• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1995  Linus Torvalds
3  * Copyright 2010 Tilera Corporation. All Rights Reserved.
4  *
5  *   This program is free software; you can redistribute it and/or
6  *   modify it under the terms of the GNU General Public License
7  *   as published by the Free Software Foundation, version 2.
8  *
9  *   This program is distributed in the hope that it will be useful, but
10  *   WITHOUT ANY WARRANTY; without even the implied warranty of
11  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *   NON INFRINGEMENT.  See the GNU General Public License for
13  *   more details.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/dma.h>
44 #include <asm/fixmap.h>
45 #include <asm/tlb.h>
46 #include <asm/tlbflush.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/homecache.h>
50 #include <hv/hypervisor.h>
51 #include <arch/chip.h>
52 
53 #include "migrate.h"
54 
55 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
56 
57 #ifndef __tilegx__
58 unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
59 EXPORT_SYMBOL(VMALLOC_RESERVE);
60 #endif
61 
62 /* Create an L2 page table */
alloc_pte(void)63 static pte_t * __init alloc_pte(void)
64 {
65 	return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
66 }
67 
68 /*
69  * L2 page tables per controller.  We allocate these all at once from
70  * the bootmem allocator and store them here.  This saves on kernel L2
71  * page table memory, compared to allocating a full 64K page per L2
72  * page table, and also means that in cases where we use huge pages,
73  * we are guaranteed to later be able to shatter those huge pages and
74  * switch to using these page tables instead, without requiring
75  * further allocation.  Each l2_ptes[] entry points to the first page
76  * table for the first hugepage-size piece of memory on the
77  * controller; other page tables are just indexed directly, i.e. the
78  * L2 page tables are contiguous in memory for each controller.
79  */
80 static pte_t *l2_ptes[MAX_NUMNODES];
81 static int num_l2_ptes[MAX_NUMNODES];
82 
init_prealloc_ptes(int node,int pages)83 static void init_prealloc_ptes(int node, int pages)
84 {
85 	BUG_ON(pages & (PTRS_PER_PTE - 1));
86 	if (pages) {
87 		num_l2_ptes[node] = pages;
88 		l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
89 						HV_PAGE_TABLE_ALIGN, 0);
90 	}
91 }
92 
get_prealloc_pte(unsigned long pfn)93 pte_t *get_prealloc_pte(unsigned long pfn)
94 {
95 	int node = pfn_to_nid(pfn);
96 	pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
97 	BUG_ON(node >= MAX_NUMNODES);
98 	BUG_ON(pfn >= num_l2_ptes[node]);
99 	return &l2_ptes[node][pfn];
100 }
101 
102 /*
103  * What caching do we expect pages from the heap to have when
104  * they are allocated during bootup?  (Once we've installed the
105  * "real" swapper_pg_dir.)
106  */
initial_heap_home(void)107 static int initial_heap_home(void)
108 {
109 	if (hash_default)
110 		return PAGE_HOME_HASH;
111 	return smp_processor_id();
112 }
113 
114 /*
115  * Place a pointer to an L2 page table in a middle page
116  * directory entry.
117  */
assign_pte(pmd_t * pmd,pte_t * page_table)118 static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
119 {
120 	phys_addr_t pa = __pa(page_table);
121 	unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
122 	pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
123 	BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
124 	pteval = pte_set_home(pteval, initial_heap_home());
125 	*(pte_t *)pmd = pteval;
126 	if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
127 		BUG();
128 }
129 
130 #ifdef __tilegx__
131 
alloc_pmd(void)132 static inline pmd_t *alloc_pmd(void)
133 {
134 	return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
135 }
136 
assign_pmd(pud_t * pud,pmd_t * pmd)137 static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
138 {
139 	assign_pte((pmd_t *)pud, (pte_t *)pmd);
140 }
141 
142 #endif /* __tilegx__ */
143 
144 /* Replace the given pmd with a full PTE table. */
shatter_pmd(pmd_t * pmd)145 void __init shatter_pmd(pmd_t *pmd)
146 {
147 	pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
148 	assign_pte(pmd, pte);
149 }
150 
151 #ifdef __tilegx__
get_pmd(pgd_t pgtables[],unsigned long va)152 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
153 {
154 	pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
155 	if (pud_none(*pud))
156 		assign_pmd(pud, alloc_pmd());
157 	return pmd_offset(pud, va);
158 }
159 #else
get_pmd(pgd_t pgtables[],unsigned long va)160 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
161 {
162 	return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
163 }
164 #endif
165 
166 /*
167  * This function initializes a certain range of kernel virtual memory
168  * with new bootmem page tables, everywhere page tables are missing in
169  * the given range.
