1 /*
2 * u_ether.c -- Ethernet-over-USB link layer utilities for Gadget stack
3 *
4 * Copyright (C) 2003-2005,2008 David Brownell
5 * Copyright (C) 2003-2004 Robert Schwebel, Benedikt Spranger
6 * Copyright (C) 2008 Nokia Corporation
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 /* #define VERBOSE_DEBUG */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/device.h>
20 #include <linux/ctype.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24
25 #include "u_ether.h"
26
27
28 /*
29 * This component encapsulates the Ethernet link glue needed to provide
30 * one (!) network link through the USB gadget stack, normally "usb0".
31 *
32 * The control and data models are handled by the function driver which
33 * connects to this code; such as CDC Ethernet (ECM or EEM),
34 * "CDC Subset", or RNDIS. That includes all descriptor and endpoint
35 * management.
36 *
37 * Link level addressing is handled by this component using module
38 * parameters; if no such parameters are provided, random link level
39 * addresses are used. Each end of the link uses one address. The
40 * host end address is exported in various ways, and is often recorded
41 * in configuration databases.
42 *
43 * The driver which assembles each configuration using such a link is
44 * responsible for ensuring that each configuration includes at most one
45 * instance of is network link. (The network layer provides ways for
46 * this single "physical" link to be used by multiple virtual links.)
47 */
48
49 #define UETH__VERSION "29-May-2008"
50
51 static struct workqueue_struct *uether_wq;
52
53 struct eth_dev {
54 /* lock is held while accessing port_usb
55 */
56 spinlock_t lock;
57 struct gether *port_usb;
58
59 struct net_device *net;
60 struct usb_gadget *gadget;
61
62 spinlock_t req_lock; /* guard {rx,tx}_reqs */
63 struct list_head tx_reqs, rx_reqs;
64 unsigned tx_qlen;
65 /* Minimum number of TX USB request queued to UDC */
66 #define TX_REQ_THRESHOLD 5
67 int no_tx_req_used;
68 int tx_skb_hold_count;
69 u32 tx_req_bufsize;
70
71 struct sk_buff_head rx_frames;
72
73 unsigned qmult;
74
75 unsigned header_len;
76 unsigned ul_max_pkts_per_xfer;
77 unsigned dl_max_pkts_per_xfer;
78 struct sk_buff *(*wrap)(struct gether *, struct sk_buff *skb);
79 int (*unwrap)(struct gether *,
80 struct sk_buff *skb,
81 struct sk_buff_head *list);
82
83 struct work_struct work;
84 struct work_struct rx_work;
85
86 unsigned long todo;
87 #define WORK_RX_MEMORY 0
88
89 bool zlp;
90 u8 host_mac[ETH_ALEN];
91 u8 dev_mac[ETH_ALEN];
92 };
93
94 /*-------------------------------------------------------------------------*/
95
96 #define RX_EXTRA 20 /* bytes guarding against rx overflows */
97
98 #define DEFAULT_QLEN 2 /* double buffering by default */
99
100 /* for dual-speed hardware, use deeper queues at high/super speed */
qlen(struct usb_gadget * gadget,unsigned qmult)101 static inline int qlen(struct usb_gadget *gadget, unsigned qmult)
102 {
103 if (gadget_is_dualspeed(gadget) && (gadget->speed == USB_SPEED_HIGH ||
104 gadget->speed == USB_SPEED_SUPER))
105 return qmult * DEFAULT_QLEN;
106 else
107 return DEFAULT_QLEN;
108 }
109
110 /*-------------------------------------------------------------------------*/
111
112 /* REVISIT there must be a better way than having two sets
113 * of debug calls ...
114 */
115
116 #undef DBG
117 #undef VDBG
118 #undef ERROR
119 #undef INFO
120
121 #define xprintk(d, level, fmt, args...) \
122 printk(level "%s: " fmt , (d)->net->name , ## args)
123
124 #ifdef DEBUG
125 #undef DEBUG
126 #define DBG(dev, fmt, args...) \
127 xprintk(dev , KERN_DEBUG , fmt , ## args)
128 #else
129 #define DBG(dev, fmt, args...) \
130 do { } while (0)
131 #endif /* DEBUG */
132
133 #ifdef VERBOSE_DEBUG
134 #define VDBG DBG
135 #else
136 #define VDBG(dev, fmt, args...) \
137 do { } while (0)
138 #endif /* DEBUG */
139
140 #define ERROR(dev, fmt, args...) \
141 xprintk(dev , KERN_ERR , fmt , ## args)
142 #define INFO(dev, fmt, args...) \
143 xprintk(dev , KERN_INFO , fmt , ## args)
144
145 /*-------------------------------------------------------------------------*/
146
147 /* NETWORK DRIVER HOOKUP (to the layer above this driver) */
148
ueth_change_mtu(struct net_device * net,int new_mtu)149 static int ueth_change_mtu(struct net_device *net, int new_mtu)
150 {
151 struct eth_dev *dev = netdev_priv(net);
152 unsigned long flags;
153 int status = 0;
154
155 /* don't change MTU on "live" link (peer won't know) */
156 spin_lock_irqsave(&dev->lock, flags);
157 if (dev->port_usb)
158 status = -EBUSY;
159 else if (new_mtu <= ETH_HLEN || new_mtu > ETH_FRAME_LEN)
160 status = -ERANGE;
161 else
162 net->mtu = new_mtu;
163 spin_unlock_irqrestore(&dev->lock, flags);
164
165 return status;
166 }
167
eth_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * p)168 static void eth_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *p)
169 {
170 struct eth_dev *dev = netdev_priv(net);
171
172 strlcpy(p->driver, "g_ether", sizeof(p->driver));
173 strlcpy(p->version, UETH__VERSION, sizeof(p->version));
174 strlcpy(p->fw_version, dev->gadget->name, sizeof(p->fw_version));
175 strlcpy(p->bus_info, dev_name(&dev->gadget->dev), sizeof(p->bus_info));
176 }
177
178 /* REVISIT can also support:
179 * - WOL (by tracking suspends and issuing remote wakeup)
180 * - msglevel (implies updated messaging)
181 * - ... probably more ethtool ops
182 */
183
184 static const struct ethtool_ops ops = {
185 .get_drvinfo = eth_get_drvinfo,
186 .get_link = ethtool_op_get_link,
187 };
188
defer_kevent(struct eth_dev * dev,int flag)189 static void defer_kevent(struct eth_dev *dev, int flag)
190 {
191 if (test_and_set_bit(flag, &dev->todo))
192 return;
193 if (!schedule_work(&dev->work))
194 ERROR(dev, "kevent %d may have been dropped\n", flag);
195 else
196 DBG(dev, "kevent %d scheduled\n", flag);
197 }
198
199 static void rx_complete(struct usb_ep *ep, struct usb_request *req);
200
201 static int
rx_submit(struct eth_dev * dev,struct usb_request * req,gfp_t gfp_flags)202 rx_submit(struct eth_dev *dev, struct usb_request *req, gfp_t gfp_flags)
203 {
204 struct sk_buff *skb;
205 int retval = -ENOMEM;
206 size_t size = 0;
207 struct usb_ep *out;
208 unsigned long flags;
209
210 spin_lock_irqsave(&dev->lock, flags);
211 if (dev->port_usb)
212 out = dev->port_usb->out_ep;
213 else
214 out = NULL;
215 spin_unlock_irqrestore(&dev->lock, flags);
216
217 if (!out)
218 return -ENOTCONN;
219
220
221 /* Padding up to RX_EXTRA handles minor disagreements with host.
