• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/mmu_context.h>
42 #include <asm/page.h>
43 #include <asm/types.h>
44 #include <asm/uaccess.h>
45 #include <asm/machdep.h>
46 #include <asm/prom.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/copro.h>
55 #include <asm/udbg.h>
56 #include <asm/code-patching.h>
57 #include <asm/fadump.h>
58 #include <asm/firmware.h>
59 #include <asm/tm.h>
60 
61 #ifdef DEBUG
62 #define DBG(fmt...) udbg_printf(fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66 
67 #ifdef DEBUG_LOW
68 #define DBG_LOW(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG_LOW(fmt...)
71 #endif
72 
73 #define KB (1024)
74 #define MB (1024*KB)
75 #define GB (1024L*MB)
76 
77 /*
78  * Note:  pte   --> Linux PTE
79  *        HPTE  --> PowerPC Hashed Page Table Entry
80  *
81  * Execution context:
82  *   htab_initialize is called with the MMU off (of course), but
83  *   the kernel has been copied down to zero so it can directly
84  *   reference global data.  At this point it is very difficult
85  *   to print debug info.
86  *
87  */
88 
89 #ifdef CONFIG_U3_DART
90 extern unsigned long dart_tablebase;
91 #endif /* CONFIG_U3_DART */
92 
93 static unsigned long _SDR1;
94 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
95 EXPORT_SYMBOL_GPL(mmu_psize_defs);
96 
97 struct hash_pte *htab_address;
98 unsigned long htab_size_bytes;
99 unsigned long htab_hash_mask;
100 EXPORT_SYMBOL_GPL(htab_hash_mask);
101 int mmu_linear_psize = MMU_PAGE_4K;
102 EXPORT_SYMBOL_GPL(mmu_linear_psize);
103 int mmu_virtual_psize = MMU_PAGE_4K;
104 int mmu_vmalloc_psize = MMU_PAGE_4K;
105 #ifdef CONFIG_SPARSEMEM_VMEMMAP
106 int mmu_vmemmap_psize = MMU_PAGE_4K;
107 #endif
108 int mmu_io_psize = MMU_PAGE_4K;
109 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
110 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
111 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
112 u16 mmu_slb_size = 64;
113 EXPORT_SYMBOL_GPL(mmu_slb_size);
114 #ifdef CONFIG_PPC_64K_PAGES
115 int mmu_ci_restrictions;
116 #endif
117 #ifdef CONFIG_DEBUG_PAGEALLOC
118 static u8 *linear_map_hash_slots;
119 static unsigned long linear_map_hash_count;
120 static DEFINE_SPINLOCK(linear_map_hash_lock);
121 #endif /* CONFIG_DEBUG_PAGEALLOC */
122 
123 /* There are definitions of page sizes arrays to be used when none
124  * is provided by the firmware.
125  */
126 
127 /* Pre-POWER4 CPUs (4k pages only)
128  */
129 static struct mmu_psize_def mmu_psize_defaults_old[] = {
130 	[MMU_PAGE_4K] = {
131 		.shift	= 12,
132 		.sllp	= 0,
133 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
134 		.avpnm	= 0,
135 		.tlbiel = 0,
136 	},
137 };
138 
139 /* POWER4, GPUL, POWER5
140  *
141  * Support for 16Mb large pages
142  */
143 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
144 	[MMU_PAGE_4K] = {
145 		.shift	= 12,
146 		.sllp	= 0,
147 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
148 		.avpnm	= 0,
149 		.tlbiel = 1,
150 	},
151 	[MMU_PAGE_16M] = {
152 		.shift	= 24,
153 		.sllp	= SLB_VSID_L,
154 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
155 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
156 		.avpnm	= 0x1UL,
157 		.tlbiel = 0,
158 	},
159 };
160 
htab_convert_pte_flags(unsigned long pteflags)161 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
162 {
163 	unsigned long rflags = pteflags & 0x1fa;
164 
165 	/* _PAGE_EXEC -> NOEXEC */
166 	if ((pteflags & _PAGE_EXEC) == 0)
167 		rflags |= HPTE_R_N;
168 
169 	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
170 	 * need to add in 0x1 if it's a read-only user page
171 	 */
172 	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
173 					 (pteflags & _PAGE_DIRTY)))
174 		rflags |= 1;
175 	/*
176 	 * Always add "C" bit for perf. Memory coherence is always enabled
177 	 */
178 	return rflags | HPTE_R_C | HPTE_R_M;
179 }
180 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)181 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
182 		      unsigned long pstart, unsigned long prot,
183 		      int psize, int ssize)
184 {
185 	unsigned long vaddr, paddr;
186 	unsigned int step, shift;
187 	int ret = 0;
188 
189 	shift = mmu_psize_defs[psize].shift;
190 	step = 1 << shift;
191 
192 	prot = htab_convert_pte_flags(prot);
193 
194 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
195 	    vstart, vend, pstart, prot, psize, ssize);
196 
197 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
198 	     vaddr += step, paddr += step) {
199 		unsigned long hash, hpteg;
200 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
201 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
202 		unsigned long tprot = prot;
203 
204 		/*
205 		 * If we hit a bad address return error.
