1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
40
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h" /* audit_signal_info() */
47
48 /*
49 * SLAB caches for signal bits.
50 */
51
52 static struct kmem_cache *sigqueue_cachep;
53
54 int print_fatal_signals __read_mostly;
55
sig_handler(struct task_struct * t,int sig)56 static void __user *sig_handler(struct task_struct *t, int sig)
57 {
58 return t->sighand->action[sig - 1].sa.sa_handler;
59 }
60
sig_handler_ignored(void __user * handler,int sig)61 static int sig_handler_ignored(void __user *handler, int sig)
62 {
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
66 }
67
sig_task_ignored(struct task_struct * t,int sig,bool force)68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69 {
70 void __user *handler;
71
72 handler = sig_handler(t, sig);
73
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
76 return 1;
77
78 return sig_handler_ignored(handler, sig);
79 }
80
sig_ignored(struct task_struct * t,int sig,bool force)81 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 {
83 /*
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
87 */
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
90
91 /*
92 * Tracers may want to know about even ignored signal unless it
93 * is SIGKILL which can't be reported anyway but can be ignored
94 * by SIGNAL_UNKILLABLE task.
95 */
96 if (t->ptrace && sig != SIGKILL)
97 return 0;
98
99 return sig_task_ignored(t, sig, force);
100 }
101
102 /*
103 * Re-calculate pending state from the set of locally pending
104 * signals, globally pending signals, and blocked signals.
105 */
has_pending_signals(sigset_t * signal,sigset_t * blocked)106 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
107 {
108 unsigned long ready;
109 long i;
110
111 switch (_NSIG_WORDS) {
112 default:
113 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
114 ready |= signal->sig[i] &~ blocked->sig[i];
115 break;
116
117 case 4: ready = signal->sig[3] &~ blocked->sig[3];
118 ready |= signal->sig[2] &~ blocked->sig[2];
119 ready |= signal->sig[1] &~ blocked->sig[1];
120 ready |= signal->sig[0] &~ blocked->sig[0];
121 break;
122
123 case 2: ready = signal->sig[1] &~ blocked->sig[1];
124 ready |= signal->sig[0] &~ blocked->sig[0];
125 break;
126
127 case 1: ready = signal->sig[0] &~ blocked->sig[0];
128 }
129 return ready != 0;
130 }
131
132 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
133
recalc_sigpending_tsk(struct task_struct * t)134 static int recalc_sigpending_tsk(struct task_struct *t)
135 {
136 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
137 PENDING(&t->pending, &t->blocked) ||
138 PENDING(&t->signal->shared_pending, &t->blocked)) {
139 set_tsk_thread_flag(t, TIF_SIGPENDING);
140 return 1;
141 }
142 /*
143 * We must never clear the flag in another thread, or in current
144 * when it's possible the current syscall is returning -ERESTART*.
145 * So we don't clear it here, and only callers who know they should do.
146 */
147 return 0;
148 }
149
150 /*
151 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
152 * This is superfluous when called on current, the wakeup is a harmless no-op.
153 */
recalc_sigpending_and_wake(struct task_struct * t)154 void recalc_sigpending_and_wake(struct task_struct *t)
155 {
156 if (recalc_sigpending_tsk(t))
157 signal_wake_up(t, 0);
158 }
159
recalc_sigpending(void)160 void recalc_sigpending(void)
161 {
162 if (!recalc_sigpending_tsk(current) && !freezing(current))
163 clear_thread_flag(TIF_SIGPENDING);
164
165 }
166
167 /* Given the mask, find the first available signal that should be serviced. */
168
169 #define SYNCHRONOUS_MASK \
170 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
171 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
172
next_signal(struct sigpending * pending,sigset_t * mask)173 int next_signal(struct sigpending *pending, sigset_t *mask)
174 {
175 unsigned long i, *s, *m, x;
176 int sig = 0;
177
178 s = pending->signal.sig;
179 m = mask->sig;
180
181 /*
182 * Handle the first word specially: it contains the
183 * synchronous signals that need to be dequeued first.
184 */
185 x = *s &~ *m;
186 if (x) {
187 if (x & SYNCHRONOUS_MASK)
188 x &= SYNCHRONOUS_MASK;
189 sig = ffz(~x) + 1;
190 return sig;
191 }
192
193 switch (_NSIG_WORDS) {
194 default:
195 for (i = 1; i < _NSIG_WORDS; ++i) {
196 x = *++s &~ *++m;
197 if (!x)
198 continue;
199 sig = ffz(~x) + i*_NSIG_BPW + 1;
200 break;
201 }
202 break;
203
204 case 2:
205 x = s[1] &~ m[1];
206 if (!x)
207 break;
208 sig = ffz(~x) + _NSIG_BPW + 1;
209 break;
210
211 case 1:
212 /* Nothing to do */
213 break;
214 }
215
216 return sig;
217 }
218
print_dropped_signal(int sig)219 static inline void print_dropped_signal(int sig)
220 {
221 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
222
223 if (!print_fatal_signals)
224 return;
225
226 if (!__ratelimit(&ratelimit_state))
227 return;
228
229 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
230 current->comm, current->pid, sig);
231 }
232
233 /**
234 * task_set_jobctl_pending - set jobctl pending bits
235 * @task: target task
236 * @mask: pending bits to set
237 *
238 * Clear @mask from @task->jobctl. @mask must be subset of
239 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
240 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
241 * cleared. If @task is already being killed or exiting, this function
242 * becomes noop.
243 *
244 * CONTEXT:
245 * Must be called with @task->sighand->siglock held.
246 *
247 * RETURNS:
248 * %true if @mask is set, %false if made noop because @task was dying.
249 */
task_set_jobctl_pending(struct task_struct * task,unsigned int mask)250 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
251 {
252 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
253 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
254 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
255
256 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
257 return false;
258
259 if (mask & JOBCTL_STOP_SIGMASK)
260 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
261
262 task->jobctl |= mask;
263 return true;
264 }
265
266 /**
267 * task_clear_jobctl_trapping - clear jobctl trapping bit
268 * @task: target task
269 *
270 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
271 * Clear it and wake up the ptracer. Note that we don't need any further
272 * locking. @task->siglock guarantees that @task->parent points to the
273 * ptracer.
274 *
275 * CONTEXT:
276 * Must be called with @task->sighand->siglock held.
277 */
task_clear_jobctl_trapping(struct task_struct * task)278 void task_clear_jobctl_trapping(struct task_struct *task)
279 {
280 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
281 task->jobctl &= ~JOBCTL_TRAPPING;
282 smp_mb(); /* advised by wake_up_bit() */
283 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
284 }
285 }
286
287 /**
288 * task_clear_jobctl_pending - clear jobctl pending bits
289 * @task: target task
290 * @mask: pending bits to clear
291 *
292 * Clear @mask from @task->jobctl. @mask must be subset of
293 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
294 * STOP bits are cleared together.
295 *
296 * If clearing of @mask leaves no stop or trap pending, this function calls
297 * task_clear_jobctl_trapping().
298 *
299 * CONTEXT:
300 * Must be called with @task->sighand->siglock held.
301 */
task_clear_jobctl_pending(struct task_struct * task,unsigned int mask)302 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
303 {
304 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
305
306 if (mask & JOBCTL_STOP_PENDING)
307 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
308
309 task->jobctl &= ~mask;
310
311 if (!(task->jobctl & JOBCTL_PENDING_MASK))
312 task_clear_jobctl_trapping(task);
313 }
314
315 /**
316 * task_participate_group_stop - participate in a group stop
317 * @task: task participating in a group stop
318 *
319 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
320 * Group stop states are cleared and the group stop count is consumed if
321 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
322 * stop, the appropriate %SIGNAL_* flags are set.
323 *
324 * CONTEXT:
325 * Must be called with @task->sighand->siglock held.
326 *
327 * RETURNS:
328 * %true if group stop completion should be notified to the parent, %false
329 * otherwise.
330 */
task_participate_group_stop(struct task_struct * task)331 static bool task_participate_group_stop(struct task_struct *task)
332 {
333 struct signal_struct *sig = task->signal;
334 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
335
336 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
337
338 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
339
340 if (!consume)
341 return false;
342
343 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
344 sig->group_stop_count--;
345
346 /*
347 * Tell the caller to notify completion iff we are entering into a
348 * fresh group stop. Read comment in do_signal_stop() for details.
349 */
350 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
351 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
352 return true;
353 }
354 return false;
355 }
356
357 /*
358 * allocate a new signal queue record
359 * - this may be called without locks if and only if t == current, otherwise an
360 * appropriate lock must be held to stop the target task from exiting
361 */
362 static struct sigqueue *
__sigqueue_alloc(int sig,struct task_struct * t,gfp_t flags,int override_rlimit)363 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
364 {
365 struct sigqueue *q = NULL;
366 struct user_struct *user;
367
368 /*
369 * Protect access to @t credentials. This can go away when all
370 * callers hold rcu read lock.
371 */
372 rcu_read_lock();
373 user = get_uid(__task_cred(t)->user);
374 atomic_inc(&user->sigpending);
375 rcu_read_unlock();
376
377 if (override_rlimit ||
378 atomic_read(&user->sigpending) <=
379 task_rlimit(t, RLIMIT_SIGPENDING)) {
380 q = kmem_cache_alloc(sigqueue_cachep, flags);
381 } else {
382 print_dropped_signal(sig);
383 }
384
385 if (unlikely(q == NULL)) {
386 atomic_dec(&user->sigpending);
387 free_uid(user);
388 } else {
389 INIT_LIST_HEAD(&q->list);
390 q->flags = 0;
391 q->user = user;
392 }
393
394 return q;
395 }
396
__sigqueue_free(struct sigqueue * q)397 static void __sigqueue_free(struct sigqueue *q)
398 {
399 if (q->flags & SIGQUEUE_PREALLOC)
400 return;
401 atomic_dec(&q->user->sigpending);
402 free_uid(q->user);
403 kmem_cache_free(sigqueue_cachep, q);
404 }
405
flush_sigqueue(struct sigpending * queue)406 void flush_sigqueue(struct sigpending *queue)
407 {
408 struct sigqueue *q;
409
410 sigemptyset(&queue->signal);
411 while (!list_empty(&queue->list)) {
412 q = list_entry(queue->list.next, struct sigqueue , list);
413 list_del_init(&q->list);
414 __sigqueue_free(q);
415 }
416 }
417
418 /*
419 * Flush all pending signals for a task.
420 */
__flush_signals(struct task_struct * t)421 void __flush_signals(struct task_struct *t)
422 {
423 clear_tsk_thread_flag(t, TIF_SIGPENDING);
424 flush_sigqueue(&t->pending);
425 flush_sigqueue(&t->signal->shared_pending);
426 }
427
flush_signals(struct task_struct * t)428 void flush_signals(struct task_struct *t)
429 {
430 unsigned long flags;
431
432 spin_lock_irqsave(&t->sighand->siglock, flags);
433 __flush_signals(t);
434 spin_unlock_irqrestore(&t->sighand->siglock, flags);
435 }
436
__flush_itimer_signals(struct sigpending * pending)437 static void __flush_itimer_signals(struct sigpending *pending)
438 {
439 sigset_t signal, retain;
440 struct sigqueue *q, *n;
441
442 signal = pending->signal;
443 sigemptyset(&retain);
444
445 list_for_each_entry_safe(q, n, &pending->list, list) {
446 int sig = q->info.si_signo;
447
448 if (likely(q->info.si_code != SI_TIMER)) {
449 sigaddset(&retain, sig);
450 } else {
451 sigdelset(&signal, sig);
452 list_del_init(&q->list);
453 __sigqueue_free(q);
454 }
455 }
456
457 sigorsets(&pending->signal, &signal, &retain);
458 }
459
flush_itimer_signals(void)460 void flush_itimer_signals(void)
461 {
462 struct task_struct *tsk = current;
463 unsigned long flags;
464
465 spin_lock_irqsave(&tsk->sighand->siglock, flags);
466 __flush_itimer_signals(&tsk->pending);
467 __flush_itimer_signals(&tsk->signal->shared_pending);
468 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
469 }
470
ignore_signals(struct task_struct * t)471 void ignore_signals(struct task_struct *t)
472 {
473 int i;
474
475 for (i = 0; i < _NSIG; ++i)
476 t->sighand->action[i].sa.sa_handler = SIG_IGN;
477
478 flush_signals(t);
479 }
480
481 /*
482 * Flush all handlers for a task.
483 */
484
485 void
flush_signal_handlers(struct task_struct * t,int force_default)486 flush_signal_handlers(struct task_struct *t, int force_default)
487 {
488 int i;
489 struct k_sigaction *ka = &t->sighand->action[0];
490 for (i = _NSIG ; i != 0 ; i--) {
491 if (force_default || ka->sa.sa_handler != SIG_IGN)
492 ka->sa.sa_handler = SIG_DFL;
493 ka->sa.sa_flags = 0;
494 #ifdef __ARCH_HAS_SA_RESTORER
495 ka->sa.sa_restorer = NULL;
496 #endif
497 sigemptyset(&ka->sa.sa_mask);
498 ka++;
499 }
500 }
501
unhandled_signal(struct task_struct * tsk,int sig)502 int unhandled_signal(struct task_struct *tsk, int sig)
503 {
504 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
505 if (is_global_init(tsk))
506 return 1;
507 if (handler != SIG_IGN && handler != SIG_DFL)
508 return 0;
509 /* if ptraced, let the tracer determine */
510 return !tsk->ptrace;
511 }
512
513 /*
514 * Notify the system that a driver wants to block all signals for this
515 * process, and wants to be notified if any signals at all were to be
516 * sent/acted upon. If the notifier routine returns non-zero, then the
517 * signal will be acted upon after all. If the notifier routine returns 0,
518 * then then signal will be blocked. Only one block per process is
519 * allowed. priv is a pointer to private data that the notifier routine
520 * can use to determine if the signal should be blocked or not.
521 */
522 void
block_all_signals(int (* notifier)(void * priv),void * priv,sigset_t * mask)523 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
524 {
525 unsigned long flags;
526
527 spin_lock_irqsave(¤t->sighand->siglock, flags);
528 current->notifier_mask = mask;
529 current->notifier_data = priv;
530 current->notifier = notifier;
531 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
532 }
533
534 /* Notify the system that blocking has ended. */
535
536 void
unblock_all_signals(void)537 unblock_all_signals(void)
538 {
539 unsigned long flags;
540
541 spin_lock_irqsave(¤t->sighand->siglock, flags);
542 current->notifier = NULL;
543 current->notifier_data = NULL;
544 recalc_sigpending();
545 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
546 }
547
collect_signal(int sig,struct sigpending * list,siginfo_t * info,bool * resched_timer)548 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
549 bool *resched_timer)
550 {
551 struct sigqueue *q, *first = NULL;
552
553 /*
554 * Collect the siginfo appropriate to this signal. Check if
555 * there is another siginfo for the same signal.