222 * Normally we use the USB "terminate on short read" convention;
223 * so allow up to (N*maxpacket), since that memory is normally
224 * already allocated. Some hardware doesn't deal well with short
225 * reads (e.g. DMA must be N*maxpacket), so for now don't trim a
226 * byte off the end (to force hardware errors on overflow).
227 *
228 * RNDIS uses internal framing, and explicitly allows senders to
229 * pad to end-of-packet. That's potentially nice for speed, but
230 * means receivers can't recover lost synch on their own (because
231 * new packets don't only start after a short RX).
232 */
233 size += sizeof(struct ethhdr) + dev->net->mtu + RX_EXTRA;
234 size += dev->port_usb->header_len;
235 size += out->maxpacket - 1;
236 size -= size % out->maxpacket;
237
238 if (dev->ul_max_pkts_per_xfer)
239 size *= dev->ul_max_pkts_per_xfer;
240
241 if (dev->port_usb->is_fixed)
242 size = max_t(size_t, size, dev->port_usb->fixed_out_len);
243
244 DBG(dev, "%s: size: %zd\n", __func__, size);
245 skb = alloc_skb(size + NET_IP_ALIGN, gfp_flags);
246 if (skb == NULL) {
247 DBG(dev, "no rx skb\n");
248 goto enomem;
249 }
250
251 /* Some platforms perform better when IP packets are aligned,
252 * but on at least one, checksumming fails otherwise. Note:
253 * RNDIS headers involve variable numbers of LE32 values.
254 */
255 skb_reserve(skb, NET_IP_ALIGN);
256
257 req->buf = skb->data;
258 req->length = size;
259 req->complete = rx_complete;
260 req->context = skb;
261
262 retval = usb_ep_queue(out, req, gfp_flags);
263 if (retval == -ENOMEM)
264 enomem:
265 defer_kevent(dev, WORK_RX_MEMORY);
266 if (retval) {
267 DBG(dev, "rx submit --> %d\n", retval);
268 if (skb)
269 dev_kfree_skb_any(skb);
270 }
271 return retval;
272 }
273
rx_complete(struct usb_ep * ep,struct usb_request * req)274 static void rx_complete(struct usb_ep *ep, struct usb_request *req)
275 {
276 struct sk_buff *skb = req->context;
277 struct eth_dev *dev = ep->driver_data;
278 int status = req->status;
279 bool queue = 0;
280
281 switch (status) {
282
283 /* normal completion */
284 case 0:
285 skb_put(skb, req->actual);
286
287 if (dev->unwrap) {
288 unsigned long flags;
289
290 spin_lock_irqsave(&dev->lock, flags);
291 if (dev->port_usb) {
292 status = dev->unwrap(dev->port_usb,
293 skb,
294 &dev->rx_frames);
295 if (status == -EINVAL)
296 dev->net->stats.rx_errors++;
297 else if (status == -EOVERFLOW)
298 dev->net->stats.rx_over_errors++;
299 } else {
300 dev_kfree_skb_any(skb);
301 status = -ENOTCONN;
302 }
303 spin_unlock_irqrestore(&dev->lock, flags);
304 } else {
305 skb_queue_tail(&dev->rx_frames, skb);
306 }
307
308 if (!status)
309 queue = 1;
310 break;
311
312 /* software-driven interface shutdown */
313 case -ECONNRESET: /* unlink */
314 case -ESHUTDOWN: /* disconnect etc */
315 VDBG(dev, "rx shutdown, code %d\n", status);
316 goto quiesce;
317
318 /* for hardware automagic (such as pxa) */
319 case -ECONNABORTED: /* endpoint reset */
320 DBG(dev, "rx %s reset\n", ep->name);
321 defer_kevent(dev, WORK_RX_MEMORY);
322 quiesce:
323 dev_kfree_skb_any(skb);
324 goto clean;
325
326 /* data overrun */
327 case -EOVERFLOW:
328 dev->net->stats.rx_over_errors++;
329 /* FALLTHROUGH */
330
331 default:
332 queue = 1;
333 dev_kfree_skb_any(skb);
334 dev->net->stats.rx_errors++;
335 DBG(dev, "rx status %d\n", status);
336 break;
337 }
338
339 clean:
340 spin_lock(&dev->req_lock);
341 list_add(&req->list, &dev->rx_reqs);
342 spin_unlock(&dev->req_lock);
343
344 if (queue)
345 queue_work(uether_wq, &dev->rx_work);
346 }
347
prealloc(struct list_head * list,struct usb_ep * ep,unsigned n)348 static int prealloc(struct list_head *list, struct usb_ep *ep, unsigned n)
349 {
350 unsigned i;
351 struct usb_request *req;
352
353 if (!n)
354 return -ENOMEM;
355
356 /* queue/recycle up to N requests */
357 i = n;
358 list_for_each_entry(req, list, list) {
359 if (i-- == 0)
360 goto extra;
361 }
362 while (i--) {
363 req = usb_ep_alloc_request(ep, GFP_ATOMIC);
364 if (!req)
365 return list_empty(list) ? -ENOMEM : 0;
366 list_add(&req->list, list);
367 }
368 return 0;
369
370 extra:
371 /* free extras */
372 for (;;) {
373 struct list_head *next;
374
375 next = req->list.next;
376 list_del(&req->list);
377 usb_ep_free_request(ep, req);
378
379 if (next == list)
380 break;
381
382 req = container_of(next, struct usb_request, list);
