• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10 
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26 
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30 
31 #define TK_CLEAR_NTP		(1 << 0)
32 #define TK_MIRROR		(1 << 1)
33 #define TK_CLOCK_WAS_SET	(1 << 2)
34 
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40 	seqcount_t		seq;
41 	struct timekeeper	timekeeper;
42 } tk_core ____cacheline_aligned;
43 
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46 
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:	Sequence counter for protecting updates. The lowest bit
50  *		is the index for the tk_read_base array
51  * @base:	tk_read_base array. Access is indexed by the lowest bit of
52  *		@seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57 	seqcount_t		seq;
58 	struct tk_read_base	base[2];
59 };
60 
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65 
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68 
tk_normalize_xtime(struct timekeeper * tk)69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73 		tk->xtime_sec++;
74 	}
75 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
76 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
77 		tk->raw_sec++;
78 	}
79 }
80 
tk_xtime(struct timekeeper * tk)81 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
82 {
83 	struct timespec64 ts;
84 
85 	ts.tv_sec = tk->xtime_sec;
86 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
87 	return ts;
88 }
89 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)90 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 	tk->xtime_sec = ts->tv_sec;
93 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 }
95 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)96 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
97 {
98 	tk->xtime_sec += ts->tv_sec;
99 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
100 	tk_normalize_xtime(tk);
101 }
102 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)103 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
104 {
105 	struct timespec64 tmp;
106 
107 	/*
108 	 * Verify consistency of: offset_real = -wall_to_monotonic
109 	 * before modifying anything
110 	 */
111 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
112 					-tk->wall_to_monotonic.tv_nsec);
113 	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
114 	tk->wall_to_monotonic = wtm;
115 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
116 	tk->offs_real = timespec64_to_ktime(tmp);
117 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
118 }
119 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)120 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
121 {
122 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
123 }
124 
125 /**
126  * tk_setup_internals - Set up internals to use clocksource clock.
127  *
128  * @tk:		The target timekeeper to setup.
129  * @clock:		Pointer to clocksource.
130  *
131  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
132  * pair and interval request.
133  *
134  * Unless you're the timekeeping code, you should not be using this!
135  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)136 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
137 {
138 	cycle_t interval;
139 	u64 tmp, ntpinterval;
140 	struct clocksource *old_clock;
141 
142 	old_clock = tk->tkr_mono.clock;
143 	tk->tkr_mono.clock = clock;
144 	tk->tkr_mono.read = clock->read;
145 	tk->tkr_mono.mask = clock->mask;
146 	tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
147 
148 	tk->tkr_raw.clock = clock;
149 	tk->tkr_raw.read = clock->read;
150 	tk->tkr_raw.mask = clock->mask;
151 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
152 
153 	/* Do the ns -> cycle conversion first, using original mult */
154 	tmp = NTP_INTERVAL_LENGTH;
155 	tmp <<= clock->shift;
156 	ntpinterval = tmp;
157 	tmp += clock->mult/2;
158 	do_div(tmp, clock->mult);
159 	if (tmp == 0)
160 		tmp = 1;
161 
162 	interval = (cycle_t) tmp;
163 	tk->cycle_interval = interval;
164 
165 	/* Go back from cycles -> shifted ns */
166 	tk->xtime_interval = (u64) interval * clock->mult;
167 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
168 	tk->raw_interval = interval * clock->mult;
169 
170 	 /* if changing clocks, convert xtime_nsec shift units */
171 	if (old_clock) {
172 		int shift_change = clock->shift - old_clock->shift;
173 		if (shift_change < 0) {
174 			tk->tkr_mono.xtime_nsec >>= -shift_change;
175 			tk->tkr_raw.xtime_nsec >>= -shift_change;
176 		} else {
177 			tk->tkr_mono.xtime_nsec <<= shift_change;
178 			tk->tkr_raw.xtime_nsec <<= shift_change;
179 		}
180 	}
181 
182 	tk->tkr_mono.shift = clock->shift;
183 	tk->tkr_raw.shift = clock->shift;
184 
185 	tk->ntp_error = 0;
186 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
187 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
188 
189 	/*
190 	 * The timekeeper keeps its own mult values for the currently
191 	 * active clocksource. These value will be adjusted via NTP
192 	 * to counteract clock drifting.
193 	 */
194 	tk->tkr_mono.mult = clock->mult;
195 	tk->tkr_raw.mult = clock->mult;
196 	tk->ntp_err_mult = 0;
197 }
198 
199 /* Timekeeper helper functions. */
200 
201 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)202 static u32 default_arch_gettimeoffset(void) { return 0; }
203 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
204 #else
arch_gettimeoffset(void)205 static inline u32 arch_gettimeoffset(void) { return 0; }
206 #endif
207 
timekeeping_get_ns(struct tk_read_base * tkr)208 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
209 {
210 	cycle_t cycle_now, delta;
211 	s64 nsec;
212 
213 	/* read clocksource: */
214 	cycle_now = tkr->read(tkr->clock);
215 
216 	/* calculate the delta since the last update_wall_time: */
217 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
218 
219 	nsec = (delta * tkr->mult + tkr->xtime_nsec) >> tkr->shift;
220 
221 	/* If arch requires, add in get_arch_timeoffset() */
222 	return nsec + arch_gettimeoffset();
223 }
224 
225 /**
226  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
227  * @tk:		The timekeeper from which we take the update
228  * @tkf:	The fast timekeeper to update
229  * @tbase:	The time base for the fast timekeeper (mono/raw)
230  *
231  * We want to use this from any context including NMI and tracing /
232  * instrumenting the timekeeping code itself.
233  *
234  * So we handle this differently than the other timekeeping accessor
235  * functions which retry when the sequence count has changed. The
236  * update side does:
237  *
238  * smp_wmb();	<- Ensure that the last base[1] update is visible
239  * tkf->seq++;
240  * smp_wmb();	<- Ensure that the seqcount update is visible
241  * update(tkf->base[0], tk);
242  * smp_wmb();	<- Ensure that the base[0] update is visible
243  * tkf->seq++;
244  * smp_wmb();	<- Ensure that the seqcount update is visible
245  * update(tkf->base[1], tk);
246  *
247  * The reader side does:
248  *
249  * do {
250  *	seq = tkf->seq;
251  *	smp_rmb();
252  *	idx = seq & 0x01;
253  *	now = now(tkf->base[idx]);
254  *	smp_rmb();
255  * } while (seq != tkf->seq)
256  *
257  * As long as we update base[0] readers are forced off to
258  * base[1]. Once base[0] is updated readers are redirected to base[0]
259  * and the base[1] update takes place.
260  *
261  * So if a NMI hits the update of base[0] then it will use base[1]
262  * which is still consistent. In the worst case this can result is a
263  * slightly wrong timestamp (a few nanoseconds). See
264  * @ktime_get_mono_fast_ns.
265  */
update_fast_timekeeper(struct timekeeper * tk)266 static void update_fast_timekeeper(struct timekeeper *tk)
267 {
268 	struct tk_read_base *base = tk_fast_mono.base;
269 
270 	/* Force readers off to base[1] */
271 	raw_write_seqcount_latch(&tk_fast_mono.seq);
272 
273 	/* Update base[0] */
274 	memcpy(base, &tk->tkr_mono, sizeof(*base));
275 
276 	/* Force readers back to base[0] */
277 	raw_write_seqcount_latch(&tk_fast_mono.seq);
278 
279 	/* Update base[1] */
280 	memcpy(base + 1, base, sizeof(*base));
281 }
282 
283 /**
284  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
285  *
286  * This timestamp is not guaranteed to be monotonic across an update.
