1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/blkdev.h>
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/llist.h>
9 #include <linux/ratelimit.h>
10 #include <linux/vmalloc.h>
11 #include <linux/workqueue.h>
12
13 #include "closure.h"
14
15 #define PAGE_SECTORS (PAGE_SIZE / 512)
16
17 struct closure;
18
19 #ifdef CONFIG_BCACHE_DEBUG
20
21 #define EBUG_ON(cond) BUG_ON(cond)
22 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
23 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
24
25 #else /* DEBUG */
26
27 #define EBUG_ON(cond) do { if (cond); } while (0)
28 #define atomic_dec_bug(v) atomic_dec(v)
29 #define atomic_inc_bug(v, i) atomic_inc(v)
30
31 #endif
32
33 #define DECLARE_HEAP(type, name) \
34 struct { \
35 size_t size, used; \
36 type *data; \
37 } name
38
39 #define init_heap(heap, _size, gfp) \
40 ({ \
41 size_t _bytes; \
42 (heap)->used = 0; \
43 (heap)->size = (_size); \
44 _bytes = (heap)->size * sizeof(*(heap)->data); \
45 (heap)->data = NULL; \
46 if (_bytes < KMALLOC_MAX_SIZE) \
47 (heap)->data = kmalloc(_bytes, (gfp)); \
48 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \
49 (heap)->data = vmalloc(_bytes); \
50 (heap)->data; \
51 })
52
53 #define free_heap(heap) \
54 do { \
55 if (is_vmalloc_addr((heap)->data)) \
56 vfree((heap)->data); \
57 else \
58 kfree((heap)->data); \
59 (heap)->data = NULL; \
60 } while (0)
61
62 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
63
64 #define heap_sift(h, i, cmp) \
65 do { \
66 size_t _r, _j = i; \
67 \
68 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
69 _r = _j * 2 + 1; \
70 if (_r + 1 < (h)->used && \
71 cmp((h)->data[_r], (h)->data[_r + 1])) \
72 _r++; \
73 \
74 if (cmp((h)->data[_r], (h)->data[_j])) \
75 break; \
76 heap_swap(h, _r, _j); \
77 } \
78 } while (0)
79
80 #define heap_sift_down(h, i, cmp) \
81 do { \
82 while (i) { \
83 size_t p = (i - 1) / 2; \
84 if (cmp((h)->data[i], (h)->data[p])) \
85 break; \
86 heap_swap(h, i, p); \
87 i = p; \
88 } \
89 } while (0)
90
91 #define heap_add(h, d, cmp) \
92 ({ \
93 bool _r = !heap_full(h); \
94 if (_r) { \
95 size_t _i = (h)->used++; \
96 (h)->data[_i] = d; \
97 \
98 heap_sift_down(h, _i, cmp); \
99 heap_sift(h, _i, cmp); \
100 } \
101 _r; \
102 })
103
104 #define heap_pop(h, d, cmp) \
105 ({ \
106 bool _r = (h)->used; \
107 if (_r) { \
108 (d) = (h)->data[0]; \
109 (h)->used--; \
110 heap_swap(h, 0, (h)->used); \
111 heap_sift(h, 0, cmp); \
112 } \
113 _r; \
114 })
115
116 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
117
118 #define heap_full(h) ((h)->used == (h)->size)
119
120 #define DECLARE_FIFO(type, name) \
121 struct { \
122 size_t front, back, size, mask; \
123 type *data; \
124 } name
125
126 #define fifo_for_each(c, fifo, iter) \
127 for (iter = (fifo)->front; \
128 c = (fifo)->data[iter], iter != (fifo)->back; \
129 iter = (iter + 1) & (fifo)->mask)
130
131 #define __init_fifo(fifo, gfp) \
132 ({ \
133 size_t _allocated_size, _bytes; \
134 BUG_ON(!(fifo)->size); \
135 \
136 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
137 _bytes = _allocated_size * sizeof(*(fifo)->data); \
138 \
139 (fifo)->mask = _allocated_size - 1; \
140 (fifo)->front = (fifo)->back = 0; \
141 (fifo)->data = NULL; \
142 \
143 if (_bytes < KMALLOC_MAX_SIZE) \
144 (fifo)->data = kmalloc(_bytes, (gfp)); \
145 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \
146 (fifo)->data = vmalloc(_bytes); \
147 (fifo)->data; \
148 })
149
150 #define init_fifo_exact(fifo, _size, gfp) \
151 ({ \
152 (fifo)->size = (_size); \
153 __init_fifo(fifo, gfp); \
154 })
155
156 #define init_fifo(fifo, _size, gfp) \
157 ({ \
158 (fifo)->size = (_size); \
159 if ((fifo)->size > 4) \
160 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
161 __init_fifo(fifo, gfp); \
162 })
163
164 #define free_fifo(fifo) \
165 do { \
166 if (is_vmalloc_addr((fifo)->data)) \
167 vfree((fifo)->data); \
168 else \
169 kfree((fifo)->data); \
