1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
writeback_in_progress(struct backing_dev_info * bdi)63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
inode_to_bdi(struct inode * inode)69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 struct super_block *sb = inode->i_sb;
72
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
75
76 return sb->s_bdi;
77 }
78
wb_inode(struct list_head * head)79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 return list_entry(head, struct inode, i_wb_list);
82 }
83
84 /*
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
88 */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91
92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
93
bdi_wakeup_thread(struct backing_dev_info * bdi)94 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
95 {
96 spin_lock_bh(&bdi->wb_lock);
97 if (test_bit(BDI_registered, &bdi->state))
98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 spin_unlock_bh(&bdi->wb_lock);
100 }
101
bdi_queue_work(struct backing_dev_info * bdi,struct wb_writeback_work * work)102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
104 {
105 trace_writeback_queue(bdi, work);
106
107 spin_lock_bh(&bdi->wb_lock);
108 if (!test_bit(BDI_registered, &bdi->state)) {
109 if (work->done)
110 complete(work->done);
111 goto out_unlock;
112 }
113 list_add_tail(&work->list, &bdi->work_list);
114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115 out_unlock:
116 spin_unlock_bh(&bdi->wb_lock);
117 }
118
119 static void
__bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,bool range_cyclic,enum wb_reason reason)120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 bool range_cyclic, enum wb_reason reason)
122 {
123 struct wb_writeback_work *work;
124
125 /*
126 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 * wakeup the thread for old dirty data writeback
128 */
129 work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 if (!work) {
131 trace_writeback_nowork(bdi);
132 bdi_wakeup_thread(bdi);
133 return;
134 }
135
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
140
141 bdi_queue_work(bdi, work);
142 }
143
144 /**
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
149 *
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
154 *
155 */
bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,enum wb_reason reason)156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
158 {
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161
162 /**
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
165 *
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
171 */
bdi_start_background_writeback(struct backing_dev_info * bdi)172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 /*
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
177 */
178 trace_writeback_wake_background(bdi);
179 bdi_wakeup_thread(bdi);
180 }
181
182 /*
183 * Remove the inode from the writeback list it is on.
184 */
inode_wb_list_del(struct inode * inode)185 void inode_wb_list_del(struct inode *inode)
186 {
187 struct backing_dev_info *bdi = inode_to_bdi(inode);
188
189 spin_lock(&bdi->wb.list_lock);
190 list_del_init(&inode->i_wb_list);
191 spin_unlock(&bdi->wb.list_lock);
192 }
193
194 /*
195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196 * furthest end of its superblock's dirty-inode list.
197 *
198 * Before stamping the inode's ->dirtied_when, we check to see whether it is
199 * already the most-recently-dirtied inode on the b_dirty list. If that is
200 * the case then the inode must have been redirtied while it was being written
201 * out and we don't reset its dirtied_when.
202 */
redirty_tail(struct inode * inode,struct bdi_writeback * wb)203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
204 {
205 assert_spin_locked(&wb->list_lock);
206 if (!list_empty(&wb->b_dirty)) {
207 struct inode *tail;
208
209 tail = wb_inode(wb->b_dirty.next);
210 if (time_before(inode->dirtied_when, tail->dirtied_when))
211 inode->dirtied_when = jiffies;
212 }
213 list_move(&inode->i_wb_list, &wb->b_dirty);
214 }
215
216 /*
217 * requeue inode for re-scanning after bdi->b_io list is exhausted.
218 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
220 {
221 assert_spin_locked(&wb->list_lock);
222 list_move(&inode->i_wb_list, &wb->b_more_io);
223 }
224
inode_sync_complete(struct inode * inode)225 static void inode_sync_complete(struct inode *inode)
226 {
227 inode->i_state &= ~I_SYNC;
228 /* If inode is clean an unused, put it into LRU now... */
229 inode_add_lru(inode);
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234
inode_dirtied_after(struct inode * inode,unsigned long t)235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 return ret;
248 }
249
250 #define EXPIRE_DIRTY_ATIME 0x0001
251
252 /*
253 * Move expired (dirtied before work->older_than_this) dirty inodes from
254 * @delaying_queue to @dispatch_queue.
255 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,int flags,struct wb_writeback_work * work)256 static int move_expired_inodes(struct list_head *delaying_queue,
257 struct list_head *dispatch_queue,
258 int flags,
259 struct wb_writeback_work *work)
260 {
261 unsigned long *older_than_this = NULL;
262 unsigned long expire_time;
263 LIST_HEAD(tmp);
264 struct list_head *pos, *node;
265 struct super_block *sb = NULL;
266 struct inode *inode;
267 int do_sb_sort = 0;
268 int moved = 0;
269
270 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
271 older_than_this = work->older_than_this;
272 else if ((work->reason == WB_REASON_SYNC) == 0) {
273 expire_time = jiffies - (HZ * 86400);
274 older_than_this = &expire_time;
275 }
276 while (!list_empty(delaying_queue)) {
277 inode = wb_inode(delaying_queue->prev);
278 if (older_than_this &&
279 inode_dirtied_after(inode, *older_than_this))
280 break;
281 list_move(&inode->i_wb_list, &tmp);
282 moved++;
283 if (flags & EXPIRE_DIRTY_ATIME)
284 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
285 if (sb_is_blkdev_sb(inode->i_sb))
286 continue;
287 if (sb && sb != inode->i_sb)
288 do_sb_sort = 1;
289 sb = inode->i_sb;
290 }
291
292 /* just one sb in list, splice to dispatch_queue and we're done */
293 if (!do_sb_sort) {
294 list_splice(&tmp, dispatch_queue);
295 goto out;
296 }
297
298 /* Move inodes from one superblock together */
299 while (!list_empty(&tmp)) {
300 sb = wb_inode(tmp.prev)->i_sb;
301 list_for_each_prev_safe(pos, node, &tmp) {
302 inode = wb_inode(pos);
303 if (inode->i_sb == sb)
304 list_move(&inode->i_wb_list, dispatch_queue);
305 }
306 }
307 out:
308 return moved;
309 }
310
311 /*
312 * Queue all expired dirty inodes for io, eldest first.
