh))
3953 return -ENOMEM;
3954 if (!buffer_uptodate(bh)) {
3955 lock_buffer(bh);
3956
3957 /*
3958 * If the buffer has the write error flag, we have failed
3959 * to write out another inode in the same block. In this
3960 * case, we don't have to read the block because we may
3961 * read the old inode data successfully.
3962 */
3963 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3964 set_buffer_uptodate(bh);
3965
3966 if (buffer_uptodate(bh)) {
3967 /* someone brought it uptodate while we waited */
3968 unlock_buffer(bh);
3969 goto has_buffer;
3970 }
3971
3972 /*
3973 * If we have all information of the inode in memory and this
3974 * is the only valid inode in the block, we need not read the
3975 * block.
3976 */
3977 if (in_mem) {
3978 struct buffer_head *bitmap_bh;
3979 int i, start;
3980
3981 start = inode_offset & ~(inodes_per_block - 1);
3982
3983 /* Is the inode bitmap in cache? */
3984 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3985 if (unlikely(!bitmap_bh))
3986 goto make_io;
3987
3988 /*
3989 * If the inode bitmap isn't in cache then the
3990 * optimisation may end up performing two reads instead
3991 * of one, so skip it.
3992 */
3993 if (!buffer_uptodate(bitmap_bh)) {
3994 brelse(bitmap_bh);
3995 goto make_io;
3996 }
3997 for (i = start; i < start + inodes_per_block; i++) {
3998 if (i == inode_offset)
3999 continue;
4000 if (ext4_test_bit(i, bitmap_bh->b_data))
4001 break;
4002 }
4003 brelse(bitmap_bh);
4004 if (i == start + inodes_per_block) {
4005 /* all other inodes are free, so skip I/O */
4006 memset(bh->b_data, 0, bh->b_size);
4007 set_buffer_uptodate(bh);
4008 unlock_buffer(bh);
4009 goto has_buffer;
4010 }
4011 }
4012
4013 make_io:
4014 /*
4015 * If we need to do any I/O, try to pre-readahead extra
4016 * blocks from the inode table.
4017 */
4018 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4019 ext4_fsblk_t b, end, table;
4020 unsigned num;
4021 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4022
4023 table = ext4_inode_table(sb, gdp);
4024 /* s_inode_readahead_blks is always a power of 2 */
4025 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4026 if (table > b)
4027 b = table;
4028 end = b + ra_blks;
4029 num = EXT4_INODES_PER_GROUP(sb);
4030 if (ext4_has_group_desc_csum(sb))
4031 num -= ext4_itable_unused_count(sb, gdp);
4032 table += num / inodes_per_block;
4033 if (end > table)
4034 end = table;
4035 while (b <= end)
4036 sb_breadahead(sb, b++);
4037 }
4038
4039 /*
4040 * There are other valid inodes in the buffer, this inode
4041 * has in-inode xattrs, or we don't have this inode in memory.
4042 * Read the block from disk.
4043 */
4044 trace_ext4_load_inode(inode);
4045 get_bh(bh);
4046 bh->b_end_io = end_buffer_read_sync;
4047 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4048 wait_on_buffer(bh);
4049 if (!buffer_uptodate(bh)) {
4050 EXT4_ERROR_INODE_BLOCK(inode, block,
4051 "unable to read itable block");
4052 brelse(bh);
4053 return -EIO;
4054 }
4055 }
4056 has_buffer:
4057 iloc->bh = bh;
4058 return 0;
4059 }
4060
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4061 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4062 {
4063 /* We have all inode data except xattrs in memory here. */
4064 return __ext4_get_inode_loc(inode, iloc,
4065 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4066 }
4067
ext4_set_inode_flags(struct inode * inode)4068 void ext4_set_inode_flags(struct inode *inode)
4069 {
4070 unsigned int flags = EXT4_I(inode)->i_flags;
4071 unsigned int new_fl = 0;
4072
4073 if (flags & EXT4_SYNC_FL)
4074 new_fl |= S_SYNC;
4075 if (flags & EXT4_APPEND_FL)
4076 new_fl |= S_APPEND;
4077 if (flags & EXT4_IMMUTABLE_FL)
4078 new_fl |= S_IMMUTABLE;
4079 if (flags & EXT4_NOATIME_FL)
4080 new_fl |= S_NOATIME;
4081 if (flags & EXT4_DIRSYNC_FL)
4082 new_fl |= S_DIRSYNC;
4083 inode_set_flags(inode, new_fl,
4084 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4085 }
4086
4087 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4088 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4089 {
4090 unsigned int vfs_fl;
4091 unsigned long old_fl, new_fl;
4092
4093 do {
4094 vfs_fl = ei->vfs_inode.i_flags;
4095 old_fl = ei->i_flags;
4096 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4097 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4098 EXT4_DIRSYNC_FL);
4099 if (vfs_fl & S_SYNC)
4100 new_fl |= EXT4_SYNC_FL;
4101 if (vfs_fl & S_APPEND)
4102 new_fl |= EXT4_APPEND_FL;
4103 if (vfs_fl & S_IMMUTABLE)
4104 new_fl |= EXT4_IMMUTABLE_FL;
4105 if (vfs_fl & S_NOATIME)
4106 new_fl |= EXT4_NOATIME_FL;
4107 if (vfs_fl & S_DIRSYNC)
4108 new_fl |= EXT4_DIRSYNC_FL;
4109 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4110 }
4111
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4112 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4113 struct ext4_inode_info *ei)
4114 {
4115 blkcnt_t i_blocks ;
4116 struct inode *inode = &(ei->vfs_inode);
4117 struct super_block *sb = inode->i_sb;
4118
4119 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4120 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4121 /* we are using combined 48 bit field */
4122 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4123 le32_to_cpu(raw_inode->i_blocks_lo);