556 */
557 list_for_each_entry(q, &list->list, list) {
558 if (q->info.si_signo == sig) {
559 if (first)
560 goto still_pending;
561 first = q;
562 }
563 }
564
565 sigdelset(&list->signal, sig);
566
567 if (first) {
568 still_pending:
569 list_del_init(&first->list);
570 copy_siginfo(info, &first->info);
571
572 *resched_timer =
573 (first->flags & SIGQUEUE_PREALLOC) &&
574 (info->si_code == SI_TIMER) &&
575 (info->si_sys_private);
576
577 __sigqueue_free(first);
578 } else {
579 /*
580 * Ok, it wasn't in the queue. This must be
581 * a fast-pathed signal or we must have been
582 * out of queue space. So zero out the info.
583 */
584 info->si_signo = sig;
585 info->si_errno = 0;
586 info->si_code = SI_USER;
587 info->si_pid = 0;
588 info->si_uid = 0;
589 }
590 }
591
__dequeue_signal(struct sigpending * pending,sigset_t * mask,siginfo_t * info,bool * resched_timer)592 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
593 siginfo_t *info, bool *resched_timer)
594 {
595 int sig = next_signal(pending, mask);
596
597 if (sig) {
598 if (current->notifier) {
599 if (sigismember(current->notifier_mask, sig)) {
600 if (!(current->notifier)(current->notifier_data)) {
601 clear_thread_flag(TIF_SIGPENDING);
602 return 0;
603 }
604 }
605 }
606
607 collect_signal(sig, pending, info, resched_timer);
608 }
609
610 return sig;
611 }
612
613 /*
614 * Dequeue a signal and return the element to the caller, which is
615 * expected to free it.
616 *
617 * All callers have to hold the siglock.
618 */
dequeue_signal(struct task_struct * tsk,sigset_t * mask,siginfo_t * info)619 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
620 {
621 bool resched_timer = false;
622 int signr;
623
624 /* We only dequeue private signals from ourselves, we don't let
625 * signalfd steal them
626 */
627 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
628 if (!signr) {
629 signr = __dequeue_signal(&tsk->signal->shared_pending,
630 mask, info, &resched_timer);
631 /*
632 * itimer signal ?
633 *
634 * itimers are process shared and we restart periodic
635 * itimers in the signal delivery path to prevent DoS
636 * attacks in the high resolution timer case. This is
637 * compliant with the old way of self-restarting
638 * itimers, as the SIGALRM is a legacy signal and only
639 * queued once. Changing the restart behaviour to
640 * restart the timer in the signal dequeue path is
641 * reducing the timer noise on heavy loaded !highres
642 * systems too.
643 */
644 if (unlikely(signr == SIGALRM)) {
645 struct hrtimer *tmr = &tsk->signal->real_timer;
646
647 if (!hrtimer_is_queued(tmr) &&
648 tsk->signal->it_real_incr.tv64 != 0) {
649 hrtimer_forward(tmr, tmr->base->get_time(),
650 tsk->signal->it_real_incr);
651 hrtimer_restart(tmr);
652 }
653 }
654 }
655
656 recalc_sigpending();
657 if (!signr)
658 return 0;
659
660 if (unlikely(sig_kernel_stop(signr))) {
661 /*
662 * Set a marker that we have dequeued a stop signal. Our
663 * caller might release the siglock and then the pending
664 * stop signal it is about to process is no longer in the
665 * pending bitmasks, but must still be cleared by a SIGCONT
666 * (and overruled by a SIGKILL). So those cases clear this
667 * shared flag after we've set it. Note that this flag may
668 * remain set after the signal we return is ignored or
669 * handled. That doesn't matter because its only purpose
670 * is to alert stop-signal processing code when another
671 * processor has come along and cleared the flag.
672 */
673 current->jobctl |= JOBCTL_STOP_DEQUEUED;
674 }
675 if (resched_timer) {
676 /*
677 * Release the siglock to ensure proper locking order
678 * of timer locks outside of siglocks. Note, we leave
679 * irqs disabled here, since the posix-timers code is
680 * about to disable them again anyway.
681 */
682 spin_unlock(&tsk->sighand->siglock);
683 do_schedule_next_timer(info);
684 spin_lock(&tsk->sighand->siglock);
685 }
686 return signr;
687 }
688
689 /*
690 * Tell a process that it has a new active signal..
691 *
692 * NOTE! we rely on the previous spin_lock to
693 * lock interrupts for us! We can only be called with
694 * "siglock" held, and the local interrupt must
695 * have been disabled when that got acquired!
696 *
697 * No need to set need_resched since signal event passing
698 * goes through ->blocked
699 */
signal_wake_up_state(struct task_struct * t,unsigned int state)700 void signal_wake_up_state(struct task_struct *t, unsigned int state)
701 {
702 set_tsk_thread_flag(t, TIF_SIGPENDING);
703 /*
704 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
705 * case. We don't check t->state here because there is a race with it
706 * executing another processor and just now entering stopped state.
707 * By using wake_up_state, we ensure the process will wake up and
708 * handle its death signal.
709 */
710 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
711 kick_process(t);
712 }
713
714 /*
715 * Remove signals in mask from the pending set and queue.
716 * Returns 1 if any signals were found.
717 *
718 * All callers must be holding the siglock.
719 */
flush_sigqueue_mask(sigset_t * mask,struct sigpending * s)720 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
721 {
722 struct sigqueue *q, *n;
723 sigset_t m;
724
725 sigandsets(&m, mask, &s->signal);
726 if (sigisemptyset(&m))
727 return 0;
728
729 sigandnsets(&s->signal, &s->signal, mask);
730 list_for_each_entry_safe(q, n, &s->list, list) {
731 if (sigismember(mask, q->info.si_signo)) {
732 list_del_init(&q->list);
733 __sigqueue_free(q);
734 }
735 }
736 return 1;
737 }
738
is_si_special(const struct siginfo * info)739 static inline int is_si_special(const struct siginfo *info)
740 {
741 return info <= SEND_SIG_FORCED;
742 }
743
si_fromuser(const struct siginfo * info)744 static inline bool si_fromuser(const struct siginfo *info)
745 {
746 return info == SEND_SIG_NOINFO ||
747 (!is_si_special(info) && SI_FROMUSER(info));
748 }
749
750 /*
751 * called with RCU read lock from check_kill_permission()
752 */
kill_ok_by_cred(struct task_struct * t)753 static int kill_ok_by_cred(struct task_struct *t)
754 {
755 const struct cred *cred = current_cred();
756 const struct cred *tcred = __task_cred(t);
757
758 if (uid_eq(cred->euid, tcred->suid) ||
759 uid_eq(cred->euid, tcred->uid) ||
760 uid_eq(cred->uid, tcred->suid) ||
761 uid_eq(cred->uid, tcred->uid))
762 return 1;
763
764 if (ns_capable(tcred->user_ns, CAP_KILL))
765 return 1;
766
767 return 0;
768 }
769
770 /*
771 * Bad permissions for sending the signal
772 * - the caller must hold the RCU read lock
773 */
check_kill_permission(int sig,struct siginfo * info,struct task_struct * t)774 static int check_kill_permission(int sig, struct siginfo *info,
775 struct task_struct *t)
776 {
777 struct pid *sid;
778 int error;
779
780 if (!valid_signal(sig))
781 return -EINVAL;
782
783 if (!si_fromuser(info))
784 return 0;
785
786 error = audit_signal_info(sig, t); /* Let audit system see the signal */
787 if (error)
788 return error;
789
790 if (!same_thread_group(current, t) &&
791 !kill_ok_by_cred(t)) {
792 switch (sig) {
793 case SIGCONT:
794 sid = task_session(t);
795 /*
796 * We don't return the error if sid == NULL. The
797 * task was unhashed, the caller must notice this.
798 */
799 if (!sid || sid == task_session(current))
800 break;
801 default:
802 return -EPERM;
803 }
804 }
805
806 return security_task_kill(t, info, sig, 0);
807 }
808
809 /**
810 * ptrace_trap_notify - schedule trap to notify ptracer
811 * @t: tracee wanting to notify tracer
812 *
813 * This function schedules sticky ptrace trap which is cleared on the next
814 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
815 * ptracer.
816 *
817 * If @t is running, STOP trap will be taken. If trapped for STOP and
818 * ptracer is listening for events, tracee is woken up so that it can
819 * re-trap for the new event. If trapped otherwise, STOP trap will be
820 * eventually taken without returning to userland after the existing traps
821 * are finished by PTRACE_CONT.
822 *
823 * CONTEXT:
824 * Must be called with @task->sighand->siglock held.
825 */
ptrace_trap_notify(struct task_struct * t)826 static void ptrace_trap_notify(struct task_struct *t)
827 {
828 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
829 assert_spin_locked(&t->sighand->siglock);
830
831 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
832 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
833 }
834
835 /*
836 * Handle magic process-wide effects of stop/continue signals. Unlike
837 * the signal actions, these happen immediately at signal-generation
838 * time regardless of blocking, ignoring, or handling. This does the
839 * actual continuing for SIGCONT, but not the actual stopping for stop
840 * signals. The process stop is done as a signal action for SIG_DFL.
841 *
842 * Returns true if the signal should be actually delivered, otherwise
843 * it should be dropped.
844 */
prepare_signal(int sig,struct task_struct * p,bool force)845 static bool prepare_signal(int sig, struct task_struct *p, bool force)
846 {
847 struct signal_struct *signal = p->signal;
848 struct task_struct *t;
849 sigset_t flush;
850
851 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
852 if (signal->flags & SIGNAL_GROUP_COREDUMP)
853 return sig == SIGKILL;
854 /*
855 * The process is in the middle of dying, nothing to do.
856 */
857 } else if (sig_kernel_stop(sig)) {
858 /*
859 * This is a stop signal. Remove SIGCONT from all queues.
860 */
861 siginitset(&flush, sigmask(SIGCONT));
862 flush_sigqueue_mask(&flush, &signal->shared_pending);
863 for_each_thread(p, t)
864 flush_sigqueue_mask(&flush, &t->pending);
865 } else if (sig == SIGCONT) {
866 unsigned int why;
867 /*
868 * Remove all stop signals from all queues, wake all threads.
869 */
870 siginitset(&flush, SIG_KERNEL_STOP_MASK);
871 flush_sigqueue_mask(&flush, &signal->shared_pending);
872 for_each_thread(p, t) {
873 flush_sigqueue_mask(&flush, &t->pending);
874 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
875 if (likely(!(t->ptrace & PT_SEIZED)))
876 wake_up_state(t, __TASK_STOPPED);
877 else
878 ptrace_trap_notify(t);
879 }
880
881 /*
882 * Notify the parent with CLD_CONTINUED if we were stopped.
883 *
884 * If we were in the middle of a group stop, we pretend it
885 * was already finished, and then continued. Since SIGCHLD
886 * doesn't queue we report only CLD_STOPPED, as if the next
887 * CLD_CONTINUED was dropped.
888 */
889 why = 0;
890 if (signal->flags & SIGNAL_STOP_STOPPED)
891 why |= SIGNAL_CLD_CONTINUED;
892 else if (signal->group_stop_count)
893 why |= SIGNAL_CLD_STOPPED;
894
895 if (why) {
896 /*
897 * The first thread which returns from do_signal_stop()
898 * will take ->siglock, notice SIGNAL_CLD_MASK, and
899 * notify its parent. See get_signal_to_deliver().
900 */
901 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
902 signal->group_stop_count = 0;
903 signal->group_exit_code = 0;
904 }
905 }
906
907 return !sig_ignored(p, sig, force);
908 }
909
910 /*
911 * Test if P wants to take SIG. After we've checked all threads with this,
912 * it's equivalent to finding no threads not blocking SIG. Any threads not
913 * blocking SIG were ruled out because they are not running and already
914 * have pending signals. Such threads will dequeue from the shared queue
915 * as soon as they're available, so putting the signal on the shared queue
916 * will be equivalent to sending it to one such thread.
917 */
wants_signal(int sig,struct task_struct * p)918 static inline int wants_signal(int sig, struct task_struct *p)
919 {
920 if (sigismember(&p->blocked, sig))
921 return 0;
922 if (p->flags & PF_EXITING)
923 return 0;
924 if (sig == SIGKILL)
925 return 1;
926 if (task_is_stopped_or_traced(p))
927 return 0;
928 return task_curr(p) || !signal_pending(p);
929 }
930
complete_signal(int sig,struct task_struct * p,int group)931 static void complete_signal(int sig, struct task_struct *p, int group)
932 {
933 struct signal_struct *signal = p->signal;
934 struct task_struct *t;
935
936 /*
937 * Now find a thread we can wake up to take the signal off the queue.
938 *
939 * If the main thread wants the signal, it gets first crack.
940 * Probably the least surprising to the average bear.
941 */
942 if (wants_signal(sig, p))
943 t = p;
944 else if (!group || thread_group_empty(p))
945 /*
946 * There is just one thread and it does not need to be woken.
947 * It will dequeue unblocked signals before it runs again.
948 */
949 return;
950 else {
951 /*
952 * Otherwise try to find a suitable thread.
953 */
954 t = signal->curr_target;
955 while (!wants_signal(sig, t)) {
956 t = next_thread(t);
957 if (t == signal->curr_target)
958 /*
959 * No thread needs to be woken.
960 * Any eligible threads will see
961 * the signal in the queue soon.
962 */
963 return;
964 }
965 signal->curr_target = t;
966 }
967
968 /*
969 * Found a killable thread. If the signal will be fatal,
970 * then start taking the whole group down immediately.
971 */
972 if (sig_fatal(p, sig) &&
973 !(signal->flags & SIGNAL_GROUP_EXIT) &&
974 !sigismember(&t->real_blocked, sig) &&
975 (sig == SIGKILL || !p->ptrace)) {
976 /*
977 * This signal will be fatal to the whole group.
978 */
979 if (!sig_kernel_coredump(sig)) {
980 /*
981 * Start a group exit and wake everybody up.
982 * This way we don't have other threads
983 * running and doing things after a slower
984 * thread has the fatal signal pending.