383 }
384 return 0;
385 }
386
alloc_requests(struct eth_dev * dev,struct gether * link,unsigned n)387 static int alloc_requests(struct eth_dev *dev, struct gether *link, unsigned n)
388 {
389 int status;
390
391 spin_lock(&dev->req_lock);
392 status = prealloc(&dev->tx_reqs, link->in_ep, n);
393 if (status < 0)
394 goto fail;
395 status = prealloc(&dev->rx_reqs, link->out_ep, n);
396 if (status < 0)
397 goto fail;
398 goto done;
399 fail:
400 DBG(dev, "can't alloc requests\n");
401 done:
402 spin_unlock(&dev->req_lock);
403 return status;
404 }
405
rx_fill(struct eth_dev * dev,gfp_t gfp_flags)406 static void rx_fill(struct eth_dev *dev, gfp_t gfp_flags)
407 {
408 struct usb_request *req;
409 unsigned long flags;
410 int req_cnt = 0;
411
412 /* fill unused rxq slots with some skb */
413 spin_lock_irqsave(&dev->req_lock, flags);
414 while (!list_empty(&dev->rx_reqs)) {
415 /* break the nexus of continuous completion and re-submission*/
416 if (++req_cnt > qlen(dev->gadget, dev->qmult))
417 break;
418
419 req = container_of(dev->rx_reqs.next,
420 struct usb_request, list);
421 list_del_init(&req->list);
422 spin_unlock_irqrestore(&dev->req_lock, flags);
423
424 if (rx_submit(dev, req, gfp_flags) < 0) {
425 spin_lock_irqsave(&dev->req_lock, flags);
426 list_add(&req->list, &dev->rx_reqs);
427 spin_unlock_irqrestore(&dev->req_lock, flags);
428 defer_kevent(dev, WORK_RX_MEMORY);
429 return;
430 }
431
432 spin_lock_irqsave(&dev->req_lock, flags);
433 }
434 spin_unlock_irqrestore(&dev->req_lock, flags);
435 }
436
process_rx_w(struct work_struct * work)437 static void process_rx_w(struct work_struct *work)
438 {
439 struct eth_dev *dev = container_of(work, struct eth_dev, rx_work);
440 struct sk_buff *skb;
441 int status = 0;
442
443 if (!dev->port_usb)
444 return;
445
446 while ((skb = skb_dequeue(&dev->rx_frames))) {
447 if (status < 0
448 || ETH_HLEN > skb->len
449 || skb->len > ETH_FRAME_LEN) {
450 dev->net->stats.rx_errors++;
451 dev->net->stats.rx_length_errors++;
452 DBG(dev, "rx length %d\n", skb->len);
453 dev_kfree_skb_any(skb);
454 continue;
455 }
456 skb->protocol = eth_type_trans(skb, dev->net);
457 dev->net->stats.rx_packets++;
458 dev->net->stats.rx_bytes += skb->len;
459
460 status = netif_rx_ni(skb);
461 }
462
463 if (netif_running(dev->net))
464 rx_fill(dev, GFP_KERNEL);
465 }
466
eth_work(struct work_struct * work)467 static void eth_work(struct work_struct *work)
468 {
469 struct eth_dev *dev = container_of(work, struct eth_dev, work);
470
471 if (test_and_clear_bit(WORK_RX_MEMORY, &dev->todo)) {
472 if (netif_running(dev->net))
473 rx_fill(dev, GFP_KERNEL);
474 }
475
476 if (dev->todo)
477 DBG(dev, "work done, flags = 0x%lx\n", dev->todo);
478 }
479
tx_complete(struct usb_ep * ep,struct usb_request * req)480 static void tx_complete(struct usb_ep *ep, struct usb_request *req)
481 {
482 struct sk_buff *skb = req->context;
483 struct eth_dev *dev = ep->driver_data;
484 struct net_device *net = dev->net;
485 struct usb_request *new_req;
486 struct usb_ep *in;
487 int length;
488 int retval;
489
490 switch (req->status) {
491 default:
492 dev->net->stats.tx_errors++;
493 VDBG(dev, "tx err %d\n", req->status);
494 /* FALLTHROUGH */
495 case -ECONNRESET: /* unlink */
496 case -ESHUTDOWN: /* disconnect etc */
497 break;
498 case 0:
499 if (!req->zero)
500 dev->net->stats.tx_bytes += req->length-1;
501 else
502 dev->net->stats.tx_bytes += req->length;
503 }
504 dev->net->stats.tx_packets++;
505
506 spin_lock(&dev->req_lock);
507 list_add_tail(&req->list, &dev->tx_reqs);
508
509 if (dev->port_usb->multi_pkt_xfer) {
510 dev->no_tx_req_used--;
511 req->length = 0;
512 in = dev->port_usb->in_ep;
513
514 if (!list_empty(&dev->tx_reqs)) {
515 new_req = container_of(dev->tx_reqs.next,
516 struct usb_request, list);
517 list_del(&new_req->list);
518 spin_unlock(&dev->req_lock);
519 if (new_req->length > 0) {
520 length = new_req->length;
521
522 /* NCM requires no zlp if transfer is
523 * dwNtbInMaxSize */
524 if (dev->port_usb->is_fixed &&
525 length == dev->port_usb->fixed_in_len &&
526 (length % in->maxpacket) == 0)
527 new_req->zero = 0;
528 else
529 new_req->zero = 1;
530
531 /* use zlp framing on tx for strict CDC-Ether
532 * conformance, though any robust network rx
533 * path ignores extra padding. and some hardware
534 * doesn't like to write zlps.