206 		 */
207 		if (!vsid)
208 			return -1;
209 		/* Make kernel text executable */
210 		if (overlaps_kernel_text(vaddr, vaddr + step))
211 			tprot &= ~HPTE_R_N;
212 
213 		/* Make kvm guest trampolines executable */
214 		if (overlaps_kvm_tmp(vaddr, vaddr + step))
215 			tprot &= ~HPTE_R_N;
216 
217 		/*
218 		 * If relocatable, check if it overlaps interrupt vectors that
219 		 * are copied down to real 0. For relocatable kernel
220 		 * (e.g. kdump case) we copy interrupt vectors down to real
221 		 * address 0. Mark that region as executable. This is
222 		 * because on p8 system with relocation on exception feature
223 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
224 		 * in order to execute the interrupt handlers in virtual
225 		 * mode the vector region need to be marked as executable.
226 		 */
227 		if ((PHYSICAL_START > MEMORY_START) &&
228 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
229 				tprot &= ~HPTE_R_N;
230 
231 		hash = hpt_hash(vpn, shift, ssize);
232 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
233 
234 		BUG_ON(!ppc_md.hpte_insert);
235 		ret = ppc_md.hpte_insert(hpteg, vpn, paddr, tprot,
236 					 HPTE_V_BOLTED, psize, psize, ssize);
237 
238 		if (ret < 0)
239 			break;
240 #ifdef CONFIG_DEBUG_PAGEALLOC
241 		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
242 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
243 #endif /* CONFIG_DEBUG_PAGEALLOC */
244 	}
245 	return ret < 0 ? ret : 0;
246 }
247 
248 #ifdef CONFIG_MEMORY_HOTPLUG
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)249 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
250 		      int psize, int ssize)
251 {
252 	unsigned long vaddr;
253 	unsigned int step, shift;
254 
255 	shift = mmu_psize_defs[psize].shift;
256 	step = 1 << shift;
257 
258 	if (!ppc_md.hpte_removebolted) {
259 		printk(KERN_WARNING "Platform doesn't implement "
260 				"hpte_removebolted\n");
261 		return -EINVAL;
262 	}
263 
264 	for (vaddr = vstart; vaddr < vend; vaddr += step)
265 		ppc_md.hpte_removebolted(vaddr, psize, ssize);
266 
267 	return 0;
268 }
269 #endif /* CONFIG_MEMORY_HOTPLUG */
270 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)271 static int __init htab_dt_scan_seg_sizes(unsigned long node,
272 					 const char *uname, int depth,
273 					 void *data)
274 {
275 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
276 	const __be32 *prop;
277 	int size = 0;
278 
279 	/* We are scanning "cpu" nodes only */
280 	if (type == NULL || strcmp(type, "cpu") != 0)
281 		return 0;
282 
283 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
284 	if (prop == NULL)
285 		return 0;
286 	for (; size >= 4; size -= 4, ++prop) {
287 		if (be32_to_cpu(prop[0]) == 40) {
288 			DBG("1T segment support detected\n");
289 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
290 			return 1;
291 		}
292 	}
293 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
294 	return 0;
295 }
296 
htab_init_seg_sizes(void)297 static void __init htab_init_seg_sizes(void)
298 {
299 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
300 }
301 
get_idx_from_shift(unsigned int shift)302 static int __init get_idx_from_shift(unsigned int shift)
303 {
304 	int idx = -1;
305 
306 	switch (shift) {
307 	case 0xc:
308 		idx = MMU_PAGE_4K;
309 		break;
310 	case 0x10:
311 		idx = MMU_PAGE_64K;
312 		break;
313 	case 0x14:
314 		idx = MMU_PAGE_1M;
315 		break;
316 	case 0x18:
317 		idx = MMU_PAGE_16M;
318 		break;
319 	case 0x22:
320 		idx = MMU_PAGE_16G;
321 		break;
322 	}
323 	return idx;
324 }
325 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)326 static int __init htab_dt_scan_page_sizes(unsigned long node,
327 					  const char *uname, int depth,
328 					  void *data)
329 {
330 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
331 	const __be32 *prop;
332 	int size = 0;
333 
334 	/* We are scanning "cpu" nodes only */
335 	if (type == NULL || strcmp(type, "cpu") != 0)
336 		return 0;
337 
338 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