985 */
986 signal->flags = SIGNAL_GROUP_EXIT;
987 signal->group_exit_code = sig;
988 signal->group_stop_count = 0;
989 t = p;
990 do {
991 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
992 sigaddset(&t->pending.signal, SIGKILL);
993 signal_wake_up(t, 1);
994 } while_each_thread(p, t);
995 return;
996 }
997 }
998
999 /*
1000 * The signal is already in the shared-pending queue.
1001 * Tell the chosen thread to wake up and dequeue it.
1002 */
1003 signal_wake_up(t, sig == SIGKILL);
1004 return;
1005 }
1006
legacy_queue(struct sigpending * signals,int sig)1007 static inline int legacy_queue(struct sigpending *signals, int sig)
1008 {
1009 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1010 }
1011
1012 #ifdef CONFIG_USER_NS
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1013 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1014 {
1015 if (current_user_ns() == task_cred_xxx(t, user_ns))
1016 return;
1017
1018 if (SI_FROMKERNEL(info))
1019 return;
1020
1021 rcu_read_lock();
1022 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1023 make_kuid(current_user_ns(), info->si_uid));
1024 rcu_read_unlock();
1025 }
1026 #else
userns_fixup_signal_uid(struct siginfo * info,struct task_struct * t)1027 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1028 {
1029 return;
1030 }
1031 #endif
1032
__send_signal(int sig,struct siginfo * info,struct task_struct * t,int group,int from_ancestor_ns)1033 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1034 int group, int from_ancestor_ns)
1035 {
1036 struct sigpending *pending;
1037 struct sigqueue *q;
1038 int override_rlimit;
1039 int ret = 0, result;
1040
1041 assert_spin_locked(&t->sighand->siglock);
1042
1043 result = TRACE_SIGNAL_IGNORED;
1044 if (!prepare_signal(sig, t,
1045 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1046 goto ret;
1047
1048 pending = group ? &t->signal->shared_pending : &t->pending;
1049 /*
1050 * Short-circuit ignored signals and support queuing
1051 * exactly one non-rt signal, so that we can get more
1052 * detailed information about the cause of the signal.
1053 */
1054 result = TRACE_SIGNAL_ALREADY_PENDING;
1055 if (legacy_queue(pending, sig))
1056 goto ret;
1057
1058 result = TRACE_SIGNAL_DELIVERED;
1059 /*
1060 * fast-pathed signals for kernel-internal things like SIGSTOP
1061 * or SIGKILL.
1062 */
1063 if (info == SEND_SIG_FORCED)
1064 goto out_set;
1065
1066 /*
1067 * Real-time signals must be queued if sent by sigqueue, or
1068 * some other real-time mechanism. It is implementation
1069 * defined whether kill() does so. We attempt to do so, on
1070 * the principle of least surprise, but since kill is not
1071 * allowed to fail with EAGAIN when low on memory we just
1072 * make sure at least one signal gets delivered and don't
1073 * pass on the info struct.
1074 */
1075 if (sig < SIGRTMIN)
1076 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1077 else
1078 override_rlimit = 0;
1079
1080 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1081 override_rlimit);
1082 if (q) {
1083 list_add_tail(&q->list, &pending->list);
1084 switch ((unsigned long) info) {
1085 case (unsigned long) SEND_SIG_NOINFO:
1086 q->info.si_signo = sig;
1087 q->info.si_errno = 0;
1088 q->info.si_code = SI_USER;
1089 q->info.si_pid = task_tgid_nr_ns(current,
1090 task_active_pid_ns(t));
1091 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1092 break;
1093 case (unsigned long) SEND_SIG_PRIV:
1094 q->info.si_signo = sig;
1095 q->info.si_errno = 0;
1096 q->info.si_code = SI_KERNEL;
1097 q->info.si_pid = 0;
1098 q->info.si_uid = 0;
1099 break;
1100 default:
1101 copy_siginfo(&q->info, info);
1102 if (from_ancestor_ns)
1103 q->info.si_pid = 0;
1104 break;
1105 }
1106
1107 userns_fixup_signal_uid(&q->info, t);
1108
1109 } else if (!is_si_special(info)) {
1110 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1111 /*
1112 * Queue overflow, abort. We may abort if the
1113 * signal was rt and sent by user using something
1114 * other than kill().
1115 */
1116 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1117 ret = -EAGAIN;
1118 goto ret;
1119 } else {
1120 /*
1121 * This is a silent loss of information. We still
1122 * send the signal, but the *info bits are lost.
1123 */
1124 result = TRACE_SIGNAL_LOSE_INFO;
1125 }
1126 }
1127
1128 out_set:
1129 signalfd_notify(t, sig);
1130 sigaddset(&pending->signal, sig);
1131 complete_signal(sig, t, group);
1132 ret:
1133 trace_signal_generate(sig, info, t, group, result);
1134 return ret;
1135 }
1136
send_signal(int sig,struct siginfo * info,struct task_struct * t,int group)1137 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1138 int group)
1139 {
1140 int from_ancestor_ns = 0;
1141
1142 #ifdef CONFIG_PID_NS
1143 from_ancestor_ns = si_fromuser(info) &&
1144 !task_pid_nr_ns(current, task_active_pid_ns(t));
1145 #endif
1146
1147 return __send_signal(sig, info, t, group, from_ancestor_ns);
1148 }
1149
print_fatal_signal(int signr)1150 static void print_fatal_signal(int signr)
1151 {
1152 struct pt_regs *regs = signal_pt_regs();
1153 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1154
1155 #if defined(__i386__) && !defined(__arch_um__)
1156 printk(KERN_INFO "code at %08lx: ", regs->ip);
1157 {
1158 int i;
1159 for (i = 0; i < 16; i++) {
1160 unsigned char insn;
1161
1162 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1163 break;
1164 printk(KERN_CONT "%02x ", insn);
1165 }
1166 }
1167 printk(KERN_CONT "\n");
1168 #endif
1169 preempt_disable();
1170 show_regs(regs);
1171 preempt_enable();
1172 }
1173
setup_print_fatal_signals(char * str)1174 static int __init setup_print_fatal_signals(char *str)
1175 {
1176 get_option (&str, &print_fatal_signals);
1177
1178 return 1;
1179 }
1180
1181 __setup("print-fatal-signals=", setup_print_fatal_signals);
1182
1183 int
__group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1184 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1185 {
1186 return send_signal(sig, info, p, 1);
1187 }
1188
1189 static int
specific_send_sig_info(int sig,struct siginfo * info,struct task_struct * t)1190 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1191 {
1192 return send_signal(sig, info, t, 0);
1193 }
1194
do_send_sig_info(int sig,struct siginfo * info,struct task_struct * p,bool group)1195 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1196 bool group)
1197 {
1198 unsigned long flags;
1199 int ret = -ESRCH;
1200
1201 if (lock_task_sighand(p, &flags)) {
1202 ret = send_signal(sig, info, p, group);
1203 unlock_task_sighand(p, &flags);
1204 }
1205
1206 return ret;
1207 }
1208
1209 /*
1210 * Force a signal that the process can't ignore: if necessary
1211 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1212 *
1213 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1214 * since we do not want to have a signal handler that was blocked
1215 * be invoked when user space had explicitly blocked it.
1216 *
1217 * We don't want to have recursive SIGSEGV's etc, for example,
1218 * that is why we also clear SIGNAL_UNKILLABLE.
1219 */
1220 int
force_sig_info(int sig,struct siginfo * info,struct task_struct * t)1221 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1222 {
1223 unsigned long int flags;
1224 int ret, blocked, ignored;
1225 struct k_sigaction *action;
1226
1227 spin_lock_irqsave(&t->sighand->siglock, flags);
1228 action = &t->sighand->action[sig-1];
1229 ignored = action->sa.sa_handler == SIG_IGN;
1230 blocked = sigismember(&t->blocked, sig);
1231 if (blocked || ignored) {
1232 action->sa.sa_handler = SIG_DFL;
1233 if (blocked) {
1234 sigdelset(&t->blocked, sig);
1235 recalc_sigpending_and_wake(t);
1236 }
1237 }
1238 if (action->sa.sa_handler == SIG_DFL)
1239 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1240 ret = specific_send_sig_info(sig, info, t);
1241 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1242
1243 return ret;
1244 }
1245
1246 /*
1247 * Nuke all other threads in the group.
1248 */
zap_other_threads(struct task_struct * p)1249 int zap_other_threads(struct task_struct *p)
1250 {
1251 struct task_struct *t = p;
1252 int count = 0;
1253
1254 p->signal->group_stop_count = 0;
1255
1256 while_each_thread(p, t) {
1257 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1258 count++;
1259
1260 /* Don't bother with already dead threads */
1261 if (t->exit_state)
1262 continue;
1263 sigaddset(&t->pending.signal, SIGKILL);
1264 signal_wake_up(t, 1);
1265 }
1266
1267 return count;
1268 }
1269
__lock_task_sighand(struct task_struct * tsk,unsigned long * flags)1270 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1271 unsigned long *flags)
1272 {
1273 struct sighand_struct *sighand;
1274
1275 for (;;) {
1276 /*
1277 * Disable interrupts early to avoid deadlocks.
1278 * See rcu_read_unlock() comment header for details.
1279 */
1280 local_irq_save(*flags);
1281 rcu_read_lock();
1282 sighand = rcu_dereference(tsk->sighand);
1283 if (unlikely(sighand == NULL)) {
1284 rcu_read_unlock();
1285 local_irq_restore(*flags);
1286 break;
1287 }
1288
1289 spin_lock(&sighand->siglock);
1290 if (likely(sighand == tsk->sighand)) {
1291 rcu_read_unlock();
1292 break;
1293 }
1294 spin_unlock(&sighand->siglock);
1295 rcu_read_unlock();
1296 local_irq_restore(*flags);
1297 }
1298
1299 return sighand;
1300 }
1301
1302 /*
1303 * send signal info to all the members of a group
1304 */
group_send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1305 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1306 {
1307 int ret;
1308
1309 rcu_read_lock();
1310 ret = check_kill_permission(sig, info, p);
1311 rcu_read_unlock();
1312
1313 if (!ret && sig)
1314 ret = do_send_sig_info(sig, info, p, true);
1315
1316 return ret;
1317 }
1318
1319 /*
1320 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1321 * control characters do (^C, ^Z etc)
1322 * - the caller must hold at least a readlock on tasklist_lock
1323 */
__kill_pgrp_info(int sig,struct siginfo * info,struct pid * pgrp)1324 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1325 {
1326 struct task_struct *p = NULL;
1327 int retval, success;
1328
1329 success = 0;
1330 retval = -ESRCH;
1331 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1332 int err = group_send_sig_info(sig, info, p);
1333 success |= !err;
1334 retval = err;
1335 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1336 return success ? 0 : retval;
1337 }
1338
kill_pid_info(int sig,struct siginfo * info,struct pid * pid)1339 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1340 {
1341 int error = -ESRCH;
1342 struct task_struct *p;
1343
1344 rcu_read_lock();
1345 retry:
1346 p = pid_task(pid, PIDTYPE_PID);
1347 if (p) {
1348 error = group_send_sig_info(sig, info, p);
1349 if (unlikely(error == -ESRCH))
1350 /*
1351 * The task was unhashed in between, try again.
1352 * If it is dead, pid_task() will return NULL,
1353 * if we race with de_thread() it will find the
1354 * new leader.
1355 */
1356 goto retry;
1357 }
1358 rcu_read_unlock();
1359
1360 return error;
1361 }
1362
kill_proc_info(int sig,struct siginfo * info,pid_t pid)1363 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1364 {
1365 int error;
1366 rcu_read_lock();
1367 error = kill_pid_info(sig, info, find_vpid(pid));
1368 rcu_read_unlock();
1369 return error;
1370 }
1371
kill_as_cred_perm(const struct cred * cred,struct task_struct * target)1372 static int kill_as_cred_perm(const struct cred *cred,
1373 struct task_struct *target)
1374 {
1375 const struct cred *pcred = __task_cred(target);
1376 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1377 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1378 return 0;
1379 return 1;
1380 }
1381
1382 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
kill_pid_info_as_cred(int sig,struct siginfo * info,struct pid * pid,const struct cred * cred,u32 secid)1383 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1384 const struct cred *cred, u32 secid)
1385 {
1386 int ret = -EINVAL;
1387 struct task_struct *p;
1388 unsigned long flags;
1389
1390 if (!valid_signal(sig))
1391 return ret;
1392
1393 rcu_read_lock();
1394 p = pid_task(pid, PIDTYPE_PID);
1395 if (!p) {
1396 ret = -ESRCH;
1397 goto out_unlock;
1398 }
1399 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1400 ret = -EPERM;
1401 goto out_unlock;
1402 }
1403 ret = security_task_kill(p, info, sig, secid);
1404 if (ret)
1405 goto out_unlock;
1406
1407 if (sig) {
1408 if (lock_task_sighand(p, &flags)) {
1409 ret = __send_signal(sig, info, p, 1, 0);
1410 unlock_task_sighand(p, &flags);
1411 } else
1412 ret = -ESRCH;
1413 }
1414 out_unlock:
1415 rcu_read_unlock();
1416 return ret;
1417 }
1418 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1419
1420 /*
1421 * kill_something_info() interprets pid in interesting ways just like kill(2).
1422 *
1423 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1424 * is probably wrong. Should make it like BSD or SYSV.
1425 */
1426
kill_something_info(int sig,struct siginfo * info,pid_t pid)1427 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1428 {
1429 int ret;
1430
1431 if (pid > 0) {
1432 rcu_read_lock();
1433 ret = kill_pid_info(sig, info, find_vpid(pid));
1434 rcu_read_unlock();
1435 return ret;
1436 }
1437
1438 read_lock(&tasklist_lock);
1439 if (pid != -1) {
1440 ret = __kill_pgrp_info(sig, info,
1441 pid ? find_vpid(-pid) : task_pgrp(current));
1442 } else {
1443 int retval = 0, count = 0;
1444 struct task_struct * p;
1445
1446 for_each_process(p) {
1447 if (task_pid_vnr(p) > 1 &&
1448 !same_thread_group(p, current)) {
1449 int err = group_send_sig_info(sig, info, p);
1450 ++count;
1451 if (err != -EPERM)
1452 retval = err;
1453 }
1454 }
1455 ret = count ? retval : -ESRCH;
1456 }
1457 read_unlock(&tasklist_lock);
1458
1459 return ret;
1460 }
1461
1462 /*
1463 * These are for backward compatibility with the rest of the kernel source.
1464 */
1465
send_sig_info(int sig,struct siginfo * info,struct task_struct * p)1466 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1467 {
1468 /*
1469 * Make sure legacy kernel users don't send in bad values
1470 * (normal paths check this in check_kill_permission).