170  */
171 
172 /*
173  * NOTE: The pagetables are allocated contiguous on the physical space
174  * so we can cache the place of the first one and move around without
175  * checking the pgd every time.
176  */
page_table_range_init(unsigned long start,unsigned long end,pgd_t * pgd)177 static void __init page_table_range_init(unsigned long start,
178 					 unsigned long end, pgd_t *pgd)
179 {
180 	unsigned long vaddr;
181 	start = round_down(start, PMD_SIZE);
182 	end = round_up(end, PMD_SIZE);
183 	for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
184 		pmd_t *pmd = get_pmd(pgd, vaddr);
185 		if (pmd_none(*pmd))
186 			assign_pte(pmd, alloc_pte());
187 	}
188 }
189 
190 
191 static int __initdata ktext_hash = 1;  /* .text pages */
192 static int __initdata kdata_hash = 1;  /* .data and .bss pages */
193 int __write_once hash_default = 1;     /* kernel allocator pages */
194 EXPORT_SYMBOL(hash_default);
195 int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
196 
197 /*
198  * CPUs to use to for striping the pages of kernel data.  If hash-for-home
199  * is available, this is only relevant if kcache_hash sets up the
200  * .data and .bss to be page-homed, and we don't want the default mode
201  * of using the full set of kernel cpus for the striping.
202  */
203 static __initdata struct cpumask kdata_mask;
204 static __initdata int kdata_arg_seen;
205 
206 int __write_once kdata_huge;       /* if no homecaching, small pages */
207 
208 
209 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
construct_pgprot(pgprot_t prot,int home)210 static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
211 {
212 	prot = pte_set_home(prot, home);
213 	if (home == PAGE_HOME_IMMUTABLE) {
214 		if (ktext_hash)
215 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
216 		else
217 			prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
218 	}
219 	return prot;
220 }
221 
222 /*
223  * For a given kernel data VA, how should it be cached?
224  * We return the complete pgprot_t with caching bits set.
225  */
init_pgprot(ulong address)226 static pgprot_t __init init_pgprot(ulong address)
227 {
228 	int cpu;
229 	unsigned long page;
230 	enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
231 
232 	/* For kdata=huge, everything is just hash-for-home. */
233 	if (kdata_huge)
234 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
235 
236 	/* We map the aliased pages of permanent text inaccessible. */
237 	if (address < (ulong) _sinittext - CODE_DELTA)
238 		return PAGE_NONE;
239 
240 	/* We map read-only data non-coherent for performance. */
241 	if ((address >= (ulong) __start_rodata &&
242 	     address < (ulong) __end_rodata) ||
243 	    address == (ulong) empty_zero_page) {
244 		return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
245 	}
246 
247 #ifndef __tilegx__
248 	/* Force the atomic_locks[] array page to be hash-for-home. */
249 	if (address == (ulong) atomic_locks)
250 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
251 #endif
252 
253 	/*
254 	 * Everything else that isn't data or bss is heap, so mark it
255 	 * with the initial heap home (hash-for-home, or this cpu).  This
256 	 * includes any addresses after the loaded image and any address before
257 	 * __init_end, since we already captured the case of text before
258 	 * _sinittext, and __pa(einittext) is approximately __pa(__init_begin).
259 	 *
260 	 * All the LOWMEM pages that we mark this way will get their
261 	 * struct page homecache properly marked later, in set_page_homes().
262 	 * The HIGHMEM pages we leave with a default zero for their
263 	 * homes, but with a zero free_time we don't have to actually
264 	 * do a flush action the first time we use them, either.
265 	 */
266 	if (address >= (ulong) _end || address < (ulong) __init_end)
267 		return construct_pgprot(PAGE_KERNEL, initial_heap_home());
268 
269 	/* Use hash-for-home if requested for data/bss. */
270 	if (kdata_hash)
271 		return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
272 
273 	/*
274 	 * Otherwise we just hand out consecutive cpus.  To avoid
275 	 * requiring this function to hold state, we just walk forward from
276 	 * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to
277 	 * reach the requested address, while walking cpu home around
278 	 * kdata_mask. This is typically no more than a dozen or so iterations.