339 	if (!prop)
340 		return 0;
341 
342 	pr_info("Page sizes from device-tree:\n");
343 	size /= 4;
344 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
345 	while(size > 0) {
346 		unsigned int base_shift = be32_to_cpu(prop[0]);
347 		unsigned int slbenc = be32_to_cpu(prop[1]);
348 		unsigned int lpnum = be32_to_cpu(prop[2]);
349 		struct mmu_psize_def *def;
350 		int idx, base_idx;
351 
352 		size -= 3; prop += 3;
353 		base_idx = get_idx_from_shift(base_shift);
354 		if (base_idx < 0) {
355 			/* skip the pte encoding also */
356 			prop += lpnum * 2; size -= lpnum * 2;
357 			continue;
358 		}
359 		def = &mmu_psize_defs[base_idx];
360 		if (base_idx == MMU_PAGE_16M)
361 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
362 
363 		def->shift = base_shift;
364 		if (base_shift <= 23)
365 			def->avpnm = 0;
366 		else
367 			def->avpnm = (1 << (base_shift - 23)) - 1;
368 		def->sllp = slbenc;
369 		/*
370 		 * We don't know for sure what's up with tlbiel, so
371 		 * for now we only set it for 4K and 64K pages
372 		 */
373 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
374 			def->tlbiel = 1;
375 		else
376 			def->tlbiel = 0;
377 
378 		while (size > 0 && lpnum) {
379 			unsigned int shift = be32_to_cpu(prop[0]);
380 			int penc  = be32_to_cpu(prop[1]);
381 
382 			prop += 2; size -= 2;
383 			lpnum--;
384 
385 			idx = get_idx_from_shift(shift);
386 			if (idx < 0)
387 				continue;
388 
389 			if (penc == -1)
390 				pr_err("Invalid penc for base_shift=%d "
391 				       "shift=%d\n", base_shift, shift);
392 
393 			def->penc[idx] = penc;
394 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
395 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
396 				base_shift, shift, def->sllp,
397 				def->avpnm, def->tlbiel, def->penc[idx]);
398 		}
399 	}
400 
401 	return 1;
402 }
403 
404 #ifdef CONFIG_HUGETLB_PAGE
405 /* Scan for 16G memory blocks that have been set aside for huge pages
406  * and reserve those blocks for 16G huge pages.
407  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)408 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
409 					const char *uname, int depth,
410 					void *data) {
411 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
412 	const __be64 *addr_prop;
413 	const __be32 *page_count_prop;
414 	unsigned int expected_pages;
415 	long unsigned int phys_addr;
416 	long unsigned int block_size;
417 
418 	/* We are scanning "memory" nodes only */
419 	if (type == NULL || strcmp(type, "memory") != 0)
420 		return 0;
421 
422 	/* This property is the log base 2 of the number of virtual pages that
423 	 * will represent this memory block. */
424 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
425 	if (page_count_prop == NULL)
426 		return 0;
427 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
428 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
429 	if (addr_prop == NULL)
430 		return 0;
431 	phys_addr = be64_to_cpu(addr_prop[0]);
432 	block_size = be64_to_cpu(addr_prop[1]);
433 	if (block_size != (16 * GB))
434 		return 0;
435 	printk(KERN_INFO "Huge page(16GB) memory: "
436 			"addr = 0x%lX size = 0x%lX pages = %d\n",
437 			phys_addr, block_size, expected_pages);
438 	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
439 		memblock_reserve(phys_addr, block_size * expected_pages);
440 		add_gpage(phys_addr, block_size, expected_pages);
441 	}
442 	return 0;
443 }
444 #endif /* CONFIG_HUGETLB_PAGE */
445 
mmu_psize_set_default_penc(void)446 static void mmu_psize_set_default_penc(void)
447 {
448 	int bpsize, apsize;
449 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
450 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
451 			mmu_psize_defs[bpsize].penc[apsize] = -1;
452 }
453 
454 #ifdef CONFIG_PPC_64K_PAGES
455 
might_have_hea(void)456 static bool might_have_hea(void)
457 {
458 	/*
459 	 * The HEA ethernet adapter requires awareness of the
460 	 * GX bus. Without that awareness we can easily assume
461 	 * we will never see an HEA ethernet device.