1471 */
1472 if (!valid_signal(sig))
1473 return -EINVAL;
1474
1475 return do_send_sig_info(sig, info, p, false);
1476 }
1477
1478 #define __si_special(priv) \
1479 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1480
1481 int
send_sig(int sig,struct task_struct * p,int priv)1482 send_sig(int sig, struct task_struct *p, int priv)
1483 {
1484 return send_sig_info(sig, __si_special(priv), p);
1485 }
1486
1487 void
force_sig(int sig,struct task_struct * p)1488 force_sig(int sig, struct task_struct *p)
1489 {
1490 force_sig_info(sig, SEND_SIG_PRIV, p);
1491 }
1492
1493 /*
1494 * When things go south during signal handling, we
1495 * will force a SIGSEGV. And if the signal that caused
1496 * the problem was already a SIGSEGV, we'll want to
1497 * make sure we don't even try to deliver the signal..
1498 */
1499 int
force_sigsegv(int sig,struct task_struct * p)1500 force_sigsegv(int sig, struct task_struct *p)
1501 {
1502 if (sig == SIGSEGV) {
1503 unsigned long flags;
1504 spin_lock_irqsave(&p->sighand->siglock, flags);
1505 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1506 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1507 }
1508 force_sig(SIGSEGV, p);
1509 return 0;
1510 }
1511
kill_pgrp(struct pid * pid,int sig,int priv)1512 int kill_pgrp(struct pid *pid, int sig, int priv)
1513 {
1514 int ret;
1515
1516 read_lock(&tasklist_lock);
1517 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1518 read_unlock(&tasklist_lock);
1519
1520 return ret;
1521 }
1522 EXPORT_SYMBOL(kill_pgrp);
1523
kill_pid(struct pid * pid,int sig,int priv)1524 int kill_pid(struct pid *pid, int sig, int priv)
1525 {
1526 return kill_pid_info(sig, __si_special(priv), pid);
1527 }
1528 EXPORT_SYMBOL(kill_pid);
1529
1530 /*
1531 * These functions support sending signals using preallocated sigqueue
1532 * structures. This is needed "because realtime applications cannot
1533 * afford to lose notifications of asynchronous events, like timer
1534 * expirations or I/O completions". In the case of POSIX Timers
1535 * we allocate the sigqueue structure from the timer_create. If this
1536 * allocation fails we are able to report the failure to the application
1537 * with an EAGAIN error.
1538 */
sigqueue_alloc(void)1539 struct sigqueue *sigqueue_alloc(void)
1540 {
1541 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1542
1543 if (q)
1544 q->flags |= SIGQUEUE_PREALLOC;
1545
1546 return q;
1547 }
1548
sigqueue_free(struct sigqueue * q)1549 void sigqueue_free(struct sigqueue *q)
1550 {
1551 unsigned long flags;
1552 spinlock_t *lock = ¤t->sighand->siglock;
1553
1554 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1555 /*
1556 * We must hold ->siglock while testing q->list
1557 * to serialize with collect_signal() or with
1558 * __exit_signal()->flush_sigqueue().
1559 */
1560 spin_lock_irqsave(lock, flags);
1561 q->flags &= ~SIGQUEUE_PREALLOC;
1562 /*
1563 * If it is queued it will be freed when dequeued,
1564 * like the "regular" sigqueue.
1565 */
1566 if (!list_empty(&q->list))
1567 q = NULL;
1568 spin_unlock_irqrestore(lock, flags);
1569
1570 if (q)
1571 __sigqueue_free(q);
1572 }
1573
send_sigqueue(struct sigqueue * q,struct task_struct * t,int group)1574 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1575 {
1576 int sig = q->info.si_signo;
1577 struct sigpending *pending;
1578 unsigned long flags;
1579 int ret, result;
1580
1581 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1582
1583 ret = -1;
1584 if (!likely(lock_task_sighand(t, &flags)))
1585 goto ret;
1586
1587 ret = 1; /* the signal is ignored */
1588 result = TRACE_SIGNAL_IGNORED;
1589 if (!prepare_signal(sig, t, false))
1590 goto out;
1591
1592 ret = 0;
1593 if (unlikely(!list_empty(&q->list))) {
1594 /*
1595 * If an SI_TIMER entry is already queue just increment
1596 * the overrun count.
1597 */
1598 BUG_ON(q->info.si_code != SI_TIMER);
1599 q->info.si_overrun++;
1600 result = TRACE_SIGNAL_ALREADY_PENDING;
1601 goto out;
1602 }
1603 q->info.si_overrun = 0;
1604
1605 signalfd_notify(t, sig);
1606 pending = group ? &t->signal->shared_pending : &t->pending;
1607 list_add_tail(&q->list, &pending->list);
1608 sigaddset(&pending->signal, sig);
1609 complete_signal(sig, t, group);
1610 result = TRACE_SIGNAL_DELIVERED;
1611 out:
1612 trace_signal_generate(sig, &q->info, t, group, result);
1613 unlock_task_sighand(t, &flags);
1614 ret:
1615 return ret;
1616 }
1617
1618 /*
1619 * Let a parent know about the death of a child.
1620 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1621 *
1622 * Returns true if our parent ignored us and so we've switched to
1623 * self-reaping.
1624 */
do_notify_parent(struct task_struct * tsk,int sig)1625 bool do_notify_parent(struct task_struct *tsk, int sig)
1626 {
1627 struct siginfo info;
1628 unsigned long flags;
1629 struct sighand_struct *psig;
1630 bool autoreap = false;
1631 cputime_t utime, stime;
1632
1633 BUG_ON(sig == -1);
1634
1635 /* do_notify_parent_cldstop should have been called instead. */
1636 BUG_ON(task_is_stopped_or_traced(tsk));
1637
1638 BUG_ON(!tsk->ptrace &&
1639 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1640
1641 if (sig != SIGCHLD) {
1642 /*
1643 * This is only possible if parent == real_parent.
1644 * Check if it has changed security domain.
1645 */
1646 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1647 sig = SIGCHLD;
1648 }
1649
1650 info.si_signo = sig;
1651 info.si_errno = 0;
1652 /*
1653 * We are under tasklist_lock here so our parent is tied to
1654 * us and cannot change.
1655 *
1656 * task_active_pid_ns will always return the same pid namespace
1657 * until a task passes through release_task.
1658 *
1659 * write_lock() currently calls preempt_disable() which is the
1660 * same as rcu_read_lock(), but according to Oleg, this is not
1661 * correct to rely on this
1662 */
1663 rcu_read_lock();
1664 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1665 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1666 task_uid(tsk));
1667 rcu_read_unlock();
1668
1669 task_cputime(tsk, &utime, &stime);
1670 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1671 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1672
1673 info.si_status = tsk->exit_code & 0x7f;
1674 if (tsk->exit_code & 0x80)
1675 info.si_code = CLD_DUMPED;
1676 else if (tsk->exit_code & 0x7f)
1677 info.si_code = CLD_KILLED;
1678 else {
1679 info.si_code = CLD_EXITED;
1680 info.si_status = tsk->exit_code >> 8;
1681 }
1682
1683 psig = tsk->parent->sighand;
1684 spin_lock_irqsave(&psig->siglock, flags);
1685 if (!tsk->ptrace && sig == SIGCHLD &&
1686 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1687 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1688 /*
1689 * We are exiting and our parent doesn't care. POSIX.1
1690 * defines special semantics for setting SIGCHLD to SIG_IGN
1691 * or setting the SA_NOCLDWAIT flag: we should be reaped
1692 * automatically and not left for our parent's wait4 call.
1693 * Rather than having the parent do it as a magic kind of
1694 * signal handler, we just set this to tell do_exit that we
1695 * can be cleaned up without becoming a zombie. Note that
1696 * we still call __wake_up_parent in this case, because a
1697 * blocked sys_wait4 might now return -ECHILD.
1698 *
1699 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1700 * is implementation-defined: we do (if you don't want
1701 * it, just use SIG_IGN instead).
1702 */
1703 autoreap = true;
1704 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1705 sig = 0;
1706 }
1707 if (valid_signal(sig) && sig)
1708 __group_send_sig_info(sig, &info, tsk->parent);
1709 __wake_up_parent(tsk, tsk->parent);
1710 spin_unlock_irqrestore(&psig->siglock, flags);
1711
1712 return autoreap;
1713 }
1714
1715 /**
1716 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1717 * @tsk: task reporting the state change
1718 * @for_ptracer: the notification is for ptracer
1719 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1720 *
1721 * Notify @tsk's parent that the stopped/continued state has changed. If
1722 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1723 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1724 *
1725 * CONTEXT:
1726 * Must be called with tasklist_lock at least read locked.
1727 */
do_notify_parent_cldstop(struct task_struct * tsk,bool for_ptracer,int why)1728 static void do_notify_parent_cldstop(struct task_struct *tsk,
1729 bool for_ptracer, int why)
1730 {
1731 struct siginfo info;
1732 unsigned long flags;
1733 struct task_struct *parent;
1734 struct sighand_struct *sighand;
1735 cputime_t utime, stime;
1736
1737 if (for_ptracer) {
1738 parent = tsk->parent;
1739 } else {
1740 tsk = tsk->group_leader;
1741 parent = tsk->real_parent;
1742 }
1743
1744 info.si_signo = SIGCHLD;
1745 info.si_errno = 0;
1746 /*
1747 * see comment in do_notify_parent() about the following 4 lines
1748 */
1749 rcu_read_lock();
1750 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1751 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1752 rcu_read_unlock();
1753
1754 task_cputime(tsk, &utime, &stime);
1755 info.si_utime = cputime_to_clock_t(utime);
1756 info.si_stime = cputime_to_clock_t(stime);
1757
1758 info.si_code = why;
1759 switch (why) {
1760 case CLD_CONTINUED:
1761 info.si_status = SIGCONT;
1762 break;
1763 case CLD_STOPPED:
1764 info.si_status = tsk->signal->group_exit_code & 0x7f;
1765 break;
1766 case CLD_TRAPPED:
1767 info.si_status = tsk->exit_code & 0x7f;
1768 break;
1769 default:
1770 BUG();
1771 }
1772
1773 sighand = parent->sighand;
1774 spin_lock_irqsave(&sighand->siglock, flags);
1775 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1776 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1777 __group_send_sig_info(SIGCHLD, &info, parent);
1778 /*
1779 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1780 */
1781 __wake_up_parent(tsk, parent);
1782 spin_unlock_irqrestore(&sighand->siglock, flags);
1783 }
1784
may_ptrace_stop(void)1785 static inline int may_ptrace_stop(void)
1786 {
1787 if (!likely(current->ptrace))
1788 return 0;
1789 /*
1790 * Are we in the middle of do_coredump?
1791 * If so and our tracer is also part of the coredump stopping
1792 * is a deadlock situation, and pointless because our tracer
1793 * is dead so don't allow us to stop.
1794 * If SIGKILL was already sent before the caller unlocked
1795 * ->siglock we must see ->core_state != NULL. Otherwise it
1796 * is safe to enter schedule().
1797 *
1798 * This is almost outdated, a task with the pending SIGKILL can't
1799 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1800 * after SIGKILL was already dequeued.
1801 */
1802 if (unlikely(current->mm->core_state) &&
1803 unlikely(current->mm == current->parent->mm))
1804 return 0;
1805
1806 return 1;
1807 }
1808
1809 /*
1810 * Return non-zero if there is a SIGKILL that should be waking us up.
1811 * Called with the siglock held.
1812 */
sigkill_pending(struct task_struct * tsk)1813 static int sigkill_pending(struct task_struct *tsk)
1814 {
1815 return sigismember(&tsk->pending.signal, SIGKILL) ||
1816 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1817 }
1818
1819 /*
1820 * This must be called with current->sighand->siglock held.
1821 *
1822 * This should be the path for all ptrace stops.
1823 * We always set current->last_siginfo while stopped here.
1824 * That makes it a way to test a stopped process for
1825 * being ptrace-stopped vs being job-control-stopped.
1826 *
1827 * If we actually decide not to stop at all because the tracer
1828 * is gone, we keep current->exit_code unless clear_code.
1829 */
ptrace_stop(int exit_code,int why,int clear_code,siginfo_t * info)1830 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1831 __releases(¤t->sighand->siglock)
1832 __acquires(¤t->sighand->siglock)
1833 {
1834 bool gstop_done = false;
1835
1836 if (arch_ptrace_stop_needed(exit_code, info)) {
1837 /*
1838 * The arch code has something special to do before a
1839 * ptrace stop. This is allowed to block, e.g. for faults
1840 * on user stack pages. We can't keep the siglock while
1841 * calling arch_ptrace_stop, so we must release it now.
1842 * To preserve proper semantics, we must do this before
1843 * any signal bookkeeping like checking group_stop_count.
1844 * Meanwhile, a SIGKILL could come in before we retake the
1845 * siglock. That must prevent us from sleeping in TASK_TRACED.
1846 * So after regaining the lock, we must check for SIGKILL.
1847 */
1848 spin_unlock_irq(¤t->sighand->siglock);
1849 arch_ptrace_stop(exit_code, info);
1850 spin_lock_irq(¤t->sighand->siglock);
1851 if (sigkill_pending(current))
1852 return;
1853 }
1854
1855 /*
1856 * We're committing to trapping. TRACED should be visible before
1857 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1858 * Also, transition to TRACED and updates to ->jobctl should be
1859 * atomic with respect to siglock and should be done after the arch
1860 * hook as siglock is released and regrabbed across it.
1861 */
1862 set_current_state(TASK_TRACED);
1863
1864 current->last_siginfo = info;
1865 current->exit_code = exit_code;
1866
1867 /*
1868 * If @why is CLD_STOPPED, we're trapping to participate in a group
1869 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1870 * across siglock relocks since INTERRUPT was scheduled, PENDING
1871 * could be clear now. We act as if SIGCONT is received after
1872 * TASK_TRACED is entered - ignore it.
1873 */
1874 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1875 gstop_done = task_participate_group_stop(current);
1876
1877 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1878 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1879 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1880 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1881
1882 /* entering a trap, clear TRAPPING */
1883 task_clear_jobctl_trapping(current);
1884
1885 spin_unlock_irq(¤t->sighand->siglock);
1886 read_lock(&tasklist_lock);
1887 if (may_ptrace_stop()) {
1888 /*
1889 * Notify parents of the stop.
