• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1994 Linus Torvalds
3  *
4  * Pentium III FXSR, SSE support
5  * General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  * x86-64 work by Andi Kleen 2002
8  */
9 
10 #ifndef _FPU_INTERNAL_H
11 #define _FPU_INTERNAL_H
12 
13 #include <linux/kernel_stat.h>
14 #include <linux/regset.h>
15 #include <linux/compat.h>
16 #include <linux/slab.h>
17 #include <asm/asm.h>
18 #include <asm/cpufeature.h>
19 #include <asm/processor.h>
20 #include <asm/sigcontext.h>
21 #include <asm/user.h>
22 #include <asm/uaccess.h>
23 #include <asm/xsave.h>
24 #include <asm/smap.h>
25 
26 #ifdef CONFIG_X86_64
27 # include <asm/sigcontext32.h>
28 # include <asm/user32.h>
29 struct ksignal;
30 int ia32_setup_rt_frame(int sig, struct ksignal *ksig,
31 			compat_sigset_t *set, struct pt_regs *regs);
32 int ia32_setup_frame(int sig, struct ksignal *ksig,
33 		     compat_sigset_t *set, struct pt_regs *regs);
34 #else
35 # define user_i387_ia32_struct	user_i387_struct
36 # define user32_fxsr_struct	user_fxsr_struct
37 # define ia32_setup_frame	__setup_frame
38 # define ia32_setup_rt_frame	__setup_rt_frame
39 #endif
40 
41 extern unsigned int mxcsr_feature_mask;
42 extern void fpu_init(void);
43 extern void eager_fpu_init(void);
44 
45 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
46 
47 extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
48 			      struct task_struct *tsk);
49 extern void convert_to_fxsr(struct task_struct *tsk,
50 			    const struct user_i387_ia32_struct *env);
51 
52 extern user_regset_active_fn fpregs_active, xfpregs_active;
53 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
54 				xstateregs_get;
55 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
56 				 xstateregs_set;
57 
58 /*
59  * xstateregs_active == fpregs_active. Please refer to the comment
60  * at the definition of fpregs_active.
61  */
62 #define xstateregs_active	fpregs_active
63 
64 #ifdef CONFIG_MATH_EMULATION
65 extern void finit_soft_fpu(struct i387_soft_struct *soft);
66 #else
finit_soft_fpu(struct i387_soft_struct * soft)67 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
68 #endif
69 
is_ia32_compat_frame(void)70 static inline int is_ia32_compat_frame(void)
71 {
72 	return config_enabled(CONFIG_IA32_EMULATION) &&
73 	       test_thread_flag(TIF_IA32);
74 }
75 
is_ia32_frame(void)76 static inline int is_ia32_frame(void)
77 {
78 	return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
79 }
80 
is_x32_frame(void)81 static inline int is_x32_frame(void)
82 {
83 	return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
84 }
85 
86 #define X87_FSW_ES (1 << 7)	/* Exception Summary */
87 
use_eager_fpu(void)88 static __always_inline __pure bool use_eager_fpu(void)
89 {
90 	return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
91 }
92 
use_xsaveopt(void)93 static __always_inline __pure bool use_xsaveopt(void)
94 {
95 	return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
96 }
97 
use_xsave(void)98 static __always_inline __pure bool use_xsave(void)
99 {
100 	return static_cpu_has_safe(X86_FEATURE_XSAVE);
101 }
102 
use_fxsr(void)103 static __always_inline __pure bool use_fxsr(void)
104 {
105 	return static_cpu_has_safe(X86_FEATURE_FXSR);
106 }
107 
fx_finit(struct i387_fxsave_struct * fx)108 static inline void fx_finit(struct i387_fxsave_struct *fx)
109 {
110 	memset(fx, 0, xstate_size);
111 	fx->cwd = 0x37f;
112 	fx->mxcsr = MXCSR_DEFAULT;
113 }
114 
115 extern void __sanitize_i387_state(struct task_struct *);
116 
sanitize_i387_state(struct task_struct * tsk)117 static inline void sanitize_i387_state(struct task_struct *tsk)
118 {
119 	if (!use_xsaveopt())
120 		return;
121 	__sanitize_i387_state(tsk);
122 }
123 
124 #define user_insn(insn, output, input...)				\
125 ({									\
126 	int err;							\
127 	asm volatile(ASM_STAC "\n"					\
128 		     "1:" #insn "\n\t"					\
129 		     "2: " ASM_CLAC "\n"				\
130 		     ".section .fixup,\"ax\"\n"				\
131 		     "3:  movl $-1,%[err]\n"				\
132 		     "    jmp  2b\n"					\
133 		     ".previous\n"					\
134 		     _ASM_EXTABLE(1b, 3b)				\
135 		     : [err] "=r" (err), output				\
136 		     : "0"(0), input);					\
137 	err;								\
138 })