462 	 */
463 #ifdef CONFIG_IBMEBUS
464 	return !cpu_has_feature(CPU_FTR_ARCH_207S);
465 #else
466 	return false;
467 #endif
468 }
469 
470 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
471 
htab_init_page_sizes(void)472 static void __init htab_init_page_sizes(void)
473 {
474 	int rc;
475 
476 	/* se the invalid penc to -1 */
477 	mmu_psize_set_default_penc();
478 
479 	/* Default to 4K pages only */
480 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
481 	       sizeof(mmu_psize_defaults_old));
482 
483 	/*
484 	 * Try to find the available page sizes in the device-tree
485 	 */
486 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
487 	if (rc != 0)  /* Found */
488 		goto found;
489 
490 	/*
491 	 * Not in the device-tree, let's fallback on known size
492 	 * list for 16M capable GP & GR
493 	 */
494 	if (mmu_has_feature(MMU_FTR_16M_PAGE))
495 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
496 		       sizeof(mmu_psize_defaults_gp));
497  found:
498 #ifndef CONFIG_DEBUG_PAGEALLOC
499 	/*
500 	 * Pick a size for the linear mapping. Currently, we only support
501 	 * 16M, 1M and 4K which is the default
502 	 */
503 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
504 		mmu_linear_psize = MMU_PAGE_16M;
505 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
506 		mmu_linear_psize = MMU_PAGE_1M;
507 #endif /* CONFIG_DEBUG_PAGEALLOC */
508 
509 #ifdef CONFIG_PPC_64K_PAGES
510 	/*
511 	 * Pick a size for the ordinary pages. Default is 4K, we support
512 	 * 64K for user mappings and vmalloc if supported by the processor.
513 	 * We only use 64k for ioremap if the processor
514 	 * (and firmware) support cache-inhibited large pages.
515 	 * If not, we use 4k and set mmu_ci_restrictions so that
516 	 * hash_page knows to switch processes that use cache-inhibited
517 	 * mappings to 4k pages.
518 	 */
519 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
520 		mmu_virtual_psize = MMU_PAGE_64K;
521 		mmu_vmalloc_psize = MMU_PAGE_64K;
522 		if (mmu_linear_psize == MMU_PAGE_4K)
523 			mmu_linear_psize = MMU_PAGE_64K;
524 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
525 			/*
526 			 * When running on pSeries using 64k pages for ioremap
527 			 * would stop us accessing the HEA ethernet. So if we
528 			 * have the chance of ever seeing one, stay at 4k.
529 			 */
530 			if (!might_have_hea() || !machine_is(pseries))
531 				mmu_io_psize = MMU_PAGE_64K;
532 		} else
533 			mmu_ci_restrictions = 1;
534 	}
535 #endif /* CONFIG_PPC_64K_PAGES */
536 
537 #ifdef CONFIG_SPARSEMEM_VMEMMAP
538 	/* We try to use 16M pages for vmemmap if that is supported
539 	 * and we have at least 1G of RAM at boot
540 	 */
541 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
542 	    memblock_phys_mem_size() >= 0x40000000)
543 		mmu_vmemmap_psize = MMU_PAGE_16M;
544 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
545 		mmu_vmemmap_psize = MMU_PAGE_64K;
546 	else
547 		mmu_vmemmap_psize = MMU_PAGE_4K;
548 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
549 
550 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
551 	       "virtual = %d, io = %d"
552 #ifdef CONFIG_SPARSEMEM_VMEMMAP
553 	       ", vmemmap = %d"
554 #endif
555 	       "\n",
556 	       mmu_psize_defs[mmu_linear_psize].shift,
557 	       mmu_psize_defs[mmu_virtual_psize].shift,
558 	       mmu_psize_defs[mmu_io_psize].shift
559 #ifdef CONFIG_SPARSEMEM_VMEMMAP
560 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
561 #endif
562 	       );
563 
564 #ifdef CONFIG_HUGETLB_PAGE
565 	/* Reserve 16G huge page memory sections for huge pages */
566 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
567 #endif /* CONFIG_HUGETLB_PAGE */
568 }
569 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)570 static int __init htab_dt_scan_pftsize(unsigned long node,
571 				       const char *uname, int depth,
572 				       void *data)
573 {
574 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
575 	const __be32 *prop;
576 