535 */
536 if (new_req->zero && !dev->zlp &&
537 (length % in->maxpacket) == 0) {
538 new_req->zero = 0;
539 length++;
540 }
541
542 new_req->length = length;
543 retval = usb_ep_queue(in, new_req, GFP_ATOMIC);
544 switch (retval) {
545 default:
546 DBG(dev, "tx queue err %d\n", retval);
547 break;
548 case 0:
549 spin_lock(&dev->req_lock);
550 dev->no_tx_req_used++;
551 spin_unlock(&dev->req_lock);
552 net->trans_start = jiffies;
553 }
554 } else {
555 spin_lock(&dev->req_lock);
556 list_add(&new_req->list, &dev->tx_reqs);
557 spin_unlock(&dev->req_lock);
558 }
559 } else {
560 spin_unlock(&dev->req_lock);
561 }
562 } else {
563 spin_unlock(&dev->req_lock);
564 dev_kfree_skb_any(skb);
565 }
566
567 if (netif_carrier_ok(dev->net))
568 netif_wake_queue(dev->net);
569 }
570
is_promisc(u16 cdc_filter)571 static inline int is_promisc(u16 cdc_filter)
572 {
573 return cdc_filter & USB_CDC_PACKET_TYPE_PROMISCUOUS;
574 }
575
alloc_tx_buffer(struct eth_dev * dev)576 static void alloc_tx_buffer(struct eth_dev *dev)
577 {
578 struct list_head *act;
579 struct usb_request *req;
580
581 dev->tx_req_bufsize = (dev->dl_max_pkts_per_xfer *
582 (dev->net->mtu
583 + sizeof(struct ethhdr)
584 /* size of rndis_packet_msg_type */
585 + 44
586 + 22));
587
588 list_for_each(act, &dev->tx_reqs) {
589 req = container_of(act, struct usb_request, list);
590 if (!req->buf)
591 req->buf = kmalloc(dev->tx_req_bufsize,
592 GFP_ATOMIC);
593 }
594 }
595
eth_start_xmit(struct sk_buff * skb,struct net_device * net)596 static netdev_tx_t eth_start_xmit(struct sk_buff *skb,
597 struct net_device *net)
598 {
599 struct eth_dev *dev = netdev_priv(net);
600 int length = 0;
601 int retval;
602 struct usb_request *req = NULL;
603 unsigned long flags;
604 struct usb_ep *in;
605 u16 cdc_filter;
606
607 spin_lock_irqsave(&dev->lock, flags);
608 if (dev->port_usb) {
609 in = dev->port_usb->in_ep;
610 cdc_filter = dev->port_usb->cdc_filter;
611 } else {
612 in = NULL;
613 cdc_filter = 0;
614 }
615 spin_unlock_irqrestore(&dev->lock, flags);
616
617 if (skb && !in) {
618 dev_kfree_skb_any(skb);
619 return NETDEV_TX_OK;
620 }
621
622 /* Allocate memory for tx_reqs to support multi packet transfer */
623 if (dev->port_usb->multi_pkt_xfer && !dev->tx_req_bufsize)
624 alloc_tx_buffer(dev);
625
626 /* apply outgoing CDC or RNDIS filters */
627 if (skb && !is_promisc(cdc_filter)) {
628 u8 *dest = skb->data;
629
630 if (is_multicast_ether_addr(dest)) {
631 u16 type;
632
633 /* ignores USB_CDC_PACKET_TYPE_MULTICAST and host
634 * SET_ETHERNET_MULTICAST_FILTERS requests
635 */
636 if (is_broadcast_ether_addr(dest))
637 type = USB_CDC_PACKET_TYPE_BROADCAST;
638 else
639 type = USB_CDC_PACKET_TYPE_ALL_MULTICAST;
640 if (!(cdc_filter & type)) {
641 dev_kfree_skb_any(skb);
642 return NETDEV_TX_OK;
643 }
644 }
645 /* ignores USB_CDC_PACKET_TYPE_DIRECTED */
646 }
647
648 spin_lock_irqsave(&dev->req_lock, flags);
649 /*
650 * this freelist can be empty if an interrupt triggered disconnect()
651 * and reconfigured the gadget (shutting down this queue) after the
652 * network stack decided to xmit but before we got the spinlock.
653 */
654 if (list_empty(&dev->tx_reqs)) {
655 spin_unlock_irqrestore(&dev->req_lock, flags);
656 return NETDEV_TX_BUSY;
657 }
658
659 req = container_of(dev->tx_reqs.next, struct usb_request, list);
660 list_del(&req->list);
661
662 /* temporarily stop TX queue when the freelist empties */
663 if (list_empty(&dev->tx_reqs))
664 netif_stop_queue(net);
665 spin_unlock_irqrestore(&dev->req_lock, flags);
666
667 /* no buffer copies needed, unless the network stack did it
668 * or the hardware can't use skb buffers.
669 * or there's not enough space for extra headers we need
670 */
671 if (dev->wrap) {
672 unsigned long flags;
673
674 spin_lock_irqsave(&dev->lock, flags);
675 if (dev->port_usb)
676 skb = dev->wrap(dev->port_usb, skb);
677 spin_unlock_irqrestore(&dev->lock, flags);
678 if (!skb) {
679 /* Multi frame CDC protocols may store the frame for
680 * later which is not a dropped frame.
681 */
682 if (dev->port_usb->supports_multi_frame)
683 goto multiframe;
684 goto drop;
685 }
686 }
687
688 spin_lock_irqsave(&dev->req_lock, flags);
689 dev->tx_skb_hold_count++;
690 spin_unlock_irqrestore(&dev->req_lock, flags);
691
692 if (dev->port_usb->multi_pkt_xfer) {
693 memcpy(req->buf + req->length, skb->data, skb->len);
694 req->length = req->length + skb->len;
695 length = req->length;
696 dev_kfree_skb_any(skb);
697
698 spin_lock_irqsave(&dev->req_lock, flags);
699 if (dev->tx_skb_hold_count < dev->dl_max_pkts_per_xfer) {
700 if (dev->no_tx_req_used > TX_REQ_THRESHOLD) {
701 list_add(&req->list, &dev->tx_reqs);
702 spin_unlock_irqrestore(&dev->req_lock, flags);
703 goto success;
704 }
705 }
706
707 dev->no_tx_req_used++;
708 spin_unlock_irqrestore(&dev->req_lock, flags);
709
710 spin_lock_irqsave(&dev->lock, flags);
711 dev->tx_skb_hold_count = 0;
712 spin_unlock_irqrestore(&dev->lock, flags);
713 } else {
714 length = skb->len;
715 req->buf = skb->data;
716 req->context = skb;
717 }
718
719 req->complete = tx_complete;
720
721 /* NCM requires no zlp if transfer is dwNtbInMaxSize */
722 if (dev->port_usb->is_fixed &&
723 length == dev->port_usb->fixed_in_len &&
724 (length % in->maxpacket) == 0)
725 req->zero = 0;
726 else
727 req->zero = 1;
728
729 /* use zlp framing on tx for strict CDC-Ether conformance,
730 * though any robust network rx path ignores extra padding.