279 	 */
280 	page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK;
281 	BUG_ON(address < page || address >= (ulong)_end);
282 	cpu = cpumask_first(&kdata_mask);
283 	for (; page < address; page += PAGE_SIZE) {
284 		if (page >= (ulong)&init_thread_union &&
285 		    page < (ulong)&init_thread_union + THREAD_SIZE)
286 			continue;
287 		if (page == (ulong)empty_zero_page)
288 			continue;
289 #ifndef __tilegx__
290 		if (page == (ulong)atomic_locks)
291 			continue;
292 #endif
293 		cpu = cpumask_next(cpu, &kdata_mask);
294 		if (cpu == NR_CPUS)
295 			cpu = cpumask_first(&kdata_mask);
296 	}
297 	return construct_pgprot(PAGE_KERNEL, cpu);
298 }
299 
300 /*
301  * This function sets up how we cache the kernel text.  If we have
302  * hash-for-home support, normally that is used instead (see the
303  * kcache_hash boot flag for more information).  But if we end up
304  * using a page-based caching technique, this option sets up the
305  * details of that.  In addition, the "ktext=nocache" option may
306  * always be used to disable local caching of text pages, if desired.
307  */
308 
309 static int __initdata ktext_arg_seen;
310 static int __initdata ktext_small;
311 static int __initdata ktext_local;
312 static int __initdata ktext_all;
313 static int __initdata ktext_nondataplane;
314 static int __initdata ktext_nocache;
315 static struct cpumask __initdata ktext_mask;
316 
setup_ktext(char * str)317 static int __init setup_ktext(char *str)
318 {
319 	if (str == NULL)
320 		return -EINVAL;
321 
322 	/* If you have a leading "nocache", turn off ktext caching */
323 	if (strncmp(str, "nocache", 7) == 0) {
324 		ktext_nocache = 1;
325 		pr_info("ktext: disabling local caching of kernel text\n");
326 		str += 7;
327 		if (*str == ',')
328 			++str;
329 		if (*str == '\0')
330 			return 0;
331 	}
332 
333 	ktext_arg_seen = 1;
334 
335 	/* Default setting: use a huge page */
336 	if (strcmp(str, "huge") == 0)
337 		pr_info("ktext: using one huge locally cached page\n");
338 
339 	/* Pay TLB cost but get no cache benefit: cache small pages locally */
340 	else if (strcmp(str, "local") == 0) {
341 		ktext_small = 1;
342 		ktext_local = 1;
343 		pr_info("ktext: using small pages with local caching\n");
344 	}
345 
346 	/* Neighborhood cache ktext pages on all cpus. */
347 	else if (strcmp(str, "all") == 0) {
348 		ktext_small = 1;
349 		ktext_all = 1;
350 		pr_info("ktext: using maximal caching neighborhood\n");
351 	}
352 
353 
354 	/* Neighborhood ktext pages on specified mask */
355 	else if (cpulist_parse(str, &ktext_mask) == 0) {
356 		char buf[NR_CPUS * 5];
357 		cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
358 		if (cpumask_weight(&ktext_mask) > 1) {
359 			ktext_small = 1;
360 			pr_info("ktext: using caching neighborhood %s "
361 			       "with small pages\n", buf);
362 		} else {
363 			pr_info("ktext: caching on cpu %s with one huge page\n",
364 			       buf);
365 		}
366 	}
367 
368 	else if (*str)
369 		return -EINVAL;
370 
371 	return 0;
372 }
373 
374 early_param("ktext", setup_ktext);
375 
376 
ktext_set_nocache(pgprot_t prot)377 static inline pgprot_t ktext_set_nocache(pgprot_t prot)
378 {
379 	if (!ktext_nocache)
380 		prot = hv_pte_set_nc(prot);
381 	else
382 		prot = hv_pte_set_no_alloc_l2(prot);
383 	return prot;
384 }
385 
386 /* Temporary page table we use for staging. */
387 static pgd_t pgtables[PTRS_PER_PGD]
388  __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
389 
390 /*
391  * This maps the physical memory to kernel virtual address space, a total
392  * of max_low_pfn pages, by creating page tables starting from address
393  * PAGE_OFFSET.
394  *
395  * This routine transitions us from using a set of compiled-in large
396  * pages to using some more precise caching, including removing access
397  * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
398  * marking read-only data as locally cacheable, striping the remaining
399  * .data and .bss across all the available tiles, and removing access
400  * to pages above the top of RAM (thus ensuring a page fault from a bad
401  * virtual address rather than a hypervisor shoot down for accessing
402  * memory outside the assigned limits).