313 * Before
314 * newly dirtied b_dirty b_io b_more_io
315 * =============> gf edc BA
316 * After
317 * newly dirtied b_dirty b_io b_more_io
318 * =============> g fBAedc
319 * |
320 * +--> dequeue for IO
321 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work)322 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
323 {
324 int moved;
325
326 assert_spin_locked(&wb->list_lock);
327 list_splice_init(&wb->b_more_io, &wb->b_io);
328 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
329 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
330 EXPIRE_DIRTY_ATIME, work);
331 trace_writeback_queue_io(wb, work, moved);
332 }
333
write_inode(struct inode * inode,struct writeback_control * wbc)334 static int write_inode(struct inode *inode, struct writeback_control *wbc)
335 {
336 int ret;
337
338 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
339 trace_writeback_write_inode_start(inode, wbc);
340 ret = inode->i_sb->s_op->write_inode(inode, wbc);
341 trace_writeback_write_inode(inode, wbc);
342 return ret;
343 }
344 return 0;
345 }
346
347 /*
348 * Wait for writeback on an inode to complete. Called with i_lock held.
349 * Caller must make sure inode cannot go away when we drop i_lock.
350 */
__inode_wait_for_writeback(struct inode * inode)351 static void __inode_wait_for_writeback(struct inode *inode)
352 __releases(inode->i_lock)
353 __acquires(inode->i_lock)
354 {
355 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
356 wait_queue_head_t *wqh;
357
358 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
359 while (inode->i_state & I_SYNC) {
360 spin_unlock(&inode->i_lock);
361 __wait_on_bit(wqh, &wq, bit_wait,
362 TASK_UNINTERRUPTIBLE);
363 spin_lock(&inode->i_lock);
364 }
365 }
366
367 /*
368 * Wait for writeback on an inode to complete. Caller must have inode pinned.
369 */
inode_wait_for_writeback(struct inode * inode)370 void inode_wait_for_writeback(struct inode *inode)
371 {
372 spin_lock(&inode->i_lock);
373 __inode_wait_for_writeback(inode);
374 spin_unlock(&inode->i_lock);
375 }
376
377 /*
378 * Sleep until I_SYNC is cleared. This function must be called with i_lock
379 * held and drops it. It is aimed for callers not holding any inode reference
380 * so once i_lock is dropped, inode can go away.
381 */
inode_sleep_on_writeback(struct inode * inode)382 static void inode_sleep_on_writeback(struct inode *inode)
383 __releases(inode->i_lock)
384 {
385 DEFINE_WAIT(wait);
386 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
387 int sleep;
388
389 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
390 sleep = inode->i_state & I_SYNC;
391 spin_unlock(&inode->i_lock);
392 if (sleep)
393 schedule();
394 finish_wait(wqh, &wait);
395 }
396
397 /*
398 * Find proper writeback list for the inode depending on its current state and
399 * possibly also change of its state while we were doing writeback. Here we
400 * handle things such as livelock prevention or fairness of writeback among
401 * inodes. This function can be called only by flusher thread - noone else
402 * processes all inodes in writeback lists and requeueing inodes behind flusher
403 * thread's back can have unexpected consequences.
404 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)405 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
406 struct writeback_control *wbc)
407 {
408 if (inode->i_state & I_FREEING)
409 return;
410
411 /*
412 * Sync livelock prevention. Each inode is tagged and synced in one
413 * shot. If still dirty, it will be redirty_tail()'ed below. Update
414 * the dirty time to prevent enqueue and sync it again.
415 */
416 if ((inode->i_state & I_DIRTY) &&
417 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
418 inode->dirtied_when = jiffies;
419
420 if (wbc->pages_skipped) {
421 /*
422 * writeback is not making progress due to locked
423 * buffers. Skip this inode for now.
424 */
425 redirty_tail(inode, wb);
426 return;
427 }
428
429 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
430 /*
431 * We didn't write back all the pages. nfs_writepages()
432 * sometimes bales out without doing anything.
433 */
434 if (wbc->nr_to_write <= 0) {
435 /* Slice used up. Queue for next turn. */
436 requeue_io(inode, wb);
437 } else {
438 /*
439 * Writeback blocked by something other than
440 * congestion. Delay the inode for some time to
441 * avoid spinning on the CPU (100% iowait)
442 * retrying writeback of the dirty page/inode
443 * that cannot be performed immediately.
444 */
445 redirty_tail(inode, wb);
446 }
447 } else if (inode->i_state & I_DIRTY) {
448 /*
449 * Filesystems can dirty the inode during writeback operations,
450 * such as delayed allocation during submission or metadata
451 * updates after data IO completion.
452 */
453 redirty_tail(inode, wb);
454 } else if (inode->i_state & I_DIRTY_TIME) {
455 list_move(&inode->i_wb_list, &wb->b_dirty_time);
456 } else {
457 /* The inode is clean. Remove from writeback lists. */
458 list_del_init(&inode->i_wb_list);
459 }
460 }
461
462 /*
463 * Write out an inode and its dirty pages. Do not update the writeback list
464 * linkage. That is left to the caller. The caller is also responsible for
465 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
466 */
467 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)468 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
469 {
470 struct address_space *mapping = inode->i_mapping;
471 long nr_to_write = wbc->nr_to_write;
472 unsigned dirty;
473 int ret;
474
475 WARN_ON(!(inode->i_state & I_SYNC));
476
477 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
478
479 ret = do_writepages(mapping, wbc);
480
481 /*
482 * Make sure to wait on the data before writing out the metadata.