731 * and some hardware doesn't like to write zlps.
732 */
733 if (req->zero && !dev->zlp && (length % in->maxpacket) == 0) {
734 req->zero = 0;
735 length++;
736 }
737
738 req->length = length;
739
740 retval = usb_ep_queue(in, req, GFP_ATOMIC);
741 switch (retval) {
742 default:
743 DBG(dev, "tx queue err %d\n", retval);
744 break;
745 case 0:
746 net->trans_start = jiffies;
747 }
748
749 if (retval) {
750 if (!dev->port_usb->multi_pkt_xfer)
751 dev_kfree_skb_any(skb);
752 drop:
753 dev->net->stats.tx_dropped++;
754 multiframe:
755 spin_lock_irqsave(&dev->req_lock, flags);
756 if (list_empty(&dev->tx_reqs))
757 netif_start_queue(net);
758 list_add(&req->list, &dev->tx_reqs);
759 spin_unlock_irqrestore(&dev->req_lock, flags);
760 }
761 success:
762 return NETDEV_TX_OK;
763 }
764
765 /*-------------------------------------------------------------------------*/
766
eth_start(struct eth_dev * dev,gfp_t gfp_flags)767 static void eth_start(struct eth_dev *dev, gfp_t gfp_flags)
768 {
769 DBG(dev, "%s\n", __func__);
770
771 /* fill the rx queue */
772 rx_fill(dev, gfp_flags);
773
774 /* and open the tx floodgates */
775 dev->tx_qlen = 0;
776 netif_wake_queue(dev->net);
777 }
778
eth_open(struct net_device * net)779 static int eth_open(struct net_device *net)
780 {
781 struct eth_dev *dev = netdev_priv(net);
782 struct gether *link;
783
784 DBG(dev, "%s\n", __func__);
785 if (netif_carrier_ok(dev->net))
786 eth_start(dev, GFP_KERNEL);
787
788 spin_lock_irq(&dev->lock);
789 link = dev->port_usb;
790 if (link && link->open)
791 link->open(link);
792 spin_unlock_irq(&dev->lock);
793
794 return 0;
795 }
796
eth_stop(struct net_device * net)797 static int eth_stop(struct net_device *net)
798 {
799 struct eth_dev *dev = netdev_priv(net);
800 unsigned long flags;
801
802 VDBG(dev, "%s\n", __func__);
803 netif_stop_queue(net);
804
805 DBG(dev, "stop stats: rx/tx %ld/%ld, errs %ld/%ld\n",
806 dev->net->stats.rx_packets, dev->net->stats.tx_packets,
807 dev->net->stats.rx_errors, dev->net->stats.tx_errors
808 );
809
810 /* ensure there are no more active requests */
811 spin_lock_irqsave(&dev->lock, flags);
812 if (dev->port_usb) {
813 struct gether *link = dev->port_usb;
814 const struct usb_endpoint_descriptor *in;
815 const struct usb_endpoint_descriptor *out;
816
817 if (link->close)
818 link->close(link);
819
820 /* NOTE: we have no abort-queue primitive we could use
821 * to cancel all pending I/O. Instead, we disable then
822 * reenable the endpoints ... this idiom may leave toggle
823 * wrong, but that's a self-correcting error.
824 *
825 * REVISIT: we *COULD* just let the transfers complete at
826 * their own pace; the network stack can handle old packets.
827 * For the moment we leave this here, since it works.
828 */
829 in = link->in_ep->desc;
830 out = link->out_ep->desc;
831 usb_ep_disable(link->in_ep);
832 usb_ep_disable(link->out_ep);
833 if (netif_carrier_ok(net)) {
834 DBG(dev, "host still using in/out endpoints\n");
835 link->in_ep->desc = in;
836 link->out_ep->desc = out;
837 usb_ep_enable(link->in_ep);
838 usb_ep_enable(link->out_ep);
839 }
840 }
841 spin_unlock_irqrestore(&dev->lock, flags);
842
843 return 0;
844 }
845
846 /*-------------------------------------------------------------------------*/
847
848 static u8 host_ethaddr[ETH_ALEN];
849
get_ether_addr(const char * str,u8 * dev_addr)850 static int get_ether_addr(const char *str, u8 *dev_addr)
851 {
852 if (str) {
853 unsigned i;
854
855 for (i = 0; i < 6; i++) {
856 unsigned char num;
857
858 if ((*str == '.') || (*str == ':'))
859 str++;
860 num = hex_to_bin(*str++) << 4;
861 num |= hex_to_bin(*str++);
862 dev_addr [i] = num;
863 }
864 if (is_valid_ether_addr(dev_addr))
865 return 0;
866 }
867 eth_random_addr(dev_addr);
868 return 1;
869 }
870
get_ether_addr_str(u8 dev_addr[ETH_ALEN],char * str,int len)871 static int get_ether_addr_str(u8 dev_addr[ETH_ALEN], char *str, int len)
872 {
873 if (len < 18)
874 return -EINVAL;
875
876 snprintf(str, len, "%02x:%02x:%02x:%02x:%02x:%02x",
877 dev_addr[0], dev_addr[1], dev_addr[2],
878 dev_addr[3], dev_addr[4], dev_addr[5]);
879 return 18;
880 }
881
get_host_ether_addr(u8 * str,u8 * dev_addr)882 static int get_host_ether_addr(u8 *str, u8 *dev_addr)
883 {
884 memcpy(dev_addr, str, ETH_ALEN);
885 if (is_valid_ether_addr(dev_addr))
886 return 0;
887
888 random_ether_addr(dev_addr);
889 memcpy(str, dev_addr, ETH_ALEN);
890 return 1;
891 }
892
893 static const struct net_device_ops eth_netdev_ops = {
894 .ndo_open = eth_open,
895 .ndo_stop = eth_stop,
896 .ndo_start_xmit = eth_start_xmit,
897 .ndo_change_mtu = ueth_change_mtu,
898 .ndo_set_mac_address = eth_mac_addr,
899 .ndo_validate_addr = eth_validate_addr,
900 };
901
902 static struct device_type gadget_type = {
903 .name = "gadget",
904 };
905
906 /**
907 * gether_setup_name - initialize one ethernet-over-usb link
908 * @g: gadget to associated with these links
909 * @ethaddr: NULL, or a buffer in which the ethernet address of the
910 * host side of the link is recorded
911 * @netname: name for network device (for example, "usb")
912 * Context: may sleep
913 *
914 * This sets up the single network link that may be exported by a
915 * gadget driver using this framework. The link layer addresses are
916 * set up using module parameters.