1890 *
1891 * While ptraced, there are two parents - the ptracer and
1892 * the real_parent of the group_leader. The ptracer should
1893 * know about every stop while the real parent is only
1894 * interested in the completion of group stop. The states
1895 * for the two don't interact with each other. Notify
1896 * separately unless they're gonna be duplicates.
1897 */
1898 do_notify_parent_cldstop(current, true, why);
1899 if (gstop_done && ptrace_reparented(current))
1900 do_notify_parent_cldstop(current, false, why);
1901
1902 /*
1903 * Don't want to allow preemption here, because
1904 * sys_ptrace() needs this task to be inactive.
1905 *
1906 * XXX: implement read_unlock_no_resched().
1907 */
1908 preempt_disable();
1909 read_unlock(&tasklist_lock);
1910 preempt_enable_no_resched();
1911 freezable_schedule();
1912 } else {
1913 /*
1914 * By the time we got the lock, our tracer went away.
1915 * Don't drop the lock yet, another tracer may come.
1916 *
1917 * If @gstop_done, the ptracer went away between group stop
1918 * completion and here. During detach, it would have set
1919 * JOBCTL_STOP_PENDING on us and we'll re-enter
1920 * TASK_STOPPED in do_signal_stop() on return, so notifying
1921 * the real parent of the group stop completion is enough.
1922 */
1923 if (gstop_done)
1924 do_notify_parent_cldstop(current, false, why);
1925
1926 /* tasklist protects us from ptrace_freeze_traced() */
1927 __set_current_state(TASK_RUNNING);
1928 if (clear_code)
1929 current->exit_code = 0;
1930 read_unlock(&tasklist_lock);
1931 }
1932
1933 /*
1934 * We are back. Now reacquire the siglock before touching
1935 * last_siginfo, so that we are sure to have synchronized with
1936 * any signal-sending on another CPU that wants to examine it.
1937 */
1938 spin_lock_irq(¤t->sighand->siglock);
1939 current->last_siginfo = NULL;
1940
1941 /* LISTENING can be set only during STOP traps, clear it */
1942 current->jobctl &= ~JOBCTL_LISTENING;
1943
1944 /*
1945 * Queued signals ignored us while we were stopped for tracing.
1946 * So check for any that we should take before resuming user mode.
1947 * This sets TIF_SIGPENDING, but never clears it.
1948 */
1949 recalc_sigpending_tsk(current);
1950 }
1951
ptrace_do_notify(int signr,int exit_code,int why)1952 static void ptrace_do_notify(int signr, int exit_code, int why)
1953 {
1954 siginfo_t info;
1955
1956 memset(&info, 0, sizeof info);
1957 info.si_signo = signr;
1958 info.si_code = exit_code;
1959 info.si_pid = task_pid_vnr(current);
1960 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1961
1962 /* Let the debugger run. */
1963 ptrace_stop(exit_code, why, 1, &info);
1964 }
1965
ptrace_notify(int exit_code)1966 void ptrace_notify(int exit_code)
1967 {
1968 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1969 if (unlikely(current->task_works))
1970 task_work_run();
1971
1972 spin_lock_irq(¤t->sighand->siglock);
1973 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1974 spin_unlock_irq(¤t->sighand->siglock);
1975 }
1976
1977 /**
1978 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1979 * @signr: signr causing group stop if initiating
1980 *
1981 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1982 * and participate in it. If already set, participate in the existing
1983 * group stop. If participated in a group stop (and thus slept), %true is
1984 * returned with siglock released.
1985 *
1986 * If ptraced, this function doesn't handle stop itself. Instead,
1987 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1988 * untouched. The caller must ensure that INTERRUPT trap handling takes
1989 * places afterwards.
1990 *
1991 * CONTEXT:
1992 * Must be called with @current->sighand->siglock held, which is released
1993 * on %true return.
1994 *
1995 * RETURNS:
1996 * %false if group stop is already cancelled or ptrace trap is scheduled.
1997 * %true if participated in group stop.
1998 */
do_signal_stop(int signr)1999 static bool do_signal_stop(int signr)
2000 __releases(¤t->sighand->siglock)
2001 {
2002 struct signal_struct *sig = current->signal;
2003
2004 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2005 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2006 struct task_struct *t;
2007
2008 /* signr will be recorded in task->jobctl for retries */
2009 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2010
2011 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2012 unlikely(signal_group_exit(sig)))
2013 return false;
2014 /*
2015 * There is no group stop already in progress. We must
2016 * initiate one now.
2017 *
2018 * While ptraced, a task may be resumed while group stop is
2019 * still in effect and then receive a stop signal and
2020 * initiate another group stop. This deviates from the
2021 * usual behavior as two consecutive stop signals can't
2022 * cause two group stops when !ptraced. That is why we
2023 * also check !task_is_stopped(t) below.
2024 *
2025 * The condition can be distinguished by testing whether
2026 * SIGNAL_STOP_STOPPED is already set. Don't generate
2027 * group_exit_code in such case.
2028 *
2029 * This is not necessary for SIGNAL_STOP_CONTINUED because
2030 * an intervening stop signal is required to cause two
2031 * continued events regardless of ptrace.
2032 */
2033 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2034 sig->group_exit_code = signr;
2035
2036 sig->group_stop_count = 0;
2037
2038 if (task_set_jobctl_pending(current, signr | gstop))
2039 sig->group_stop_count++;
2040
2041 t = current;
2042 while_each_thread(current, t) {
2043 /*
2044 * Setting state to TASK_STOPPED for a group
2045 * stop is always done with the siglock held,
2046 * so this check has no races.
2047 */
2048 if (!task_is_stopped(t) &&
2049 task_set_jobctl_pending(t, signr | gstop)) {
2050 sig->group_stop_count++;
2051 if (likely(!(t->ptrace & PT_SEIZED)))
2052 signal_wake_up(t, 0);
2053 else
2054 ptrace_trap_notify(t);
2055 }
2056 }
2057 }
2058
2059 if (likely(!current->ptrace)) {
2060 int notify = 0;
2061
2062 /*
2063 * If there are no other threads in the group, or if there
2064 * is a group stop in progress and we are the last to stop,
2065 * report to the parent.
2066 */
2067 if (task_participate_group_stop(current))
2068 notify = CLD_STOPPED;
2069
2070 __set_current_state(TASK_STOPPED);
2071 spin_unlock_irq(¤t->sighand->siglock);
2072
2073 /*
2074 * Notify the parent of the group stop completion. Because
2075 * we're not holding either the siglock or tasklist_lock
2076 * here, ptracer may attach inbetween; however, this is for
2077 * group stop and should always be delivered to the real
2078 * parent of the group leader. The new ptracer will get
2079 * its notification when this task transitions into
2080 * TASK_TRACED.
2081 */
2082 if (notify) {
2083 read_lock(&tasklist_lock);
2084 do_notify_parent_cldstop(current, false, notify);
2085 read_unlock(&tasklist_lock);
2086 }
2087
2088 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2089 freezable_schedule();
2090 return true;
2091 } else {
2092 /*
2093 * While ptraced, group stop is handled by STOP trap.
2094 * Schedule it and let the caller deal with it.
2095 */
2096 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2097 return false;
2098 }
2099 }
2100
2101 /**
2102 * do_jobctl_trap - take care of ptrace jobctl traps
2103 *
2104 * When PT_SEIZED, it's used for both group stop and explicit
2105 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2106 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2107 * the stop signal; otherwise, %SIGTRAP.
2108 *
2109 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2110 * number as exit_code and no siginfo.
2111 *
2112 * CONTEXT:
2113 * Must be called with @current->sighand->siglock held, which may be
2114 * released and re-acquired before returning with intervening sleep.
2115 */
do_jobctl_trap(void)2116 static void do_jobctl_trap(void)
2117 {
2118 struct signal_struct *signal = current->signal;
2119 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2120
2121 if (current->ptrace & PT_SEIZED) {
2122 if (!signal->group_stop_count &&
2123 !(signal->flags & SIGNAL_STOP_STOPPED))
2124 signr = SIGTRAP;
2125 WARN_ON_ONCE(!signr);
2126 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2127 CLD_STOPPED);
2128 } else {
2129 WARN_ON_ONCE(!signr);
2130 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2131 current->exit_code = 0;
2132 }
2133 }
2134
ptrace_signal(int signr,siginfo_t * info)2135 static int ptrace_signal(int signr, siginfo_t *info)
2136 {
2137 ptrace_signal_deliver();
2138 /*
2139 * We do not check sig_kernel_stop(signr) but set this marker
2140 * unconditionally because we do not know whether debugger will
2141 * change signr. This flag has no meaning unless we are going
2142 * to stop after return from ptrace_stop(). In this case it will
2143 * be checked in do_signal_stop(), we should only stop if it was
2144 * not cleared by SIGCONT while we were sleeping. See also the
2145 * comment in dequeue_signal().
2146 */
2147 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2148 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2149
2150 /* We're back. Did the debugger cancel the sig? */
2151 signr = current->exit_code;
2152 if (signr == 0)
2153 return signr;
2154
2155 current->exit_code = 0;
2156
2157 /*
2158 * Update the siginfo structure if the signal has
2159 * changed. If the debugger wanted something
2160 * specific in the siginfo structure then it should
2161 * have updated *info via PTRACE_SETSIGINFO.
2162 */
2163 if (signr != info->si_signo) {
2164 info->si_signo = signr;
2165 info->si_errno = 0;
2166 info->si_code = SI_USER;
2167 rcu_read_lock();
2168 info->si_pid = task_pid_vnr(current->parent);
2169 info->si_uid = from_kuid_munged(current_user_ns(),
2170 task_uid(current->parent));
2171 rcu_read_unlock();
2172 }
2173
2174 /* If the (new) signal is now blocked, requeue it. */
2175 if (sigismember(¤t->blocked, signr)) {
2176 specific_send_sig_info(signr, info, current);
2177 signr = 0;
2178 }
2179
2180 return signr;
2181 }
2182
get_signal(struct ksignal * ksig)2183 int get_signal(struct ksignal *ksig)
2184 {
2185 struct sighand_struct *sighand = current->sighand;
2186 struct signal_struct *signal = current->signal;
2187 int signr;
2188
2189 if (unlikely(current->task_works))
2190 task_work_run();
2191
2192 if (unlikely(uprobe_deny_signal()))
2193 return 0;
2194
2195 /*
2196 * Do this once, we can't return to user-mode if freezing() == T.
2197 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2198 * thus do not need another check after return.
2199 */
2200 try_to_freeze();
2201
2202 relock:
2203 spin_lock_irq(&sighand->siglock);
2204 /*
2205 * Every stopped thread goes here after wakeup. Check to see if
2206 * we should notify the parent, prepare_signal(SIGCONT) encodes
2207 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2208 */
2209 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2210 int why;
2211
2212 if (signal->flags & SIGNAL_CLD_CONTINUED)
2213 why = CLD_CONTINUED;
2214 else
2215 why = CLD_STOPPED;
2216
2217 signal->flags &= ~SIGNAL_CLD_MASK;
2218
2219 spin_unlock_irq(&sighand->siglock);
2220
2221 /*
2222 * Notify the parent that we're continuing. This event is
2223 * always per-process and doesn't make whole lot of sense
2224 * for ptracers, who shouldn't consume the state via
2225 * wait(2) either, but, for backward compatibility, notify
2226 * the ptracer of the group leader too unless it's gonna be
2227 * a duplicate.
2228 */
2229 read_lock(&tasklist_lock);
2230 do_notify_parent_cldstop(current, false, why);
2231
2232 if (ptrace_reparented(current->group_leader))
2233 do_notify_parent_cldstop(current->group_leader,
2234 true, why);
2235 read_unlock(&tasklist_lock);
2236
2237 goto relock;
2238 }
2239
2240 for (;;) {
2241 struct k_sigaction *ka;
2242
2243 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2244 do_signal_stop(0))
2245 goto relock;
2246
2247 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2248 do_jobctl_trap();
2249 spin_unlock_irq(&sighand->siglock);
2250 goto relock;
2251 }
2252
2253 signr = dequeue_signal(current, ¤t->blocked, &ksig->info);
2254
2255 if (!signr)
2256 break; /* will return 0 */
2257
2258 if (unlikely(current->ptrace) && signr != SIGKILL) {
2259 signr = ptrace_signal(signr, &ksig->info);
2260 if (!signr)
2261 continue;
2262 }
2263
2264 ka = &sighand->action[signr-1];
2265
2266 /* Trace actually delivered signals. */
2267 trace_signal_deliver(signr, &ksig->info, ka);
2268
2269 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2270 continue;
2271 if (ka->sa.sa_handler != SIG_DFL) {
2272 /* Run the handler. */
2273 ksig->ka = *ka;
2274
2275 if (ka->sa.sa_flags & SA_ONESHOT)
2276 ka->sa.sa_handler = SIG_DFL;
2277
2278 break; /* will return non-zero "signr" value */
2279 }
2280
2281 /*
2282 * Now we are doing the default action for this signal.
2283 */
2284 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2285 continue;
2286
2287 /*
2288 * Global init gets no signals it doesn't want.
2289 * Container-init gets no signals it doesn't want from same
2290 * container.
2291 *
2292 * Note that if global/container-init sees a sig_kernel_only()
2293 * signal here, the signal must have been generated internally
2294 * or must have come from an ancestor namespace. In either
2295 * case, the signal cannot be dropped.
2296 */
2297 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2298 !sig_kernel_only(signr))
2299 continue;
2300
2301 if (sig_kernel_stop(signr)) {
2302 /*
2303 * The default action is to stop all threads in
2304 * the thread group. The job control signals
2305 * do nothing in an orphaned pgrp, but SIGSTOP
2306 * always works. Note that siglock needs to be
2307 * dropped during the call to is_orphaned_pgrp()
2308 * because of lock ordering with tasklist_lock.
2309 * This allows an intervening SIGCONT to be posted.
2310 * We need to check for that and bail out if necessary.
2311 */
2312 if (signr != SIGSTOP) {
2313 spin_unlock_irq(&sighand->siglock);
2314
2315 /* signals can be posted during this window */
2316
2317 if (is_current_pgrp_orphaned())
2318 goto relock;
2319
2320 spin_lock_irq(&sighand->siglock);
2321 }
2322
2323 if (likely(do_signal_stop(ksig->info.si_signo))) {
2324 /* It released the siglock. */
2325 goto relock;
2326 }
2327
2328 /*
2329 * We didn't actually stop, due to a race
2330 * with SIGCONT or something like that.
2331 */
2332 continue;
2333 }
2334
2335 spin_unlock_irq(&sighand->siglock);
2336
2337 /*
2338 * Anything else is fatal, maybe with a core dump.