483 * This is important for filesystems that modify metadata on data
484 * I/O completion. We don't do it for sync(2) writeback because it has a
485 * separate, external IO completion path and ->sync_fs for guaranteeing
486 * inode metadata is written back correctly.
487 */
488 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
489 int err = filemap_fdatawait(mapping);
490 if (ret == 0)
491 ret = err;
492 }
493
494 /*
495 * Some filesystems may redirty the inode during the writeback
496 * due to delalloc, clear dirty metadata flags right before
497 * write_inode()
498 */
499 spin_lock(&inode->i_lock);
500
501 dirty = inode->i_state & I_DIRTY;
502 if (((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) &&
503 (inode->i_state & I_DIRTY_TIME)) ||
504 (inode->i_state & I_DIRTY_TIME_EXPIRED)) {
505 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
506 trace_writeback_lazytime(inode);
507 }
508 inode->i_state &= ~dirty;
509
510 /*
511 * Paired with smp_mb() in __mark_inode_dirty(). This allows
512 * __mark_inode_dirty() to test i_state without grabbing i_lock -
513 * either they see the I_DIRTY bits cleared or we see the dirtied
514 * inode.
515 *
516 * I_DIRTY_PAGES is always cleared together above even if @mapping
517 * still has dirty pages. The flag is reinstated after smp_mb() if
518 * necessary. This guarantees that either __mark_inode_dirty()
519 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
520 */
521 smp_mb();
522
523 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
524 inode->i_state |= I_DIRTY_PAGES;
525
526 spin_unlock(&inode->i_lock);
527
528 if (dirty & I_DIRTY_TIME)
529 mark_inode_dirty_sync(inode);
530 /* Don't write the inode if only I_DIRTY_PAGES was set */
531 if (dirty & ~I_DIRTY_PAGES) {
532 int err = write_inode(inode, wbc);
533 if (ret == 0)
534 ret = err;
535 }
536 trace_writeback_single_inode(inode, wbc, nr_to_write);
537 return ret;
538 }
539
540 /*
541 * Write out an inode's dirty pages. Either the caller has an active reference
542 * on the inode or the inode has I_WILL_FREE set.
543 *
544 * This function is designed to be called for writing back one inode which
545 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
546 * and does more profound writeback list handling in writeback_sb_inodes().
547 */
548 static int
writeback_single_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)549 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
550 struct writeback_control *wbc)
551 {
552 int ret = 0;
553
554 spin_lock(&inode->i_lock);
555 if (!atomic_read(&inode->i_count))
556 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
557 else
558 WARN_ON(inode->i_state & I_WILL_FREE);
559
560 if (inode->i_state & I_SYNC) {
561 if (wbc->sync_mode != WB_SYNC_ALL)
562 goto out;
563 /*
564 * It's a data-integrity sync. We must wait. Since callers hold
565 * inode reference or inode has I_WILL_FREE set, it cannot go
566 * away under us.
567 */
568 __inode_wait_for_writeback(inode);
569 }
570 WARN_ON(inode->i_state & I_SYNC);
571 /*
572 * Skip inode if it is clean and we have no outstanding writeback in
573 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
574 * function since flusher thread may be doing for example sync in
575 * parallel and if we move the inode, it could get skipped. So here we
576 * make sure inode is on some writeback list and leave it there unless
577 * we have completely cleaned the inode.
578 */
579 if (!(inode->i_state & I_DIRTY_ALL) &&
580 (wbc->sync_mode != WB_SYNC_ALL ||
581 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
582 goto out;
583 inode->i_state |= I_SYNC;
584 spin_unlock(&inode->i_lock);
585
586 ret = __writeback_single_inode(inode, wbc);
587
588 spin_lock(&wb->list_lock);
589 spin_lock(&inode->i_lock);
590 /*
591 * If inode is clean, remove it from writeback lists. Otherwise don't
592 * touch it. See comment above for explanation.
593 */
594 if (!(inode->i_state & I_DIRTY_ALL))
595 list_del_init(&inode->i_wb_list);
596 spin_unlock(&wb->list_lock);
597 inode_sync_complete(inode);
598 out:
599 spin_unlock(&inode->i_lock);
600 return ret;
601 }
602
writeback_chunk_size(struct backing_dev_info * bdi,struct wb_writeback_work * work)603 static long writeback_chunk_size(struct backing_dev_info *bdi,
604 struct wb_writeback_work *work)
605 {
606 long pages;
607
608 /*
609 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
610 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
611 * here avoids calling into writeback_inodes_wb() more than once.
612 *
613 * The intended call sequence for WB_SYNC_ALL writeback is:
614 *
615 * wb_writeback()
616 * writeback_sb_inodes() <== called only once
617 * write_cache_pages() <== called once for each inode
618 * (quickly) tag currently dirty pages
619 * (maybe slowly) sync all tagged pages
620 */
621 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
622 pages = LONG_MAX;
623 else {
624 pages = min(bdi->avg_write_bandwidth / 2,
625 global_dirty_limit / DIRTY_SCOPE);
626 pages = min(pages, work->nr_pages);
627 pages = round_down(pages + MIN_WRITEBACK_PAGES,
628 MIN_WRITEBACK_PAGES);
629 }
630
631 return pages;
632 }
633
634 /*
635 * Write a portion of b_io inodes which belong to @sb.
636 *
637 * Return the number of pages and/or inodes written.