403  */
kernel_physical_mapping_init(pgd_t * pgd_base)404 static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
405 {
406 	unsigned long long irqmask;
407 	unsigned long address, pfn;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	int pte_ofs;
411 	const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
412 	struct cpumask kstripe_mask;
413 	int rc, i;
414 
415 	if (ktext_arg_seen && ktext_hash) {
416 		pr_warning("warning: \"ktext\" boot argument ignored"
417 			   " if \"kcache_hash\" sets up text hash-for-home\n");
418 		ktext_small = 0;
419 	}
420 
421 	if (kdata_arg_seen && kdata_hash) {
422 		pr_warning("warning: \"kdata\" boot argument ignored"
423 			   " if \"kcache_hash\" sets up data hash-for-home\n");
424 	}
425 
426 	if (kdata_huge && !hash_default) {
427 		pr_warning("warning: disabling \"kdata=huge\"; requires"
428 			  " kcache_hash=all or =allbutstack\n");
429 		kdata_huge = 0;
430 	}
431 
432 	/*
433 	 * Set up a mask for cpus to use for kernel striping.
434 	 * This is normally all cpus, but minus dataplane cpus if any.
435 	 * If the dataplane covers the whole chip, we stripe over
436 	 * the whole chip too.
437 	 */
438 	cpumask_copy(&kstripe_mask, cpu_possible_mask);
439 	if (!kdata_arg_seen)
440 		kdata_mask = kstripe_mask;
441 
442 	/* Allocate and fill in L2 page tables */
443 	for (i = 0; i < MAX_NUMNODES; ++i) {
444 #ifdef CONFIG_HIGHMEM
445 		unsigned long end_pfn = node_lowmem_end_pfn[i];
446 #else
447 		unsigned long end_pfn = node_end_pfn[i];
448 #endif
449 		unsigned long end_huge_pfn = 0;
450 
451 		/* Pre-shatter the last huge page to allow per-cpu pages. */
452 		if (kdata_huge)
453 			end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
454 
455 		pfn = node_start_pfn[i];
456 
457 		/* Allocate enough memory to hold L2 page tables for node. */
458 		init_prealloc_ptes(i, end_pfn - pfn);
459 
460 		address = (unsigned long) pfn_to_kaddr(pfn);
461 		while (pfn < end_pfn) {
462 			BUG_ON(address & (HPAGE_SIZE-1));
463 			pmd = get_pmd(pgtables, address);
464 			pte = get_prealloc_pte(pfn);
465 			if (pfn < end_huge_pfn) {
466 				pgprot_t prot = init_pgprot(address);
467 				*(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
468 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
469 				     pfn++, pte_ofs++, address += PAGE_SIZE)
470 					pte[pte_ofs] = pfn_pte(pfn, prot);
471 			} else {
472 				if (kdata_huge)
473 					printk(KERN_DEBUG "pre-shattered huge"
474 					       " page at %#lx\n", address);
475 				for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
476 				     pfn++, pte_ofs++, address += PAGE_SIZE) {
477 					pgprot_t prot = init_pgprot(address);
478 					pte[pte_ofs] = pfn_pte(pfn, prot);
479 				}
480 				assign_pte(pmd, pte);
481 			}
482 		}
483 	}
484 
485 	/*
486 	 * Set or check ktext_map now that we have cpu_possible_mask
487 	 * and kstripe_mask to work with.