577 	/* We are scanning "cpu" nodes only */
578 	if (type == NULL || strcmp(type, "cpu") != 0)
579 		return 0;
580 
581 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
582 	if (prop != NULL) {
583 		/* pft_size[0] is the NUMA CEC cookie */
584 		ppc64_pft_size = be32_to_cpu(prop[1]);
585 		return 1;
586 	}
587 	return 0;
588 }
589 
htab_get_table_size(void)590 static unsigned long __init htab_get_table_size(void)
591 {
592 	unsigned long mem_size, rnd_mem_size, pteg_count, psize;
593 
594 	/* If hash size isn't already provided by the platform, we try to
595 	 * retrieve it from the device-tree. If it's not there neither, we
596 	 * calculate it now based on the total RAM size
597 	 */
598 	if (ppc64_pft_size == 0)
599 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
600 	if (ppc64_pft_size)
601 		return 1UL << ppc64_pft_size;
602 
603 	/* round mem_size up to next power of 2 */
604 	mem_size = memblock_phys_mem_size();
605 	rnd_mem_size = 1UL << __ilog2(mem_size);
606 	if (rnd_mem_size < mem_size)
607 		rnd_mem_size <<= 1;
608 
609 	/* # pages / 2 */
610 	psize = mmu_psize_defs[mmu_virtual_psize].shift;
611 	pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
612 
613 	return pteg_count << 7;
614 }
615 
616 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end)617 int create_section_mapping(unsigned long start, unsigned long end)
618 {
619 	return htab_bolt_mapping(start, end, __pa(start),
620 				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
621 				 mmu_kernel_ssize);
622 }
623 
remove_section_mapping(unsigned long start,unsigned long end)624 int remove_section_mapping(unsigned long start, unsigned long end)
625 {
626 	return htab_remove_mapping(start, end, mmu_linear_psize,
627 			mmu_kernel_ssize);
628 }
629 #endif /* CONFIG_MEMORY_HOTPLUG */
630 
631 extern u32 htab_call_hpte_insert1[];
632 extern u32 htab_call_hpte_insert2[];
633 extern u32 htab_call_hpte_remove[];
634 extern u32 htab_call_hpte_updatepp[];
635 extern u32 ht64_call_hpte_insert1[];
636 extern u32 ht64_call_hpte_insert2[];
637 extern u32 ht64_call_hpte_remove[];
638 extern u32 ht64_call_hpte_updatepp[];
639 
htab_finish_init(void)640 static void __init htab_finish_init(void)
641 {
642 #ifdef CONFIG_PPC_HAS_HASH_64K
643 	patch_branch(ht64_call_hpte_insert1,
644 		ppc_function_entry(ppc_md.hpte_insert),
645 		BRANCH_SET_LINK);
646 	patch_branch(ht64_call_hpte_insert2,
647 		ppc_function_entry(ppc_md.hpte_insert),
648 		BRANCH_SET_LINK);
649 	patch_branch(ht64_call_hpte_remove,
650 		ppc_function_entry(ppc_md.hpte_remove),
651 		BRANCH_SET_LINK);
652 	patch_branch(ht64_call_hpte_updatepp,
653 		ppc_function_entry(ppc_md.hpte_updatepp),
654 		BRANCH_SET_LINK);
655 #endif /* CONFIG_PPC_HAS_HASH_64K */
656 
657 	patch_branch(htab_call_hpte_insert1,
658 		ppc_function_entry(ppc_md.hpte_insert),
659 		BRANCH_SET_LINK);
660 	patch_branch(htab_call_hpte_insert2,
661 		ppc_function_entry(ppc_md.hpte_insert),
662 		BRANCH_SET_LINK);
663 	patch_branch(htab_call_hpte_remove,
664 		ppc_function_entry(ppc_md.hpte_remove),
665 		BRANCH_SET_LINK);
666 	patch_branch(htab_call_hpte_updatepp,
667 		ppc_function_entry(ppc_md.hpte_updatepp),
668 		BRANCH_SET_LINK);
669 }
670 
htab_initialize(void)671 static void __init htab_initialize(void)
672 {
673 	unsigned long table;
674 	unsigned long pteg_count;
675 	unsigned long prot;
676 	unsigned long base = 0, size = 0, limit;
677 	struct memblock_region *reg;
678 
679 	DBG(" -> htab_initialize()\n");
680 
681 	/* Initialize segment sizes */
682 	htab_init_seg_sizes();
683 
684 	/* Initialize page sizes */
685 	htab_init_page_sizes();
686 
687 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
688 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
689 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
690 		printk(KERN_INFO "Using 1TB segments\n");
691 	}
692 
693 	/*
694 	 * Calculate the required size of the htab.  We want the number of
695 	 * PTEGs to equal one half the number of real pages.