170 (fifo)->data = NULL; \
171 } while (0)
172
173 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
174 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
175
176 #define fifo_empty(fifo) (!fifo_used(fifo))
177 #define fifo_full(fifo) (!fifo_free(fifo))
178
179 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
180 #define fifo_back(fifo) \
181 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
182
183 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
184
185 #define fifo_push_back(fifo, i) \
186 ({ \
187 bool _r = !fifo_full((fifo)); \
188 if (_r) { \
189 (fifo)->data[(fifo)->back++] = (i); \
190 (fifo)->back &= (fifo)->mask; \
191 } \
192 _r; \
193 })
194
195 #define fifo_pop_front(fifo, i) \
196 ({ \
197 bool _r = !fifo_empty((fifo)); \
198 if (_r) { \
199 (i) = (fifo)->data[(fifo)->front++]; \
200 (fifo)->front &= (fifo)->mask; \
201 } \
202 _r; \
203 })
204
205 #define fifo_push_front(fifo, i) \
206 ({ \
207 bool _r = !fifo_full((fifo)); \
208 if (_r) { \
209 --(fifo)->front; \
210 (fifo)->front &= (fifo)->mask; \
211 (fifo)->data[(fifo)->front] = (i); \
212 } \
213 _r; \
214 })
215
216 #define fifo_pop_back(fifo, i) \
217 ({ \
218 bool _r = !fifo_empty((fifo)); \
219 if (_r) { \
220 --(fifo)->back; \
221 (fifo)->back &= (fifo)->mask; \
222 (i) = (fifo)->data[(fifo)->back] \
223 } \
224 _r; \
225 })
226
227 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
228 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
229
230 #define fifo_swap(l, r) \
231 do { \
232 swap((l)->front, (r)->front); \
233 swap((l)->back, (r)->back); \
234 swap((l)->size, (r)->size); \
235 swap((l)->mask, (r)->mask); \
236 swap((l)->data, (r)->data); \
237 } while (0)
238
239 #define fifo_move(dest, src) \
240 do { \
241 typeof(*((dest)->data)) _t; \
242 while (!fifo_full(dest) && \
243 fifo_pop(src, _t)) \
244 fifo_push(dest, _t); \
245 } while (0)
246
247 /*
248 * Simple array based allocator - preallocates a number of elements and you can
249 * never allocate more than that, also has no locking.
250 *
251 * Handy because if you know you only need a fixed number of elements you don't
252 * have to worry about memory allocation failure, and sometimes a mempool isn't
253 * what you want.
254 *
255 * We treat the free elements as entries in a singly linked list, and the
256 * freelist as a stack - allocating and freeing push and pop off the freelist.
257 */
258
259 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
260 struct { \
261 type *freelist; \
262 type data[size]; \
263 } name
264
265 #define array_alloc(array) \
266 ({ \
267 typeof((array)->freelist) _ret = (array)->freelist; \
268 \
269 if (_ret) \
270 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
271 \
272 _ret; \
273 })
274
275 #define array_free(array, ptr) \
276 do { \
277 typeof((array)->freelist) _ptr = ptr; \
278 \
279 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
280 (array)->freelist = _ptr; \
281 } while (0)
282
283 #define array_allocator_init(array) \
284 do { \
285 typeof((array)->freelist) _i; \
286 \
287 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
288 (array)->freelist = NULL; \
289 \
290 for (_i = (array)->data; \
291 _i < (array)->data + ARRAY_SIZE((array)->data); \
292 _i++) \
293 array_free(array, _i); \
294 } while (0)
295
296 #define array_freelist_empty(array) ((array)->freelist == NULL)
297
298 #define ANYSINT_MAX(t) \
299 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
300
301 int bch_strtoint_h(const char *, int *);
302 int bch_strtouint_h(const char *, unsigned int *);
303 int bch_strtoll_h(const char *, long long *);
304 int bch_strtoull_h(const char *, unsigned long long *);
305
bch_strtol_h(const char * cp,long * res)306 static inline int bch_strtol_h(const char *cp, long *res)
307 {
308 #if BITS_PER_LONG == 32
309 return bch_strtoint_h(cp, (int *) res);
310 #else
311 return bch_strtoll_h(cp, (long long *) res);
312 #endif
313 }
314