488 	 */
489 	if (ktext_all)
490 		cpumask_copy(&ktext_mask, cpu_possible_mask);
491 	else if (ktext_nondataplane)
492 		ktext_mask = kstripe_mask;
493 	else if (!cpumask_empty(&ktext_mask)) {
494 		/* Sanity-check any mask that was requested */
495 		struct cpumask bad;
496 		cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
497 		cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
498 		if (!cpumask_empty(&bad)) {
499 			char buf[NR_CPUS * 5];
500 			cpulist_scnprintf(buf, sizeof(buf), &bad);
501 			pr_info("ktext: not using unavailable cpus %s\n", buf);
502 		}
503 		if (cpumask_empty(&ktext_mask)) {
504 			pr_warning("ktext: no valid cpus; caching on %d.\n",
505 				   smp_processor_id());
506 			cpumask_copy(&ktext_mask,
507 				     cpumask_of(smp_processor_id()));
508 		}
509 	}
510 
511 	address = MEM_SV_START;
512 	pmd = get_pmd(pgtables, address);
513 	pfn = 0;  /* code starts at PA 0 */
514 	if (ktext_small) {
515 		/* Allocate an L2 PTE for the kernel text */
516 		int cpu = 0;
517 		pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
518 						 PAGE_HOME_IMMUTABLE);
519 
520 		if (ktext_local) {
521 			if (ktext_nocache)
522 				prot = hv_pte_set_mode(prot,
523 						       HV_PTE_MODE_UNCACHED);
524 			else
525 				prot = hv_pte_set_mode(prot,
526 						       HV_PTE_MODE_CACHE_NO_L3);
527 		} else {
528 			prot = hv_pte_set_mode(prot,
529 					       HV_PTE_MODE_CACHE_TILE_L3);
530 			cpu = cpumask_first(&ktext_mask);
531 
532 			prot = ktext_set_nocache(prot);
533 		}
534 
535 		BUG_ON(address != (unsigned long)_text);
536 		pte = NULL;
537 		for (; address < (unsigned long)_einittext;
538 		     pfn++, address += PAGE_SIZE) {
539 			pte_ofs = pte_index(address);
540 			if (pte_ofs == 0) {
541 				if (pte)
542 					assign_pte(pmd++, pte);
543 				pte = alloc_pte();
544 			}
545 			if (!ktext_local) {
546 				prot = set_remote_cache_cpu(prot, cpu);
547 				cpu = cpumask_next(cpu, &ktext_mask);
548 				if (cpu == NR_CPUS)
549 					cpu = cpumask_first(&ktext_mask);
550 			}
551 			pte[pte_ofs] = pfn_pte(pfn, prot);
552 		}
553 		if (pte)
554 			assign_pte(pmd, pte);
555 	} else {
556 		pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
557 		pteval = pte_mkhuge(pteval);
558 		if (ktext_hash) {
559 			pteval = hv_pte_set_mode(pteval,
560 						 HV_PTE_MODE_CACHE_HASH_L3);
561 			pteval = ktext_set_nocache(pteval);
562 		} else
563 		if (cpumask_weight(&ktext_mask) == 1) {
564 			pteval = set_remote_cache_cpu(pteval,
565 					      cpumask_first(&ktext_mask));
566 			pteval = hv_pte_set_mode(pteval,
567 						 HV_PTE_MODE_CACHE_TILE_L3);
568 			pteval = ktext_set_nocache(pteval);
569 		} else if (ktext_nocache)
570 			pteval = hv_pte_set_mode(pteval,
571 						 HV_PTE_MODE_UNCACHED);
572 		else
573 			pteval = hv_pte_set_mode(pteval,
574 						 HV_PTE_MODE_CACHE_NO_L3);
575 		for (; address < (unsigned long)_einittext;
576 		     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
577 			*(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
578 	}
579 
580 	/* Set swapper_pgprot here so it is flushed to memory right away. */
581 	swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
582 
583 	/*
584 	 * Since we may be changing the caching of the stack and page
585 	 * table itself, we invoke an assembly helper to do the
586 	 * following steps:
587 	 *
588 	 *  - flush the cache so we start with an empty slate
589 	 *  - install pgtables[] as the real page table
590 	 *  - flush the TLB so the new page table takes effect
591 	 */
592 	irqmask = interrupt_mask_save_mask();
593 	interrupt_mask_set_mask(-1ULL);
594 	rc = flush_and_install_context(__pa(pgtables),
595 				       init_pgprot((unsigned long)pgtables),
596 				       __this_cpu_read(current_asid),
597 				       cpumask_bits(my_cpu_mask));
598 	interrupt_mask_restore_mask(irqmask);
599 	BUG_ON(rc != 0);
600 
601 	/* Copy the page table back to the normal swapper_pg_dir. */
602 	memcpy(pgd_base, pgtables, sizeof(pgtables));
603 	__install_page_table(pgd_base, __this_cpu_read(current_asid),
604 			     swapper_pgprot);
605 
606 	/*
607 	 * We just read swapper_pgprot and thus brought it into the cache,
608 	 * with its new home & caching mode.  When we start the other CPUs,
609 	 * they're going to reference swapper_pgprot via their initial fake
610 	 * VA-is-PA mappings, which cache everything locally.  At that
611 	 * time, if it's in our cache with a conflicting home, the
612 	 * simulator's coherence checker will complain.  So, flush it out
613 	 * of our cache; we're not going to ever use it again anyway.