696 	 */
697 	htab_size_bytes = htab_get_table_size();
698 	pteg_count = htab_size_bytes >> 7;
699 
700 	htab_hash_mask = pteg_count - 1;
701 
702 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
703 		/* Using a hypervisor which owns the htab */
704 		htab_address = NULL;
705 		_SDR1 = 0;
706 #ifdef CONFIG_FA_DUMP
707 		/*
708 		 * If firmware assisted dump is active firmware preserves
709 		 * the contents of htab along with entire partition memory.
710 		 * Clear the htab if firmware assisted dump is active so
711 		 * that we dont end up using old mappings.
712 		 */
713 		if (is_fadump_active() && ppc_md.hpte_clear_all)
714 			ppc_md.hpte_clear_all();
715 #endif
716 	} else {
717 		/* Find storage for the HPT.  Must be contiguous in
718 		 * the absolute address space. On cell we want it to be
719 		 * in the first 2 Gig so we can use it for IOMMU hacks.
720 		 */
721 		if (machine_is(cell))
722 			limit = 0x80000000;
723 		else
724 			limit = MEMBLOCK_ALLOC_ANYWHERE;
725 
726 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
727 
728 		DBG("Hash table allocated at %lx, size: %lx\n", table,
729 		    htab_size_bytes);
730 
731 		htab_address = __va(table);
732 
733 		/* htab absolute addr + encoded htabsize */
734 		_SDR1 = table + __ilog2(pteg_count) - 11;
735 
736 		/* Initialize the HPT with no entries */
737 		memset((void *)table, 0, htab_size_bytes);
738 
739 		/* Set SDR1 */
740 		mtspr(SPRN_SDR1, _SDR1);
741 	}
742 
743 	prot = pgprot_val(PAGE_KERNEL);
744 
745 #ifdef CONFIG_DEBUG_PAGEALLOC
746 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
747 	linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
748 						    1, ppc64_rma_size));
749 	memset(linear_map_hash_slots, 0, linear_map_hash_count);
750 #endif /* CONFIG_DEBUG_PAGEALLOC */
751 
752 	/* On U3 based machines, we need to reserve the DART area and
753 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
754 	 * cacheable later on
755 	 */
756 
757 	/* create bolted the linear mapping in the hash table */
758 	for_each_memblock(memory, reg) {
759 		base = (unsigned long)__va(reg->base);
760 		size = reg->size;
761 
762 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
763 		    base, size, prot);
764 
765 #ifdef CONFIG_U3_DART
766 		/* Do not map the DART space. Fortunately, it will be aligned
767 		 * in such a way that it will not cross two memblock regions and
768 		 * will fit within a single 16Mb page.
769 		 * The DART space is assumed to be a full 16Mb region even if
770 		 * we only use 2Mb of that space. We will use more of it later
771 		 * for AGP GART. We have to use a full 16Mb large page.
772 		 */
773 		DBG("DART base: %lx\n", dart_tablebase);
774 
775 		if (dart_tablebase != 0 && dart_tablebase >= base
776 		    && dart_tablebase < (base + size)) {
777 			unsigned long dart_table_end = dart_tablebase + 16 * MB;
778 			if (base != dart_tablebase)
779 				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
780 							__pa(base), prot,
781 							mmu_linear_psize,
782 							mmu_kernel_ssize));
783 			if ((base + size) > dart_table_end)
784 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
785 							base + size,
786 							__pa(dart_table_end),
787 							 prot,
788 							 mmu_linear_psize,
789 							 mmu_kernel_ssize));
790 			continue;
791 		}
792 #endif /* CONFIG_U3_DART */
793 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
794 				prot, mmu_linear_psize, mmu_kernel_ssize));
795 	}
796 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
797 
798 	/*
799 	 * If we have a memory_limit and we've allocated TCEs then we need to
800 	 * explicitly map the TCE area at the top of RAM. We also cope with the
801 	 * case that the TCEs start below memory_limit.