917 *
918 * Returns an eth_dev pointer on success, or an ERR_PTR on failure.
919 */
gether_setup_name(struct usb_gadget * g,const char * dev_addr,const char * host_addr,u8 ethaddr[ETH_ALEN],unsigned qmult,const char * netname)920 struct eth_dev *gether_setup_name(struct usb_gadget *g,
921 const char *dev_addr, const char *host_addr,
922 u8 ethaddr[ETH_ALEN], unsigned qmult, const char *netname)
923 {
924 struct eth_dev *dev;
925 struct net_device *net;
926 int status;
927
928 net = alloc_etherdev(sizeof *dev);
929 if (!net)
930 return ERR_PTR(-ENOMEM);
931
932 dev = netdev_priv(net);
933 spin_lock_init(&dev->lock);
934 spin_lock_init(&dev->req_lock);
935 INIT_WORK(&dev->work, eth_work);
936 INIT_WORK(&dev->rx_work, process_rx_w);
937 INIT_LIST_HEAD(&dev->tx_reqs);
938 INIT_LIST_HEAD(&dev->rx_reqs);
939
940 skb_queue_head_init(&dev->rx_frames);
941
942 /* network device setup */
943 dev->net = net;
944 dev->qmult = qmult;
945 snprintf(net->name, sizeof(net->name), "%s%%d", netname);
946
947 if (get_ether_addr(dev_addr, net->dev_addr))
948 dev_warn(&g->dev,
949 "using random %s ethernet address\n", "self");
950
951 if (get_host_ether_addr(host_ethaddr, dev->host_mac))
952 dev_warn(&g->dev, "using random %s ethernet address\n", "host");
953 else
954 dev_warn(&g->dev, "using previous %s ethernet address\n", "host");
955
956 if (ethaddr)
957 memcpy(ethaddr, dev->host_mac, ETH_ALEN);
958
959 net->netdev_ops = ð_netdev_ops;
960
961 net->ethtool_ops = &ops;
962
963 dev->gadget = g;
964 SET_NETDEV_DEV(net, &g->dev);
965 SET_NETDEV_DEVTYPE(net, &gadget_type);
966
967 status = register_netdev(net);
968 if (status < 0) {
969 dev_dbg(&g->dev, "register_netdev failed, %d\n", status);
970 free_netdev(net);
971 dev = ERR_PTR(status);
972 } else {
973 INFO(dev, "MAC %pM\n", net->dev_addr);
974 INFO(dev, "HOST MAC %pM\n", dev->host_mac);
975
976 /*
977 * two kinds of host-initiated state changes:
978 * - iff DATA transfer is active, carrier is "on"
979 * - tx queueing enabled if open *and* carrier is "on"
980 */
981 netif_carrier_off(net);
982 }
983
984 return dev;
985 }
986 EXPORT_SYMBOL_GPL(gether_setup_name);
987
gether_setup_name_default(const char * netname)988 struct net_device *gether_setup_name_default(const char *netname)
989 {
990 struct net_device *net;
991 struct eth_dev *dev;
992
993 net = alloc_etherdev(sizeof(*dev));
994 if (!net)
995 return ERR_PTR(-ENOMEM);
996
997 dev = netdev_priv(net);
998 spin_lock_init(&dev->lock);
999 spin_lock_init(&dev->req_lock);
1000 INIT_WORK(&dev->work, eth_work);
1001 INIT_WORK(&dev->rx_work, process_rx_w);
1002 INIT_LIST_HEAD(&dev->tx_reqs);
1003 INIT_LIST_HEAD(&dev->rx_reqs);
1004
1005 skb_queue_head_init(&dev->rx_frames);
1006
1007 /* network device setup */
1008 dev->net = net;
1009 dev->qmult = QMULT_DEFAULT;
1010 snprintf(net->name, sizeof(net->name), "%s%%d", netname);
1011
1012 eth_random_addr(dev->dev_mac);
1013 pr_warn("using random %s ethernet address\n", "self");
1014 if (get_host_ether_addr(host_ethaddr, dev->host_mac))
1015 pr_warn("using random %s ethernet address\n", "host");
1016 else
1017 pr_warn("using previous %s ethernet address\n", "host");
1018
1019 net->netdev_ops = ð_netdev_ops;
1020
1021 net->ethtool_ops = &ops;
1022 SET_NETDEV_DEVTYPE(net, &gadget_type);
1023
1024 return net;
1025 }
1026 EXPORT_SYMBOL_GPL(gether_setup_name_default);
1027
gether_register_netdev(struct net_device * net)1028 int gether_register_netdev(struct net_device *net)
1029 {
1030 struct eth_dev *dev;
1031 struct usb_gadget *g;
1032 struct sockaddr sa;
1033 int status;
1034
1035 if (!net->dev.parent)
1036 return -EINVAL;
1037 dev = netdev_priv(net);
1038 g = dev->gadget;
1039 status = register_netdev(net);
1040 if (status < 0) {
1041 dev_dbg(&g->dev, "register_netdev failed, %d\n", status);
1042 return status;
1043 } else {
1044 INFO(dev, "HOST MAC %pM\n", dev->host_mac);
1045
1046 /* two kinds of host-initiated state changes:
1047 * - iff DATA transfer is active, carrier is "on"
1048 * - tx queueing enabled if open *and* carrier is "on"
1049 */
1050 netif_carrier_off(net);
1051 }
1052 sa.sa_family = net->type;
1053 memcpy(sa.sa_data, dev->dev_mac, ETH_ALEN);
1054 rtnl_lock();
1055 status = dev_set_mac_address(net, &sa);
1056 rtnl_unlock();
1057 if (status)
1058 pr_warn("cannot set self ethernet address: %d\n", status);
1059 else
1060 INFO(dev, "MAC %pM\n", dev->dev_mac);
1061
1062 return status;
1063 }
1064 EXPORT_SYMBOL_GPL(gether_register_netdev);
1065
gether_set_gadget(struct net_device * net,struct usb_gadget * g)1066 void gether_set_gadget(struct net_device *net, struct usb_gadget *g)