614 	 */
615 	__insn_finv(&swapper_pgprot);
616 }
617 
618 /*
619  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
620  * is valid. The argument is a physical page number.
621  *
622  * On Tile, the only valid things for which we can just hand out unchecked
623  * PTEs are the kernel code and data.  Anything else might change its
624  * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
625  * Note that init_thread_union is released to heap soon after boot,
626  * so we include it in the init data.
627  *
628  * For TILE-Gx, we might want to consider allowing access to PA
629  * regions corresponding to PCI space, etc.
630  */
devmem_is_allowed(unsigned long pagenr)631 int devmem_is_allowed(unsigned long pagenr)
632 {
633 	return pagenr < kaddr_to_pfn(_end) &&
634 		!(pagenr >= kaddr_to_pfn(&init_thread_union) ||
635 		  pagenr < kaddr_to_pfn(__init_end)) &&
636 		!(pagenr >= kaddr_to_pfn(_sinittext) ||
637 		  pagenr <= kaddr_to_pfn(_einittext-1));
638 }
639 
640 #ifdef CONFIG_HIGHMEM
permanent_kmaps_init(pgd_t * pgd_base)641 static void __init permanent_kmaps_init(pgd_t *pgd_base)
642 {
643 	pgd_t *pgd;
644 	pud_t *pud;
645 	pmd_t *pmd;
646 	pte_t *pte;
647 	unsigned long vaddr;
648 
649 	vaddr = PKMAP_BASE;
650 	page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
651 
652 	pgd = swapper_pg_dir + pgd_index(vaddr);
653 	pud = pud_offset(pgd, vaddr);
654 	pmd = pmd_offset(pud, vaddr);
655 	pte = pte_offset_kernel(pmd, vaddr);
656 	pkmap_page_table = pte;
657 }
658 #endif /* CONFIG_HIGHMEM */
659 
660 
661 #ifndef CONFIG_64BIT
init_free_pfn_range(unsigned long start,unsigned long end)662 static void __init init_free_pfn_range(unsigned long start, unsigned long end)
663 {
664 	unsigned long pfn;
665 	struct page *page = pfn_to_page(start);
666 
667 	for (pfn = start; pfn < end; ) {
668 		/* Optimize by freeing pages in large batches */
669 		int order = __ffs(pfn);
670 		int count, i;
671 		struct page *p;
672 
673 		if (order >= MAX_ORDER)
674 			order = MAX_ORDER-1;
675 		count = 1 << order;
676 		while (pfn + count > end) {
677 			count >>= 1;
678 			--order;
679 		}
680 		for (p = page, i = 0; i < count; ++i, ++p) {
681 			__ClearPageReserved(p);
682 			/*
683 			 * Hacky direct set to avoid unnecessary
684 			 * lock take/release for EVERY page here.
685 			 */
686 			p->_count.counter = 0;
687 			p->_mapcount.counter = -1;
688 		}
689 		init_page_count(page);
690 		__free_pages(page, order);
691 		adjust_managed_page_count(page, count);
692 
693 		page += count;
694 		pfn += count;
695 	}
696 }
697 
set_non_bootmem_pages_init(void)698 static void __init set_non_bootmem_pages_init(void)
699 {
700 	struct zone *z;
701 	for_each_zone(z) {
702 		unsigned long start, end;
703 		int nid = z->zone_pgdat->node_id;
704 #ifdef CONFIG_HIGHMEM
705 		int idx = zone_idx(z);
706 #endif
707 
708 		start = z->zone_start_pfn;
709 		end = start + z->spanned_pages;
710 		start = max(start, node_free_pfn[nid]);
711 		start = max(start, max_low_pfn);
712 
713 #ifdef CONFIG_HIGHMEM
714 		if (idx == ZONE_HIGHMEM)
715 			totalhigh_pages += z->spanned_pages;
716 #endif
717 		if (kdata_huge) {
718 			unsigned long percpu_pfn = node_percpu_pfn[nid];
719 			if (start < percpu_pfn && end > percpu_pfn)
720 				end = percpu_pfn;
721 		}
722 #ifdef CONFIG_PCI
723 		if (start <= pci_reserve_start_pfn &&
724 		    end > pci_reserve_start_pfn) {
725 			if (end > pci_reserve_end_pfn)
726 				init_free_pfn_range(pci_reserve_end_pfn, end);
727 			end = pci_reserve_start_pfn;
728 		}
729 #endif
730 		init_free_pfn_range(start, end);
731 	}
732 }
733 #endif
734 
735 /*
736  * paging_init() sets up the page tables - note that all of lowmem is
737  * already mapped by head.S.