139 
140 #define check_insn(insn, output, input...)				\
141 ({									\
142 	int err;							\
143 	asm volatile("1:" #insn "\n\t"					\
144 		     "2:\n"						\
145 		     ".section .fixup,\"ax\"\n"				\
146 		     "3:  movl $-1,%[err]\n"				\
147 		     "    jmp  2b\n"					\
148 		     ".previous\n"					\
149 		     _ASM_EXTABLE(1b, 3b)				\
150 		     : [err] "=r" (err), output				\
151 		     : "0"(0), input);					\
152 	err;								\
153 })
154 
fsave_user(struct i387_fsave_struct __user * fx)155 static inline int fsave_user(struct i387_fsave_struct __user *fx)
156 {
157 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
158 }
159 
fxsave_user(struct i387_fxsave_struct __user * fx)160 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
161 {
162 	if (config_enabled(CONFIG_X86_32))
163 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
164 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
165 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
166 
167 	/* See comment in fpu_fxsave() below. */
168 	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
169 }
170 
fxrstor_checking(struct i387_fxsave_struct * fx)171 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
172 {
173 	if (config_enabled(CONFIG_X86_32))
174 		return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
175 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
176 		return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
177 
178 	/* See comment in fpu_fxsave() below. */
179 	return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
180 			  "m" (*fx));
181 }
182 
fxrstor_user(struct i387_fxsave_struct __user * fx)183 static inline int fxrstor_user(struct i387_fxsave_struct __user *fx)
184 {
185 	if (config_enabled(CONFIG_X86_32))
186 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
187 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
188 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
189 
190 	/* See comment in fpu_fxsave() below. */
191 	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
192 			  "m" (*fx));
193 }
194 
frstor_checking(struct i387_fsave_struct * fx)195 static inline int frstor_checking(struct i387_fsave_struct *fx)
196 {
197 	return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
198 }
199 
frstor_user(struct i387_fsave_struct __user * fx)200 static inline int frstor_user(struct i387_fsave_struct __user *fx)
201 {
202 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
203 }
204 
fpu_fxsave(struct fpu * fpu)205 static inline void fpu_fxsave(struct fpu *fpu)
206 {
207 	if (config_enabled(CONFIG_X86_32))
208 		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
209 	else if (config_enabled(CONFIG_AS_FXSAVEQ))
210 		asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
211 	else {
212 		/* Using "rex64; fxsave %0" is broken because, if the memory
213 		 * operand uses any extended registers for addressing, a second
214 		 * REX prefix will be generated (to the assembler, rex64
215 		 * followed by semicolon is a separate instruction), and hence
216 		 * the 64-bitness is lost.
217 		 *
218 		 * Using "fxsaveq %0" would be the ideal choice, but is only
219 		 * supported starting with gas 2.16.
220 		 *
221 		 * Using, as a workaround, the properly prefixed form below
222 		 * isn't accepted by any binutils version so far released,
223 		 * complaining that the same type of prefix is used twice if
224 		 * an extended register is needed for addressing (fix submitted
225 		 * to mainline 2005-11-21).
226 		 *
227 		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
228 		 *
229 		 * This, however, we can work around by forcing the compiler to
230 		 * select an addressing mode that doesn't require extended
231 		 * registers.
232 		 */
233 		asm volatile( "rex64/fxsave (%[fx])"
234 			     : "=m" (fpu->state->fxsave)
235 			     : [fx] "R" (&fpu->state->fxsave));
236 	}
237 }
238 
239 /*
240  * These must be called with preempt disabled. Returns
241  * 'true' if the FPU state is still intact.
242  */
fpu_save_init(struct fpu * fpu)243 static inline int fpu_save_init(struct fpu *fpu)
244 {
245 	if (use_xsave()) {
246 		fpu_xsave(fpu);
247 
248 		/*
249 		 * xsave header may indicate the init state of the FP.