638 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)639 static long writeback_sb_inodes(struct super_block *sb,
640 struct bdi_writeback *wb,
641 struct wb_writeback_work *work)
642 {
643 struct writeback_control wbc = {
644 .sync_mode = work->sync_mode,
645 .tagged_writepages = work->tagged_writepages,
646 .for_kupdate = work->for_kupdate,
647 .for_background = work->for_background,
648 .for_sync = work->for_sync,
649 .range_cyclic = work->range_cyclic,
650 .range_start = 0,
651 .range_end = LLONG_MAX,
652 };
653 unsigned long start_time = jiffies;
654 long write_chunk;
655 long wrote = 0; /* count both pages and inodes */
656
657 while (!list_empty(&wb->b_io)) {
658 struct inode *inode = wb_inode(wb->b_io.prev);
659
660 if (inode->i_sb != sb) {
661 if (work->sb) {
662 /*
663 * We only want to write back data for this
664 * superblock, move all inodes not belonging
665 * to it back onto the dirty list.
666 */
667 redirty_tail(inode, wb);
668 continue;
669 }
670
671 /*
672 * The inode belongs to a different superblock.
673 * Bounce back to the caller to unpin this and
674 * pin the next superblock.
675 */
676 break;
677 }
678
679 /*
680 * Don't bother with new inodes or inodes being freed, first
681 * kind does not need periodic writeout yet, and for the latter
682 * kind writeout is handled by the freer.
683 */
684 spin_lock(&inode->i_lock);
685 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
686 spin_unlock(&inode->i_lock);
687 redirty_tail(inode, wb);
688 continue;
689 }
690 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
691 /*
692 * If this inode is locked for writeback and we are not
693 * doing writeback-for-data-integrity, move it to
694 * b_more_io so that writeback can proceed with the
695 * other inodes on s_io.
696 *
697 * We'll have another go at writing back this inode
698 * when we completed a full scan of b_io.
699 */
700 spin_unlock(&inode->i_lock);
701 requeue_io(inode, wb);
702 trace_writeback_sb_inodes_requeue(inode);
703 continue;
704 }
705 spin_unlock(&wb->list_lock);
706
707 /*
708 * We already requeued the inode if it had I_SYNC set and we
709 * are doing WB_SYNC_NONE writeback. So this catches only the
710 * WB_SYNC_ALL case.
711 */
712 if (inode->i_state & I_SYNC) {
713 /* Wait for I_SYNC. This function drops i_lock... */
714 inode_sleep_on_writeback(inode);
715 /* Inode may be gone, start again */
716 spin_lock(&wb->list_lock);
717 continue;
718 }
719 inode->i_state |= I_SYNC;
720 spin_unlock(&inode->i_lock);
721
722 write_chunk = writeback_chunk_size(wb->bdi, work);
723 wbc.nr_to_write = write_chunk;
724 wbc.pages_skipped = 0;
725
726 /*
727 * We use I_SYNC to pin the inode in memory. While it is set
728 * evict_inode() will wait so the inode cannot be freed.
729 */
730 __writeback_single_inode(inode, &wbc);
731
732 work->nr_pages -= write_chunk - wbc.nr_to_write;
733 wrote += write_chunk - wbc.nr_to_write;
734
735 if (need_resched()) {
736 /*
737 * We're trying to balance between building up a nice
738 * long list of IOs to improve our merge rate, and
739 * getting those IOs out quickly for anyone throttling
740 * in balance_dirty_pages(). cond_resched() doesn't
741 * unplug, so get our IOs out the door before we
742 * give up the CPU.
743 */
744 blk_flush_plug(current);
745 cond_resched();
746 }
747
748
749 spin_lock(&wb->list_lock);
750 spin_lock(&inode->i_lock);
751 if (!(inode->i_state & I_DIRTY_ALL))
752 wrote++;
753 requeue_inode(inode, wb, &wbc);
754 inode_sync_complete(inode);
755 spin_unlock(&inode->i_lock);
756
757 /*
758 * bail out to wb_writeback() often enough to check
759 * background threshold and other termination conditions.
760 */
761 if (wrote) {
762 if (time_is_before_jiffies(start_time + HZ / 10UL))
763 break;
764 if (work->nr_pages <= 0)
765 break;
766 }
767 }
768 return wrote;
769 }
770
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)771 static long __writeback_inodes_wb(struct bdi_writeback *wb,
772 struct wb_writeback_work *work)
773 {
774 unsigned long start_time = jiffies;
775 long wrote = 0;
776
777 while (!list_empty(&wb->b_io)) {
778 struct inode *inode = wb_inode(wb->b_io.prev);
779 struct super_block *sb = inode->i_sb;
780
781 if (!grab_super_passive(sb)) {
782 /*
783 * grab_super_passive() may fail consistently due to
784 * s_umount being grabbed by someone else. Don't use
785 * requeue_io() to avoid busy retrying the inode/sb.
786 */
787 redirty_tail(inode, wb);
788 continue;
789 }
790 wrote += writeback_sb_inodes(sb, wb, work);
791 drop_super(sb);
792
793 /* refer to the same tests at the end of writeback_sb_inodes */
794 if (wrote) {
795 if (time_is_before_jiffies(start_time + HZ / 10UL))
796 break;
797 if (work->nr_pages <= 0)
798 break;
799 }
800 }
801 /* Leave any unwritten inodes on b_io */
802 return wrote;
803 }
804
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)805 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
806 enum wb_reason reason)
807 {
808 struct wb_writeback_work work = {
809 .nr_pages = nr_pages,
810 .sync_mode = WB_SYNC_NONE,
811 .range_cyclic = 1,
812 .reason = reason,
813 };
814
815 spin_lock(&wb->list_lock);
816 if (list_empty(&wb->b_io))
817 queue_io(wb, &work);
818 __writeback_inodes_wb(wb, &work);
819 spin_unlock(&wb->list_lock);
820
821 return nr_pages - work.nr_pages;
822 }
823
over_bground_thresh(struct backing_dev_info * bdi)824 static bool over_bground_thresh(struct backing_dev_info *bdi)
825 {
826 unsigned long background_thresh, dirty_thresh;
827
828 global_dirty_limits(&background_thresh, &dirty_thresh);
829
830 if (global_page_state(NR_FILE_DIRTY) +
831 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
832 return true;
833
834 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
835 bdi_dirty_limit(bdi, background_thresh))
836 return true;
837
838 return false;
839 }
840
841 /*
842 * Called under wb->list_lock. If there are multiple wb per bdi,
843 * only the flusher working on the first wb should do it.
