• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/mwait.h>
28 #include <asm/i387.h>
29 #include <asm/fpu-internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33 
34 /*
35  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
36  * no more per-task TSS's. The TSS size is kept cacheline-aligned
37  * so they are allowed to end up in the .data..cacheline_aligned
38  * section. Since TSS's are completely CPU-local, we want them
39  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
40  */
41 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
42 
43 #ifdef CONFIG_X86_64
44 static DEFINE_PER_CPU(unsigned char, is_idle);
45 #endif
46 
47 struct kmem_cache *task_xstate_cachep;
48 EXPORT_SYMBOL_GPL(task_xstate_cachep);
49 
50 /*
51  * this gets called so that we can store lazy state into memory and copy the
52  * current task into the new thread.
53  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)54 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
55 {
56 	*dst = *src;
57 
58 	dst->thread.fpu_counter = 0;
59 	dst->thread.fpu.has_fpu = 0;
60 	dst->thread.fpu.last_cpu = ~0;
61 	dst->thread.fpu.state = NULL;
62 	if (tsk_used_math(src)) {
63 		int err = fpu_alloc(&dst->thread.fpu);
64 		if (err)
65 			return err;
66 		fpu_copy(dst, src);
67 	}
68 	return 0;
69 }
70 
free_thread_xstate(struct task_struct * tsk)71 void free_thread_xstate(struct task_struct *tsk)
72 {
73 	fpu_free(&tsk->thread.fpu);
74 }
75 
arch_release_task_struct(struct task_struct * tsk)76 void arch_release_task_struct(struct task_struct *tsk)
77 {
78 	free_thread_xstate(tsk);
79 }
80 
arch_task_cache_init(void)81 void arch_task_cache_init(void)
82 {
83         task_xstate_cachep =
84         	kmem_cache_create("task_xstate", xstate_size,
85 				  __alignof__(union thread_xstate),
86 				  SLAB_PANIC | SLAB_NOTRACK, NULL);
87 	setup_xstate_comp();
88 }
89 
90 /*
91  * Free current thread data structures etc..
92  */
exit_thread(struct task_struct * tsk)93 void exit_thread(struct task_struct *tsk)
94 {
95 	struct thread_struct *t = &tsk->thread;
96 	unsigned long *bp = t->io_bitmap_ptr;
97 
98 	if (bp) {
99 		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
100 
101 		t->io_bitmap_ptr = NULL;
102 		clear_thread_flag(TIF_IO_BITMAP);
103 		/*
104 		 * Careful, clear this in the TSS too:
105 		 */
106 		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
107 		t->io_bitmap_max = 0;
108 		put_cpu();
109 		kfree(bp);
110 	}
111 
112 	drop_fpu(tsk);
113 }
114 
flush_thread(void)115 void flush_thread(void)
116 {
117 	struct task_struct *tsk = current;
118 
119 	flush_ptrace_hw_breakpoint(tsk);
120 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
121 	drop_init_fpu(tsk);
122 	/*
123 	 * Free the FPU state for non xsave platforms. They get reallocated
124 	 * lazily at the first use.
125 	 */
126 	if (!use_eager_fpu())
127 		free_thread_xstate(tsk);
128 }
129 
hard_disable_TSC(void)130 static void hard_disable_TSC(void)
131 {
132 	cr4_set_bits(X86_CR4_TSD);
133 }
134 
disable_TSC(void)135 void disable_TSC(void)
136 {
137 	preempt_disable();
138 	if (!test_and_set_thread_flag(TIF_NOTSC))
139 		/*
140 		 * Must flip the CPU state synchronously with
141 		 * TIF_NOTSC in the current running context.
142 		 */
143 		hard_disable_TSC();
144 	preempt_enable();
145 }
146 
hard_enable_TSC(void)147 static void hard_enable_TSC(void)
148 {
149 	cr4_clear_bits(X86_CR4_TSD);
150 }
151 
enable_TSC(void)152 static void enable_TSC(void)
153 {
154 	preempt_disable();
155 	if (test_and_clear_thread_flag(TIF_NOTSC))
156 		/*
157 		 * Must flip the CPU state synchronously with
158 		 * TIF_NOTSC in the current running context.