287  * The timestamp is calculated by:
288  *
289  *	now = base_mono + clock_delta * slope
290  *
291  * So if the update lowers the slope, readers who are forced to the
292  * not yet updated second array are still using the old steeper slope.
293  *
294  * tmono
295  * ^
296  * |    o  n
297  * |   o n
298  * |  u
299  * | o
300  * |o
301  * |12345678---> reader order
302  *
303  * o = old slope
304  * u = update
305  * n = new slope
306  *
307  * So reader 6 will observe time going backwards versus reader 5.
308  *
309  * While other CPUs are likely to be able observe that, the only way
310  * for a CPU local observation is when an NMI hits in the middle of
311  * the update. Timestamps taken from that NMI context might be ahead
312  * of the following timestamps. Callers need to be aware of that and
313  * deal with it.
314  */
ktime_get_mono_fast_ns(void)315 u64 notrace ktime_get_mono_fast_ns(void)
316 {
317 	struct tk_read_base *tkr;
318 	unsigned int seq;
319 	u64 now;
320 
321 	do {
322 		seq = raw_read_seqcount(&tk_fast_mono.seq);
323 		tkr = tk_fast_mono.base + (seq & 0x01);
324 		now = ktime_to_ns(tkr->base) + timekeeping_get_ns(tkr);
325 
326 	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
327 	return now;
328 }
329 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
330 
331 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
332 
update_vsyscall(struct timekeeper * tk)333 static inline void update_vsyscall(struct timekeeper *tk)
334 {
335 	struct timespec xt, wm;
336 
337 	xt = timespec64_to_timespec(tk_xtime(tk));
338 	wm = timespec64_to_timespec(tk->wall_to_monotonic);
339 	update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
340 			    tk->tkr_mono.cycle_last);
341 }
342 
old_vsyscall_fixup(struct timekeeper * tk)343 static inline void old_vsyscall_fixup(struct timekeeper *tk)
344 {
345 	s64 remainder;
346 
347 	/*
348 	* Store only full nanoseconds into xtime_nsec after rounding
349 	* it up and add the remainder to the error difference.
350 	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
351 	* by truncating the remainder in vsyscalls. However, it causes
352 	* additional work to be done in timekeeping_adjust(). Once
353 	* the vsyscall implementations are converted to use xtime_nsec
354 	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
355 	* users are removed, this can be killed.
356 	*/
357 	remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
358 	tk->tkr_mono.xtime_nsec -= remainder;
359 	tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
360 	tk->ntp_error += remainder << tk->ntp_error_shift;
361 	tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
362 }
363 #else
364 #define old_vsyscall_fixup(tk)
365 #endif
366 
367 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
368 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)369 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
370 {
371 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
372 }
373 
374 /**
375  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
376  */
pvclock_gtod_register_notifier(struct notifier_block * nb)377 int pvclock_gtod_register_notifier(struct notifier_block *nb)
378 {
379 	struct timekeeper *tk = &tk_core.timekeeper;
380 	unsigned long flags;
381 	int ret;
382 
383 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
384 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
385 	update_pvclock_gtod(tk, true);
386 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
387 
388 	return ret;
389 }
390 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
391 
392 /**
393  * pvclock_gtod_unregister_notifier - unregister a pvclock
394  * timedata update listener
395  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)396 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
397 {
398 	unsigned long flags;
399 	int ret;
400 
401 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
402 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
403 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
404 
405 	return ret;
406 }
407 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
408 
409 /*
410  * Update the ktime_t based scalar nsec members of the timekeeper
411  */
tk_update_ktime_data(struct timekeeper * tk)412 static inline void tk_update_ktime_data(struct timekeeper *tk)
413 {
414 	u64 seconds;
415 	s64 nsec;
416 
417 	/*
418 	 * The xtime based monotonic readout is:
419 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
420 	 * The ktime based monotonic readout is:
421 	 *	nsec = base_mono + now();
422 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
423 	 */
424 	nsec = (s64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
425 	nsec *= NSEC_PER_SEC;
426 	nsec += tk->wall_to_monotonic.tv_nsec;
427 	tk->tkr_mono.base = ns_to_ktime(nsec);
428 
429 	/* Update the monotonic raw base */
430 	seconds = tk->raw_sec;
431 	nsec = (u32)(tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift);
432 	tk->tkr_raw.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
433 }
434 
435 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)436 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
437 {
438 	if (action & TK_CLEAR_NTP) {
439 		tk->ntp_error = 0;
440 		ntp_clear();
441 	}
442 
443 	tk_update_ktime_data(tk);
444 
445 	update_vsyscall(tk);
446 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
447 
448 	if (action & TK_MIRROR)
449 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
450 		       sizeof(tk_core.timekeeper));
451 
452 	update_fast_timekeeper(tk);
453 }
454 
455 /**
456  * timekeeping_forward_now - update clock to the current time
457  *
458  * Forward the current clock to update its state since the last call to
459  * update_wall_time(). This is useful before significant clock changes,
460  * as it avoids having to deal with this time offset explicitly.
461  */
timekeeping_forward_now(struct timekeeper * tk)462 static void timekeeping_forward_now(struct timekeeper *tk)
463 {
464 	struct clocksource *clock = tk->tkr_mono.clock;
465 	cycle_t cycle_now, delta;
466 
467 	cycle_now = tk->tkr_mono.read(clock);
468 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
469 	tk->tkr_mono.cycle_last = cycle_now;
470 	tk->tkr_raw.cycle_last  = cycle_now;
471 
472 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
473 
474 	/* If arch requires, add in get_arch_timeoffset() */
475 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
476 
477 
478 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
479 
480 	/* If arch requires, add in get_arch_timeoffset() */
481 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
482 
483 	tk_normalize_xtime(tk);
484 }
485 
486 /**
487  * __getnstimeofday64 - Returns the time of day in a timespec64.
488  * @ts:		pointer to the timespec to be set
489  *
490  * Updates the time of day in the timespec.
491  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
492  */
__getnstimeofday64(struct timespec64 * ts)493 int __getnstimeofday64(struct timespec64 *ts)
494 {
495 	struct timekeeper *tk = &tk_core.timekeeper;
496 	unsigned long seq;
497 	s64 nsecs = 0;
498 
499 	do {
500 		seq = read_seqcount_begin(&tk_core.seq);
501 
502 		ts->tv_sec = tk->xtime_sec;
503 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
504 
505 	} while (read_seqcount_retry(&tk_core.seq, seq));
506 
507 	ts->tv_nsec = 0;
508 	timespec64_add_ns(ts, nsecs);
509 
510 	/*
511 	 * Do not bail out early, in case there were callers still using
512 	 * the value, even in the face of the WARN_ON.
513 	 */
514 	if (unlikely(timekeeping_suspended))
515 		return -EAGAIN;
516 	return 0;
517 }
518 EXPORT_SYMBOL(__getnstimeofday64);
519 
520 /**
521  * getnstimeofday64 - Returns the time of day in a timespec64.
522  * @ts:		pointer to the timespec to be set
523  *
524  * Returns the time of day in a timespec (WARN if suspended).