844 */
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)845 static void wb_update_bandwidth(struct bdi_writeback *wb,
846 unsigned long start_time)
847 {
848 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
849 }
850
851 /*
852 * Explicit flushing or periodic writeback of "old" data.
853 *
854 * Define "old": the first time one of an inode's pages is dirtied, we mark the
855 * dirtying-time in the inode's address_space. So this periodic writeback code
856 * just walks the superblock inode list, writing back any inodes which are
857 * older than a specific point in time.
858 *
859 * Try to run once per dirty_writeback_interval. But if a writeback event
860 * takes longer than a dirty_writeback_interval interval, then leave a
861 * one-second gap.
862 *
863 * older_than_this takes precedence over nr_to_write. So we'll only write back
864 * all dirty pages if they are all attached to "old" mappings.
865 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)866 static long wb_writeback(struct bdi_writeback *wb,
867 struct wb_writeback_work *work)
868 {
869 unsigned long wb_start = jiffies;
870 long nr_pages = work->nr_pages;
871 unsigned long oldest_jif;
872 struct inode *inode;
873 long progress;
874
875 oldest_jif = jiffies;
876 work->older_than_this = &oldest_jif;
877
878 spin_lock(&wb->list_lock);
879 for (;;) {
880 /*
881 * Stop writeback when nr_pages has been consumed
882 */
883 if (work->nr_pages <= 0)
884 break;
885
886 /*
887 * Background writeout and kupdate-style writeback may
888 * run forever. Stop them if there is other work to do
889 * so that e.g. sync can proceed. They'll be restarted
890 * after the other works are all done.
891 */
892 if ((work->for_background || work->for_kupdate) &&
893 !list_empty(&wb->bdi->work_list))
894 break;
895
896 /*
897 * For background writeout, stop when we are below the
898 * background dirty threshold
899 */
900 if (work->for_background && !over_bground_thresh(wb->bdi))
901 break;
902
903 /*
904 * Kupdate and background works are special and we want to
905 * include all inodes that need writing. Livelock avoidance is
906 * handled by these works yielding to any other work so we are
907 * safe.
908 */
909 if (work->for_kupdate) {
910 oldest_jif = jiffies -
911 msecs_to_jiffies(dirty_expire_interval * 10);
912 } else if (work->for_background)
913 oldest_jif = jiffies;
914
915 trace_writeback_start(wb->bdi, work);
916 if (list_empty(&wb->b_io))
917 queue_io(wb, work);
918 if (work->sb)
919 progress = writeback_sb_inodes(work->sb, wb, work);
920 else
921 progress = __writeback_inodes_wb(wb, work);
922 trace_writeback_written(wb->bdi, work);
923
924 wb_update_bandwidth(wb, wb_start);
925
926 /*
927 * Did we write something? Try for more
928 *
929 * Dirty inodes are moved to b_io for writeback in batches.
930 * The completion of the current batch does not necessarily
931 * mean the overall work is done. So we keep looping as long
932 * as made some progress on cleaning pages or inodes.
933 */
934 if (progress)
935 continue;
936 /*
937 * No more inodes for IO, bail
938 */
939 if (list_empty(&wb->b_more_io))
940 break;
941 /*
942 * Nothing written. Wait for some inode to
943 * become available for writeback. Otherwise
944 * we'll just busyloop.
945 */
946 if (!list_empty(&wb->b_more_io)) {
947 trace_writeback_wait(wb->bdi, work);
948 inode = wb_inode(wb->b_more_io.prev);
949 spin_lock(&inode->i_lock);
950 spin_unlock(&wb->list_lock);
951 /* This function drops i_lock... */
952 inode_sleep_on_writeback(inode);
953 spin_lock(&wb->list_lock);
954 }
955 }
956 spin_unlock(&wb->list_lock);
957
958 return nr_pages - work->nr_pages;
959 }
960
961 /*
962 * Return the next wb_writeback_work struct that hasn't been processed yet.
963 */
964 static struct wb_writeback_work *
get_next_work_item(struct backing_dev_info * bdi)965 get_next_work_item(struct backing_dev_info *bdi)
966 {
967 struct wb_writeback_work *work = NULL;
968
969 spin_lock_bh(&bdi->wb_lock);
970 if (!list_empty(&bdi->work_list)) {
971 work = list_entry(bdi->work_list.next,
972 struct wb_writeback_work, list);
973 list_del_init(&work->list);
974 }
975 spin_unlock_bh(&bdi->wb_lock);
976 return work;
977 }
978
979 /*
980 * Add in the number of potentially dirty inodes, because each inode
981 * write can dirty pagecache in the underlying blockdev.