159 		 */
160 		hard_enable_TSC();
161 	preempt_enable();
162 }
163 
get_tsc_mode(unsigned long adr)164 int get_tsc_mode(unsigned long adr)
165 {
166 	unsigned int val;
167 
168 	if (test_thread_flag(TIF_NOTSC))
169 		val = PR_TSC_SIGSEGV;
170 	else
171 		val = PR_TSC_ENABLE;
172 
173 	return put_user(val, (unsigned int __user *)adr);
174 }
175 
set_tsc_mode(unsigned int val)176 int set_tsc_mode(unsigned int val)
177 {
178 	if (val == PR_TSC_SIGSEGV)
179 		disable_TSC();
180 	else if (val == PR_TSC_ENABLE)
181 		enable_TSC();
182 	else
183 		return -EINVAL;
184 
185 	return 0;
186 }
187 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p,struct tss_struct * tss)188 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
189 		      struct tss_struct *tss)
190 {
191 	struct thread_struct *prev, *next;
192 
193 	prev = &prev_p->thread;
194 	next = &next_p->thread;
195 
196 	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
197 	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
198 		unsigned long debugctl = get_debugctlmsr();
199 
200 		debugctl &= ~DEBUGCTLMSR_BTF;
201 		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
202 			debugctl |= DEBUGCTLMSR_BTF;
203 
204 		update_debugctlmsr(debugctl);
205 	}
206 
207 	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
208 	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
209 		/* prev and next are different */
210 		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
211 			hard_disable_TSC();
212 		else
213 			hard_enable_TSC();
214 	}
215 
216 	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
217 		/*
218 		 * Copy the relevant range of the IO bitmap.
219 		 * Normally this is 128 bytes or less:
220 		 */
221 		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
222 		       max(prev->io_bitmap_max, next->io_bitmap_max));
223 	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
224 		/*
225 		 * Clear any possible leftover bits:
226 		 */
227 		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
228 	}
229 	propagate_user_return_notify(prev_p, next_p);
230 }
231 
232 /*
233  * Idle related variables and functions
234  */
235 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
236 EXPORT_SYMBOL(boot_option_idle_override);
237 
238 static void (*x86_idle)(void);
239 
240 #ifndef CONFIG_SMP
play_dead(void)241 static inline void play_dead(void)
242 {
243 	BUG();
244 }
245 #endif
246 
247 #ifdef CONFIG_X86_64
enter_idle(void)248 void enter_idle(void)
249 {
250 	this_cpu_write(is_idle, 1);
251 	idle_notifier_call_chain(IDLE_START);
252 }
253 
__exit_idle(void)254 static void __exit_idle(void)
255 {
256 	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
257 		return;
258 	idle_notifier_call_chain(IDLE_END);
259 }
260 
261 /* Called from interrupts to signify idle end */
exit_idle(void)262 void exit_idle(void)
263 {
264 	/* idle loop has pid 0 */
265 	if (current->pid)
266 		return;
267 	__exit_idle();
268 }
269 #endif
270 
arch_cpu_idle_enter(void)271 void arch_cpu_idle_enter(void)
272 {
273 	local_touch_nmi();
274 	enter_idle();
275 }
276 
arch_cpu_idle_exit(void)277 void arch_cpu_idle_exit(void)
278 {
279 	__exit_idle();
280 }
281 
arch_cpu_idle_dead(void)282 void arch_cpu_idle_dead(void)
283 {
284 	play_dead();
285 }
286 
287 /*
288  * Called from the generic idle code.
289  */
arch_cpu_idle(void)290 void arch_cpu_idle(void)
291 {
292 	x86_idle();
293 }
294 
295 /*
296  * We use this if we don't have any better idle routine..
297  */
default_idle(void)298 void default_idle(void)
299 {
300 	trace_cpu_idle_rcuidle(1, smp_processor_id());
301 	safe_halt();
302 	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
303 }
304 #ifdef CONFIG_APM_MODULE
305 EXPORT_SYMBOL(default_idle);
306 #endif
307 
308 #ifdef CONFIG_XEN
xen_set_default_idle(void)309 bool xen_set_default_idle(void)
310 {
311 	bool ret = !!x86_idle;
312 
313 	x86_idle = default_idle;
314 
315 	return ret;
316 }
317 #endif
stop_this_cpu(void * dummy)318 void stop_this_cpu(void *dummy)
319 {
320 	local_irq_disable();
321 	/*
322 	 * Remove this CPU:
323 	 */
324 	set_cpu_online(smp_processor_id(), false);
325 	disable_local_APIC();
326 
327 	for (;;)
328 		halt();
329 }
330 
331 bool amd_e400_c1e_detected;
332 EXPORT_SYMBOL(amd_e400_c1e_detected);
333 
334 static cpumask_var_t amd_e400_c1e_mask;
335 
amd_e400_remove_cpu(int cpu)336 void amd_e400_remove_cpu(int cpu)
337 {
338 	if (amd_e400_c1e_mask != NULL)
339 		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
340 }
341 
342 /*
343  * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
344  * pending message MSR. If we detect C1E, then we handle it the same
345  * way as C3 power states (local apic timer and TSC stop)
346  */
amd_e400_idle(void)347 static void amd_e400_idle(void)
348 {
349 	if (!amd_e400_c1e_detected) {
350 		u32 lo, hi;
351 
352 		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
353 
354 		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
355 			amd_e400_c1e_detected = true;
356 			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
357 				mark_tsc_unstable("TSC halt in AMD C1E");
358 			pr_info("System has AMD C1E enabled\n");
359 		}
360 	}
361 
362 	if (amd_e400_c1e_detected) {
363 		int cpu = smp_processor_id();
364 
365 		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
366 			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
367 			/*
368 			 * Force broadcast so ACPI can not interfere.