525  */
getnstimeofday64(struct timespec64 * ts)526 void getnstimeofday64(struct timespec64 *ts)
527 {
528 	WARN_ON(__getnstimeofday64(ts));
529 }
530 EXPORT_SYMBOL(getnstimeofday64);
531 
ktime_get(void)532 ktime_t ktime_get(void)
533 {
534 	struct timekeeper *tk = &tk_core.timekeeper;
535 	unsigned int seq;
536 	ktime_t base;
537 	s64 nsecs;
538 
539 	WARN_ON(timekeeping_suspended);
540 
541 	do {
542 		seq = read_seqcount_begin(&tk_core.seq);
543 		base = tk->tkr_mono.base;
544 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
545 
546 	} while (read_seqcount_retry(&tk_core.seq, seq));
547 
548 	return ktime_add_ns(base, nsecs);
549 }
550 EXPORT_SYMBOL_GPL(ktime_get);
551 
552 static ktime_t *offsets[TK_OFFS_MAX] = {
553 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
554 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
555 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
556 };
557 
ktime_get_with_offset(enum tk_offsets offs)558 ktime_t ktime_get_with_offset(enum tk_offsets offs)
559 {
560 	struct timekeeper *tk = &tk_core.timekeeper;
561 	unsigned int seq;
562 	ktime_t base, *offset = offsets[offs];
563 	s64 nsecs;
564 
565 	WARN_ON(timekeeping_suspended);
566 
567 	do {
568 		seq = read_seqcount_begin(&tk_core.seq);
569 		base = ktime_add(tk->tkr_mono.base, *offset);
570 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
571 
572 	} while (read_seqcount_retry(&tk_core.seq, seq));
573 
574 	return ktime_add_ns(base, nsecs);
575 
576 }
577 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
578 
579 /**
580  * ktime_mono_to_any() - convert mononotic time to any other time
581  * @tmono:	time to convert.
582  * @offs:	which offset to use
583  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)584 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
585 {
586 	ktime_t *offset = offsets[offs];
587 	unsigned long seq;
588 	ktime_t tconv;
589 
590 	do {
591 		seq = read_seqcount_begin(&tk_core.seq);
592 		tconv = ktime_add(tmono, *offset);
593 	} while (read_seqcount_retry(&tk_core.seq, seq));
594 
595 	return tconv;
596 }
597 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
598 
599 /**
600  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
601  */
ktime_get_raw(void)602 ktime_t ktime_get_raw(void)
603 {
604 	struct timekeeper *tk = &tk_core.timekeeper;
605 	unsigned int seq;
606 	ktime_t base;
607 	s64 nsecs;
608 
609 	do {
610 		seq = read_seqcount_begin(&tk_core.seq);
611 		base = tk->tkr_raw.base;
612 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
613 
614 	} while (read_seqcount_retry(&tk_core.seq, seq));
615 
616 	return ktime_add_ns(base, nsecs);
617 }
618 EXPORT_SYMBOL_GPL(ktime_get_raw);
619 
620 /**
621  * ktime_get_ts64 - get the monotonic clock in timespec64 format
622  * @ts:		pointer to timespec variable
623  *
624  * The function calculates the monotonic clock from the realtime
625  * clock and the wall_to_monotonic offset and stores the result
626  * in normalized timespec format in the variable pointed to by @ts.
627  */
ktime_get_ts64(struct timespec64 * ts)628 void ktime_get_ts64(struct timespec64 *ts)
629 {
630 	struct timekeeper *tk = &tk_core.timekeeper;
631 	struct timespec64 tomono;
632 	s64 nsec;
633 	unsigned int seq;
634 
635 	WARN_ON(timekeeping_suspended);
636 
637 	do {
638 		seq = read_seqcount_begin(&tk_core.seq);
639 		ts->tv_sec = tk->xtime_sec;
640 		nsec = timekeeping_get_ns(&tk->tkr_mono);
641 		tomono = tk->wall_to_monotonic;
642 
643 	} while (read_seqcount_retry(&tk_core.seq, seq));
644 
645 	ts->tv_sec += tomono.tv_sec;
646 	ts->tv_nsec = 0;
647 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
648 }
649 EXPORT_SYMBOL_GPL(ktime_get_ts64);
650 
651 #ifdef CONFIG_NTP_PPS
652 
653 /**
654  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
655  * @ts_raw:	pointer to the timespec to be set to raw monotonic time
656  * @ts_real:	pointer to the timespec to be set to the time of day
657  *
658  * This function reads both the time of day and raw monotonic time at the
659  * same time atomically and stores the resulting timestamps in timespec
660  * format.
661  */
getnstime_raw_and_real(struct timespec * ts_raw,struct timespec * ts_real)662 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
663 {
664 	struct timekeeper *tk = &tk_core.timekeeper;
665 	unsigned long seq;
666 	s64 nsecs_raw, nsecs_real;
667 
668 	WARN_ON_ONCE(timekeeping_suspended);
669 
670 	do {
671 		seq = read_seqcount_begin(&tk_core.seq);
672 
673 		*ts_raw = timespec64_to_timespec(tk->raw_time);
674 		ts_real->tv_sec = tk->xtime_sec;
675 		ts_real->tv_nsec = 0;
676 
677 		nsecs_raw  = timekeeping_get_ns(&tk->tkr_raw);
678 		nsecs_real = timekeeping_get_ns(&tk->tkr_mono);
679 
680 	} while (read_seqcount_retry(&tk_core.seq, seq));
681 
682 	timespec_add_ns(ts_raw, nsecs_raw);
683 	timespec_add_ns(ts_real, nsecs_real);
684 }
685 EXPORT_SYMBOL(getnstime_raw_and_real);
686 
687 #endif /* CONFIG_NTP_PPS */
688 
689 /**
690  * do_gettimeofday - Returns the time of day in a timeval
691  * @tv:		pointer to the timeval to be set
692  *
693  * NOTE: Users should be converted to using getnstimeofday()
694  */
do_gettimeofday(struct timeval * tv)695 void do_gettimeofday(struct timeval *tv)
696 {
697 	struct timespec64 now;
698 
699 	getnstimeofday64(&now);
700 	tv->tv_sec = now.tv_sec;
701 	tv->tv_usec = now.tv_nsec/1000;
702 }
703 EXPORT_SYMBOL(do_gettimeofday);
704 
705 /**
706  * do_settimeofday - Sets the time of day
707  * @tv:		pointer to the timespec variable containing the new time
708  *
709  * Sets the time of day to the new time and update NTP and notify hrtimers
710  */
do_settimeofday(const struct timespec * tv)711 int do_settimeofday(const struct timespec *tv)
712 {
713 	struct timekeeper *tk = &tk_core.timekeeper;
714 	struct timespec64 ts_delta, xt, tmp;
715 	unsigned long flags;
716 	int ret = 0;
717 
718 	if (!timespec_valid_strict(tv))
719 		return -EINVAL;
720 
721 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
722 	write_seqcount_begin(&tk_core.seq);
723 
724 	timekeeping_forward_now(tk);
725 
726 	xt = tk_xtime(tk);
727 	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
728 	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
729 
730 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
731 		ret = -EINVAL;
732 		goto out;
733 	}
734 
735 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
736 
737 	tmp = timespec_to_timespec64(*tv);
738 	tk_set_xtime(tk, &tmp);
739 out:
740 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
741 
742 	write_seqcount_end(&tk_core.seq);
743 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
744 
745 	/* signal hrtimers about time change */
746 	clock_was_set();
747 
748 	return ret;
749 }
750 EXPORT_SYMBOL(do_settimeofday);
751 
752 /**
753  * timekeeping_inject_offset - Adds or subtracts from the current time.