bch_strtoul_h(const char * cp,long * res)315 static inline int bch_strtoul_h(const char *cp, long *res)
316 {
317 #if BITS_PER_LONG == 32
318 return bch_strtouint_h(cp, (unsigned int *) res);
319 #else
320 return bch_strtoull_h(cp, (unsigned long long *) res);
321 #endif
322 }
323
324 #define strtoi_h(cp, res) \
325 (__builtin_types_compatible_p(typeof(*res), int) \
326 ? bch_strtoint_h(cp, (void *) res) \
327 : __builtin_types_compatible_p(typeof(*res), long) \
328 ? bch_strtol_h(cp, (void *) res) \
329 : __builtin_types_compatible_p(typeof(*res), long long) \
330 ? bch_strtoll_h(cp, (void *) res) \
331 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
332 ? bch_strtouint_h(cp, (void *) res) \
333 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
334 ? bch_strtoul_h(cp, (void *) res) \
335 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
336 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
337
338 #define strtoul_safe(cp, var) \
339 ({ \
340 unsigned long _v; \
341 int _r = kstrtoul(cp, 10, &_v); \
342 if (!_r) \
343 var = _v; \
344 _r; \
345 })
346
347 #define strtoul_safe_clamp(cp, var, min, max) \
348 ({ \
349 unsigned long _v; \
350 int _r = kstrtoul(cp, 10, &_v); \
351 if (!_r) \
352 var = clamp_t(typeof(var), _v, min, max); \
353 _r; \
354 })
355
356 #define snprint(buf, size, var) \
357 snprintf(buf, size, \
358 __builtin_types_compatible_p(typeof(var), int) \
359 ? "%i\n" : \
360 __builtin_types_compatible_p(typeof(var), unsigned) \
361 ? "%u\n" : \
362 __builtin_types_compatible_p(typeof(var), long) \
363 ? "%li\n" : \
364 __builtin_types_compatible_p(typeof(var), unsigned long)\
365 ? "%lu\n" : \
366 __builtin_types_compatible_p(typeof(var), int64_t) \
367 ? "%lli\n" : \
368 __builtin_types_compatible_p(typeof(var), uint64_t) \
369 ? "%llu\n" : \
370 __builtin_types_compatible_p(typeof(var), const char *) \
371 ? "%s\n" : "%i\n", var)
372
373 ssize_t bch_hprint(char *buf, int64_t v);
374
375 bool bch_is_zero(const char *p, size_t n);
376 int bch_parse_uuid(const char *s, char *uuid);
377
378 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
379 size_t selected);
380
381 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
382
383 struct time_stats {
384 spinlock_t lock;
385 /*
386 * all fields are in nanoseconds, averages are ewmas stored left shifted
387 * by 8
388 */
389 uint64_t max_duration;
390 uint64_t average_duration;
391 uint64_t average_frequency;
392 uint64_t last;
393 };
394
395 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
396
local_clock_us(void)397 static inline unsigned local_clock_us(void)
398 {
399 return local_clock() >> 10;
400 }
401
402 #define NSEC_PER_ns 1L
403 #define NSEC_PER_us NSEC_PER_USEC
404 #define NSEC_PER_ms NSEC_PER_MSEC
405 #define NSEC_PER_sec NSEC_PER_SEC
406
407 #define __print_time_stat(stats, name, stat, units) \
408 sysfs_print(name ## _ ## stat ## _ ## units, \
409 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
410
411 #define sysfs_print_time_stats(stats, name, \
412 frequency_units, \
413 duration_units) \
414 do { \
415 __print_time_stat(stats, name, \
416 average_frequency, frequency_units); \
417 __print_time_stat(stats, name, \
418 average_duration, duration_units); \
419 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
420 div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
421 \
422 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
423 ? div_s64(local_clock() - (stats)->last, \
424 NSEC_PER_ ## frequency_units) \
425 : -1LL); \
426 } while (0)
427
428 #define sysfs_time_stats_attribute(name, \
429 frequency_units, \
430 duration_units) \
431 read_attribute(name ## _average_frequency_ ## frequency_units); \
432 read_attribute(name ## _average_duration_ ## duration_units); \
433 read_attribute(name ## _max_duration_ ## duration_units); \
434 read_attribute(name ## _last_ ## frequency_units)
435
436 #define sysfs_time_stats_attribute_list(name, \