369 			 */
370 			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
371 					   &cpu);
372 			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
373 		}
374 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
375 
376 		default_idle();
377 
378 		/*
379 		 * The switch back from broadcast mode needs to be
380 		 * called with interrupts disabled.
381 		 */
382 		local_irq_disable();
383 		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
384 		local_irq_enable();
385 	} else
386 		default_idle();
387 }
388 
389 /*
390  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
391  * We can't rely on cpuidle installing MWAIT, because it will not load
392  * on systems that support only C1 -- so the boot default must be MWAIT.
393  *
394  * Some AMD machines are the opposite, they depend on using HALT.
395  *
396  * So for default C1, which is used during boot until cpuidle loads,
397  * use MWAIT-C1 on Intel HW that has it, else use HALT.
398  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)399 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
400 {
401 	if (c->x86_vendor != X86_VENDOR_INTEL)
402 		return 0;
403 
404 	if (!cpu_has(c, X86_FEATURE_MWAIT))
405 		return 0;
406 
407 	return 1;
408 }
409 
410 /*
411  * MONITOR/MWAIT with no hints, used for default default C1 state.
412  * This invokes MWAIT with interrutps enabled and no flags,
413  * which is backwards compatible with the original MWAIT implementation.
414  */
415 
mwait_idle(void)416 static void mwait_idle(void)
417 {
418 	if (!current_set_polling_and_test()) {
419 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
420 			smp_mb(); /* quirk */
421 			clflush((void *)&current_thread_info()->flags);
422 			smp_mb(); /* quirk */
423 		}
424 
425 		__monitor((void *)&current_thread_info()->flags, 0, 0);
426 		if (!need_resched())
427 			__sti_mwait(0, 0);
428 		else
429 			local_irq_enable();
430 	} else {
431 		local_irq_enable();
432 	}
433 	__current_clr_polling();
434 }
435 
select_idle_routine(const struct cpuinfo_x86 * c)436 void select_idle_routine(const struct cpuinfo_x86 *c)
437 {
438 #ifdef CONFIG_SMP
439 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
440 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
441 #endif
442 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
443 		return;
444 
445 	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
446 		/* E400: APIC timer interrupt does not wake up CPU from C1e */
447 		pr_info("using AMD E400 aware idle routine\n");
448 		x86_idle = amd_e400_idle;
449 	} else if (prefer_mwait_c1_over_halt(c)) {
450 		pr_info("using mwait in idle threads\n");
451 		x86_idle = mwait_idle;
452 	} else
453 		x86_idle = default_idle;
454 }
455 
init_amd_e400_c1e_mask(void)456 void __init init_amd_e400_c1e_mask(void)
457 {
458 	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
459 	if (x86_idle == amd_e400_idle)
460 		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
461 }
462 
idle_setup(char * str)463 static int __init idle_setup(char *str)
464 {
465 	if (!str)
466 		return -EINVAL;
467 
468 	if (!strcmp(str, "poll")) {
469 		pr_info("using polling idle threads\n");
470 		boot_option_idle_override = IDLE_POLL;
471 		cpu_idle_poll_ctrl(true);
472 	} else if (!strcmp(str, "halt")) {
473 		/*
474 		 * When the boot option of idle=halt is added, halt is
475 		 * forced to be used for CPU idle. In such case CPU C2/C3
476 		 * won't be used again.
477 		 * To continue to load the CPU idle driver, don't touch
478 		 * the boot_option_idle_override.
479 		 */
480 		x86_idle = default_idle;
481 		boot_option_idle_override = IDLE_HALT;
482 	} else if (!strcmp(str, "nomwait")) {
483 		/*
484 		 * If the boot option of "idle=nomwait" is added,
485 		 * it means that mwait will be disabled for CPU C2/C3
486 		 * states. In such case it won't touch the variable
487 		 * of boot_option_idle_override.
488 		 */
489 		boot_option_idle_override = IDLE_NOMWAIT;
490 	} else
491 		return -1;
492 
493 	return 0;
494 }
495 early_param("idle", idle_setup);
496 
arch_align_stack(unsigned long sp)497 unsigned long arch_align_stack(unsigned long sp)
498 {
499 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
500 		sp -= get_random_int() % 8192;
501 	return sp & ~0xf;
502 }
503 
arch_randomize_brk(struct mm_struct * mm)504 unsigned long arch_randomize_brk(struct mm_struct *mm)
505 {
506 	unsigned long range_end = mm->brk + 0x02000000;
507 	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
508 }
509 
510