754  * @tv:		pointer to the timespec variable containing the offset
755  *
756  * Adds or subtracts an offset value from the current time.
757  */
timekeeping_inject_offset(struct timespec * ts)758 int timekeeping_inject_offset(struct timespec *ts)
759 {
760 	struct timekeeper *tk = &tk_core.timekeeper;
761 	unsigned long flags;
762 	struct timespec64 ts64, tmp;
763 	int ret = 0;
764 
765 	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
766 		return -EINVAL;
767 
768 	ts64 = timespec_to_timespec64(*ts);
769 
770 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
771 	write_seqcount_begin(&tk_core.seq);
772 
773 	timekeeping_forward_now(tk);
774 
775 	/* Make sure the proposed value is valid */
776 	tmp = timespec64_add(tk_xtime(tk),  ts64);
777 	if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
778 		!timespec64_valid_strict(&tmp)) {
779 		ret = -EINVAL;
780 		goto error;
781 	}
782 
783 	tk_xtime_add(tk, &ts64);
784 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
785 
786 error: /* even if we error out, we forwarded the time, so call update */
787 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
788 
789 	write_seqcount_end(&tk_core.seq);
790 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
791 
792 	/* signal hrtimers about time change */
793 	clock_was_set();
794 
795 	return ret;
796 }
797 EXPORT_SYMBOL(timekeeping_inject_offset);
798 
799 
800 /**
801  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
802  *
803  */
timekeeping_get_tai_offset(void)804 s32 timekeeping_get_tai_offset(void)
805 {
806 	struct timekeeper *tk = &tk_core.timekeeper;
807 	unsigned int seq;
808 	s32 ret;
809 
810 	do {
811 		seq = read_seqcount_begin(&tk_core.seq);
812 		ret = tk->tai_offset;
813 	} while (read_seqcount_retry(&tk_core.seq, seq));
814 
815 	return ret;
816 }
817 
818 /**
819  * __timekeeping_set_tai_offset - Lock free worker function
820  *
821  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)822 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
823 {
824 	tk->tai_offset = tai_offset;
825 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
826 }
827 
828 /**
829  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
830  *
831  */
timekeeping_set_tai_offset(s32 tai_offset)832 void timekeeping_set_tai_offset(s32 tai_offset)
833 {
834 	struct timekeeper *tk = &tk_core.timekeeper;
835 	unsigned long flags;
836 
837 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
838 	write_seqcount_begin(&tk_core.seq);
839 	__timekeeping_set_tai_offset(tk, tai_offset);
840 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
841 	write_seqcount_end(&tk_core.seq);
842 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
843 	clock_was_set();
844 }
845 
846 /**
847  * change_clocksource - Swaps clocksources if a new one is available
848  *
849  * Accumulates current time interval and initializes new clocksource
850  */
change_clocksource(void * data)851 static int change_clocksource(void *data)
852 {
853 	struct timekeeper *tk = &tk_core.timekeeper;
854 	struct clocksource *new, *old;
855 	unsigned long flags;
856 
857 	new = (struct clocksource *) data;
858 
859 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
860 	write_seqcount_begin(&tk_core.seq);
861 
862 	timekeeping_forward_now(tk);
863 	/*
864 	 * If the cs is in module, get a module reference. Succeeds
865 	 * for built-in code (owner == NULL) as well.
866 	 */
867 	if (try_module_get(new->owner)) {
868 		if (!new->enable || new->enable(new) == 0) {
869 			old = tk->tkr_mono.clock;
870 			tk_setup_internals(tk, new);
871 			if (old->disable)
872 				old->disable(old);
873 			module_put(old->owner);
874 		} else {
875 			module_put(new->owner);
876 		}
877 	}
878 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
879 
880 	write_seqcount_end(&tk_core.seq);
881 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
882 
883 	return 0;
884 }
885 
886 /**
887  * timekeeping_notify - Install a new clock source
888  * @clock:		pointer to the clock source
889  *
890  * This function is called from clocksource.c after a new, better clock
891  * source has been registered. The caller holds the clocksource_mutex.
892  */
timekeeping_notify(struct clocksource * clock)893 int timekeeping_notify(struct clocksource *clock)
894 {
895 	struct timekeeper *tk = &tk_core.timekeeper;
896 
897 	if (tk->tkr_mono.clock == clock)
898 		return 0;
899 	stop_machine(change_clocksource, clock, NULL);
900 	tick_clock_notify();
901 	return tk->tkr_mono.clock == clock ? 0 : -1;
902 }
903 
904 /**
905  * getrawmonotonic - Returns the raw monotonic time in a timespec
906  * @ts:		pointer to the timespec to be set
907  *
908  * Returns the raw monotonic time (completely un-modified by ntp)
909  */
getrawmonotonic(struct timespec * ts)910 void getrawmonotonic(struct timespec *ts)
911 {
912 	struct timekeeper *tk = &tk_core.timekeeper;
913 	struct timespec64 ts64;
914 	unsigned long seq;
915 	s64 nsecs;
916 
917 	do {
918 		seq = read_seqcount_begin(&tk_core.seq);
919 		ts64.tv_sec = tk->raw_sec;
920 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
921 
922 	} while (read_seqcount_retry(&tk_core.seq, seq));
923 
924 	ts64.tv_nsec = 0;
925 	timespec64_add_ns(&ts64, nsecs);
926 	*ts = timespec64_to_timespec(ts64);
927 }
928 EXPORT_SYMBOL(getrawmonotonic);
929 
930 /**
931  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
932  */
timekeeping_valid_for_hres(void)933 int timekeeping_valid_for_hres(void)
934 {
935 	struct timekeeper *tk = &tk_core.timekeeper;
936 	unsigned long seq;
937 	int ret;
938 
939 	do {
940 		seq = read_seqcount_begin(&tk_core.seq);
941 
942 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
943 
944 	} while (read_seqcount_retry(&tk_core.seq, seq));
945 
946 	return ret;
947 }
948 
949 /**
950  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
951  */
timekeeping_max_deferment(void)952 u64 timekeeping_max_deferment(void)
953 {
954 	struct timekeeper *tk = &tk_core.timekeeper;
955 	unsigned long seq;
956 	u64 ret;
957 
958 	do {
959 		seq = read_seqcount_begin(&tk_core.seq);
960 
961 		ret = tk->tkr_mono.clock->max_idle_ns;
962 
963 	} while (read_seqcount_retry(&tk_core.seq, seq));
964 
965 	return ret;
966 }
967 
968 /**
969  * read_persistent_clock -  Return time from the persistent clock.
970  *
971  * Weak dummy function for arches that do not yet support it.
972  * Reads the time from the battery backed persistent clock.
973  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
974  *
975  *  XXX - Do be sure to remove it once all arches implement it.
976  */
read_persistent_clock(struct timespec * ts)977 void __weak read_persistent_clock(struct timespec *ts)
978 {
979 	ts->tv_sec = 0;
980 	ts->tv_nsec = 0;
981 }
982 
983 /**
984  * read_boot_clock -  Return time of the system start.
985  *
986  * Weak dummy function for arches that do not yet support it.
987  * Function to read the exact time the system has been started.
988  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
989  *
990  *  XXX - Do be sure to remove it once all arches implement it.