1067 {
1068 struct eth_dev *dev;
1069
1070 dev = netdev_priv(net);
1071 dev->gadget = g;
1072 SET_NETDEV_DEV(net, &g->dev);
1073 }
1074 EXPORT_SYMBOL_GPL(gether_set_gadget);
1075
gether_set_dev_addr(struct net_device * net,const char * dev_addr)1076 int gether_set_dev_addr(struct net_device *net, const char *dev_addr)
1077 {
1078 struct eth_dev *dev;
1079 u8 new_addr[ETH_ALEN];
1080
1081 dev = netdev_priv(net);
1082 if (get_ether_addr(dev_addr, new_addr))
1083 return -EINVAL;
1084 memcpy(dev->dev_mac, new_addr, ETH_ALEN);
1085 return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(gether_set_dev_addr);
1088
gether_get_dev_addr(struct net_device * net,char * dev_addr,int len)1089 int gether_get_dev_addr(struct net_device *net, char *dev_addr, int len)
1090 {
1091 struct eth_dev *dev;
1092
1093 dev = netdev_priv(net);
1094 return get_ether_addr_str(dev->dev_mac, dev_addr, len);
1095 }
1096 EXPORT_SYMBOL_GPL(gether_get_dev_addr);
1097
gether_set_host_addr(struct net_device * net,const char * host_addr)1098 int gether_set_host_addr(struct net_device *net, const char *host_addr)
1099 {
1100 struct eth_dev *dev;
1101 u8 new_addr[ETH_ALEN];
1102
1103 dev = netdev_priv(net);
1104 if (get_ether_addr(host_addr, new_addr))
1105 return -EINVAL;
1106 memcpy(dev->host_mac, new_addr, ETH_ALEN);
1107 return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(gether_set_host_addr);
1110
gether_get_host_addr(struct net_device * net,char * host_addr,int len)1111 int gether_get_host_addr(struct net_device *net, char *host_addr, int len)
1112 {
1113 struct eth_dev *dev;
1114
1115 dev = netdev_priv(net);
1116 return get_ether_addr_str(dev->host_mac, host_addr, len);
1117 }
1118 EXPORT_SYMBOL_GPL(gether_get_host_addr);
1119
gether_get_host_addr_cdc(struct net_device * net,char * host_addr,int len)1120 int gether_get_host_addr_cdc(struct net_device *net, char *host_addr, int len)
1121 {
1122 struct eth_dev *dev;
1123
1124 if (len < 13)
1125 return -EINVAL;
1126
1127 dev = netdev_priv(net);
1128 snprintf(host_addr, len, "%pm", dev->host_mac);
1129
1130 return strlen(host_addr);
1131 }
1132 EXPORT_SYMBOL_GPL(gether_get_host_addr_cdc);
1133
gether_get_host_addr_u8(struct net_device * net,u8 host_mac[ETH_ALEN])1134 void gether_get_host_addr_u8(struct net_device *net, u8 host_mac[ETH_ALEN])
1135 {
1136 struct eth_dev *dev;
1137
1138 dev = netdev_priv(net);
1139 memcpy(host_mac, dev->host_mac, ETH_ALEN);
1140 }
1141 EXPORT_SYMBOL_GPL(gether_get_host_addr_u8);
1142
gether_set_qmult(struct net_device * net,unsigned qmult)1143 void gether_set_qmult(struct net_device *net, unsigned qmult)
1144 {
1145 struct eth_dev *dev;
1146
1147 dev = netdev_priv(net);
1148 dev->qmult = qmult;
1149 }
1150 EXPORT_SYMBOL_GPL(gether_set_qmult);
1151
gether_get_qmult(struct net_device * net)1152 unsigned gether_get_qmult(struct net_device *net)
1153 {
1154 struct eth_dev *dev;
1155
1156 dev = netdev_priv(net);
1157 return dev->qmult;
1158 }
1159 EXPORT_SYMBOL_GPL(gether_get_qmult);
1160
gether_get_ifname(struct net_device * net,char * name,int len)1161 int gether_get_ifname(struct net_device *net, char *name, int len)
1162 {
1163 rtnl_lock();
1164 strlcpy(name, netdev_name(net), len);
1165 rtnl_unlock();
1166 return strlen(name);
1167 }
1168 EXPORT_SYMBOL_GPL(gether_get_ifname);
1169
1170 /**
1171 * gether_cleanup - remove Ethernet-over-USB device
1172 * Context: may sleep
1173 *
1174 * This is called to free all resources allocated by @gether_setup().
1175 */
gether_cleanup(struct eth_dev * dev)1176 void gether_cleanup(struct eth_dev *dev)
1177 {
1178 if (!dev)
1179 return;
1180
1181 unregister_netdev(dev->net);
1182 flush_work(&dev->work);
1183 free_netdev(dev->net);
1184 }
1185 EXPORT_SYMBOL_GPL(gether_cleanup);
1186
1187 /**
1188 * gether_connect - notify network layer that USB link is active
1189 * @link: the USB link, set up with endpoints, descriptors matching
1190 * current device speed, and any framing wrapper(s) set up.
1191 * Context: irqs blocked
1192 *
1193 * This is called to activate endpoints and let the network layer know
1194 * the connection is active ("carrier detect"). It may cause the I/O
1195 * queues to open and start letting network packets flow, but will in
1196 * any case activate the endpoints so that they respond properly to the
1197 * USB host.
1198 *
1199 * Verify net_device pointer returned using IS_ERR(). If it doesn't
1200 * indicate some error code (negative errno), ep->driver_data values
1201 * have been overwritten.