250 		 */
251 		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
252 			return 1;
253 	} else if (use_fxsr()) {
254 		fpu_fxsave(fpu);
255 	} else {
256 		asm volatile("fnsave %[fx]; fwait"
257 			     : [fx] "=m" (fpu->state->fsave));
258 		return 0;
259 	}
260 
261 	/*
262 	 * If exceptions are pending, we need to clear them so
263 	 * that we don't randomly get exceptions later.
264 	 *
265 	 * FIXME! Is this perhaps only true for the old-style
266 	 * irq13 case? Maybe we could leave the x87 state
267 	 * intact otherwise?
268 	 */
269 	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
270 		asm volatile("fnclex");
271 		return 0;
272 	}
273 	return 1;
274 }
275 
__save_init_fpu(struct task_struct * tsk)276 static inline int __save_init_fpu(struct task_struct *tsk)
277 {
278 	return fpu_save_init(&tsk->thread.fpu);
279 }
280 
fpu_restore_checking(struct fpu * fpu)281 static inline int fpu_restore_checking(struct fpu *fpu)
282 {
283 	if (use_xsave())
284 		return fpu_xrstor_checking(&fpu->state->xsave);
285 	else if (use_fxsr())
286 		return fxrstor_checking(&fpu->state->fxsave);
287 	else
288 		return frstor_checking(&fpu->state->fsave);
289 }
290 
restore_fpu_checking(struct task_struct * tsk)291 static inline int restore_fpu_checking(struct task_struct *tsk)
292 {
293 	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
294 	   is pending.  Clear the x87 state here by setting it to fixed
295 	   values. "m" is a random variable that should be in L1 */
296 	if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
297 		asm volatile(
298 			"fnclex\n\t"
299 			"emms\n\t"
300 			"fildl %P[addr]"	/* set F?P to defined value */
301 			: : [addr] "m" (tsk->thread.fpu.has_fpu));
302 	}
303 
304 	return fpu_restore_checking(&tsk->thread.fpu);
305 }
306 
307 /*
308  * Software FPU state helpers. Careful: these need to
309  * be preemption protection *and* they need to be
310  * properly paired with the CR0.TS changes!
311  */
__thread_has_fpu(struct task_struct * tsk)312 static inline int __thread_has_fpu(struct task_struct *tsk)
313 {
314 	return tsk->thread.fpu.has_fpu;
315 }
316 
317 /* Must be paired with an 'stts' after! */
__thread_clear_has_fpu(struct task_struct * tsk)318 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
319 {
320 	tsk->thread.fpu.has_fpu = 0;
321 	this_cpu_write(fpu_owner_task, NULL);
322 }
323 
324 /* Must be paired with a 'clts' before! */
__thread_set_has_fpu(struct task_struct * tsk)325 static inline void __thread_set_has_fpu(struct task_struct *tsk)
326 {
327 	tsk->thread.fpu.has_fpu = 1;
328 	this_cpu_write(fpu_owner_task, tsk);
329 }
330 
331 /*
332  * Encapsulate the CR0.TS handling together with the
333  * software flag.
334  *
335  * These generally need preemption protection to work,
336  * do try to avoid using these on their own.
337  */
__thread_fpu_end(struct task_struct * tsk)338 static inline void __thread_fpu_end(struct task_struct *tsk)
339 {
340 	__thread_clear_has_fpu(tsk);
341 	if (!use_eager_fpu())
342 		stts();
343 }
344 
__thread_fpu_begin(struct task_struct * tsk)345 static inline void __thread_fpu_begin(struct task_struct *tsk)
346 {
347 	if (!use_eager_fpu())
348 		clts();
349 	__thread_set_has_fpu(tsk);
350 }
351 
__drop_fpu(struct task_struct * tsk)352 static inline void __drop_fpu(struct task_struct *tsk)
353 {
354 	if (__thread_has_fpu(tsk)) {
355 		/* Ignore delayed exceptions from user space */
356 		asm volatile("1: fwait\n"
357 			     "2:\n"
358 			     _ASM_EXTABLE(1b, 2b));
359 		__thread_fpu_end(tsk);
360 	}
361 }
362 
drop_fpu(struct task_struct * tsk)363 static inline void drop_fpu(struct task_struct *tsk)
364 {
365 	/*
366 	 * Forget coprocessor state..