4124 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4125 /* i_blocks represent file system block size */
4126 return i_blocks << (inode->i_blkbits - 9);
4127 } else {
4128 return i_blocks;
4129 }
4130 } else {
4131 return le32_to_cpu(raw_inode->i_blocks_lo);
4132 }
4133 }
4134
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4135 static inline void ext4_iget_extra_inode(struct inode *inode,
4136 struct ext4_inode *raw_inode,
4137 struct ext4_inode_info *ei)
4138 {
4139 __le32 *magic = (void *)raw_inode +
4140 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4141 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4142 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4143 ext4_find_inline_data_nolock(inode);
4144 } else
4145 EXT4_I(inode)->i_inline_off = 0;
4146 }
4147
ext4_iget(struct super_block * sb,unsigned long ino)4148 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4149 {
4150 struct ext4_iloc iloc;
4151 struct ext4_inode *raw_inode;
4152 struct ext4_inode_info *ei;
4153 struct inode *inode;
4154 journal_t *journal = EXT4_SB(sb)->s_journal;
4155 long ret;
4156 int block;
4157 uid_t i_uid;
4158 gid_t i_gid;
4159
4160 inode = iget_locked(sb, ino);
4161 if (!inode)
4162 return ERR_PTR(-ENOMEM);
4163 if (!(inode->i_state & I_NEW))
4164 return inode;
4165
4166 ei = EXT4_I(inode);
4167 iloc.bh = NULL;
4168
4169 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4170 if (ret < 0)
4171 goto bad_inode;
4172 raw_inode = ext4_raw_inode(&iloc);
4173
4174 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4175 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4176 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4177 EXT4_INODE_SIZE(inode->i_sb)) {
4178 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4179 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4180 EXT4_INODE_SIZE(inode->i_sb));
4181 ret = -EIO;
4182 goto bad_inode;
4183 }
4184 } else
4185 ei->i_extra_isize = 0;
4186
4187 /* Precompute checksum seed for inode metadata */
4188 if (ext4_has_metadata_csum(sb)) {
4189 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4190 __u32 csum;
4191 __le32 inum = cpu_to_le32(inode->i_ino);
4192 __le32 gen = raw_inode->i_generation;
4193 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4194 sizeof(inum));
4195 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4196 sizeof(gen));
4197 }
4198
4199 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4200 EXT4_ERROR_INODE(inode, "checksum invalid");
4201 ret = -EIO;
4202 goto bad_inode;
4203 }
4204
4205 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4206 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4207 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4208 if (!(test_opt(inode->i_sb, NO_UID32))) {
4209 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4210 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4211 }
4212 i_uid_write(inode, i_uid);
4213 i_gid_write(inode, i_gid);
4214 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4215
4216 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4217 ei->i_inline_off = 0;
4218 ei->i_dir_start_lookup = 0;
4219 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4220 /* We now have enough fields to check if the inode was active or not.
4221 * This is needed because nfsd might try to access dead inodes
4222 * the test is that same one that e2fsck uses
4223 * NeilBrown 1999oct15
4224 */
4225 if (inode->i_nlink == 0) {
4226 if ((inode->i_mode == 0 ||
4227 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4228 ino != EXT4_BOOT_LOADER_INO) {
4229 /* this inode is deleted */
4230 ret = -ESTALE;
4231 goto bad_inode;
4232 }
4233 /* The only unlinked inodes we let through here have
4234 * valid i_mode and are being read by the orphan
4235 * recovery code: that's fine, we're about to complete
4236 * the process of deleting those.
4237 * OR it is the EXT4_BOOT_LOADER_INO which is
4238 * not initialized on a new filesystem. */
4239 }
4240 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4241 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4242 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4243 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4244 ei->i_file_acl |=
4245 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4246 inode->i_size = ext4_isize(raw_inode);
4247 ei->i_disksize = inode->i_size;
4248 #ifdef CONFIG_QUOTA
4249 ei->i_reserved_quota = 0;
4250 #endif
4251 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4252 ei->i_block_group = iloc.block_group;
4253 ei->i_last_alloc_group = ~0;
4254 /*
4255 * NOTE! The in-memory inode i_data array is in little-endian order
4256 * even on big-endian machines: we do NOT byteswap the block numbers!
4257 */
4258 for (block = 0; block < EXT4_N_BLOCKS; block++)
4259 ei->i_data[block] = raw_inode->i_block[block];
4260 INIT_LIST_HEAD(&ei->i_orphan);
4261
4262 /*
4263 * Set transaction id's of transactions that have to be committed
4264 * to finish f[data]sync. We set them to currently running transaction
4265 * as we cannot be sure that the inode or some of its metadata isn't
4266 * part of the transaction - the inode could have been reclaimed and
4267 * now it is reread from disk.