991  */
read_boot_clock(struct timespec * ts)992 void __weak read_boot_clock(struct timespec *ts)
993 {
994 	ts->tv_sec = 0;
995 	ts->tv_nsec = 0;
996 }
997 
998 /*
999  * timekeeping_init - Initializes the clocksource and common timekeeping values
1000  */
timekeeping_init(void)1001 void __init timekeeping_init(void)
1002 {
1003 	struct timekeeper *tk = &tk_core.timekeeper;
1004 	struct clocksource *clock;
1005 	unsigned long flags;
1006 	struct timespec64 now, boot, tmp;
1007 	struct timespec ts;
1008 
1009 	read_persistent_clock(&ts);
1010 	now = timespec_to_timespec64(ts);
1011 	if (!timespec64_valid_strict(&now)) {
1012 		pr_warn("WARNING: Persistent clock returned invalid value!\n"
1013 			"         Check your CMOS/BIOS settings.\n");
1014 		now.tv_sec = 0;
1015 		now.tv_nsec = 0;
1016 	} else if (now.tv_sec || now.tv_nsec)
1017 		persistent_clock_exist = true;
1018 
1019 	read_boot_clock(&ts);
1020 	boot = timespec_to_timespec64(ts);
1021 	if (!timespec64_valid_strict(&boot)) {
1022 		pr_warn("WARNING: Boot clock returned invalid value!\n"
1023 			"         Check your CMOS/BIOS settings.\n");
1024 		boot.tv_sec = 0;
1025 		boot.tv_nsec = 0;
1026 	}
1027 
1028 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1029 	write_seqcount_begin(&tk_core.seq);
1030 	ntp_init();
1031 
1032 	clock = clocksource_default_clock();
1033 	if (clock->enable)
1034 		clock->enable(clock);
1035 	tk_setup_internals(tk, clock);
1036 
1037 	tk_set_xtime(tk, &now);
1038 	tk->raw_sec = 0;
1039 	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1040 		boot = tk_xtime(tk);
1041 
1042 	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1043 	tk_set_wall_to_mono(tk, tmp);
1044 
1045 	timekeeping_update(tk, TK_MIRROR);
1046 
1047 	write_seqcount_end(&tk_core.seq);
1048 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1049 }
1050 
1051 /* time in seconds when suspend began */
1052 static struct timespec64 timekeeping_suspend_time;
1053 
1054 /**
1055  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1056  * @delta: pointer to a timespec delta value
1057  *
1058  * Takes a timespec offset measuring a suspend interval and properly
1059  * adds the sleep offset to the timekeeping variables.
1060  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,struct timespec64 * delta)1061 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1062 					   struct timespec64 *delta)
1063 {
1064 	if (!timespec64_valid_strict(delta)) {
1065 		printk_deferred(KERN_WARNING
1066 				"__timekeeping_inject_sleeptime: Invalid "
1067 				"sleep delta value!\n");
1068 		return;
1069 	}
1070 	tk_xtime_add(tk, delta);
1071 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1072 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1073 	tk_debug_account_sleep_time(delta);
1074 }
1075 
1076 /**
1077  * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
1078  * @delta: pointer to a timespec delta value
1079  *
1080  * This hook is for architectures that cannot support read_persistent_clock
1081  * because their RTC/persistent clock is only accessible when irqs are enabled.
1082  *
1083  * This function should only be called by rtc_resume(), and allows
1084  * a suspend offset to be injected into the timekeeping values.
1085  */
timekeeping_inject_sleeptime(struct timespec * delta)1086 void timekeeping_inject_sleeptime(struct timespec *delta)
1087 {
1088 	struct timekeeper *tk = &tk_core.timekeeper;
1089 	struct timespec64 tmp;
1090 	unsigned long flags;
1091 
1092 	/*
1093 	 * Make sure we don't set the clock twice, as timekeeping_resume()
1094 	 * already did it
1095 	 */
1096 	if (has_persistent_clock())
1097 		return;
1098 
1099 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1100 	write_seqcount_begin(&tk_core.seq);
1101 
1102 	timekeeping_forward_now(tk);
1103 
1104 	tmp = timespec_to_timespec64(*delta);
1105 	__timekeeping_inject_sleeptime(tk, &tmp);
1106 
1107 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1108 
1109 	write_seqcount_end(&tk_core.seq);
1110 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1111 
1112 	/* signal hrtimers about time change */
1113 	clock_was_set();
1114 }
1115 
1116 /**
1117  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1118  *
1119  * This is for the generic clocksource timekeeping.
1120  * xtime/wall_to_monotonic/jiffies/etc are
1121  * still managed by arch specific suspend/resume code.
1122  */
timekeeping_resume(void)1123 static void timekeeping_resume(void)
1124 {
1125 	struct timekeeper *tk = &tk_core.timekeeper;
1126 	struct clocksource *clock = tk->tkr_mono.clock;
1127 	unsigned long flags;
1128 	struct timespec64 ts_new, ts_delta;
1129 	struct timespec tmp;
1130 	cycle_t cycle_now, cycle_delta;
1131 	bool suspendtime_found = false;
1132 
1133 	read_persistent_clock(&tmp);
1134 	ts_new = timespec_to_timespec64(tmp);
1135 
1136 	clockevents_resume();
1137 	clocksource_resume();
1138 
1139 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1140 	write_seqcount_begin(&tk_core.seq);
1141 
1142 	/*
1143 	 * After system resumes, we need to calculate the suspended time and
1144 	 * compensate it for the OS time. There are 3 sources that could be
1145 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1146 	 * device.
1147 	 *
1148 	 * One specific platform may have 1 or 2 or all of them, and the
1149 	 * preference will be:
1150 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1151 	 * The less preferred source will only be tried if there is no better
1152 	 * usable source. The rtc part is handled separately in rtc core code.
1153 	 */
1154 	cycle_now = tk->tkr_mono.read(clock);
1155 	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1156 		cycle_now > tk->tkr_mono.cycle_last) {
1157 		u64 num, max = ULLONG_MAX;
1158 		u32 mult = clock->mult;
1159 		u32 shift = clock->shift;
1160 		s64 nsec = 0;
1161 
1162 		cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1163 						tk->tkr_mono.mask);
1164 
1165 		/*
1166 		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1167 		 * suspended time is too long. In that case we need do the
1168 		 * 64 bits math carefully
1169 		 */
1170 		do_div(max, mult);
1171 		if (cycle_delta > max) {
1172 			num = div64_u64(cycle_delta, max);
1173 			nsec = (((u64) max * mult) >> shift) * num;
1174 			cycle_delta -= num * max;
1175 		}
1176 		nsec += ((u64) cycle_delta * mult) >> shift;
1177 
1178 		ts_delta = ns_to_timespec64(nsec);
1179 		suspendtime_found = true;
1180 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1181 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1182 		suspendtime_found = true;
1183 	}
1184 
1185 	if (suspendtime_found)
1186 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1187 
1188 	/* Re-base the last cycle value */
1189 	tk->tkr_mono.cycle_last = cycle_now;
1190 	tk->tkr_raw.cycle_last  = cycle_now;
1191 
1192 	tk->ntp_error = 0;
1193 	timekeeping_suspended = 0;
1194 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1195 	write_seqcount_end(&tk_core.seq);
1196 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1197 
1198 	touch_softlockup_watchdog();
1199 
1200 	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1201 
1202 	/* Resume hrtimers */
1203 	hrtimers_resume();
1204 }
1205 
timekeeping_suspend(void)1206 static int timekeeping_suspend(void)
1207 {
1208 	struct timekeeper *tk = &tk_core.timekeeper;
1209 	unsigned long flags;
1210 	struct timespec64		delta, delta_delta;
1211 	static struct timespec64	old_delta;
1212 	struct timespec tmp;
1213 
1214 	read_persistent_clock(&tmp);
1215 	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1216 
1217 	/*
1218 	 * On some systems the persistent_clock can not be detected at
1219 	 * timekeeping_init by its return value, so if we see a valid
1220 	 * value returned, update the persistent_clock_exists flag.