2339 */
2340 current->flags |= PF_SIGNALED;
2341
2342 if (sig_kernel_coredump(signr)) {
2343 if (print_fatal_signals)
2344 print_fatal_signal(ksig->info.si_signo);
2345 proc_coredump_connector(current);
2346 /*
2347 * If it was able to dump core, this kills all
2348 * other threads in the group and synchronizes with
2349 * their demise. If we lost the race with another
2350 * thread getting here, it set group_exit_code
2351 * first and our do_group_exit call below will use
2352 * that value and ignore the one we pass it.
2353 */
2354 do_coredump(&ksig->info);
2355 }
2356
2357 /*
2358 * Death signals, no core dump.
2359 */
2360 do_group_exit(ksig->info.si_signo);
2361 /* NOTREACHED */
2362 }
2363 spin_unlock_irq(&sighand->siglock);
2364
2365 ksig->sig = signr;
2366 return ksig->sig > 0;
2367 }
2368
2369 /**
2370 * signal_delivered -
2371 * @ksig: kernel signal struct
2372 * @stepping: nonzero if debugger single-step or block-step in use
2373 *
2374 * This function should be called when a signal has successfully been
2375 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2376 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2377 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2378 */
signal_delivered(struct ksignal * ksig,int stepping)2379 static void signal_delivered(struct ksignal *ksig, int stepping)
2380 {
2381 sigset_t blocked;
2382
2383 /* A signal was successfully delivered, and the
2384 saved sigmask was stored on the signal frame,
2385 and will be restored by sigreturn. So we can
2386 simply clear the restore sigmask flag. */
2387 clear_restore_sigmask();
2388
2389 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2390 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2391 sigaddset(&blocked, ksig->sig);
2392 set_current_blocked(&blocked);
2393 tracehook_signal_handler(stepping);
2394 }
2395
signal_setup_done(int failed,struct ksignal * ksig,int stepping)2396 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2397 {
2398 if (failed)
2399 force_sigsegv(ksig->sig, current);
2400 else
2401 signal_delivered(ksig, stepping);
2402 }
2403
2404 /*
2405 * It could be that complete_signal() picked us to notify about the
2406 * group-wide signal. Other threads should be notified now to take
2407 * the shared signals in @which since we will not.
2408 */
retarget_shared_pending(struct task_struct * tsk,sigset_t * which)2409 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2410 {
2411 sigset_t retarget;
2412 struct task_struct *t;
2413
2414 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2415 if (sigisemptyset(&retarget))
2416 return;
2417
2418 t = tsk;
2419 while_each_thread(tsk, t) {
2420 if (t->flags & PF_EXITING)
2421 continue;
2422
2423 if (!has_pending_signals(&retarget, &t->blocked))
2424 continue;
2425 /* Remove the signals this thread can handle. */
2426 sigandsets(&retarget, &retarget, &t->blocked);
2427
2428 if (!signal_pending(t))
2429 signal_wake_up(t, 0);
2430
2431 if (sigisemptyset(&retarget))
2432 break;
2433 }
2434 }
2435
exit_signals(struct task_struct * tsk)2436 void exit_signals(struct task_struct *tsk)
2437 {
2438 int group_stop = 0;
2439 sigset_t unblocked;
2440
2441 /*
2442 * @tsk is about to have PF_EXITING set - lock out users which
2443 * expect stable threadgroup.
2444 */
2445 threadgroup_change_begin(tsk);
2446
2447 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2448 tsk->flags |= PF_EXITING;
2449 threadgroup_change_end(tsk);
2450 return;
2451 }
2452
2453 spin_lock_irq(&tsk->sighand->siglock);
2454 /*
2455 * From now this task is not visible for group-wide signals,
2456 * see wants_signal(), do_signal_stop().
2457 */
2458 tsk->flags |= PF_EXITING;
2459
2460 threadgroup_change_end(tsk);
2461
2462 if (!signal_pending(tsk))
2463 goto out;
2464
2465 unblocked = tsk->blocked;
2466 signotset(&unblocked);
2467 retarget_shared_pending(tsk, &unblocked);
2468
2469 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2470 task_participate_group_stop(tsk))
2471 group_stop = CLD_STOPPED;
2472 out:
2473 spin_unlock_irq(&tsk->sighand->siglock);
2474
2475 /*
2476 * If group stop has completed, deliver the notification. This
2477 * should always go to the real parent of the group leader.
2478 */
2479 if (unlikely(group_stop)) {
2480 read_lock(&tasklist_lock);
2481 do_notify_parent_cldstop(tsk, false, group_stop);
2482 read_unlock(&tasklist_lock);
2483 }
2484 }
2485
2486 EXPORT_SYMBOL(recalc_sigpending);
2487 EXPORT_SYMBOL_GPL(dequeue_signal);
2488 EXPORT_SYMBOL(flush_signals);
2489 EXPORT_SYMBOL(force_sig);
2490 EXPORT_SYMBOL(send_sig);
2491 EXPORT_SYMBOL(send_sig_info);
2492 EXPORT_SYMBOL(sigprocmask);
2493 EXPORT_SYMBOL(block_all_signals);
2494 EXPORT_SYMBOL(unblock_all_signals);
2495
2496
2497 /*
2498 * System call entry points.
2499 */
2500
2501 /**
2502 * sys_restart_syscall - restart a system call
2503 */
SYSCALL_DEFINE0(restart_syscall)2504 SYSCALL_DEFINE0(restart_syscall)
2505 {
2506 struct restart_block *restart = ¤t->restart_block;
2507 return restart->fn(restart);
2508 }
2509
do_no_restart_syscall(struct restart_block * param)2510 long do_no_restart_syscall(struct restart_block *param)
2511 {
2512 return -EINTR;
2513 }
2514
__set_task_blocked(struct task_struct * tsk,const sigset_t * newset)2515 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2516 {
2517 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2518 sigset_t newblocked;
2519 /* A set of now blocked but previously unblocked signals. */
2520 sigandnsets(&newblocked, newset, ¤t->blocked);
2521 retarget_shared_pending(tsk, &newblocked);
2522 }
2523 tsk->blocked = *newset;
2524 recalc_sigpending();
2525 }
2526
2527 /**
2528 * set_current_blocked - change current->blocked mask
2529 * @newset: new mask
2530 *
2531 * It is wrong to change ->blocked directly, this helper should be used
2532 * to ensure the process can't miss a shared signal we are going to block.
2533 */
set_current_blocked(sigset_t * newset)2534 void set_current_blocked(sigset_t *newset)
2535 {
2536 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2537 __set_current_blocked(newset);
2538 }
2539
__set_current_blocked(const sigset_t * newset)2540 void __set_current_blocked(const sigset_t *newset)
2541 {
2542 struct task_struct *tsk = current;
2543
2544 spin_lock_irq(&tsk->sighand->siglock);
2545 __set_task_blocked(tsk, newset);
2546 spin_unlock_irq(&tsk->sighand->siglock);
2547 }
2548
2549 /*
2550 * This is also useful for kernel threads that want to temporarily
2551 * (or permanently) block certain signals.
2552 *
2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2554 * interface happily blocks "unblockable" signals like SIGKILL
2555 * and friends.
2556 */
sigprocmask(int how,sigset_t * set,sigset_t * oldset)2557 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2558 {
2559 struct task_struct *tsk = current;
2560 sigset_t newset;
2561
2562 /* Lockless, only current can change ->blocked, never from irq */
2563 if (oldset)
2564 *oldset = tsk->blocked;
2565
2566 switch (how) {
2567 case SIG_BLOCK:
2568 sigorsets(&newset, &tsk->blocked, set);
2569 break;
2570 case SIG_UNBLOCK:
2571 sigandnsets(&newset, &tsk->blocked, set);
2572 break;
2573 case SIG_SETMASK:
2574 newset = *set;
2575 break;
2576 default:
2577 return -EINVAL;
2578 }
2579
2580 __set_current_blocked(&newset);
2581 return 0;
2582 }
2583
2584 /**
2585 * sys_rt_sigprocmask - change the list of currently blocked signals
2586 * @how: whether to add, remove, or set signals
2587 * @nset: stores pending signals
2588 * @oset: previous value of signal mask if non-null
2589 * @sigsetsize: size of sigset_t type
2590 */
SYSCALL_DEFINE4(rt_sigprocmask,int,how,sigset_t __user *,nset,sigset_t __user *,oset,size_t,sigsetsize)2591 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2592 sigset_t __user *, oset, size_t, sigsetsize)
2593 {
2594 sigset_t old_set, new_set;
2595 int error;
2596
2597 /* XXX: Don't preclude handling different sized sigset_t's. */
2598 if (sigsetsize != sizeof(sigset_t))
2599 return -EINVAL;
2600
2601 old_set = current->blocked;
2602
2603 if (nset) {
2604 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2605 return -EFAULT;
2606 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2607
2608 error = sigprocmask(how, &new_set, NULL);
2609 if (error)
2610 return error;
2611 }
2612
2613 if (oset) {
2614 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2615 return -EFAULT;
2616 }
2617
2618 return 0;
2619 }
2620
2621 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask,int,how,compat_sigset_t __user *,nset,compat_sigset_t __user *,oset,compat_size_t,sigsetsize)2622 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2623 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2624 {
2625 #ifdef __BIG_ENDIAN
2626 sigset_t old_set = current->blocked;
2627
2628 /* XXX: Don't preclude handling different sized sigset_t's. */
2629 if (sigsetsize != sizeof(sigset_t))
2630 return -EINVAL;
2631
2632 if (nset) {
2633 compat_sigset_t new32;
2634 sigset_t new_set;
2635 int error;
2636 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2637 return -EFAULT;
2638
2639 sigset_from_compat(&new_set, &new32);
2640 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2641
2642 error = sigprocmask(how, &new_set, NULL);
2643 if (error)
2644 return error;
2645 }
2646 if (oset) {
2647 compat_sigset_t old32;
2648 sigset_to_compat(&old32, &old_set);
2649 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2650 return -EFAULT;
2651 }
2652 return 0;
2653 #else
2654 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2655 (sigset_t __user *)oset, sigsetsize);
2656 #endif
2657 }
2658 #endif
2659
do_sigpending(void * set,unsigned long sigsetsize)2660 static int do_sigpending(void *set, unsigned long sigsetsize)
2661 {
2662 if (sigsetsize > sizeof(sigset_t))
2663 return -EINVAL;
2664
2665 spin_lock_irq(¤t->sighand->siglock);
2666 sigorsets(set, ¤t->pending.signal,
2667 ¤t->signal->shared_pending.signal);
2668 spin_unlock_irq(¤t->sighand->siglock);
2669
2670 /* Outside the lock because only this thread touches it. */
2671 sigandsets(set, ¤t->blocked, set);
2672 return 0;
2673 }
2674
2675 /**
2676 * sys_rt_sigpending - examine a pending signal that has been raised
2677 * while blocked
2678 * @uset: stores pending signals
2679 * @sigsetsize: size of sigset_t type or larger
2680 */
SYSCALL_DEFINE2(rt_sigpending,sigset_t __user *,uset,size_t,sigsetsize)2681 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2682 {
2683 sigset_t set;
2684 int err = do_sigpending(&set, sigsetsize);
2685 if (!err && copy_to_user(uset, &set, sigsetsize))
2686 err = -EFAULT;
2687 return err;
2688 }
2689
2690 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending,compat_sigset_t __user *,uset,compat_size_t,sigsetsize)2691 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2692 compat_size_t, sigsetsize)
2693 {
2694 #ifdef __BIG_ENDIAN
2695 sigset_t set;
2696 int err = do_sigpending(&set, sigsetsize);
2697 if (!err) {
2698 compat_sigset_t set32;
2699 sigset_to_compat(&set32, &set);
2700 /* we can get here only if sigsetsize <= sizeof(set) */
2701 if (copy_to_user(uset, &set32, sigsetsize))
2702 err = -EFAULT;
2703 }
2704 return err;
2705 #else
2706 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2707 #endif
2708 }
2709 #endif
2710
2711 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2712
copy_siginfo_to_user(siginfo_t __user * to,const siginfo_t * from)2713 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2714 {
2715 int err;
2716
2717 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2718 return -EFAULT;
2719 if (from->si_code < 0)
2720 return __copy_to_user(to, from, sizeof(siginfo_t))
2721 ? -EFAULT : 0;
2722 /*
2723 * If you change siginfo_t structure, please be sure
2724 * this code is fixed accordingly.
2725 * Please remember to update the signalfd_copyinfo() function
2726 * inside fs/signalfd.c too, in case siginfo_t changes.
2727 * It should never copy any pad contained in the structure
2728 * to avoid security leaks, but must copy the generic
2729 * 3 ints plus the relevant union member.
2730 */
2731 err = __put_user(from->si_signo, &to->si_signo);
2732 err |= __put_user(from->si_errno, &to->si_errno);
2733 err |= __put_user((short)from->si_code, &to->si_code);
2734 switch (from->si_code & __SI_MASK) {
2735 case __SI_KILL:
2736 err |= __put_user(from->si_pid, &to->si_pid);
2737 err |= __put_user(from->si_uid, &to->si_uid);
2738 break;
2739 case __SI_TIMER:
2740 err |= __put_user(from->si_tid, &to->si_tid);
2741 err |= __put_user(from->si_overrun, &to->si_overrun);
2742 err |= __put_user(from->si_ptr, &to->si_ptr);
2743 break;
2744 case __SI_POLL:
2745 err |= __put_user(from->si_band, &to->si_band);
2746 err |= __put_user(from->si_fd, &to->si_fd);
2747 break;
2748 case __SI_FAULT:
2749 err |= __put_user(from->si_addr, &to->si_addr);
2750 #ifdef __ARCH_SI_TRAPNO
2751 err |= __put_user(from->si_trapno, &to->si_trapno);
2752 #endif
2753 #ifdef BUS_MCEERR_AO
2754 /*
2755 * Other callers might not initialize the si_lsb field,
2756 * so check explicitly for the right codes here.