4268 */
4269 if (journal) {
4270 transaction_t *transaction;
4271 tid_t tid;
4272
4273 read_lock(&journal->j_state_lock);
4274 if (journal->j_running_transaction)
4275 transaction = journal->j_running_transaction;
4276 else
4277 transaction = journal->j_committing_transaction;
4278 if (transaction)
4279 tid = transaction->t_tid;
4280 else
4281 tid = journal->j_commit_sequence;
4282 read_unlock(&journal->j_state_lock);
4283 ei->i_sync_tid = tid;
4284 ei->i_datasync_tid = tid;
4285 }
4286
4287 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4288 if (ei->i_extra_isize == 0) {
4289 /* The extra space is currently unused. Use it. */
4290 ei->i_extra_isize = sizeof(struct ext4_inode) -
4291 EXT4_GOOD_OLD_INODE_SIZE;
4292 } else {
4293 ext4_iget_extra_inode(inode, raw_inode, ei);
4294 }
4295 }
4296
4297 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4298 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4299 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4300 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4301
4302 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4303 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4304 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4305 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4306 inode->i_version |=
4307 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4308 }
4309 }
4310
4311 ret = 0;
4312 if (ei->i_file_acl &&
4313 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4314 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4315 ei->i_file_acl);
4316 ret = -EIO;
4317 goto bad_inode;
4318 } else if (!ext4_has_inline_data(inode)) {
4319 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4320 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4321 (S_ISLNK(inode->i_mode) &&
4322 !ext4_inode_is_fast_symlink(inode))))
4323 /* Validate extent which is part of inode */
4324 ret = ext4_ext_check_inode(inode);
4325 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4326 (S_ISLNK(inode->i_mode) &&
4327 !ext4_inode_is_fast_symlink(inode))) {
4328 /* Validate block references which are part of inode */
4329 ret = ext4_ind_check_inode(inode);
4330 }
4331 }
4332 if (ret)
4333 goto bad_inode;
4334
4335 if (S_ISREG(inode->i_mode)) {
4336 inode->i_op = &ext4_file_inode_operations;
4337 inode->i_fop = &ext4_file_operations;
4338 ext4_set_aops(inode);
4339 } else if (S_ISDIR(inode->i_mode)) {
4340 inode->i_op = &ext4_dir_inode_operations;
4341 inode->i_fop = &ext4_dir_operations;
4342 } else if (S_ISLNK(inode->i_mode)) {
4343 if (ext4_inode_is_fast_symlink(inode) &&
4344 !ext4_encrypted_inode(inode)) {
4345 inode->i_op = &ext4_fast_symlink_inode_operations;
4346 nd_terminate_link(ei->i_data, inode->i_size,
4347 sizeof(ei->i_data) - 1);
4348 } else {
4349 inode->i_op = &ext4_symlink_inode_operations;
4350 ext4_set_aops(inode);
4351 }
4352 inode_nohighmem(inode);
4353 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4354 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4355 inode->i_op = &ext4_special_inode_operations;
4356 if (raw_inode->i_block[0])
4357 init_special_inode(inode, inode->i_mode,
4358 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4359 else
4360 init_special_inode(inode, inode->i_mode,
4361 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4362 } else if (ino == EXT4_BOOT_LOADER_INO) {
4363 make_bad_inode(inode);
4364 } else {
4365 ret = -EIO;
4366 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4367 goto bad_inode;
4368 }
4369 brelse(iloc.bh);
4370 ext4_set_inode_flags(inode);
4371 unlock_new_inode(inode);
4372 return inode;
4373
4374 bad_inode:
4375 brelse(iloc.bh);
4376 iget_failed(inode);
4377 return ERR_PTR(ret);
4378 }
4379
ext4_iget_normal(struct super_block * sb,unsigned long ino)4380 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4381 {
4382 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4383 return ERR_PTR(-EIO);
4384 return ext4_iget(sb, ino);
4385 }
4386
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4387 static int ext4_inode_blocks_set(handle_t *handle,
4388 struct ext4_inode *raw_inode,
4389 struct ext4_inode_info *ei)
4390 {
4391 struct inode *inode = &(ei->vfs_inode);
4392 u64 i_blocks = inode->i_blocks;
4393 struct super_block *sb = inode->i_sb;
4394
4395 if (i_blocks <= ~0U) {
4396 /*
4397 * i_blocks can be represented in a 32 bit variable
4398 * as multiple of 512 bytes
4399 */
4400 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4401 raw_inode->i_blocks_high = 0;
4402 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4403 return 0;
4404 }
4405 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4406 return -EFBIG;
4407
4408 if (i_blocks <= 0xffffffffffffULL) {
4409 /*
4410 * i_blocks can be represented in a 48 bit variable
4411 * as multiple of 512 bytes
4412 */
4413 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4414 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4415 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4416 } else {
4417 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4418 /* i_block is stored in file system block size */
4419 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4420 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4421 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4422 }
4423 return 0;
4424 }
4425
4426 /*
4427 * Post the struct inode info into an on-disk inode location in the
4428 * buffer-cache. This gobbles the caller's reference to the
4429 * buffer_head in the inode location struct.
4430 *
4431 * The caller must have write access to iloc->bh.