738  */
paging_init(void)739 void __init paging_init(void)
740 {
741 #ifdef __tilegx__
742 	pud_t *pud;
743 #endif
744 	pgd_t *pgd_base = swapper_pg_dir;
745 
746 	kernel_physical_mapping_init(pgd_base);
747 
748 	/* Fixed mappings, only the page table structure has to be created. */
749 	page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
750 			      FIXADDR_TOP, pgd_base);
751 
752 #ifdef CONFIG_HIGHMEM
753 	permanent_kmaps_init(pgd_base);
754 #endif
755 
756 #ifdef __tilegx__
757 	/*
758 	 * Since GX allocates just one pmd_t array worth of vmalloc space,
759 	 * we go ahead and allocate it statically here, then share it
760 	 * globally.  As a result we don't have to worry about any task
761 	 * changing init_mm once we get up and running, and there's no
762 	 * need for e.g. vmalloc_sync_all().
763 	 */
764 	BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
765 	pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
766 	assign_pmd(pud, alloc_pmd());
767 #endif
768 }
769 
770 
771 /*
772  * Walk the kernel page tables and derive the page_home() from
773  * the PTEs, so that set_pte() can properly validate the caching
774  * of all PTEs it sees.
775  */
set_page_homes(void)776 void __init set_page_homes(void)
777 {
778 }
779 
set_max_mapnr_init(void)780 static void __init set_max_mapnr_init(void)
781 {
782 #ifdef CONFIG_FLATMEM
783 	max_mapnr = max_low_pfn;
784 #endif
785 }
786 
mem_init(void)787 void __init mem_init(void)
788 {
789 	int i;
790 #ifndef __tilegx__
791 	void *last;
792 #endif
793 
794 #ifdef CONFIG_FLATMEM
795 	BUG_ON(!mem_map);
796 #endif
797 
798 #ifdef CONFIG_HIGHMEM
799 	/* check that fixmap and pkmap do not overlap */
800 	if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
801 		pr_err("fixmap and kmap areas overlap"
802 		       " - this will crash\n");
803 		pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
804 		       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
805 		       FIXADDR_START);
806 		BUG();
807 	}
808 #endif
809 
810 	set_max_mapnr_init();
811 
812 	/* this will put all bootmem onto the freelists */
813 	free_all_bootmem();
814 
815 #ifndef CONFIG_64BIT
816 	/* count all remaining LOWMEM and give all HIGHMEM to page allocator */
817 	set_non_bootmem_pages_init();
818 #endif
819 
820 	mem_init_print_info(NULL);
821 
822 	/*
823 	 * In debug mode, dump some interesting memory mappings.
824 	 */
825 #ifdef CONFIG_HIGHMEM
826 	printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
827 	       FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
828 	printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
829 	       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
830 #endif
831 	printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
832 	       _VMALLOC_START, _VMALLOC_END - 1);
833 #ifdef __tilegx__
834 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
835 		struct pglist_data *node = &node_data[i];
836 		if (node->node_present_pages) {
837 			unsigned long start = (unsigned long)
838 				pfn_to_kaddr(node->node_start_pfn);
839 			unsigned long end = start +
840 				(node->node_present_pages << PAGE_SHIFT);
841 			printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
842 			       i, start, end - 1);
843 		}
844 	}
845 #else
846 	last = high_memory;
847 	for (i = MAX_NUMNODES-1; i >= 0; --i) {
848 		if ((unsigned long)vbase_map[i] != -1UL) {
849 			printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
850 			       i, (unsigned long) (vbase_map[i]),
851 			       (unsigned long) (last-1));
852 			last = vbase_map[i];
853 		}
854 	}
855 #endif
856 
857 #ifndef __tilegx__
858 	/*
859 	 * Convert from using one lock for all atomic operations to
860 	 * one per cpu.
861 	 */
862 	__init_atomic_per_cpu();
863 #endif
864 }
865 
866 /*
867  * this is for the non-NUMA, single node SMP system case.
868  * Specifically, in the case of x86, we will always add
869  * memory to the highmem for now.