2757 */
2758 if (from->si_signo == SIGBUS &&
2759 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2760 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2761 #endif
2762 break;
2763 case __SI_CHLD:
2764 err |= __put_user(from->si_pid, &to->si_pid);
2765 err |= __put_user(from->si_uid, &to->si_uid);
2766 err |= __put_user(from->si_status, &to->si_status);
2767 err |= __put_user(from->si_utime, &to->si_utime);
2768 err |= __put_user(from->si_stime, &to->si_stime);
2769 break;
2770 case __SI_RT: /* This is not generated by the kernel as of now. */
2771 case __SI_MESGQ: /* But this is */
2772 err |= __put_user(from->si_pid, &to->si_pid);
2773 err |= __put_user(from->si_uid, &to->si_uid);
2774 err |= __put_user(from->si_ptr, &to->si_ptr);
2775 break;
2776 #ifdef __ARCH_SIGSYS
2777 case __SI_SYS:
2778 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2779 err |= __put_user(from->si_syscall, &to->si_syscall);
2780 err |= __put_user(from->si_arch, &to->si_arch);
2781 break;
2782 #endif
2783 default: /* this is just in case for now ... */
2784 err |= __put_user(from->si_pid, &to->si_pid);
2785 err |= __put_user(from->si_uid, &to->si_uid);
2786 break;
2787 }
2788 return err;
2789 }
2790
2791 #endif
2792
2793 /**
2794 * do_sigtimedwait - wait for queued signals specified in @which
2795 * @which: queued signals to wait for
2796 * @info: if non-null, the signal's siginfo is returned here
2797 * @ts: upper bound on process time suspension
2798 */
do_sigtimedwait(const sigset_t * which,siginfo_t * info,const struct timespec * ts)2799 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2800 const struct timespec *ts)
2801 {
2802 struct task_struct *tsk = current;
2803 long timeout = MAX_SCHEDULE_TIMEOUT;
2804 sigset_t mask = *which;
2805 int sig;
2806
2807 if (ts) {
2808 if (!timespec_valid(ts))
2809 return -EINVAL;
2810 timeout = timespec_to_jiffies(ts);
2811 /*
2812 * We can be close to the next tick, add another one
2813 * to ensure we will wait at least the time asked for.
2814 */
2815 if (ts->tv_sec || ts->tv_nsec)
2816 timeout++;
2817 }
2818
2819 /*
2820 * Invert the set of allowed signals to get those we want to block.
2821 */
2822 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2823 signotset(&mask);
2824
2825 spin_lock_irq(&tsk->sighand->siglock);
2826 sig = dequeue_signal(tsk, &mask, info);
2827 if (!sig && timeout) {
2828 /*
2829 * None ready, temporarily unblock those we're interested
2830 * while we are sleeping in so that we'll be awakened when
2831 * they arrive. Unblocking is always fine, we can avoid
2832 * set_current_blocked().
2833 */
2834 tsk->real_blocked = tsk->blocked;
2835 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2836 recalc_sigpending();
2837 spin_unlock_irq(&tsk->sighand->siglock);
2838
2839 timeout = freezable_schedule_timeout_interruptible(timeout);
2840
2841 spin_lock_irq(&tsk->sighand->siglock);
2842 __set_task_blocked(tsk, &tsk->real_blocked);
2843 sigemptyset(&tsk->real_blocked);
2844 sig = dequeue_signal(tsk, &mask, info);
2845 }
2846 spin_unlock_irq(&tsk->sighand->siglock);
2847
2848 if (sig)
2849 return sig;
2850 return timeout ? -EINTR : -EAGAIN;
2851 }
2852
2853 /**
2854 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2855 * in @uthese
2856 * @uthese: queued signals to wait for
2857 * @uinfo: if non-null, the signal's siginfo is returned here
2858 * @uts: upper bound on process time suspension
2859 * @sigsetsize: size of sigset_t type
2860 */
SYSCALL_DEFINE4(rt_sigtimedwait,const sigset_t __user *,uthese,siginfo_t __user *,uinfo,const struct timespec __user *,uts,size_t,sigsetsize)2861 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2862 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2863 size_t, sigsetsize)
2864 {
2865 sigset_t these;
2866 struct timespec ts;
2867 siginfo_t info;
2868 int ret;
2869
2870 /* XXX: Don't preclude handling different sized sigset_t's. */
2871 if (sigsetsize != sizeof(sigset_t))
2872 return -EINVAL;
2873
2874 if (copy_from_user(&these, uthese, sizeof(these)))
2875 return -EFAULT;
2876
2877 if (uts) {
2878 if (copy_from_user(&ts, uts, sizeof(ts)))
2879 return -EFAULT;
2880 }
2881
2882 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2883
2884 if (ret > 0 && uinfo) {
2885 if (copy_siginfo_to_user(uinfo, &info))
2886 ret = -EFAULT;
2887 }
2888
2889 return ret;
2890 }
2891
2892 /**
2893 * sys_kill - send a signal to a process
2894 * @pid: the PID of the process
2895 * @sig: signal to be sent
2896 */
SYSCALL_DEFINE2(kill,pid_t,pid,int,sig)2897 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2898 {
2899 struct siginfo info;
2900
2901 info.si_signo = sig;
2902 info.si_errno = 0;
2903 info.si_code = SI_USER;
2904 info.si_pid = task_tgid_vnr(current);
2905 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2906
2907 return kill_something_info(sig, &info, pid);
2908 }
2909
2910 static int
do_send_specific(pid_t tgid,pid_t pid,int sig,struct siginfo * info)2911 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2912 {
2913 struct task_struct *p;
2914 int error = -ESRCH;
2915
2916 rcu_read_lock();
2917 p = find_task_by_vpid(pid);
2918 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2919 error = check_kill_permission(sig, info, p);
2920 /*
2921 * The null signal is a permissions and process existence
2922 * probe. No signal is actually delivered.
2923 */
2924 if (!error && sig) {
2925 error = do_send_sig_info(sig, info, p, false);
2926 /*
2927 * If lock_task_sighand() failed we pretend the task
2928 * dies after receiving the signal. The window is tiny,
2929 * and the signal is private anyway.
2930 */
2931 if (unlikely(error == -ESRCH))
2932 error = 0;
2933 }
2934 }
2935 rcu_read_unlock();
2936
2937 return error;
2938 }
2939
do_tkill(pid_t tgid,pid_t pid,int sig)2940 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2941 {
2942 struct siginfo info = {};
2943
2944 info.si_signo = sig;
2945 info.si_errno = 0;
2946 info.si_code = SI_TKILL;
2947 info.si_pid = task_tgid_vnr(current);
2948 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2949
2950 return do_send_specific(tgid, pid, sig, &info);
2951 }
2952
2953 /**
2954 * sys_tgkill - send signal to one specific thread
2955 * @tgid: the thread group ID of the thread
2956 * @pid: the PID of the thread
2957 * @sig: signal to be sent
2958 *
2959 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2960 * exists but it's not belonging to the target process anymore. This
2961 * method solves the problem of threads exiting and PIDs getting reused.
2962 */
SYSCALL_DEFINE3(tgkill,pid_t,tgid,pid_t,pid,int,sig)2963 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2964 {
2965 /* This is only valid for single tasks */
2966 if (pid <= 0 || tgid <= 0)
2967 return -EINVAL;
2968
2969 return do_tkill(tgid, pid, sig);
2970 }
2971
2972 /**
2973 * sys_tkill - send signal to one specific task
2974 * @pid: the PID of the task
2975 * @sig: signal to be sent
2976 *
2977 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2978 */
SYSCALL_DEFINE2(tkill,pid_t,pid,int,sig)2979 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2980 {
2981 /* This is only valid for single tasks */
2982 if (pid <= 0)
2983 return -EINVAL;
2984
2985 return do_tkill(0, pid, sig);
2986 }
2987
do_rt_sigqueueinfo(pid_t pid,int sig,siginfo_t * info)2988 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2989 {
2990 /* Not even root can pretend to send signals from the kernel.
2991 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2992 */
2993 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2994 (task_pid_vnr(current) != pid)) {
2995 /* We used to allow any < 0 si_code */
2996 WARN_ON_ONCE(info->si_code < 0);
2997 return -EPERM;
2998 }
2999 info->si_signo = sig;
3000
3001 /* POSIX.1b doesn't mention process groups. */
3002 return kill_proc_info(sig, info, pid);
3003 }
3004
3005 /**
3006 * sys_rt_sigqueueinfo - send signal information to a signal
3007 * @pid: the PID of the thread
3008 * @sig: signal to be sent
3009 * @uinfo: signal info to be sent
3010 */
SYSCALL_DEFINE3(rt_sigqueueinfo,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3011 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3012 siginfo_t __user *, uinfo)
3013 {
3014 siginfo_t info;
3015 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3016 return -EFAULT;
3017 return do_rt_sigqueueinfo(pid, sig, &info);
3018 }
3019
3020 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3021 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3022 compat_pid_t, pid,
3023 int, sig,
3024 struct compat_siginfo __user *, uinfo)
3025 {
3026 siginfo_t info = {};
3027 int ret = copy_siginfo_from_user32(&info, uinfo);
3028 if (unlikely(ret))
3029 return ret;
3030 return do_rt_sigqueueinfo(pid, sig, &info);
3031 }
3032 #endif
3033
do_rt_tgsigqueueinfo(pid_t tgid,pid_t pid,int sig,siginfo_t * info)3034 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3035 {
3036 /* This is only valid for single tasks */
3037 if (pid <= 0 || tgid <= 0)
3038 return -EINVAL;
3039
3040 /* Not even root can pretend to send signals from the kernel.
3041 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3042 */
3043 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3044 (task_pid_vnr(current) != pid)) {
3045 /* We used to allow any < 0 si_code */
3046 WARN_ON_ONCE(info->si_code < 0);
3047 return -EPERM;
3048 }
3049 info->si_signo = sig;
3050
3051 return do_send_specific(tgid, pid, sig, info);
3052 }
3053
SYSCALL_DEFINE4(rt_tgsigqueueinfo,pid_t,tgid,pid_t,pid,int,sig,siginfo_t __user *,uinfo)3054 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3055 siginfo_t __user *, uinfo)
3056 {
3057 siginfo_t info;
3058
3059 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3060 return -EFAULT;
3061
3062 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3063 }
3064
3065 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,compat_pid_t,tgid,compat_pid_t,pid,int,sig,struct compat_siginfo __user *,uinfo)3066 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3067 compat_pid_t, tgid,
3068 compat_pid_t, pid,
3069 int, sig,
3070 struct compat_siginfo __user *, uinfo)
3071 {
3072 siginfo_t info = {};
3073
3074 if (copy_siginfo_from_user32(&info, uinfo))
3075 return -EFAULT;
3076 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077 }
3078 #endif
3079
3080 /*
3081 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3082 */
kernel_sigaction(int sig,__sighandler_t action)3083 void kernel_sigaction(int sig, __sighandler_t action)
3084 {
3085 spin_lock_irq(¤t->sighand->siglock);
3086 current->sighand->action[sig - 1].sa.sa_handler = action;
3087 if (action == SIG_IGN) {
3088 sigset_t mask;
3089
3090 sigemptyset(&mask);
3091 sigaddset(&mask, sig);
3092
3093 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
3094 flush_sigqueue_mask(&mask, ¤t->pending);
3095 recalc_sigpending();
3096 }
3097 spin_unlock_irq(¤t->sighand->siglock);
3098 }
3099 EXPORT_SYMBOL(kernel_sigaction);
3100
do_sigaction(int sig,struct k_sigaction * act,struct k_sigaction * oact)3101 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3102 {
3103 struct task_struct *p = current, *t;
3104 struct k_sigaction *k;
3105 sigset_t mask;
3106
3107 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3108 return -EINVAL;
3109
3110 k = &p->sighand->action[sig-1];
3111
3112 spin_lock_irq(&p->sighand->siglock);
3113 if (oact)
3114 *oact = *k;
3115
3116 if (act) {
3117 sigdelsetmask(&act->sa.sa_mask,
3118 sigmask(SIGKILL) | sigmask(SIGSTOP));
3119 *k = *act;
3120 /*
3121 * POSIX 3.3.1.3:
3122 * "Setting a signal action to SIG_IGN for a signal that is
3123 * pending shall cause the pending signal to be discarded,
3124 * whether or not it is blocked."
3125 *
3126 * "Setting a signal action to SIG_DFL for a signal that is
3127 * pending and whose default action is to ignore the signal
3128 * (for example, SIGCHLD), shall cause the pending signal to
3129 * be discarded, whether or not it is blocked"
3130 */
3131 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3132 sigemptyset(&mask);
3133 sigaddset(&mask, sig);
3134 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3135 for_each_thread(p, t)
3136 flush_sigqueue_mask(&mask, &t->pending);
3137 }
3138 }
3139
3140 spin_unlock_irq(&p->sighand->siglock);
3141 return 0;
3142 }
3143
3144 static int
do_sigaltstack(const stack_t __user * uss,stack_t __user * uoss,unsigned long sp)3145 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3146 {
3147 stack_t oss;
3148 int error;
3149
3150 oss.ss_sp = (void __user *) current->sas_ss_sp;
3151 oss.ss_size = current->sas_ss_size;
3152 oss.ss_flags = sas_ss_flags(sp);
3153
3154 if (uss) {
3155 void __user *ss_sp;
3156 size_t ss_size;
3157 int ss_flags;
3158
3159 error = -EFAULT;
3160 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3161 goto out;
3162 error = __get_user(ss_sp, &uss->ss_sp) |
3163 __get_user(ss_flags, &uss->ss_flags) |
3164 __get_user(ss_size, &uss->ss_size);
3165 if (error)
3166 goto out;
3167
3168 error = -EPERM;
3169 if (on_sig_stack(sp))
3170 goto out;
3171
3172 error = -EINVAL;
3173 /*
3174 * Note - this code used to test ss_flags incorrectly:
3175 * old code may have been written using ss_flags==0
3176 * to mean ss_flags==SS_ONSTACK (as this was the only
3177 * way that worked) - this fix preserves that older
3178 * mechanism.