1221 	 */
1222 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1223 		persistent_clock_exist = true;
1224 
1225 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1226 	write_seqcount_begin(&tk_core.seq);
1227 	timekeeping_forward_now(tk);
1228 	timekeeping_suspended = 1;
1229 
1230 	/*
1231 	 * To avoid drift caused by repeated suspend/resumes,
1232 	 * which each can add ~1 second drift error,
1233 	 * try to compensate so the difference in system time
1234 	 * and persistent_clock time stays close to constant.
1235 	 */
1236 	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1237 	delta_delta = timespec64_sub(delta, old_delta);
1238 	if (abs(delta_delta.tv_sec)  >= 2) {
1239 		/*
1240 		 * if delta_delta is too large, assume time correction
1241 		 * has occured and set old_delta to the current delta.
1242 		 */
1243 		old_delta = delta;
1244 	} else {
1245 		/* Otherwise try to adjust old_system to compensate */
1246 		timekeeping_suspend_time =
1247 			timespec64_add(timekeeping_suspend_time, delta_delta);
1248 	}
1249 
1250 	timekeeping_update(tk, TK_MIRROR);
1251 	write_seqcount_end(&tk_core.seq);
1252 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1253 
1254 	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1255 	clocksource_suspend();
1256 	clockevents_suspend();
1257 
1258 	return 0;
1259 }
1260 
1261 /* sysfs resume/suspend bits for timekeeping */
1262 static struct syscore_ops timekeeping_syscore_ops = {
1263 	.resume		= timekeeping_resume,
1264 	.suspend	= timekeeping_suspend,
1265 };
1266 
timekeeping_init_ops(void)1267 static int __init timekeeping_init_ops(void)
1268 {
1269 	register_syscore_ops(&timekeeping_syscore_ops);
1270 	return 0;
1271 }
1272 device_initcall(timekeeping_init_ops);
1273 
1274 /*
1275  * Apply a multiplier adjustment to the timekeeper
1276  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,bool negative,int adj_scale)1277 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1278 							 s64 offset,
1279 							 bool negative,
1280 							 int adj_scale)
1281 {
1282 	s64 interval = tk->cycle_interval;
1283 	s32 mult_adj = 1;
1284 
1285 	if (negative) {
1286 		mult_adj = -mult_adj;
1287 		interval = -interval;
1288 		offset  = -offset;
1289 	}
1290 	mult_adj <<= adj_scale;
1291 	interval <<= adj_scale;
1292 	offset <<= adj_scale;
1293 
1294 	/*
1295 	 * So the following can be confusing.
1296 	 *
1297 	 * To keep things simple, lets assume mult_adj == 1 for now.
1298 	 *
1299 	 * When mult_adj != 1, remember that the interval and offset values
1300 	 * have been appropriately scaled so the math is the same.
1301 	 *
1302 	 * The basic idea here is that we're increasing the multiplier
1303 	 * by one, this causes the xtime_interval to be incremented by
1304 	 * one cycle_interval. This is because:
1305 	 *	xtime_interval = cycle_interval * mult
1306 	 * So if mult is being incremented by one:
1307 	 *	xtime_interval = cycle_interval * (mult + 1)
1308 	 * Its the same as:
1309 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1310 	 * Which can be shortened to:
1311 	 *	xtime_interval += cycle_interval
1312 	 *
1313 	 * So offset stores the non-accumulated cycles. Thus the current
1314 	 * time (in shifted nanoseconds) is:
1315 	 *	now = (offset * adj) + xtime_nsec
1316 	 * Now, even though we're adjusting the clock frequency, we have
1317 	 * to keep time consistent. In other words, we can't jump back
1318 	 * in time, and we also want to avoid jumping forward in time.
1319 	 *
1320 	 * So given the same offset value, we need the time to be the same
1321 	 * both before and after the freq adjustment.
1322 	 *	now = (offset * adj_1) + xtime_nsec_1
1323 	 *	now = (offset * adj_2) + xtime_nsec_2
1324 	 * So:
1325 	 *	(offset * adj_1) + xtime_nsec_1 =
1326 	 *		(offset * adj_2) + xtime_nsec_2
1327 	 * And we know:
1328 	 *	adj_2 = adj_1 + 1
1329 	 * So:
1330 	 *	(offset * adj_1) + xtime_nsec_1 =
1331 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1332 	 *	(offset * adj_1) + xtime_nsec_1 =
1333 	 *		(offset * adj_1) + offset + xtime_nsec_2
1334 	 * Canceling the sides:
1335 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1336 	 * Which gives us:
1337 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1338 	 * Which simplfies to:
1339 	 *	xtime_nsec -= offset
1340 	 *
1341 	 * XXX - TODO: Doc ntp_error calculation.
1342 	 */
1343 	tk->tkr_mono.mult += mult_adj;
1344 	tk->xtime_interval += interval;
1345 	tk->tkr_mono.xtime_nsec -= offset;
1346 	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1347 }
1348 
1349 /*
1350  * Calculate the multiplier adjustment needed to match the frequency
1351  * specified by NTP
1352  */
timekeeping_freqadjust(struct timekeeper * tk,s64 offset)1353 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1354 							s64 offset)
1355 {
1356 	s64 interval = tk->cycle_interval;
1357 	s64 xinterval = tk->xtime_interval;
1358 	s64 tick_error;
1359 	bool negative;
1360 	u32 adj;
1361 
1362 	/* Remove any current error adj from freq calculation */
1363 	if (tk->ntp_err_mult)
1364 		xinterval -= tk->cycle_interval;
1365 
1366 	tk->ntp_tick = ntp_tick_length();
1367 
1368 	/* Calculate current error per tick */
1369 	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1370 	tick_error -= (xinterval + tk->xtime_remainder);
1371 
1372 	/* Don't worry about correcting it if its small */
1373 	if (likely((tick_error >= 0) && (tick_error <= interval)))
1374 		return;
1375 
1376 	/* preserve the direction of correction */
1377 	negative = (tick_error < 0);
1378 
1379 	/* Sort out the magnitude of the correction */
1380 	tick_error = abs64(tick_error);
1381 	for (adj = 0; tick_error > interval; adj++)
1382 		tick_error >>= 1;
1383 
1384 	/* scale the corrections */
1385 	timekeeping_apply_adjustment(tk, offset, negative, adj);
1386 }
1387 
1388 /*
1389  * Adjust the timekeeper's multiplier to the correct frequency
1390  * and also to reduce the accumulated error value.