4432 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4433 static int ext4_do_update_inode(handle_t *handle,
4434 struct inode *inode,
4435 struct ext4_iloc *iloc)
4436 {
4437 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4438 struct ext4_inode_info *ei = EXT4_I(inode);
4439 struct buffer_head *bh = iloc->bh;
4440 struct super_block *sb = inode->i_sb;
4441 int err = 0, rc, block;
4442 int need_datasync = 0, set_large_file = 0;
4443 uid_t i_uid;
4444 gid_t i_gid;
4445
4446 spin_lock(&ei->i_raw_lock);
4447
4448 /* For fields not tracked in the in-memory inode,
4449 * initialise them to zero for new inodes. */
4450 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4451 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4452
4453 ext4_get_inode_flags(ei);
4454 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4455 i_uid = i_uid_read(inode);
4456 i_gid = i_gid_read(inode);
4457 if (!(test_opt(inode->i_sb, NO_UID32))) {
4458 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4459 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4460 /*
4461 * Fix up interoperability with old kernels. Otherwise, old inodes get
4462 * re-used with the upper 16 bits of the uid/gid intact
4463 */
4464 if (!ei->i_dtime) {
4465 raw_inode->i_uid_high =
4466 cpu_to_le16(high_16_bits(i_uid));
4467 raw_inode->i_gid_high =
4468 cpu_to_le16(high_16_bits(i_gid));
4469 } else {
4470 raw_inode->i_uid_high = 0;
4471 raw_inode->i_gid_high = 0;
4472 }
4473 } else {
4474 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4475 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4476 raw_inode->i_uid_high = 0;
4477 raw_inode->i_gid_high = 0;
4478 }
4479 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4480
4481 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4482 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4483 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4484 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4485
4486 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4487 if (err) {
4488 spin_unlock(&ei->i_raw_lock);
4489 goto out_brelse;
4490 }
4491 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4492 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4493 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4494 raw_inode->i_file_acl_high =
4495 cpu_to_le16(ei->i_file_acl >> 32);
4496 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4497 if (ei->i_disksize != ext4_isize(raw_inode)) {
4498 ext4_isize_set(raw_inode, ei->i_disksize);
4499 need_datasync = 1;
4500 }
4501 if (ei->i_disksize > 0x7fffffffULL) {
4502 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4503 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4504 EXT4_SB(sb)->s_es->s_rev_level ==
4505 cpu_to_le32(EXT4_GOOD_OLD_REV))
4506 set_large_file = 1;
4507 }
4508 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4509 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4510 if (old_valid_dev(inode->i_rdev)) {
4511 raw_inode->i_block[0] =
4512 cpu_to_le32(old_encode_dev(inode->i_rdev));
4513 raw_inode->i_block[1] = 0;
4514 } else {
4515 raw_inode->i_block[0] = 0;
4516 raw_inode->i_block[1] =
4517 cpu_to_le32(new_encode_dev(inode->i_rdev));
4518 raw_inode->i_block[2] = 0;
4519 }
4520 } else if (!ext4_has_inline_data(inode)) {
4521 for (block = 0; block < EXT4_N_BLOCKS; block++)
4522 raw_inode->i_block[block] = ei->i_data[block];
4523 }
4524
4525 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4526 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4527 if (ei->i_extra_isize) {
4528 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4529 raw_inode->i_version_hi =
4530 cpu_to_le32(inode->i_version >> 32);
4531 raw_inode->i_extra_isize =
4532 cpu_to_le16(ei->i_extra_isize);
4533 }
4534 }
4535
4536 ext4_inode_csum_set(inode, raw_inode, ei);
4537
4538 spin_unlock(&ei->i_raw_lock);
4539
4540 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4541 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4542 if (!err)
4543 err = rc;
4544 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4545 if (set_large_file) {
4546 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4547 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4548 if (err)
4549 goto out_brelse;
4550 ext4_update_dynamic_rev(sb);
4551 EXT4_SET_RO_COMPAT_FEATURE(sb,
4552 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4553 ext4_handle_sync(handle);
4554 err = ext4_handle_dirty_super(handle, sb);
4555 }
4556 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4557 out_brelse:
4558 brelse(bh);
4559 ext4_std_error(inode->i_sb, err);
4560 return err;
4561 }
4562
4563 /*
4564 * ext4_write_inode()
4565 *
4566 * We are called from a few places:
4567 *
4568 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4569 * Here, there will be no transaction running. We wait for any running
4570 * transaction to commit.
4571 *
4572 * - Within flush work (sys_sync(), kupdate and such).
4573 * We wait on commit, if told to.
4574 *
4575 * - Within iput_final() -> write_inode_now()
4576 * We wait on commit, if told to.
4577 *
4578 * In all cases it is actually safe for us to return without doing anything,
4579 * because the inode has been copied into a raw inode buffer in
4580 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4581 * writeback.
4582 *
4583 * Note that we are absolutely dependent upon all inode dirtiers doing the
4584 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4585 * which we are interested.
4586 *
4587 * It would be a bug for them to not do this. The code:
4588 *
4589 * mark_inode_dirty(inode)
4590 * stuff();
4591 * inode->i_size = expr;
4592 *
4593 * is in error because write_inode() could occur while `stuff()' is running,
4594 * and the new i_size will be lost. Plus the inode will no longer be on the
4595 * superblock's dirty inode list.
4596 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4597 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4598 {
4599 int err;
4600
4601 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4602 return 0;
4603
4604 if (EXT4_SB(inode->i_sb)->s_journal) {
4605 if (ext4_journal_current_handle()) {
4606 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4607 dump_stack();
4608 return -EIO;
4609 }
4610
4611 /*
4612 * No need to force transaction in WB_SYNC_NONE mode. Also
4613 * ext4_sync_fs() will force the commit after everything is
4614 * written.
4615 */
4616 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4617 return 0;
4618
4619 err = ext4_force_commit(inode->i_sb);
4620 } else {
4621 struct ext4_iloc iloc;
4622
4623 err = __ext4_get_inode_loc(inode, &iloc, 0);
4624 if (err)
4625 return err;
4626 /*
4627 * sync(2) will flush the whole buffer cache. No need to do
4628 * it here separately for each inode.
4629 */
4630 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4631 sync_dirty_buffer(iloc.bh);
4632 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4633 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4634 "IO error syncing inode");
4635 err = -EIO;
4636 }
4637 brelse(iloc.bh);
4638 }
4639 return err;
4640 }
4641
4642 /*
4643 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4644 * buffers that are attached to a page stradding i_size and are undergoing
4645 * commit. In that case we have to wait for commit to finish and try again.