982 */
get_nr_dirty_pages(void)983 static unsigned long get_nr_dirty_pages(void)
984 {
985 return global_page_state(NR_FILE_DIRTY) +
986 global_page_state(NR_UNSTABLE_NFS) +
987 get_nr_dirty_inodes();
988 }
989
wb_check_background_flush(struct bdi_writeback * wb)990 static long wb_check_background_flush(struct bdi_writeback *wb)
991 {
992 if (over_bground_thresh(wb->bdi)) {
993
994 struct wb_writeback_work work = {
995 .nr_pages = LONG_MAX,
996 .sync_mode = WB_SYNC_NONE,
997 .for_background = 1,
998 .range_cyclic = 1,
999 .reason = WB_REASON_BACKGROUND,
1000 };
1001
1002 return wb_writeback(wb, &work);
1003 }
1004
1005 return 0;
1006 }
1007
wb_check_old_data_flush(struct bdi_writeback * wb)1008 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1009 {
1010 unsigned long expired;
1011 long nr_pages;
1012
1013 /*
1014 * When set to zero, disable periodic writeback
1015 */
1016 if (!dirty_writeback_interval)
1017 return 0;
1018
1019 expired = wb->last_old_flush +
1020 msecs_to_jiffies(dirty_writeback_interval * 10);
1021 if (time_before(jiffies, expired))
1022 return 0;
1023
1024 wb->last_old_flush = jiffies;
1025 nr_pages = get_nr_dirty_pages();
1026
1027 if (nr_pages) {
1028 struct wb_writeback_work work = {
1029 .nr_pages = nr_pages,
1030 .sync_mode = WB_SYNC_NONE,
1031 .for_kupdate = 1,
1032 .range_cyclic = 1,
1033 .reason = WB_REASON_PERIODIC,
1034 };
1035
1036 return wb_writeback(wb, &work);
1037 }
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Retrieve work items and do the writeback they describe
1044 */
wb_do_writeback(struct bdi_writeback * wb)1045 static long wb_do_writeback(struct bdi_writeback *wb)
1046 {
1047 struct backing_dev_info *bdi = wb->bdi;
1048 struct wb_writeback_work *work;
1049 long wrote = 0;
1050
1051 set_bit(BDI_writeback_running, &wb->bdi->state);
1052 while ((work = get_next_work_item(bdi)) != NULL) {
1053
1054 trace_writeback_exec(bdi, work);
1055
1056 wrote += wb_writeback(wb, work);
1057
1058 /*
1059 * Notify the caller of completion if this is a synchronous
1060 * work item, otherwise just free it.
1061 */
1062 if (work->done)
1063 complete(work->done);
1064 else
1065 kfree(work);
1066 }
1067
1068 /*
1069 * Check for periodic writeback, kupdated() style
1070 */
1071 wrote += wb_check_old_data_flush(wb);
1072 wrote += wb_check_background_flush(wb);
1073 clear_bit(BDI_writeback_running, &wb->bdi->state);
1074
1075 return wrote;
1076 }
1077
1078 /*
1079 * Handle writeback of dirty data for the device backed by this bdi. Also
1080 * reschedules periodically and does kupdated style flushing.
1081 */
bdi_writeback_workfn(struct work_struct * work)1082 void bdi_writeback_workfn(struct work_struct *work)
1083 {
1084 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1085 struct bdi_writeback, dwork);
1086 struct backing_dev_info *bdi = wb->bdi;
1087 long pages_written;
1088
1089 set_worker_desc("flush-%s", dev_name(bdi->dev));
1090 current->flags |= PF_SWAPWRITE;
1091
1092 if (likely(!current_is_workqueue_rescuer() ||
1093 !test_bit(BDI_registered, &bdi->state))) {
1094 /*
1095 * The normal path. Keep writing back @bdi until its
1096 * work_list is empty. Note that this path is also taken
1097 * if @bdi is shutting down even when we're running off the
1098 * rescuer as work_list needs to be drained.
1099 */
1100 do {
1101 pages_written = wb_do_writeback(wb);
1102 trace_writeback_pages_written(pages_written);
1103 } while (!list_empty(&bdi->work_list));
1104 } else {
1105 /*
1106 * bdi_wq can't get enough workers and we're running off
1107 * the emergency worker. Don't hog it. Hopefully, 1024 is
1108 * enough for efficient IO.
1109 */
1110 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1111 WB_REASON_FORKER_THREAD);
1112 trace_writeback_pages_written(pages_written);
1113 }
1114
1115 if (!list_empty(&bdi->work_list))
1116 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1117 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1118 bdi_wakeup_thread_delayed(bdi);
1119
1120 current->flags &= ~PF_SWAPWRITE;
1121 }
1122
1123 /*
1124 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1125 * the whole world.
1126 */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)1127 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1128 {
1129 struct backing_dev_info *bdi;
1130
1131 if (!nr_pages)
1132 nr_pages = get_nr_dirty_pages();
1133
1134 rcu_read_lock();
1135 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1136 if (!bdi_has_dirty_io(bdi))
1137 continue;
1138 __bdi_start_writeback(bdi, nr_pages, false, reason);
1139 }
1140 rcu_read_unlock();
1141 }
1142
block_dump___mark_inode_dirty(struct inode * inode)1143 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1144 {
1145 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1146 struct dentry *dentry;
1147 const char *name = "?";
1148
1149 dentry = d_find_alias(inode);
1150 if (dentry) {
1151 spin_lock(&dentry->d_lock);
1152 name = (const char *) dentry->d_name.name;
1153 }
1154 printk(KERN_DEBUG
1155 "%s(%d): dirtied inode %lu (%s) on %s\n",
1156 current->comm, task_pid_nr(current), inode->i_ino,
1157 name, inode->i_sb->s_id);
1158 if (dentry) {
1159 spin_unlock(&dentry->d_lock);
1160 dput(dentry);
1161 }
1162 }
1163 }
1164
1165 /**
1166 * __mark_inode_dirty - internal function
1167 * @inode: inode to mark
1168 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1169 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1170 * mark_inode_dirty_sync.
1171 *
1172 * Put the inode on the super block's dirty list.
1173 *
1174 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1175 * dirty list only if it is hashed or if it refers to a blockdev.
1176 * If it was not hashed, it will never be added to the dirty list
1177 * even if it is later hashed, as it will have been marked dirty already.
1178 *
1179 * In short, make sure you hash any inodes _before_ you start marking
1180 * them dirty.
1181 *
1182 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1183 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1184 * the kernel-internal blockdev inode represents the dirtying time of the
1185 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1186 * page->mapping->host, so the page-dirtying time is recorded in the internal
1187 * blockdev inode.