1391  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1392 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1393 {
1394 	/* Correct for the current frequency error */
1395 	timekeeping_freqadjust(tk, offset);
1396 
1397 	/* Next make a small adjustment to fix any cumulative error */
1398 	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1399 		tk->ntp_err_mult = 1;
1400 		timekeeping_apply_adjustment(tk, offset, 0, 0);
1401 	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1402 		/* Undo any existing error adjustment */
1403 		timekeeping_apply_adjustment(tk, offset, 1, 0);
1404 		tk->ntp_err_mult = 0;
1405 	}
1406 
1407 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1408 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1409 			> tk->tkr_mono.clock->maxadj))) {
1410 		printk_once(KERN_WARNING
1411 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1412 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1413 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1414 	}
1415 
1416 	/*
1417 	 * It may be possible that when we entered this function, xtime_nsec
1418 	 * was very small.  Further, if we're slightly speeding the clocksource
1419 	 * in the code above, its possible the required corrective factor to
1420 	 * xtime_nsec could cause it to underflow.
1421 	 *
1422 	 * Now, since we already accumulated the second, cannot simply roll
1423 	 * the accumulated second back, since the NTP subsystem has been
1424 	 * notified via second_overflow. So instead we push xtime_nsec forward
1425 	 * by the amount we underflowed, and add that amount into the error.
1426 	 *
1427 	 * We'll correct this error next time through this function, when
1428 	 * xtime_nsec is not as small.
1429 	 */
1430 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1431 		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1432 		tk->tkr_mono.xtime_nsec = 0;
1433 		tk->ntp_error += neg << tk->ntp_error_shift;
1434 	}
1435 }
1436 
1437 /**
1438  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1439  *
1440  * Helper function that accumulates a the nsecs greater then a second
1441  * from the xtime_nsec field to the xtime_secs field.
1442  * It also calls into the NTP code to handle leapsecond processing.
1443  *
1444  */
accumulate_nsecs_to_secs(struct timekeeper * tk)1445 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1446 {
1447 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1448 	unsigned int clock_set = 0;
1449 
1450 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1451 		int leap;
1452 
1453 		tk->tkr_mono.xtime_nsec -= nsecps;
1454 		tk->xtime_sec++;
1455 
1456 		/* Figure out if its a leap sec and apply if needed */
1457 		leap = second_overflow(tk->xtime_sec);
1458 		if (unlikely(leap)) {
1459 			struct timespec64 ts;
1460 
1461 			tk->xtime_sec += leap;
1462 
1463 			ts.tv_sec = leap;
1464 			ts.tv_nsec = 0;
1465 			tk_set_wall_to_mono(tk,
1466 				timespec64_sub(tk->wall_to_monotonic, ts));
1467 
1468 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1469 
1470 			clock_set = TK_CLOCK_WAS_SET;
1471 		}
1472 	}
1473 	return clock_set;
1474 }
1475 
1476 /**
1477  * logarithmic_accumulation - shifted accumulation of cycles
1478  *
1479  * This functions accumulates a shifted interval of cycles into
1480  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1481  * loop.
1482  *
1483  * Returns the unconsumed cycles.
1484  */
logarithmic_accumulation(struct timekeeper * tk,cycle_t offset,u32 shift,unsigned int * clock_set)1485 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1486 						u32 shift,
1487 						unsigned int *clock_set)
1488 {
1489 	cycle_t interval = tk->cycle_interval << shift;
1490 	u64 snsec_per_sec;
1491 
1492 	/* If the offset is smaller then a shifted interval, do nothing */
1493 	if (offset < interval)
1494 		return offset;
1495 
1496 	/* Accumulate one shifted interval */
1497 	offset -= interval;
1498 	tk->tkr_mono.cycle_last += interval;
1499 	tk->tkr_raw.cycle_last  += interval;
1500 
1501 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1502 	*clock_set |= accumulate_nsecs_to_secs(tk);
1503 
1504 	/* Accumulate raw time */
1505 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
1506 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
1507 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
1508 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
1509 		tk->raw_sec++;
1510 	}
1511 
1512 	/* Accumulate error between NTP and clock interval */
1513 	tk->ntp_error += tk->ntp_tick << shift;
1514 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1515 						(tk->ntp_error_shift + shift);
1516 
1517 	return offset;
1518 }
1519 
1520 /**
1521  * update_wall_time - Uses the current clocksource to increment the wall time
1522  *
1523  */
update_wall_time(void)1524 void update_wall_time(void)
1525 {
1526 	struct timekeeper *real_tk = &tk_core.timekeeper;
1527 	struct timekeeper *tk = &shadow_timekeeper;
1528 	cycle_t offset;
1529 	int shift = 0, maxshift;
1530 	unsigned int clock_set = 0;
1531 	unsigned long flags;
1532 
1533 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1534 
1535 	/* Make sure we're fully resumed: */
1536 	if (unlikely(timekeeping_suspended))
1537 		goto out;
1538 
1539 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1540 	offset = real_tk->cycle_interval;
1541 #else
1542 	offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
1543 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
1544 #endif
1545 
1546 	/* Check if there's really nothing to do */
1547 	if (offset < real_tk->cycle_interval)
1548 		goto out;
1549 
1550 	/*
1551 	 * With NO_HZ we may have to accumulate many cycle_intervals
1552 	 * (think "ticks") worth of time at once. To do this efficiently,
1553 	 * we calculate the largest doubling multiple of cycle_intervals
1554 	 * that is smaller than the offset.  We then accumulate that
1555 	 * chunk in one go, and then try to consume the next smaller
1556 	 * doubled multiple.
1557 	 */
1558 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1559 	shift = max(0, shift);
1560 	/* Bound shift to one less than what overflows tick_length */
1561 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1562 	shift = min(shift, maxshift);
1563 	while (offset >= tk->cycle_interval) {
1564 		offset = logarithmic_accumulation(tk, offset, shift,
1565 							&clock_set);
1566 		if (offset < tk->cycle_interval<<shift)
1567 			shift--;
1568 	}
1569 
1570 	/* correct the clock when NTP error is too big */
1571 	timekeeping_adjust(tk, offset);
1572 
1573 	/*
1574 	 * XXX This can be killed once everyone converts
1575 	 * to the new update_vsyscall.
1576 	 */
1577 	old_vsyscall_fixup(tk);
1578 
1579 	/*
1580 	 * Finally, make sure that after the rounding
1581 	 * xtime_nsec isn't larger than NSEC_PER_SEC
1582 	 */
1583 	clock_set |= accumulate_nsecs_to_secs(tk);
1584 
1585 	write_seqcount_begin(&tk_core.seq);
1586 	/*
1587 	 * Update the real timekeeper.
1588 	 *
1589 	 * We could avoid this memcpy by switching pointers, but that
1590 	 * requires changes to all other timekeeper usage sites as
1591 	 * well, i.e. move the timekeeper pointer getter into the
1592 	 * spinlocked/seqcount protected sections. And we trade this
1593 	 * memcpy under the tk_core.seq against one before we start
1594 	 * updating.
1595 	 */
1596 	memcpy(real_tk, tk, sizeof(*tk));
1597 	timekeeping_update(real_tk, clock_set);
1598 	write_seqcount_end(&tk_core.seq);
1599 out:
1600 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1601 	if (clock_set)
1602 		/* Have to call _delayed version, since in irq context*/
1603 		clock_was_set_delayed();
1604 }
1605 
1606 /**
1607  * getboottime - Return the real time of system boot.
1608  * @ts:		pointer to the timespec to be set
1609  *
1610  * Returns the wall-time of boot in a timespec.
1611  *
1612  * This is based on the wall_to_monotonic offset and the total suspend
1613  * time. Calls to settimeofday will affect the value returned (which
1614  * basically means that however wrong your real time clock is at boot time,
1615  * you get the right time here).