4646 */
ext4_wait_for_tail_page_commit(struct inode * inode)4647 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4648 {
4649 struct page *page;
4650 unsigned offset;
4651 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4652 tid_t commit_tid = 0;
4653 int ret;
4654
4655 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4656 /*
4657 * All buffers in the last page remain valid? Then there's nothing to
4658 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4659 * blocksize case
4660 */
4661 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4662 return;
4663 while (1) {
4664 page = find_lock_page(inode->i_mapping,
4665 inode->i_size >> PAGE_CACHE_SHIFT);
4666 if (!page)
4667 return;
4668 ret = __ext4_journalled_invalidatepage(page, offset,
4669 PAGE_CACHE_SIZE - offset);
4670 unlock_page(page);
4671 page_cache_release(page);
4672 if (ret != -EBUSY)
4673 return;
4674 commit_tid = 0;
4675 read_lock(&journal->j_state_lock);
4676 if (journal->j_committing_transaction)
4677 commit_tid = journal->j_committing_transaction->t_tid;
4678 read_unlock(&journal->j_state_lock);
4679 if (commit_tid)
4680 jbd2_log_wait_commit(journal, commit_tid);
4681 }
4682 }
4683
4684 /*
4685 * ext4_setattr()
4686 *
4687 * Called from notify_change.
4688 *
4689 * We want to trap VFS attempts to truncate the file as soon as
4690 * possible. In particular, we want to make sure that when the VFS
4691 * shrinks i_size, we put the inode on the orphan list and modify
4692 * i_disksize immediately, so that during the subsequent flushing of
4693 * dirty pages and freeing of disk blocks, we can guarantee that any
4694 * commit will leave the blocks being flushed in an unused state on
4695 * disk. (On recovery, the inode will get truncated and the blocks will
4696 * be freed, so we have a strong guarantee that no future commit will
4697 * leave these blocks visible to the user.)
4698 *
4699 * Another thing we have to assure is that if we are in ordered mode
4700 * and inode is still attached to the committing transaction, we must
4701 * we start writeout of all the dirty pages which are being truncated.
4702 * This way we are sure that all the data written in the previous
4703 * transaction are already on disk (truncate waits for pages under
4704 * writeback).
4705 *
4706 * Called with inode->i_mutex down.
4707 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4708 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4709 {
4710 struct inode *inode = dentry->d_inode;
4711 int error, rc = 0;
4712 int orphan = 0;
4713 const unsigned int ia_valid = attr->ia_valid;
4714
4715 error = inode_change_ok(inode, attr);
4716 if (error)
4717 return error;
4718
4719 if (is_quota_modification(inode, attr))
4720 dquot_initialize(inode);
4721 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4722 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4723 handle_t *handle;
4724
4725 /* (user+group)*(old+new) structure, inode write (sb,
4726 * inode block, ? - but truncate inode update has it) */
4727 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4728 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4729 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4730 if (IS_ERR(handle)) {
4731 error = PTR_ERR(handle);
4732 goto err_out;
4733 }
4734 error = dquot_transfer(inode, attr);
4735 if (error) {
4736 ext4_journal_stop(handle);
4737 return error;
4738 }
4739 /* Update corresponding info in inode so that everything is in
4740 * one transaction */
4741 if (attr->ia_valid & ATTR_UID)
4742 inode->i_uid = attr->ia_uid;
4743 if (attr->ia_valid & ATTR_GID)
4744 inode->i_gid = attr->ia_gid;
4745 error = ext4_mark_inode_dirty(handle, inode);
4746 ext4_journal_stop(handle);
4747 }
4748
4749 if (attr->ia_valid & ATTR_SIZE) {
4750 handle_t *handle;
4751 loff_t oldsize = inode->i_size;
4752 int shrink = (attr->ia_size <= inode->i_size);
4753
4754 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4755 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4756
4757 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4758 return -EFBIG;
4759 }
4760 if (!S_ISREG(inode->i_mode))
4761 return -EINVAL;
4762
4763 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4764 inode_inc_iversion(inode);
4765
4766 if (ext4_should_order_data(inode) &&
4767 (attr->ia_size < inode->i_size)) {
4768 error = ext4_begin_ordered_truncate(inode,
4769 attr->ia_size);
4770 if (error)
4771 goto err_out;
4772 }
4773 if (attr->ia_size != inode->i_size) {
4774 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4775 if (IS_ERR(handle)) {
4776 error = PTR_ERR(handle);
4777 goto err_out;
4778 }
4779 if (ext4_handle_valid(handle) && shrink) {
4780 error = ext4_orphan_add(handle, inode);
4781 orphan = 1;
4782 }
4783 down_write(&EXT4_I(inode)->i_data_sem);
4784 EXT4_I(inode)->i_disksize = attr->ia_size;
4785 rc = ext4_mark_inode_dirty(handle, inode);
4786 if (!error)
4787 error = rc;
4788 /*
4789 * We have to update i_size under i_data_sem together
4790 * with i_disksize to avoid races with writeback code
4791 * running ext4_wb_update_i_disksize().
4792 */
4793 if (!error)
4794 i_size_write(inode, attr->ia_size);
4795 up_write(&EXT4_I(inode)->i_data_sem);
4796 ext4_journal_stop(handle);
4797 if (error) {
4798 if (orphan)
4799 ext4_orphan_del(NULL, inode);
4800 goto err_out;
4801 }
4802 }
4803 if (!shrink)
4804 pagecache_isize_extended(inode, oldsize, inode->i_size);
4805
4806 /*
4807 * Blocks are going to be removed from the inode. Wait
4808 * for dio in flight. Temporarily disable
4809 * dioread_nolock to prevent livelock.
4810 */
4811 if (orphan) {
4812 if (!ext4_should_journal_data(inode)) {
4813 ext4_inode_block_unlocked_dio(inode);
4814 inode_dio_wait(inode);
4815 ext4_inode_resume_unlocked_dio(inode);
4816 } else
4817 ext4_wait_for_tail_page_commit(inode);
4818 }
4819 /*
4820 * Truncate pagecache after we've waited for commit
4821 * in data=journal mode to make pages freeable.