802 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
803 	 * for either 4K or 16MB pages.
804 	 */
805 	if (tce_alloc_start) {
806 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
807 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
808 
809 		if (base + size >= tce_alloc_start)
810 			tce_alloc_start = base + size + 1;
811 
812 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
813 					 __pa(tce_alloc_start), prot,
814 					 mmu_linear_psize, mmu_kernel_ssize));
815 	}
816 
817 	htab_finish_init();
818 
819 	DBG(" <- htab_initialize()\n");
820 }
821 #undef KB
822 #undef MB
823 
early_init_mmu(void)824 void __init early_init_mmu(void)
825 {
826 	/* Initialize the MMU Hash table and create the linear mapping
827 	 * of memory. Has to be done before SLB initialization as this is
828 	 * currently where the page size encoding is obtained.
829 	 */
830 	htab_initialize();
831 
832 	/* Initialize SLB management */
833 	slb_initialize();
834 }
835 
836 #ifdef CONFIG_SMP
early_init_mmu_secondary(void)837 void early_init_mmu_secondary(void)
838 {
839 	/* Initialize hash table for that CPU */
840 	if (!firmware_has_feature(FW_FEATURE_LPAR))
841 		mtspr(SPRN_SDR1, _SDR1);
842 
843 	/* Initialize SLB */
844 	slb_initialize();
845 }
846 #endif /* CONFIG_SMP */
847 
848 /*
849  * Called by asm hashtable.S for doing lazy icache flush
850  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)851 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
852 {
853 	struct page *page;
854 
855 	if (!pfn_valid(pte_pfn(pte)))
856 		return pp;
857 
858 	page = pte_page(pte);
859 
860 	/* page is dirty */
861 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
862 		if (trap == 0x400) {
863 			flush_dcache_icache_page(page);
864 			set_bit(PG_arch_1, &page->flags);
865 		} else
866 			pp |= HPTE_R_N;
867 	}
868 	return pp;
869 }
870 
871 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)872 static unsigned int get_paca_psize(unsigned long addr)
873 {
874 	u64 lpsizes;
875 	unsigned char *hpsizes;
876 	unsigned long index, mask_index;
877 
878 	if (addr < SLICE_LOW_TOP) {
879 		lpsizes = get_paca()->context.low_slices_psize;
880 		index = GET_LOW_SLICE_INDEX(addr);
881 		return (lpsizes >> (index * 4)) & 0xF;
882 	}
883 	hpsizes = get_paca()->context.high_slices_psize;
884 	index = GET_HIGH_SLICE_INDEX(addr);
885 	mask_index = index & 0x1;
886 	return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
887 }
888 
889 #else
get_paca_psize(unsigned long addr)890 unsigned int get_paca_psize(unsigned long addr)
891 {
892 	return get_paca()->context.user_psize;
893 }
894 #endif
895 
896 /*
897  * Demote a segment to using 4k pages.
898  * For now this makes the whole process use 4k pages.
899  */
900 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)901 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
902 {
903 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
904 		return;
905 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
906 	copro_flush_all_slbs(mm);
907 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
908 		get_paca()->context = mm->context;
909 		slb_flush_and_rebolt();
910 	}
911 }
912 #endif /* CONFIG_PPC_64K_PAGES */
913 
914 #ifdef CONFIG_PPC_SUBPAGE_PROT
915 /*
916  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
917  * Userspace sets the subpage permissions using the subpage_prot system call.