1188 */
1189 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
__mark_inode_dirty(struct inode * inode,int flags)1190 void __mark_inode_dirty(struct inode *inode, int flags)
1191 {
1192 struct super_block *sb = inode->i_sb;
1193 struct backing_dev_info *bdi = NULL;
1194 int dirtytime;
1195
1196 trace_writeback_mark_inode_dirty(inode, flags);
1197
1198 /*
1199 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1200 * dirty the inode itself
1201 */
1202 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1203 trace_writeback_dirty_inode_start(inode, flags);
1204
1205 if (sb->s_op->dirty_inode)
1206 sb->s_op->dirty_inode(inode, flags);
1207
1208 trace_writeback_dirty_inode(inode, flags);
1209 }
1210 if (flags & I_DIRTY_INODE)
1211 flags &= ~I_DIRTY_TIME;
1212 dirtytime = flags & I_DIRTY_TIME;
1213
1214 /*
1215 * Paired with smp_mb() in __writeback_single_inode() for the
1216 * following lockless i_state test. See there for details.
1217 */
1218 smp_mb();
1219
1220 if (((inode->i_state & flags) == flags) ||
1221 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1222 return;
1223
1224 if (unlikely(block_dump > 1))
1225 block_dump___mark_inode_dirty(inode);
1226
1227 spin_lock(&inode->i_lock);
1228 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1229 goto out_unlock_inode;
1230 if ((inode->i_state & flags) != flags) {
1231 const int was_dirty = inode->i_state & I_DIRTY;
1232
1233 if (flags & I_DIRTY_INODE)
1234 inode->i_state &= ~I_DIRTY_TIME;
1235 inode->i_state |= flags;
1236
1237 /*
1238 * If the inode is being synced, just update its dirty state.
1239 * The unlocker will place the inode on the appropriate
1240 * superblock list, based upon its state.
1241 */
1242 if (inode->i_state & I_SYNC)
1243 goto out_unlock_inode;
1244
1245 /*
1246 * Only add valid (hashed) inodes to the superblock's
1247 * dirty list. Add blockdev inodes as well.
1248 */
1249 if (!S_ISBLK(inode->i_mode)) {
1250 if (inode_unhashed(inode))
1251 goto out_unlock_inode;
1252 }
1253 if (inode->i_state & I_FREEING)
1254 goto out_unlock_inode;
1255
1256 /*
1257 * If the inode was already on b_dirty/b_io/b_more_io, don't
1258 * reposition it (that would break b_dirty time-ordering).
1259 */
1260 if (!was_dirty) {
1261 bool wakeup_bdi = false;
1262 bdi = inode_to_bdi(inode);
1263
1264 spin_unlock(&inode->i_lock);
1265 spin_lock(&bdi->wb.list_lock);
1266 if (bdi_cap_writeback_dirty(bdi)) {
1267 WARN(!test_bit(BDI_registered, &bdi->state),
1268 "bdi-%s not registered\n", bdi->name);
1269
1270 /*
1271 * If this is the first dirty inode for this
1272 * bdi, we have to wake-up the corresponding
1273 * bdi thread to make sure background
1274 * write-back happens later.
1275 */
1276 if (!wb_has_dirty_io(&bdi->wb))
1277 wakeup_bdi = true;
1278 }
1279
1280 inode->dirtied_when = jiffies;
1281 list_move(&inode->i_wb_list, dirtytime ?
1282 &bdi->wb.b_dirty_time : &bdi->wb.b_dirty);
1283 spin_unlock(&bdi->wb.list_lock);
1284 trace_writeback_dirty_inode_enqueue(inode);
1285
1286 if (wakeup_bdi)
1287 bdi_wakeup_thread_delayed(bdi);
1288 return;
1289 }
1290 }
1291 out_unlock_inode:
1292 spin_unlock(&inode->i_lock);
1293
1294 }
1295 EXPORT_SYMBOL(__mark_inode_dirty);
1296
wait_sb_inodes(struct super_block * sb)1297 static void wait_sb_inodes(struct super_block *sb)
1298 {
1299 struct inode *inode, *old_inode = NULL;
1300
1301 /*
1302 * We need to be protected against the filesystem going from
1303 * r/o to r/w or vice versa.
1304 */
1305 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1306
1307 spin_lock(&inode_sb_list_lock);
1308
1309 /*
1310 * Data integrity sync. Must wait for all pages under writeback,
1311 * because there may have been pages dirtied before our sync
1312 * call, but which had writeout started before we write it out.
1313 * In which case, the inode may not be on the dirty list, but
1314 * we still have to wait for that writeout.
1315 */
1316 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1317 struct address_space *mapping = inode->i_mapping;
1318
1319 spin_lock(&inode->i_lock);
1320 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1321 (mapping->nrpages == 0)) {
1322 spin_unlock(&inode->i_lock);
1323 continue;
1324 }
1325 __iget(inode);
1326 spin_unlock(&inode->i_lock);
1327 spin_unlock(&inode_sb_list_lock);
1328
1329 /*
1330 * We hold a reference to 'inode' so it couldn't have been
1331 * removed from s_inodes list while we dropped the
1332 * inode_sb_list_lock. We cannot iput the inode now as we can
1333 * be holding the last reference and we cannot iput it under
1334 * inode_sb_list_lock. So we keep the reference and iput it
1335 * later.
1336 */
1337 iput(old_inode);
1338 old_inode = inode;
1339
1340 filemap_fdatawait(mapping);
1341
1342 cond_resched();
1343
1344 spin_lock(&inode_sb_list_lock);
1345 }
1346 spin_unlock(&inode_sb_list_lock);
1347 iput(old_inode);
1348 }
1349
1350 /**
1351 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1352 * @sb: the superblock
1353 * @nr: the number of pages to write
1354 * @reason: reason why some writeback work initiated
1355 *
1356 * Start writeback on some inodes on this super_block. No guarantees are made
1357 * on how many (if any) will be written, and this function does not wait
1358 * for IO completion of submitted IO.