4822 */
4823 truncate_pagecache(inode, inode->i_size);
4824 if (shrink)
4825 ext4_truncate(inode);
4826 }
4827
4828 if (!rc) {
4829 setattr_copy(inode, attr);
4830 mark_inode_dirty(inode);
4831 }
4832
4833 /*
4834 * If the call to ext4_truncate failed to get a transaction handle at
4835 * all, we need to clean up the in-core orphan list manually.
4836 */
4837 if (orphan && inode->i_nlink)
4838 ext4_orphan_del(NULL, inode);
4839
4840 if (!rc && (ia_valid & ATTR_MODE))
4841 rc = posix_acl_chmod(inode, inode->i_mode);
4842
4843 err_out:
4844 ext4_std_error(inode->i_sb, error);
4845 if (!error)
4846 error = rc;
4847 return error;
4848 }
4849
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)4850 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4851 struct kstat *stat)
4852 {
4853 struct inode *inode;
4854 unsigned long long delalloc_blocks;
4855
4856 inode = dentry->d_inode;
4857 generic_fillattr(inode, stat);
4858
4859 /*
4860 * If there is inline data in the inode, the inode will normally not
4861 * have data blocks allocated (it may have an external xattr block).
4862 * Report at least one sector for such files, so tools like tar, rsync,
4863 * others doen't incorrectly think the file is completely sparse.
4864 */
4865 if (unlikely(ext4_has_inline_data(inode)))
4866 stat->blocks += (stat->size + 511) >> 9;
4867
4868 /*
4869 * We can't update i_blocks if the block allocation is delayed
4870 * otherwise in the case of system crash before the real block
4871 * allocation is done, we will have i_blocks inconsistent with
4872 * on-disk file blocks.
4873 * We always keep i_blocks updated together with real
4874 * allocation. But to not confuse with user, stat
4875 * will return the blocks that include the delayed allocation
4876 * blocks for this file.
4877 */
4878 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4879 EXT4_I(inode)->i_reserved_data_blocks);
4880 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4881 return 0;
4882 }
4883
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)4884 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4885 int pextents)
4886 {
4887 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4888 return ext4_ind_trans_blocks(inode, lblocks);
4889 return ext4_ext_index_trans_blocks(inode, pextents);
4890 }
4891
4892 /*
4893 * Account for index blocks, block groups bitmaps and block group
4894 * descriptor blocks if modify datablocks and index blocks
4895 * worse case, the indexs blocks spread over different block groups
4896 *
4897 * If datablocks are discontiguous, they are possible to spread over
4898 * different block groups too. If they are contiguous, with flexbg,
4899 * they could still across block group boundary.
4900 *
4901 * Also account for superblock, inode, quota and xattr blocks
4902 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)4903 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4904 int pextents)
4905 {
4906 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4907 int gdpblocks;
4908 int idxblocks;
4909 int ret = 0;
4910
4911 /*
4912 * How many index blocks need to touch to map @lblocks logical blocks
4913 * to @pextents physical extents?
4914 */
4915 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4916
4917 ret = idxblocks;
4918
4919 /*
4920 * Now let's see how many group bitmaps and group descriptors need
4921 * to account
4922 */
4923 groups = idxblocks + pextents;
4924 gdpblocks = groups;
4925 if (groups > ngroups)
4926 groups = ngroups;
4927 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4928 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4929
4930 /* bitmaps and block group descriptor blocks */
4931 ret += groups + gdpblocks;
4932
4933 /* Blocks for super block, inode, quota and xattr blocks */
4934 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4935
4936 return ret;
4937 }
4938
4939 /*
4940 * Calculate the total number of credits to reserve to fit
4941 * the modification of a single pages into a single transaction,
4942 * which may include multiple chunks of block allocations.
4943 *
4944 * This could be called via ext4_write_begin()
4945 *
4946 * We need to consider the worse case, when
4947 * one new block per extent.
4948 */
ext4_writepage_trans_blocks(struct inode * inode)4949 int ext4_writepage_trans_blocks(struct inode *inode)
4950 {
4951 int bpp = ext4_journal_blocks_per_page(inode);
4952 int ret;
4953
4954 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4955
4956 /* Account for data blocks for journalled mode */
4957 if (ext4_should_journal_data(inode))
4958 ret += bpp;
4959 return ret;
4960 }
4961
4962 /*
4963 * Calculate the journal credits for a chunk of data modification.
4964 *
4965 * This is called from DIO, fallocate or whoever calling
4966 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4967 *
4968 * journal buffers for data blocks are not included here, as DIO
4969 * and fallocate do no need to journal data buffers.
4970 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)4971 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4972 {
4973 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4974 }
4975
4976 /*
4977 * The caller must have previously called ext4_reserve_inode_write().
4978 * Give this, we know that the caller already has write access to iloc->bh.
4979 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4980 int ext4_mark_iloc_dirty(handle_t *handle,
4981 struct inode *inode, struct ext4_iloc *iloc)
4982 {
4983 int err = 0;
4984
4985 if (IS_I_VERSION(inode))
4986 inode_inc_iversion(inode);
4987
4988 /* the do_update_inode consumes one bh->b_count */
4989 get_bh(iloc->bh);
4990
4991 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4992 err = ext4_do_update_inode(handle, inode, iloc);
4993 put_bh(iloc->bh);
4994 return err;
4995 }
4996
4997 /*
4998 * On success, We end up with an outstanding reference count against
4999 * iloc->bh. This _must_ be cleaned up later.
