1 /*
2 * Based upon linux/arch/m68k/mm/sun3mmu.c
3 * Based upon linux/arch/ppc/mm/mmu_context.c
4 *
5 * Implementations of mm routines specific to the Coldfire MMU.
6 *
7 * Copyright (c) 2008 Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/bootmem.h>
16
17 #include <asm/setup.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/mcf_pgalloc.h>
22 #include <asm/tlbflush.h>
23
24 #define KMAPAREA(x) ((x >= VMALLOC_START) && (x < KMAP_END))
25
26 mm_context_t next_mmu_context;
27 unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
28 atomic_t nr_free_contexts;
29 struct mm_struct *context_mm[LAST_CONTEXT+1];
30 extern unsigned long num_pages;
31
32 /*
33 * ColdFire paging_init derived from sun3.
34 */
paging_init(void)35 void __init paging_init(void)
36 {
37 pgd_t *pg_dir;
38 pte_t *pg_table;
39 unsigned long address, size;
40 unsigned long next_pgtable, bootmem_end;
41 unsigned long zones_size[MAX_NR_ZONES];
42 enum zone_type zone;
43 int i;
44
45 empty_zero_page = (void *) alloc_bootmem_pages(PAGE_SIZE);
46 memset((void *) empty_zero_page, 0, PAGE_SIZE);
47
48 pg_dir = swapper_pg_dir;
49 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
50
51 size = num_pages * sizeof(pte_t);
52 size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
53 next_pgtable = (unsigned long) alloc_bootmem_pages(size);
54
55 bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
56 pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
57
58 address = PAGE_OFFSET;
59 while (address < (unsigned long)high_memory) {
60 pg_table = (pte_t *) next_pgtable;
61 next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
62 pgd_val(*pg_dir) = (unsigned long) pg_table;
63 pg_dir++;
64
65 /* now change pg_table to kernel virtual addresses */
66 for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
67 pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
68 if (address >= (unsigned long) high_memory)
69 pte_val(pte) = 0;
70
71 set_pte(pg_table, pte);
72 address += PAGE_SIZE;
73 }
74 }
75
76 current->mm = NULL;
77
78 for (zone = 0; zone < MAX_NR_ZONES; zone++)
79 zones_size[zone] = 0x0;
80 zones_size[ZONE_DMA] = num_pages;
81 free_area_init(zones_size);
82 }
83
cf_tlb_miss(struct pt_regs * regs,int write,int dtlb,int extension_word)84 int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
85 {
86 unsigned long flags, mmuar, mmutr;
87 struct mm_struct *mm;
88 pgd_t *pgd;
89 pmd_t *pmd;
90 pte_t *pte;
91 int asid;
92
93 local_irq_save(flags);
94
95 mmuar = (dtlb) ? mmu_read(MMUAR) :
96 regs->pc + (extension_word * sizeof(long));
97
98 mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
99 if (!mm) {
100 local_irq_restore(flags);
101 return -1;
102 }
103
104 pgd = pgd_offset(mm, mmuar);
105 if (pgd_none(*pgd)) {
106 local_irq_restore(flags);
107 return -1;
108 }
109
110 pmd = pmd_offset(pgd, mmuar);
111 if (pmd_none(*pmd)) {
112 local_irq_restore(flags);
113 return -1;
114 }
115
116 pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
117 : pte_offset_map(pmd, mmuar);
118 if (pte_none(*pte) || !pte_present(*pte)) {
119 local_irq_restore(flags);
120 return -1;
121 }
122
123 if (write) {
124 if (!pte_write(*pte)) {
125 local_irq_restore(flags);
126 return -1;
127 }
128 set_pte(pte, pte_mkdirty(*pte));
129 }
130
131 set_pte(pte, pte_mkyoung(*pte));
132 asid = mm->context & 0xff;
133 if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
134 set_pte(pte, pte_wrprotect(*pte));
135
136 mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
137 if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
138 mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
139 mmu_write(MMUTR, mmutr);
140
141 mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
142 ((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
143
144 if (dtlb)
145 mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
146 else
147 mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
148
149 local_irq_restore(flags);
150 return 0;
151 }
152
153 /*
154 * Initialize the context management stuff.
155 * The following was taken from arch/ppc/mmu_context.c
156 */
mmu_context_init(void)157 void __init mmu_context_init(void)
158 {
159 /*
160 * Some processors have too few contexts to reserve one for
161 * init_mm, and require using context 0 for a normal task.
162 * Other processors reserve the use of context zero for the kernel.
163 * This code assumes FIRST_CONTEXT < 32.
164 */
165 context_map[0] = (1 << FIRST_CONTEXT) - 1;
166 next_mmu_context = FIRST_CONTEXT;
167 atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
168 }
169
170 /*
171 * Steal a context from a task that has one at the moment.
172 * This is only used on 8xx and 4xx and we presently assume that
173 * they don't do SMP. If they do then thicfpgalloc.hs will have to check
174 * whether the MM we steal is in use.
175 * We also assume that this is only used on systems that don't
176 * use an MMU hash table - this is true for 8xx and 4xx.
177 * This isn't an LRU system, it just frees up each context in
178 * turn (sort-of pseudo-random replacement :). This would be the
179 * place to implement an LRU scheme if anyone was motivated to do it.
180 * -- paulus
181 */
steal_context(void)182 void steal_context(void)
183 {
184 struct mm_struct *mm;
185 /*
186 * free up context `next_mmu_context'
187 * if we shouldn't free context 0, don't...
188 */
189 if (next_mmu_context < FIRST_CONTEXT)
190 next_mmu_context = FIRST_CONTEXT;
191 mm = context_mm[next_mmu_context];
192 flush_tlb_mm(mm);
193 destroy_context(mm);
194 }
195
196