3179 */
3180 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3181 goto out;
3182
3183 if (ss_flags == SS_DISABLE) {
3184 ss_size = 0;
3185 ss_sp = NULL;
3186 } else {
3187 error = -ENOMEM;
3188 if (ss_size < MINSIGSTKSZ)
3189 goto out;
3190 }
3191
3192 current->sas_ss_sp = (unsigned long) ss_sp;
3193 current->sas_ss_size = ss_size;
3194 }
3195
3196 error = 0;
3197 if (uoss) {
3198 error = -EFAULT;
3199 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3200 goto out;
3201 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3202 __put_user(oss.ss_size, &uoss->ss_size) |
3203 __put_user(oss.ss_flags, &uoss->ss_flags);
3204 }
3205
3206 out:
3207 return error;
3208 }
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss,stack_t __user *,uoss)3209 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3210 {
3211 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3212 }
3213
restore_altstack(const stack_t __user * uss)3214 int restore_altstack(const stack_t __user *uss)
3215 {
3216 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3217 /* squash all but EFAULT for now */
3218 return err == -EFAULT ? err : 0;
3219 }
3220
__save_altstack(stack_t __user * uss,unsigned long sp)3221 int __save_altstack(stack_t __user *uss, unsigned long sp)
3222 {
3223 struct task_struct *t = current;
3224 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3225 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3226 __put_user(t->sas_ss_size, &uss->ss_size);
3227 }
3228
3229 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(sigaltstack,const compat_stack_t __user *,uss_ptr,compat_stack_t __user *,uoss_ptr)3230 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3231 const compat_stack_t __user *, uss_ptr,
3232 compat_stack_t __user *, uoss_ptr)
3233 {
3234 stack_t uss, uoss;
3235 int ret;
3236 mm_segment_t seg;
3237
3238 if (uss_ptr) {
3239 compat_stack_t uss32;
3240
3241 memset(&uss, 0, sizeof(stack_t));
3242 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3243 return -EFAULT;
3244 uss.ss_sp = compat_ptr(uss32.ss_sp);
3245 uss.ss_flags = uss32.ss_flags;
3246 uss.ss_size = uss32.ss_size;
3247 }
3248 seg = get_fs();
3249 set_fs(KERNEL_DS);
3250 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3251 (stack_t __force __user *) &uoss,
3252 compat_user_stack_pointer());
3253 set_fs(seg);
3254 if (ret >= 0 && uoss_ptr) {
3255 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3256 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3257 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3258 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3259 ret = -EFAULT;
3260 }
3261 return ret;
3262 }
3263
compat_restore_altstack(const compat_stack_t __user * uss)3264 int compat_restore_altstack(const compat_stack_t __user *uss)
3265 {
3266 int err = compat_sys_sigaltstack(uss, NULL);
3267 /* squash all but -EFAULT for now */
3268 return err == -EFAULT ? err : 0;
3269 }
3270
__compat_save_altstack(compat_stack_t __user * uss,unsigned long sp)3271 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3272 {
3273 struct task_struct *t = current;
3274 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3275 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3276 __put_user(t->sas_ss_size, &uss->ss_size);
3277 }
3278 #endif
3279
3280 #ifdef __ARCH_WANT_SYS_SIGPENDING
3281
3282 /**
3283 * sys_sigpending - examine pending signals
3284 * @set: where mask of pending signal is returned
3285 */
SYSCALL_DEFINE1(sigpending,old_sigset_t __user *,set)3286 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3287 {
3288 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3289 }
3290
3291 #endif
3292
3293 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3294 /**
3295 * sys_sigprocmask - examine and change blocked signals
3296 * @how: whether to add, remove, or set signals
3297 * @nset: signals to add or remove (if non-null)
3298 * @oset: previous value of signal mask if non-null
3299 *
3300 * Some platforms have their own version with special arguments;
3301 * others support only sys_rt_sigprocmask.
3302 */
3303
SYSCALL_DEFINE3(sigprocmask,int,how,old_sigset_t __user *,nset,old_sigset_t __user *,oset)3304 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3305 old_sigset_t __user *, oset)
3306 {
3307 old_sigset_t old_set, new_set;
3308 sigset_t new_blocked;
3309
3310 old_set = current->blocked.sig[0];
3311
3312 if (nset) {
3313 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3314 return -EFAULT;
3315
3316 new_blocked = current->blocked;
3317
3318 switch (how) {
3319 case SIG_BLOCK:
3320 sigaddsetmask(&new_blocked, new_set);
3321 break;
3322 case SIG_UNBLOCK:
3323 sigdelsetmask(&new_blocked, new_set);
3324 break;
3325 case SIG_SETMASK:
3326 new_blocked.sig[0] = new_set;
3327 break;
3328 default:
3329 return -EINVAL;
3330 }
3331
3332 set_current_blocked(&new_blocked);
3333 }
3334
3335 if (oset) {
3336 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3337 return -EFAULT;
3338 }
3339
3340 return 0;
3341 }
3342 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3343
3344 #ifndef CONFIG_ODD_RT_SIGACTION
3345 /**
3346 * sys_rt_sigaction - alter an action taken by a process
3347 * @sig: signal to be sent
3348 * @act: new sigaction
3349 * @oact: used to save the previous sigaction
3350 * @sigsetsize: size of sigset_t type
3351 */
SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct sigaction __user *,act,struct sigaction __user *,oact,size_t,sigsetsize)3352 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3353 const struct sigaction __user *, act,
3354 struct sigaction __user *, oact,
3355 size_t, sigsetsize)
3356 {
3357 struct k_sigaction new_sa, old_sa;
3358 int ret = -EINVAL;
3359
3360 /* XXX: Don't preclude handling different sized sigset_t's. */
3361 if (sigsetsize != sizeof(sigset_t))
3362 goto out;
3363
3364 if (act) {
3365 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3366 return -EFAULT;
3367 }
3368
3369 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3370
3371 if (!ret && oact) {
3372 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3373 return -EFAULT;
3374 }
3375 out:
3376 return ret;
3377 }
3378 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction,int,sig,const struct compat_sigaction __user *,act,struct compat_sigaction __user *,oact,compat_size_t,sigsetsize)3379 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3380 const struct compat_sigaction __user *, act,
3381 struct compat_sigaction __user *, oact,
3382 compat_size_t, sigsetsize)
3383 {
3384 struct k_sigaction new_ka, old_ka;
3385 compat_sigset_t mask;
3386 #ifdef __ARCH_HAS_SA_RESTORER
3387 compat_uptr_t restorer;
3388 #endif
3389 int ret;
3390
3391 /* XXX: Don't preclude handling different sized sigset_t's. */
3392 if (sigsetsize != sizeof(compat_sigset_t))
3393 return -EINVAL;
3394
3395 if (act) {
3396 compat_uptr_t handler;
3397 ret = get_user(handler, &act->sa_handler);
3398 new_ka.sa.sa_handler = compat_ptr(handler);
3399 #ifdef __ARCH_HAS_SA_RESTORER
3400 ret |= get_user(restorer, &act->sa_restorer);
3401 new_ka.sa.sa_restorer = compat_ptr(restorer);
3402 #endif
3403 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3404 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3405 if (ret)
3406 return -EFAULT;
3407 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3408 }
3409
3410 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3411 if (!ret && oact) {
3412 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3413 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3414 &oact->sa_handler);
3415 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3416 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3417 #ifdef __ARCH_HAS_SA_RESTORER
3418 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3419 &oact->sa_restorer);
3420 #endif
3421 }
3422 return ret;
3423 }
3424 #endif
3425 #endif /* !CONFIG_ODD_RT_SIGACTION */
3426
3427 #ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction,int,sig,const struct old_sigaction __user *,act,struct old_sigaction __user *,oact)3428 SYSCALL_DEFINE3(sigaction, int, sig,
3429 const struct old_sigaction __user *, act,
3430 struct old_sigaction __user *, oact)
3431 {
3432 struct k_sigaction new_ka, old_ka;
3433 int ret;
3434
3435 if (act) {
3436 old_sigset_t mask;
3437 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3438 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3439 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3440 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3441 __get_user(mask, &act->sa_mask))
3442 return -EFAULT;
3443 #ifdef __ARCH_HAS_KA_RESTORER
3444 new_ka.ka_restorer = NULL;
3445 #endif
3446 siginitset(&new_ka.sa.sa_mask, mask);
3447 }
3448
3449 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3450
3451 if (!ret && oact) {
3452 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3453 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3454 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3455 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3456 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3457 return -EFAULT;
3458 }
3459
3460 return ret;
3461 }
3462 #endif
3463 #ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction,int,sig,const struct compat_old_sigaction __user *,act,struct compat_old_sigaction __user *,oact)3464 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3465 const struct compat_old_sigaction __user *, act,
3466 struct compat_old_sigaction __user *, oact)
3467 {
3468 struct k_sigaction new_ka, old_ka;
3469 int ret;
3470 compat_old_sigset_t mask;
3471 compat_uptr_t handler, restorer;
3472
3473 if (act) {
3474 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3475 __get_user(handler, &act->sa_handler) ||
3476 __get_user(restorer, &act->sa_restorer) ||
3477 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3478 __get_user(mask, &act->sa_mask))
3479 return -EFAULT;
3480
3481 #ifdef __ARCH_HAS_KA_RESTORER
3482 new_ka.ka_restorer = NULL;
3483 #endif
3484 new_ka.sa.sa_handler = compat_ptr(handler);
3485 new_ka.sa.sa_restorer = compat_ptr(restorer);
3486 siginitset(&new_ka.sa.sa_mask, mask);
3487 }
3488
3489 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3490
3491 if (!ret && oact) {
3492 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3493 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3494 &oact->sa_handler) ||
3495 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3496 &oact->sa_restorer) ||
3497 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3498 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3499 return -EFAULT;
3500 }
3501 return ret;
3502 }
3503 #endif
3504
3505 #ifdef CONFIG_SGETMASK_SYSCALL
3506
3507 /*
3508 * For backwards compatibility. Functionality superseded by sigprocmask.
3509 */
SYSCALL_DEFINE0(sgetmask)3510 SYSCALL_DEFINE0(sgetmask)
3511 {
3512 /* SMP safe */
3513 return current->blocked.sig[0];
3514 }
3515
SYSCALL_DEFINE1(ssetmask,int,newmask)3516 SYSCALL_DEFINE1(ssetmask, int, newmask)
3517 {
3518 int old = current->blocked.sig[0];
3519 sigset_t newset;
3520
3521 siginitset(&newset, newmask);
3522 set_current_blocked(&newset);
3523
3524 return old;
3525 }
3526 #endif /* CONFIG_SGETMASK_SYSCALL */
3527
3528 #ifdef __ARCH_WANT_SYS_SIGNAL
3529 /*
3530 * For backwards compatibility. Functionality superseded by sigaction.
3531 */
SYSCALL_DEFINE2(signal,int,sig,__sighandler_t,handler)3532 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3533 {
3534 struct k_sigaction new_sa, old_sa;
3535 int ret;
3536
3537 new_sa.sa.sa_handler = handler;
3538 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3539 sigemptyset(&new_sa.sa.sa_mask);
3540
3541 ret = do_sigaction(sig, &new_sa, &old_sa);
3542
3543 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3544 }
3545 #endif /* __ARCH_WANT_SYS_SIGNAL */
3546
3547 #ifdef __ARCH_WANT_SYS_PAUSE
3548
SYSCALL_DEFINE0(pause)3549 SYSCALL_DEFINE0(pause)
3550 {
3551 while (!signal_pending(current)) {
3552 current->state = TASK_INTERRUPTIBLE;
3553 schedule();
3554 }
3555 return -ERESTARTNOHAND;
3556 }
3557
3558 #endif
3559
sigsuspend(sigset_t * set)3560 int sigsuspend(sigset_t *set)
3561 {
3562 current->saved_sigmask = current->blocked;
3563 set_current_blocked(set);
3564
3565 current->state = TASK_INTERRUPTIBLE;
3566 schedule();
3567 set_restore_sigmask();
3568 return -ERESTARTNOHAND;
3569 }
3570
3571 /**
3572 * sys_rt_sigsuspend - replace the signal mask for a value with the
3573 * @unewset value until a signal is received
3574 * @unewset: new signal mask value
3575 * @sigsetsize: size of sigset_t type
3576 */
SYSCALL_DEFINE2(rt_sigsuspend,sigset_t __user *,unewset,size_t,sigsetsize)3577 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3578 {
3579 sigset_t newset;
3580
3581 /* XXX: Don't preclude handling different sized sigset_t's. */
3582 if (sigsetsize != sizeof(sigset_t))
3583 return -EINVAL;
3584
3585 if (copy_from_user(&newset, unewset, sizeof(newset)))
3586 return -EFAULT;
3587 return sigsuspend(&newset);
3588 }
3589
3590 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend,compat_sigset_t __user *,unewset,compat_size_t,sigsetsize)3591 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3592 {
3593 #ifdef __BIG_ENDIAN
3594 sigset_t newset;
3595 compat_sigset_t newset32;
3596
3597 /* XXX: Don't preclude handling different sized sigset_t's. */
3598 if (sigsetsize != sizeof(sigset_t))
3599 return -EINVAL;
3600
3601 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3602 return -EFAULT;
3603 sigset_from_compat(&newset, &newset32);
3604 return sigsuspend(&newset);
3605 #else
3606 /* on little-endian bitmaps don't care about granularity */
3607 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3608 #endif
3609 }
3610 #endif
3611
3612 #ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend,old_sigset_t,mask)3613 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3614 {
3615 sigset_t blocked;
3616 siginitset(&blocked, mask);
3617 return sigsuspend(&blocked);
3618 }
3619 #endif
3620 #ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend,int,unused1,int,unused2,old_sigset_t,mask)3621 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3622 {
3623 sigset_t blocked;
3624 siginitset(&blocked, mask);
3625 return sigsuspend(&blocked);
3626 }
3627 #endif
3628
arch_vma_name(struct vm_area_struct * vma)3629 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3630 {
3631 return NULL;
3632 }
3633
signals_init(void)3634 void __init signals_init(void)
3635 {
3636 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3637 }
3638
3639 #ifdef CONFIG_KGDB_KDB
3640 #include <linux/kdb.h>
3641 /*
3642 * kdb_send_sig_info - Allows kdb to send signals without exposing
3643 * signal internals. This function checks if the required locks are
3644 * available before calling the main signal code, to avoid kdb
3645 * deadlocks.
3646 */
3647 void
kdb_send_sig_info(struct task_struct * t,struct siginfo * info)3648 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3649 {
3650 static struct task_struct *kdb_prev_t;
3651 int sig, new_t;
3652 if (!spin_trylock(&t->sighand->siglock)) {
3653 kdb_printf("Can't do kill command now.\n"
3654 "The sigmask lock is held somewhere else in "
3655 "kernel, try again later\n");
3656 return;
3657 }
3658 spin_unlock(&t->sighand->siglock);
3659 new_t = kdb_prev_t != t;
3660 kdb_prev_t = t;
3661 if (t->state != TASK_RUNNING && new_t) {
3662 kdb_printf("Process is not RUNNING, sending a signal from "
3663 "kdb risks deadlock\n"
3664 "on the run queue locks. "
3665 "The signal has _not_ been sent.\n"
3666 "Reissue the kill command if you want to risk "
3667 "the deadlock.\n");
3668 return;
3669 }
3670 sig = info->si_signo;
3671 if (send_sig_info(sig, info, t))
3672 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3673 sig, t->pid);
3674 else
3675 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3676 }
3677 #endif /* CONFIG_KGDB_KDB */
3678