5000 */
5001
5002 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5003 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5004 struct ext4_iloc *iloc)
5005 {
5006 int err;
5007
5008 err = ext4_get_inode_loc(inode, iloc);
5009 if (!err) {
5010 BUFFER_TRACE(iloc->bh, "get_write_access");
5011 err = ext4_journal_get_write_access(handle, iloc->bh);
5012 if (err) {
5013 brelse(iloc->bh);
5014 iloc->bh = NULL;
5015 }
5016 }
5017 ext4_std_error(inode->i_sb, err);
5018 return err;
5019 }
5020
5021 /*
5022 * Expand an inode by new_extra_isize bytes.
5023 * Returns 0 on success or negative error number on failure.
5024 */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5025 static int ext4_expand_extra_isize(struct inode *inode,
5026 unsigned int new_extra_isize,
5027 struct ext4_iloc iloc,
5028 handle_t *handle)
5029 {
5030 struct ext4_inode *raw_inode;
5031 struct ext4_xattr_ibody_header *header;
5032
5033 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5034 return 0;
5035
5036 raw_inode = ext4_raw_inode(&iloc);
5037
5038 header = IHDR(inode, raw_inode);
5039
5040 /* No extended attributes present */
5041 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5042 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5043 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5044 EXT4_I(inode)->i_extra_isize, 0,
5045 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5046 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5047 return 0;
5048 }
5049
5050 /* try to expand with EAs present */
5051 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5052 raw_inode, handle);
5053 }
5054
5055 /*
5056 * What we do here is to mark the in-core inode as clean with respect to inode
5057 * dirtiness (it may still be data-dirty).
5058 * This means that the in-core inode may be reaped by prune_icache
5059 * without having to perform any I/O. This is a very good thing,
5060 * because *any* task may call prune_icache - even ones which
5061 * have a transaction open against a different journal.
5062 *
5063 * Is this cheating? Not really. Sure, we haven't written the
5064 * inode out, but prune_icache isn't a user-visible syncing function.
5065 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5066 * we start and wait on commits.
5067 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)5068 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5069 {
5070 struct ext4_iloc iloc;
5071 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5072 static unsigned int mnt_count;
5073 int err, ret;
5074
5075 might_sleep();
5076 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5077 err = ext4_reserve_inode_write(handle, inode, &iloc);
5078 if (err)
5079 return err;
5080 if (ext4_handle_valid(handle) &&
5081 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5082 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5083 /*
5084 * We need extra buffer credits since we may write into EA block
5085 * with this same handle. If journal_extend fails, then it will
5086 * only result in a minor loss of functionality for that inode.
5087 * If this is felt to be critical, then e2fsck should be run to
5088 * force a large enough s_min_extra_isize.
5089 */
5090 if ((jbd2_journal_extend(handle,
5091 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5092 ret = ext4_expand_extra_isize(inode,
5093 sbi->s_want_extra_isize,
5094 iloc, handle);
5095 if (ret) {
5096 if (mnt_count !=
5097 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5098 ext4_warning(inode->i_sb,
5099 "Unable to expand inode %lu. Delete"
5100 " some EAs or run e2fsck.",
5101 inode->i_ino);
5102 mnt_count =
5103 le16_to_cpu(sbi->s_es->s_mnt_count);
5104 }
5105 }
5106 }
5107 }
5108 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5109 }
5110
5111 /*
5112 * ext4_dirty_inode() is called from __mark_inode_dirty()
5113 *
5114 * We're really interested in the case where a file is being extended.
5115 * i_size has been changed by generic_commit_write() and we thus need
5116 * to include the updated inode in the current transaction.
5117 *
5118 * Also, dquot_alloc_block() will always dirty the inode when blocks
5119 * are allocated to the file.
5120 *
5121 * If the inode is marked synchronous, we don't honour that here - doing
5122 * so would cause a commit on atime updates, which we don't bother doing.
5123 * We handle synchronous inodes at the highest possible level.
5124 *
5125 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5126 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5127 * to copy into the on-disk inode structure are the timestamp files.
5128 */
ext4_dirty_inode(struct inode * inode,int flags)5129 void ext4_dirty_inode(struct inode *inode, int flags)
5130 {
5131 handle_t *handle;
5132
5133 if (flags == I_DIRTY_TIME)
5134 return;
5135 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5136 if (IS_ERR(handle))
5137 goto out;
5138
5139 ext4_mark_inode_dirty(handle, inode);
5140
5141 ext4_journal_stop(handle);
5142 out:
5143 return;
5144 }
5145
5146 #if 0
5147 /*
5148 * Bind an inode's backing buffer_head into this transaction, to prevent
5149 * it from being flushed to disk early. Unlike
5150 * ext4_reserve_inode_write, this leaves behind no bh reference and
5151 * returns no iloc structure, so the caller needs to repeat the iloc
5152 * lookup to mark the inode dirty later.
5153 */
5154 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5155 {
5156 struct ext4_iloc iloc;
5157
5158 int err = 0;
5159 if (handle) {
5160 err = ext4_get_inode_loc(inode, &iloc);
5161 if (!err) {
5162 BUFFER_TRACE(iloc.bh, "get_write_access");
5163 err = jbd2_journal_get_write_access(handle, iloc.bh);
5164 if (!err)
5165 err = ext4_handle_dirty_metadata(handle,
5166 NULL,
5167 iloc.bh);
5168 brelse(iloc.bh);
5169 }
5170 }
5171 ext4_std_error(inode->i_sb, err);
5172 return err;
5173 }
5174 #endif
5175
ext4_change_inode_journal_flag(struct inode * inode,int val)5176 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5177 {
5178 journal_t *journal;
5179 handle_t *handle;
5180 int err;
5181
5182 /*
5183 * We have to be very careful here: changing a data block's
5184 * journaling status dynamically is dangerous. If we write a
5185 * data block to the journal, change the status and then delete
5186 * that block, we risk forgetting to revoke the old log record
5187 * from the journal and so a subsequent replay can corrupt data.