437 frequency_units, \
438 duration_units) \
439 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
440 &sysfs_ ## name ## _average_duration_ ## duration_units, \
441 &sysfs_ ## name ## _max_duration_ ## duration_units, \
442 &sysfs_ ## name ## _last_ ## frequency_units,
443
444 #define ewma_add(ewma, val, weight, factor) \
445 ({ \
446 (ewma) *= (weight) - 1; \
447 (ewma) += (val) << factor; \
448 (ewma) /= (weight); \
449 (ewma) >> factor; \
450 })
451
452 struct bch_ratelimit {
453 /* Next time we want to do some work, in nanoseconds */
454 uint64_t next;
455
456 /*
457 * Rate at which we want to do work, in units per nanosecond
458 * The units here correspond to the units passed to bch_next_delay()
459 */
460 unsigned rate;
461 };
462
bch_ratelimit_reset(struct bch_ratelimit * d)463 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
464 {
465 d->next = local_clock();
466 }
467
468 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
469
470 #define __DIV_SAFE(n, d, zero) \
471 ({ \
472 typeof(n) _n = (n); \
473 typeof(d) _d = (d); \
474 _d ? _n / _d : zero; \
475 })
476
477 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
478
479 #define container_of_or_null(ptr, type, member) \
480 ({ \
481 typeof(ptr) _ptr = ptr; \
482 _ptr ? container_of(_ptr, type, member) : NULL; \
483 })
484
485 #define RB_INSERT(root, new, member, cmp) \
486 ({ \
487 __label__ dup; \
488 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
489 typeof(new) this; \
490 int res, ret = -1; \
491 \
492 while (*n) { \
493 parent = *n; \
494 this = container_of(*n, typeof(*(new)), member); \
495 res = cmp(new, this); \
496 if (!res) \
497 goto dup; \
498 n = res < 0 \
499 ? &(*n)->rb_left \
500 : &(*n)->rb_right; \
501 } \
502 \
503 rb_link_node(&(new)->member, parent, n); \
504 rb_insert_color(&(new)->member, root); \
505 ret = 0; \
506 dup: \
507 ret; \
508 })
509
510 #define RB_SEARCH(root, search, member, cmp) \
511 ({ \
512 struct rb_node *n = (root)->rb_node; \
513 typeof(&(search)) this, ret = NULL; \
514 int res; \
515 \
516 while (n) { \
517 this = container_of(n, typeof(search), member); \
518 res = cmp(&(search), this); \
519 if (!res) { \
520 ret = this; \
521 break; \
522 } \
523 n = res < 0 \
524 ? n->rb_left \
525 : n->rb_right; \
526 } \
527 ret; \
528 })
529
530 #define RB_GREATER(root, search, member, cmp) \
531 ({ \
532 struct rb_node *n = (root)->rb_node; \
533 typeof(&(search)) this, ret = NULL; \
534 int res; \
535 \
536 while (n) { \
537 this = container_of(n, typeof(search), member); \
538 res = cmp(&(search), this); \
539 if (res < 0) { \
540 ret = this; \
541 n = n->rb_left; \
542 } else \
543 n = n->rb_right; \
544 } \
545 ret; \
546 })
547
548 #define RB_FIRST(root, type, member) \
549 container_of_or_null(rb_first(root), type, member)
550
551 #define RB_LAST(root, type, member) \
552 container_of_or_null(rb_last(root), type, member)
553
554 #define RB_NEXT(ptr, member) \
555 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
556
557 #define RB_PREV(ptr, member) \
558 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
559
560 /* Does linear interpolation between powers of two */
fract_exp_two(unsigned x,unsigned fract_bits)561 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
562 {
563 unsigned fract = x & ~(~0 << fract_bits);
564
565 x >>= fract_bits;
566 x = 1 << x;
567 x += (x * fract) >> fract_bits;
568
569 return x;
570 }
571
572 void bch_bio_map(struct bio *bio, void *base);
573
bdev_sectors(struct block_device * bdev)574 static inline sector_t bdev_sectors(struct block_device *bdev)
575 {
576 return bdev->bd_inode->i_size >> 9;
577 }
578
579 #define closure_bio_submit(bio, cl, dev) \
580 do { \
581 closure_get(cl); \
582 bch_generic_make_request(bio, &(dev)->bio_split_hook); \
583 } while (0)
584
585 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
586 uint64_t bch_crc64(const void *, size_t);
587
588 #endif /* _BCACHE_UTIL_H */
589