367 	 */
368 	preempt_disable();
369 	tsk->thread.fpu_counter = 0;
370 	__drop_fpu(tsk);
371 	clear_stopped_child_used_math(tsk);
372 	preempt_enable();
373 }
374 
drop_init_fpu(struct task_struct * tsk)375 static inline void drop_init_fpu(struct task_struct *tsk)
376 {
377 	if (!use_eager_fpu())
378 		drop_fpu(tsk);
379 	else {
380 		if (use_xsave())
381 			xrstor_state(init_xstate_buf, -1);
382 		else
383 			fxrstor_checking(&init_xstate_buf->i387);
384 	}
385 }
386 
387 /*
388  * FPU state switching for scheduling.
389  *
390  * This is a two-stage process:
391  *
392  *  - switch_fpu_prepare() saves the old state and
393  *    sets the new state of the CR0.TS bit. This is
394  *    done within the context of the old process.
395  *
396  *  - switch_fpu_finish() restores the new state as
397  *    necessary.
398  */
399 typedef struct { int preload; } fpu_switch_t;
400 
401 /*
402  * Must be run with preemption disabled: this clears the fpu_owner_task,
403  * on this CPU.
404  *
405  * This will disable any lazy FPU state restore of the current FPU state,
406  * but if the current thread owns the FPU, it will still be saved by.
407  */
__cpu_disable_lazy_restore(unsigned int cpu)408 static inline void __cpu_disable_lazy_restore(unsigned int cpu)
409 {
410 	per_cpu(fpu_owner_task, cpu) = NULL;
411 }
412 
fpu_lazy_restore(struct task_struct * new,unsigned int cpu)413 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
414 {
415 	return new == this_cpu_read_stable(fpu_owner_task) &&
416 		cpu == new->thread.fpu.last_cpu;
417 }
418 
switch_fpu_prepare(struct task_struct * old,struct task_struct * new,int cpu)419 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
420 {
421 	fpu_switch_t fpu;
422 
423 	/*
424 	 * If the task has used the math, pre-load the FPU on xsave processors
425 	 * or if the past 5 consecutive context-switches used math.
426 	 */
427 	fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
428 					     new->thread.fpu_counter > 5);
429 	if (__thread_has_fpu(old)) {
430 		if (!__save_init_fpu(old))
431 			cpu = ~0;
432 		old->thread.fpu.last_cpu = cpu;
433 		old->thread.fpu.has_fpu = 0;	/* But leave fpu_owner_task! */
434 
435 		/* Don't change CR0.TS if we just switch! */
436 		if (fpu.preload) {
437 			new->thread.fpu_counter++;
438 			__thread_set_has_fpu(new);
439 			prefetch(new->thread.fpu.state);
440 		} else if (!use_eager_fpu())
441 			stts();
442 	} else {
443 		old->thread.fpu_counter = 0;
444 		old->thread.fpu.last_cpu = ~0;
445 		if (fpu.preload) {
446 			new->thread.fpu_counter++;
447 			if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
448 				fpu.preload = 0;
449 			else
450 				prefetch(new->thread.fpu.state);
451 			__thread_fpu_begin(new);
452 		}
453 	}
454 	return fpu;
455 }
456 
457 /*
458  * By the time this gets called, we've already cleared CR0.TS and
459  * given the process the FPU if we are going to preload the FPU
460  * state - all we need to do is to conditionally restore the register
461  * state itself.
462  */
switch_fpu_finish(struct task_struct * new,fpu_switch_t fpu)463 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
464 {
465 	if (fpu.preload) {
466 		if (unlikely(restore_fpu_checking(new)))
467 			drop_init_fpu(new);
468 	}
469 }
470 
471 /*
472  * Signal frame handlers...
473  */
474 extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
475 extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
476 
xstate_sigframe_size(void)477 static inline int xstate_sigframe_size(void)
478 {
479 	return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
480 }
481 
restore_xstate_sig(void __user * buf,int ia32_frame)482 static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
483 {
484 	void __user *buf_fx = buf;
485 	int size = xstate_sigframe_size();
486 
487 	if (ia32_frame && use_fxsr()) {
488 		buf_fx = buf + sizeof(struct i387_fsave_struct);
489 		size += sizeof(struct i387_fsave_struct);
490 	}
491 
492 	return __restore_xstate_sig(buf, buf_fx, size);
493 }
494 
495 /*
496  * Need to be preemption-safe.