5188 * So, first we make sure that the journal is empty and that
5189 * nobody is changing anything.
5190 */
5191
5192 journal = EXT4_JOURNAL(inode);
5193 if (!journal)
5194 return 0;
5195 if (is_journal_aborted(journal))
5196 return -EROFS;
5197 /* We have to allocate physical blocks for delalloc blocks
5198 * before flushing journal. otherwise delalloc blocks can not
5199 * be allocated any more. even more truncate on delalloc blocks
5200 * could trigger BUG by flushing delalloc blocks in journal.
5201 * There is no delalloc block in non-journal data mode.
5202 */
5203 if (val && test_opt(inode->i_sb, DELALLOC)) {
5204 err = ext4_alloc_da_blocks(inode);
5205 if (err < 0)
5206 return err;
5207 }
5208
5209 /* Wait for all existing dio workers */
5210 ext4_inode_block_unlocked_dio(inode);
5211 inode_dio_wait(inode);
5212
5213 jbd2_journal_lock_updates(journal);
5214
5215 /*
5216 * OK, there are no updates running now, and all cached data is
5217 * synced to disk. We are now in a completely consistent state
5218 * which doesn't have anything in the journal, and we know that
5219 * no filesystem updates are running, so it is safe to modify
5220 * the inode's in-core data-journaling state flag now.
5221 */
5222
5223 if (val)
5224 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5225 else {
5226 err = jbd2_journal_flush(journal);
5227 if (err < 0) {
5228 jbd2_journal_unlock_updates(journal);
5229 ext4_inode_resume_unlocked_dio(inode);
5230 return err;
5231 }
5232 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5233 }
5234 ext4_set_aops(inode);
5235
5236 jbd2_journal_unlock_updates(journal);
5237 ext4_inode_resume_unlocked_dio(inode);
5238
5239 /* Finally we can mark the inode as dirty. */
5240
5241 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5242 if (IS_ERR(handle))
5243 return PTR_ERR(handle);
5244
5245 err = ext4_mark_inode_dirty(handle, inode);
5246 ext4_handle_sync(handle);
5247 ext4_journal_stop(handle);
5248 ext4_std_error(inode->i_sb, err);
5249
5250 return err;
5251 }
5252
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5253 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5254 {
5255 return !buffer_mapped(bh);
5256 }
5257
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5258 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5259 {
5260 struct page *page = vmf->page;
5261 loff_t size;
5262 unsigned long len;
5263 int ret;
5264 struct file *file = vma->vm_file;
5265 struct inode *inode = file_inode(file);
5266 struct address_space *mapping = inode->i_mapping;
5267 handle_t *handle;
5268 get_block_t *get_block;
5269 int retries = 0;
5270
5271 sb_start_pagefault(inode->i_sb);
5272 file_update_time(vma->vm_file);
5273 /* Delalloc case is easy... */
5274 if (test_opt(inode->i_sb, DELALLOC) &&
5275 !ext4_should_journal_data(inode) &&
5276 !ext4_nonda_switch(inode->i_sb)) {
5277 do {
5278 ret = __block_page_mkwrite(vma, vmf,
5279 ext4_da_get_block_prep);
5280 } while (ret == -ENOSPC &&
5281 ext4_should_retry_alloc(inode->i_sb, &retries));
5282 goto out_ret;
5283 }
5284
5285 lock_page(page);
5286 size = i_size_read(inode);
5287 /* Page got truncated from under us? */
5288 if (page->mapping != mapping || page_offset(page) > size) {
5289 unlock_page(page);
5290 ret = VM_FAULT_NOPAGE;
5291 goto out;
5292 }
5293
5294 if (page->index == size >> PAGE_CACHE_SHIFT)
5295 len = size & ~PAGE_CACHE_MASK;
5296 else
5297 len = PAGE_CACHE_SIZE;
5298 /*
5299 * Return if we have all the buffers mapped. This avoids the need to do
5300 * journal_start/journal_stop which can block and take a long time
5301 */
5302 if (page_has_buffers(page)) {
5303 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5304 0, len, NULL,
5305 ext4_bh_unmapped)) {
5306 /* Wait so that we don't change page under IO */
5307 wait_for_stable_page(page);
5308 ret = VM_FAULT_LOCKED;
5309 goto out;
5310 }
5311 }
5312 unlock_page(page);
5313 /* OK, we need to fill the hole... */
5314 if (ext4_should_dioread_nolock(inode))
5315 get_block = ext4_get_block_write;
5316 else
5317 get_block = ext4_get_block;
5318 retry_alloc:
5319 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5320 ext4_writepage_trans_blocks(inode));
5321 if (IS_ERR(handle)) {
5322 ret = VM_FAULT_SIGBUS;
5323 goto out;
5324 }
5325 ret = __block_page_mkwrite(vma, vmf, get_block);
5326 if (!ret && ext4_should_journal_data(inode)) {
5327 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5328 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5329 unlock_page(page);
5330 ret = VM_FAULT_SIGBUS;
5331 ext4_journal_stop(handle);
5332 goto out;
5333 }
5334 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5335 }
5336 ext4_journal_stop(handle);
5337 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5338 goto retry_alloc;
5339 out_ret:
5340 ret = block_page_mkwrite_return(ret);
5341 out:
5342 sb_end_pagefault(inode->i_sb);
5343 return ret;
5344 }
5345