1359 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)1360 void writeback_inodes_sb_nr(struct super_block *sb,
1361 unsigned long nr,
1362 enum wb_reason reason)
1363 {
1364 DECLARE_COMPLETION_ONSTACK(done);
1365 struct wb_writeback_work work = {
1366 .sb = sb,
1367 .sync_mode = WB_SYNC_NONE,
1368 .tagged_writepages = 1,
1369 .done = &done,
1370 .nr_pages = nr,
1371 .reason = reason,
1372 };
1373
1374 if (sb->s_bdi == &noop_backing_dev_info)
1375 return;
1376 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1377 bdi_queue_work(sb->s_bdi, &work);
1378 wait_for_completion(&done);
1379 }
1380 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1381
1382 /**
1383 * writeback_inodes_sb - writeback dirty inodes from given super_block
1384 * @sb: the superblock
1385 * @reason: reason why some writeback work was initiated
1386 *
1387 * Start writeback on some inodes on this super_block. No guarantees are made
1388 * on how many (if any) will be written, and this function does not wait
1389 * for IO completion of submitted IO.
1390 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)1391 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1392 {
1393 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1394 }
1395 EXPORT_SYMBOL(writeback_inodes_sb);
1396
1397 /**
1398 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1399 * @sb: the superblock
1400 * @nr: the number of pages to write
1401 * @reason: the reason of writeback
1402 *
1403 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1404 * Returns 1 if writeback was started, 0 if not.
1405 */
try_to_writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)1406 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1407 unsigned long nr,
1408 enum wb_reason reason)
1409 {
1410 if (writeback_in_progress(sb->s_bdi))
1411 return 1;
1412
1413 if (!down_read_trylock(&sb->s_umount))
1414 return 0;
1415
1416 writeback_inodes_sb_nr(sb, nr, reason);
1417 up_read(&sb->s_umount);
1418 return 1;
1419 }
1420 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1421
1422 /**
1423 * try_to_writeback_inodes_sb - try to start writeback if none underway
1424 * @sb: the superblock
1425 * @reason: reason why some writeback work was initiated
1426 *
1427 * Implement by try_to_writeback_inodes_sb_nr()
1428 * Returns 1 if writeback was started, 0 if not.
1429 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)1430 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1431 {
1432 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1433 }
1434 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1435
1436 /**
1437 * sync_inodes_sb - sync sb inode pages
1438 * @sb: the superblock
1439 *
1440 * This function writes and waits on any dirty inode belonging to this
1441 * super_block.
1442 */
sync_inodes_sb(struct super_block * sb)1443 void sync_inodes_sb(struct super_block *sb)
1444 {
1445 DECLARE_COMPLETION_ONSTACK(done);
1446 struct wb_writeback_work work = {
1447 .sb = sb,
1448 .sync_mode = WB_SYNC_ALL,
1449 .nr_pages = LONG_MAX,
1450 .range_cyclic = 0,
1451 .done = &done,
1452 .reason = WB_REASON_SYNC,
1453 .for_sync = 1,
1454 };
1455
1456 /* Nothing to do? */
1457 if (sb->s_bdi == &noop_backing_dev_info)
1458 return;
1459 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1460
1461 bdi_queue_work(sb->s_bdi, &work);
1462 wait_for_completion(&done);
1463
1464 wait_sb_inodes(sb);
1465 }
1466 EXPORT_SYMBOL(sync_inodes_sb);
1467
1468 /**
1469 * write_inode_now - write an inode to disk
1470 * @inode: inode to write to disk
1471 * @sync: whether the write should be synchronous or not
1472 *
1473 * This function commits an inode to disk immediately if it is dirty. This is
1474 * primarily needed by knfsd.
1475 *
1476 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1477 */
write_inode_now(struct inode * inode,int sync)1478 int write_inode_now(struct inode *inode, int sync)
1479 {
1480 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1481 struct writeback_control wbc = {
1482 .nr_to_write = LONG_MAX,
1483 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1484 .range_start = 0,
1485 .range_end = LLONG_MAX,
1486 };
1487
1488 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1489 wbc.nr_to_write = 0;
1490
1491 might_sleep();
1492 return writeback_single_inode(inode, wb, &wbc);
1493 }
1494 EXPORT_SYMBOL(write_inode_now);
1495
1496 /**
1497 * sync_inode - write an inode and its pages to disk.
1498 * @inode: the inode to sync
1499 * @wbc: controls the writeback mode
1500 *
1501 * sync_inode() will write an inode and its pages to disk. It will also
1502 * correctly update the inode on its superblock's dirty inode lists and will
1503 * update inode->i_state.
1504 *
1505 * The caller must have a ref on the inode.
1506 */
sync_inode(struct inode * inode,struct writeback_control * wbc)1507 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1508 {
1509 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1510 }
1511 EXPORT_SYMBOL(sync_inode);
1512
1513 /**
1514 * sync_inode_metadata - write an inode to disk
1515 * @inode: the inode to sync
1516 * @wait: wait for I/O to complete.
1517 *
1518 * Write an inode to disk and adjust its dirty state after completion.
1519 *
1520 * Note: only writes the actual inode, no associated data or other metadata.
1521 */
sync_inode_metadata(struct inode * inode,int wait)1522 int sync_inode_metadata(struct inode *inode, int wait)
1523 {
1524 struct writeback_control wbc = {
1525 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1526 .nr_to_write = 0, /* metadata-only */
1527 };
1528
1529 return sync_inode(inode, &wbc);
1530 }
1531 EXPORT_SYMBOL(sync_inode_metadata);
1532