870  */
871 #ifndef CONFIG_NEED_MULTIPLE_NODES
arch_add_memory(u64 start,u64 size)872 int arch_add_memory(u64 start, u64 size)
873 {
874 	struct pglist_data *pgdata = &contig_page_data;
875 	struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
876 	unsigned long start_pfn = start >> PAGE_SHIFT;
877 	unsigned long nr_pages = size >> PAGE_SHIFT;
878 
879 	return __add_pages(zone, start_pfn, nr_pages);
880 }
881 
remove_memory(u64 start,u64 size)882 int remove_memory(u64 start, u64 size)
883 {
884 	return -EINVAL;
885 }
886 
887 #ifdef CONFIG_MEMORY_HOTREMOVE
arch_remove_memory(u64 start,u64 size)888 int arch_remove_memory(u64 start, u64 size)
889 {
890 	/* TODO */
891 	return -EBUSY;
892 }
893 #endif
894 #endif
895 
896 struct kmem_cache *pgd_cache;
897 
pgtable_cache_init(void)898 void __init pgtable_cache_init(void)
899 {
900 	pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
901 	if (!pgd_cache)
902 		panic("pgtable_cache_init(): Cannot create pgd cache");
903 }
904 
905 #ifdef CONFIG_DEBUG_PAGEALLOC
906 static long __write_once initfree;
907 #else
908 static long __write_once initfree = 1;
909 #endif
910 
911 /* Select whether to free (1) or mark unusable (0) the __init pages. */
set_initfree(char * str)912 static int __init set_initfree(char *str)
913 {
914 	long val;
915 	if (kstrtol(str, 0, &val) == 0) {
916 		initfree = val;
917 		pr_info("initfree: %s free init pages\n",
918 			initfree ? "will" : "won't");
919 	}
920 	return 1;
921 }
922 __setup("initfree=", set_initfree);
923 
free_init_pages(char * what,unsigned long begin,unsigned long end)924 static void free_init_pages(char *what, unsigned long begin, unsigned long end)
925 {
926 	unsigned long addr = (unsigned long) begin;
927 
928 	if (kdata_huge && !initfree) {
929 		pr_warning("Warning: ignoring initfree=0:"
930 			   " incompatible with kdata=huge\n");
931 		initfree = 1;
932 	}
933 	end = (end + PAGE_SIZE - 1) & PAGE_MASK;
934 	local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
935 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
936 		/*
937 		 * Note we just reset the home here directly in the
938 		 * page table.  We know this is safe because our caller
939 		 * just flushed the caches on all the other cpus,
940 		 * and they won't be touching any of these pages.
941 		 */
942 		int pfn = kaddr_to_pfn((void *)addr);
943 		struct page *page = pfn_to_page(pfn);
944 		pte_t *ptep = virt_to_kpte(addr);
945 		if (!initfree) {
946 			/*
947 			 * If debugging page accesses then do not free
948 			 * this memory but mark them not present - any
949 			 * buggy init-section access will create a
950 			 * kernel page fault:
951 			 */
952 			pte_clear(&init_mm, addr, ptep);
953 			continue;
954 		}
955 		if (pte_huge(*ptep))
956 			BUG_ON(!kdata_huge);
957 		else
958 			set_pte_at(&init_mm, addr, ptep,
959 				   pfn_pte(pfn, PAGE_KERNEL));
960 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
961 		free_reserved_page(page);
962 	}
963 	pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
964 }
965 
free_initmem(void)966 void free_initmem(void)
967 {
968 	const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET;
969 
970 	/*
971 	 * Evict the cache on all cores to avoid incoherence.
972 	 * We are guaranteed that no one will touch the init pages any more.
973 	 */
974 	homecache_evict(&cpu_cacheable_map);
975 
976 	/* Free the data pages that we won't use again after init. */
977 	free_init_pages("unused kernel data",
978 			(unsigned long)__init_begin,
979 			(unsigned long)__init_end);
980 
981 	/*
982 	 * Free the pages mapped from 0xc0000000 that correspond to code
983 	 * pages from MEM_SV_START that we won't use again after init.
984 	 */
985 	free_init_pages("unused kernel text",
986 			(unsigned long)_sinittext - text_delta,
987 			(unsigned long)_einittext - text_delta);
988 	/* Do a global TLB flush so everyone sees the changes. */
989 	flush_tlb_all();
990 }
991