1616  */
getboottime(struct timespec * ts)1617 void getboottime(struct timespec *ts)
1618 {
1619 	struct timekeeper *tk = &tk_core.timekeeper;
1620 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1621 
1622 	*ts = ktime_to_timespec(t);
1623 }
1624 EXPORT_SYMBOL_GPL(getboottime);
1625 
get_seconds(void)1626 unsigned long get_seconds(void)
1627 {
1628 	struct timekeeper *tk = &tk_core.timekeeper;
1629 
1630 	return tk->xtime_sec;
1631 }
1632 EXPORT_SYMBOL(get_seconds);
1633 
__current_kernel_time(void)1634 struct timespec __current_kernel_time(void)
1635 {
1636 	struct timekeeper *tk = &tk_core.timekeeper;
1637 
1638 	return timespec64_to_timespec(tk_xtime(tk));
1639 }
1640 
current_kernel_time(void)1641 struct timespec current_kernel_time(void)
1642 {
1643 	struct timekeeper *tk = &tk_core.timekeeper;
1644 	struct timespec64 now;
1645 	unsigned long seq;
1646 
1647 	do {
1648 		seq = read_seqcount_begin(&tk_core.seq);
1649 
1650 		now = tk_xtime(tk);
1651 	} while (read_seqcount_retry(&tk_core.seq, seq));
1652 
1653 	return timespec64_to_timespec(now);
1654 }
1655 EXPORT_SYMBOL(current_kernel_time);
1656 
get_monotonic_coarse(void)1657 struct timespec get_monotonic_coarse(void)
1658 {
1659 	struct timekeeper *tk = &tk_core.timekeeper;
1660 	struct timespec64 now, mono;
1661 	unsigned long seq;
1662 
1663 	do {
1664 		seq = read_seqcount_begin(&tk_core.seq);
1665 
1666 		now = tk_xtime(tk);
1667 		mono = tk->wall_to_monotonic;
1668 	} while (read_seqcount_retry(&tk_core.seq, seq));
1669 
1670 	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1671 				now.tv_nsec + mono.tv_nsec);
1672 
1673 	return timespec64_to_timespec(now);
1674 }
1675 
1676 /*
1677  * Must hold jiffies_lock
1678  */
do_timer(unsigned long ticks)1679 void do_timer(unsigned long ticks)
1680 {
1681 	jiffies_64 += ticks;
1682 	calc_global_load(ticks);
1683 }
1684 
1685 /**
1686  * ktime_get_update_offsets_tick - hrtimer helper
1687  * @offs_real:	pointer to storage for monotonic -> realtime offset
1688  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1689  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1690  *
1691  * Returns monotonic time at last tick and various offsets
1692  */
ktime_get_update_offsets_tick(ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)1693 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1694 							ktime_t *offs_tai)
1695 {
1696 	struct timekeeper *tk = &tk_core.timekeeper;
1697 	unsigned int seq;
1698 	ktime_t base;
1699 	u64 nsecs;
1700 
1701 	do {
1702 		seq = read_seqcount_begin(&tk_core.seq);
1703 
1704 		base = tk->tkr_mono.base;
1705 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
1706 
1707 		*offs_real = tk->offs_real;
1708 		*offs_boot = tk->offs_boot;
1709 		*offs_tai = tk->offs_tai;
1710 	} while (read_seqcount_retry(&tk_core.seq, seq));
1711 
1712 	return ktime_add_ns(base, nsecs);
1713 }
1714 
1715 #ifdef CONFIG_HIGH_RES_TIMERS
1716 /**
1717  * ktime_get_update_offsets_now - hrtimer helper
1718  * @offs_real:	pointer to storage for monotonic -> realtime offset
1719  * @offs_boot:	pointer to storage for monotonic -> boottime offset
1720  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1721  *
1722  * Returns current monotonic time and updates the offsets
1723  * Called from hrtimer_interrupt() or retrigger_next_event()
1724  */
ktime_get_update_offsets_now(ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)1725 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1726 							ktime_t *offs_tai)
1727 {
1728 	struct timekeeper *tk = &tk_core.timekeeper;
1729 	unsigned int seq;
1730 	ktime_t base;
1731 	u64 nsecs;
1732 
1733 	do {
1734 		seq = read_seqcount_begin(&tk_core.seq);
1735 
1736 		base = tk->tkr_mono.base;
1737 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
1738 
1739 		*offs_real = tk->offs_real;
1740 		*offs_boot = tk->offs_boot;
1741 		*offs_tai = tk->offs_tai;
1742 	} while (read_seqcount_retry(&tk_core.seq, seq));
1743 
1744 	return ktime_add_ns(base, nsecs);
1745 }
1746 #endif
1747 
1748 /**
1749  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1750  */
do_adjtimex(struct timex * txc)1751 int do_adjtimex(struct timex *txc)
1752 {
1753 	struct timekeeper *tk = &tk_core.timekeeper;
1754 	unsigned long flags;
1755 	struct timespec64 ts;
1756 	s32 orig_tai, tai;
1757 	int ret;
1758 
1759 	/* Validate the data before disabling interrupts */
1760 	ret = ntp_validate_timex(txc);
1761 	if (ret)
1762 		return ret;
1763 
1764 	if (txc->modes & ADJ_SETOFFSET) {
1765 		struct timespec delta;
1766 		delta.tv_sec  = txc->time.tv_sec;
1767 		delta.tv_nsec = txc->time.tv_usec;
1768 		if (!(txc->modes & ADJ_NANO))
1769 			delta.tv_nsec *= 1000;
1770 		ret = timekeeping_inject_offset(&delta);
1771 		if (ret)
1772 			return ret;
1773 	}
1774 
1775 	getnstimeofday64(&ts);
1776 
1777 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1778 	write_seqcount_begin(&tk_core.seq);
1779 
1780 	orig_tai = tai = tk->tai_offset;
1781 	ret = __do_adjtimex(txc, &ts, &tai);
1782 
1783 	if (tai != orig_tai) {
1784 		__timekeeping_set_tai_offset(tk, tai);
1785 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1786 	}
1787 	write_seqcount_end(&tk_core.seq);
1788 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1789 
1790 	if (tai != orig_tai)
1791 		clock_was_set();
1792 
1793 	ntp_notify_cmos_timer();
1794 
1795 	return ret;
1796 }
1797 
1798 #ifdef CONFIG_NTP_PPS
1799 /**
1800  * hardpps() - Accessor function to NTP __hardpps function
1801  */
hardpps(const struct timespec * phase_ts,const struct timespec * raw_ts)1802 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1803 {
1804 	unsigned long flags;
1805 
1806 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1807 	write_seqcount_begin(&tk_core.seq);
1808 
1809 	__hardpps(phase_ts, raw_ts);
1810 
1811 	write_seqcount_end(&tk_core.seq);
1812 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1813 }
1814 EXPORT_SYMBOL(hardpps);
1815 #endif
1816 
1817 /**
1818  * xtime_update() - advances the timekeeping infrastructure
1819  * @ticks:	number of ticks, that have elapsed since the last call.
1820  *
1821  * Must be called with interrupts disabled.
1822  */
xtime_update(unsigned long ticks)1823 void xtime_update(unsigned long ticks)
1824 {
1825 	write_seqlock(&jiffies_lock);
1826 	do_timer(ticks);
1827 	write_sequnlock(&jiffies_lock);
1828 	update_wall_time();
1829 }
1830