497  *
498  * NOTE! user_fpu_begin() must be used only immediately before restoring
499  * it. This function does not do any save/restore on their own.
500  */
user_fpu_begin(void)501 static inline void user_fpu_begin(void)
502 {
503 	preempt_disable();
504 	if (!user_has_fpu())
505 		__thread_fpu_begin(current);
506 	preempt_enable();
507 }
508 
__save_fpu(struct task_struct * tsk)509 static inline void __save_fpu(struct task_struct *tsk)
510 {
511 	if (use_xsave()) {
512 		if (unlikely(system_state == SYSTEM_BOOTING))
513 			xsave_state_booting(&tsk->thread.fpu.state->xsave, -1);
514 		else
515 			xsave_state(&tsk->thread.fpu.state->xsave, -1);
516 	} else
517 		fpu_fxsave(&tsk->thread.fpu);
518 }
519 
520 /*
521  * These disable preemption on their own and are safe
522  */
save_init_fpu(struct task_struct * tsk)523 static inline void save_init_fpu(struct task_struct *tsk)
524 {
525 	WARN_ON_ONCE(!__thread_has_fpu(tsk));
526 
527 	if (use_eager_fpu()) {
528 		__save_fpu(tsk);
529 		return;
530 	}
531 
532 	preempt_disable();
533 	__save_init_fpu(tsk);
534 	__thread_fpu_end(tsk);
535 	preempt_enable();
536 }
537 
538 /*
539  * i387 state interaction
540  */
get_fpu_cwd(struct task_struct * tsk)541 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
542 {
543 	if (cpu_has_fxsr) {
544 		return tsk->thread.fpu.state->fxsave.cwd;
545 	} else {
546 		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
547 	}
548 }
549 
get_fpu_swd(struct task_struct * tsk)550 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
551 {
552 	if (cpu_has_fxsr) {
553 		return tsk->thread.fpu.state->fxsave.swd;
554 	} else {
555 		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
556 	}
557 }
558 
get_fpu_mxcsr(struct task_struct * tsk)559 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
560 {
561 	if (cpu_has_xmm) {
562 		return tsk->thread.fpu.state->fxsave.mxcsr;
563 	} else {
564 		return MXCSR_DEFAULT;
565 	}
566 }
567 
fpu_allocated(struct fpu * fpu)568 static bool fpu_allocated(struct fpu *fpu)
569 {
570 	return fpu->state != NULL;
571 }
572 
fpu_alloc(struct fpu * fpu)573 static inline int fpu_alloc(struct fpu *fpu)
574 {
575 	if (fpu_allocated(fpu))
576 		return 0;
577 	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
578 	if (!fpu->state)
579 		return -ENOMEM;
580 	WARN_ON((unsigned long)fpu->state & 15);
581 	return 0;
582 }
583 
fpu_free(struct fpu * fpu)584 static inline void fpu_free(struct fpu *fpu)
585 {
586 	if (fpu->state) {
587 		kmem_cache_free(task_xstate_cachep, fpu->state);
588 		fpu->state = NULL;
589 	}
590 }
591 
fpu_copy(struct task_struct * dst,struct task_struct * src)592 static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
593 {
594 	if (use_eager_fpu()) {
595 		memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
596 		__save_fpu(dst);
597 	} else {
598 		struct fpu *dfpu = &dst->thread.fpu;
599 		struct fpu *sfpu = &src->thread.fpu;
600 
601 		unlazy_fpu(src);
602 		memcpy(dfpu->state, sfpu->state, xstate_size);
603 	}
604 }
605 
606 static inline unsigned long
alloc_mathframe(unsigned long sp,int ia32_frame,unsigned long * buf_fx,unsigned long * size)607 alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
608 		unsigned long *size)
609 {
610 	unsigned long frame_size = xstate_sigframe_size();
611 
612 	*buf_fx = sp = round_down(sp - frame_size, 64);
613 	if (ia32_frame && use_fxsr()) {
614 		frame_size += sizeof(struct i387_fsave_struct);
615 		sp -= sizeof(struct i387_fsave_struct);
616 	}
617 
618 	*size = frame_size;
619 	return sp;
620 }
621 
622 #endif
623