1202 */
gether_connect(struct gether * link)1203 struct net_device *gether_connect(struct gether *link)
1204 {
1205 struct eth_dev *dev = link->ioport;
1206 int result = 0;
1207
1208 if (!dev)
1209 return ERR_PTR(-EINVAL);
1210
1211 link->in_ep->driver_data = dev;
1212 result = usb_ep_enable(link->in_ep);
1213 if (result != 0) {
1214 DBG(dev, "enable %s --> %d\n",
1215 link->in_ep->name, result);
1216 goto fail0;
1217 }
1218
1219 link->out_ep->driver_data = dev;
1220 result = usb_ep_enable(link->out_ep);
1221 if (result != 0) {
1222 DBG(dev, "enable %s --> %d\n",
1223 link->out_ep->name, result);
1224 goto fail1;
1225 }
1226
1227 if (result == 0)
1228 result = alloc_requests(dev, link, qlen(dev->gadget,
1229 dev->qmult));
1230
1231 if (result == 0) {
1232 dev->zlp = link->is_zlp_ok;
1233 DBG(dev, "qlen %d\n", qlen(dev->gadget, dev->qmult));
1234
1235 dev->header_len = link->header_len;
1236 dev->unwrap = link->unwrap;
1237 dev->wrap = link->wrap;
1238 dev->ul_max_pkts_per_xfer = link->ul_max_pkts_per_xfer;
1239 dev->dl_max_pkts_per_xfer = link->dl_max_pkts_per_xfer;
1240
1241 spin_lock(&dev->lock);
1242 dev->tx_skb_hold_count = 0;
1243 dev->no_tx_req_used = 0;
1244 dev->tx_req_bufsize = 0;
1245 dev->port_usb = link;
1246 if (netif_running(dev->net)) {
1247 if (link->open)
1248 link->open(link);
1249 } else {
1250 if (link->close)
1251 link->close(link);
1252 }
1253 spin_unlock(&dev->lock);
1254
1255 netif_carrier_on(dev->net);
1256 if (netif_running(dev->net))
1257 eth_start(dev, GFP_ATOMIC);
1258
1259 /* on error, disable any endpoints */
1260 } else {
1261 (void) usb_ep_disable(link->out_ep);
1262 fail1:
1263 (void) usb_ep_disable(link->in_ep);
1264 }
1265 fail0:
1266 /* caller is responsible for cleanup on error */
1267 if (result < 0)
1268 return ERR_PTR(result);
1269 return dev->net;
1270 }
1271 EXPORT_SYMBOL_GPL(gether_connect);
1272
1273 /**
1274 * gether_disconnect - notify network layer that USB link is inactive
1275 * @link: the USB link, on which gether_connect() was called
1276 * Context: irqs blocked
1277 *
1278 * This is called to deactivate endpoints and let the network layer know
1279 * the connection went inactive ("no carrier").
1280 *
1281 * On return, the state is as if gether_connect() had never been called.
1282 * The endpoints are inactive, and accordingly without active USB I/O.
1283 * Pointers to endpoint descriptors and endpoint private data are nulled.
1284 */
gether_disconnect(struct gether * link)1285 void gether_disconnect(struct gether *link)
1286 {
1287 struct eth_dev *dev = link->ioport;
1288 struct usb_request *req;
1289 struct sk_buff *skb;
1290
1291 WARN_ON(!dev);
1292 if (!dev)
1293 return;
1294
1295 DBG(dev, "%s\n", __func__);
1296
1297 netif_stop_queue(dev->net);
1298 netif_carrier_off(dev->net);
1299
1300 /* disable endpoints, forcing (synchronous) completion
1301 * of all pending i/o. then free the request objects
1302 * and forget about the endpoints.
1303 */
1304 usb_ep_disable(link->in_ep);
1305 spin_lock(&dev->req_lock);
1306 while (!list_empty(&dev->tx_reqs)) {
1307 req = container_of(dev->tx_reqs.next,
1308 struct usb_request, list);
1309 list_del(&req->list);
1310
1311 spin_unlock(&dev->req_lock);
1312 if (link->multi_pkt_xfer)
1313 kfree(req->buf);
1314 usb_ep_free_request(link->in_ep, req);
1315 spin_lock(&dev->req_lock);
1316 }
1317 spin_unlock(&dev->req_lock);
1318 link->in_ep->driver_data = NULL;
1319 link->in_ep->desc = NULL;
1320
1321 usb_ep_disable(link->out_ep);
1322 spin_lock(&dev->req_lock);
1323 while (!list_empty(&dev->rx_reqs)) {
1324 req = container_of(dev->rx_reqs.next,
1325 struct usb_request, list);
1326 list_del(&req->list);
1327
1328 spin_unlock(&dev->req_lock);
1329 usb_ep_free_request(link->out_ep, req);
1330 spin_lock(&dev->req_lock);
1331 }
1332 spin_unlock(&dev->req_lock);
1333
1334 spin_lock(&dev->rx_frames.lock);
1335 while ((skb = __skb_dequeue(&dev->rx_frames)))
1336 dev_kfree_skb_any(skb);
1337 spin_unlock(&dev->rx_frames.lock);
1338
1339 link->out_ep->driver_data = NULL;
1340 link->out_ep->desc = NULL;
1341
1342 /* finish forgetting about this USB link episode */
1343 dev->header_len = 0;
1344 dev->unwrap = NULL;
1345 dev->wrap = NULL;
1346
1347 spin_lock(&dev->lock);
1348 dev->port_usb = NULL;
1349 spin_unlock(&dev->lock);
1350 }
1351 EXPORT_SYMBOL_GPL(gether_disconnect);
1352
gether_init(void)1353 static int __init gether_init(void)
1354 {
1355 uether_wq = create_singlethread_workqueue("uether");
1356 if (!uether_wq) {
1357 pr_err("%s: Unable to create workqueue: uether\n", __func__);
1358 return -ENOMEM;
1359 }
1360 return 0;
1361 }
1362 module_init(gether_init);
1363
gether_exit(void)1364 static void __exit gether_exit(void)
1365 {
1366 destroy_workqueue(uether_wq);
1367
1368 }
1369 module_exit(gether_exit);
1370 MODULE_AUTHOR("David Brownell");
1371 MODULE_DESCRIPTION("ethernet over USB driver");
1372 MODULE_LICENSE("GPL v2");
1373