918  *
919  * Result is 0: full permissions, _PAGE_RW: read-only,
920  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
921  */
subpage_protection(struct mm_struct * mm,unsigned long ea)922 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
923 {
924 	struct subpage_prot_table *spt = &mm->context.spt;
925 	u32 spp = 0;
926 	u32 **sbpm, *sbpp;
927 
928 	if (ea >= spt->maxaddr)
929 		return 0;
930 	if (ea < 0x100000000UL) {
931 		/* addresses below 4GB use spt->low_prot */
932 		sbpm = spt->low_prot;
933 	} else {
934 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
935 		if (!sbpm)
936 			return 0;
937 	}
938 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
939 	if (!sbpp)
940 		return 0;
941 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
942 
943 	/* extract 2-bit bitfield for this 4k subpage */
944 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
945 
946 	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
947 	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
948 	return spp;
949 }
950 
951 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)952 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
953 {
954 	return 0;
955 }
956 #endif
957 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)958 void hash_failure_debug(unsigned long ea, unsigned long access,
959 			unsigned long vsid, unsigned long trap,
960 			int ssize, int psize, int lpsize, unsigned long pte)
961 {
962 	if (!printk_ratelimit())
963 		return;
964 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
965 		ea, access, current->comm);
966 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
967 		trap, vsid, ssize, psize, lpsize, pte);
968 }
969 
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)970 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
971 			     int psize, bool user_region)
972 {
973 	if (user_region) {
974 		if (psize != get_paca_psize(ea)) {
975 			get_paca()->context = mm->context;
976 			slb_flush_and_rebolt();
977 		}
978 	} else if (get_paca()->vmalloc_sllp !=
979 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
980 		get_paca()->vmalloc_sllp =
981 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
982 		slb_vmalloc_update();
983 	}
984 }
985 
986 /* Result code is:
987  *  0 - handled
988  *  1 - normal page fault
989  * -1 - critical hash insertion error
990  * -2 - access not permitted by subpage protection mechanism
991  */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)992 int hash_page_mm(struct mm_struct *mm, unsigned long ea, unsigned long access, unsigned long trap)
993 {
994 	enum ctx_state prev_state = exception_enter();
995 	pgd_t *pgdir;
996 	unsigned long vsid;
997 	pte_t *ptep;
998 	unsigned hugeshift;
999 	const struct cpumask *tmp;
1000 	int rc, user_region = 0, local = 0;
1001 	int psize, ssize;
1002 
1003 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1004 		ea, access, trap);
1005 
1006 	/* Get region & vsid */
1007  	switch (REGION_ID(ea)) {
1008 	case USER_REGION_ID:
1009 		user_region = 1;
1010 		if (! mm) {
1011 			DBG_LOW(" user region with no mm !\n");
1012 			rc = 1;
1013 			goto bail;
1014 		}
1015 		psize = get_slice_psize(mm, ea);
1016 		ssize = user_segment_size(ea);
1017 		vsid = get_vsid(mm->context.id, ea, ssize);
1018 		break;
1019 	case VMALLOC_REGION_ID:
1020 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1021 		if (ea < VMALLOC_END)
1022 			psize = mmu_vmalloc_psize;
1023 		else
1024 			psize = mmu_io_psize;
1025 		ssize = mmu_kernel_ssize;
1026 		break;
1027 	default:
1028 		/* Not a valid range
1029 		 * Send the problem up to do_page_fault
1030 		 */
1031 		rc = 1;
1032 		goto bail;
1033 	}
1034 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1035 
1036 	/* Bad address. */
1037 	if (!vsid) {
1038 		DBG_LOW("Bad address!\n");
1039 		rc = 1;
1040 		goto bail;
1041 	}
1042 	/* Get pgdir */
1043 	pgdir = mm->pgd;
1044 	if (pgdir == NULL) {
1045 		rc = 1;
1046 		goto bail;
1047 	}
1048 
1049 	/* Check CPU locality */
1050 	tmp = cpumask_of(smp_processor_id());
1051 	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1052 		local = 1;
1053 
1054 #ifndef CONFIG_PPC_64K_PAGES
1055 	/* If we use 4K pages and our psize is not 4K, then we might
1056 	 * be hitting a special driver mapping, and need to align the
1057 	 * address before we fetch the PTE.
1058 	 *
1059 	 * It could also be a hugepage mapping, in which case this is
1060 	 * not necessary, but it's not harmful, either.
1061 	 */
1062 	if (psize != MMU_PAGE_4K)
1063 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1064 #endif /* CONFIG_PPC_64K_PAGES */
1065 
1066 	/* Get PTE and page size from page tables */
1067 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
1068 	if (ptep == NULL || !pte_present(*ptep)) {
1069 		DBG_LOW(" no PTE !\n");
1070 		rc = 1;
1071 		goto bail;
1072 	}
1073 
1074 	/* Add _PAGE_PRESENT to the required access perm */
1075 	access |= _PAGE_PRESENT;
1076 
1077 	/* Pre-check access permissions (will be re-checked atomically
1078 	 * in __hash_page_XX but this pre-check is a fast path
1079 	 */
1080 	if (access & ~pte_val(*ptep)) {
1081 		DBG_LOW(" no access !\n");
1082 		rc = 1;
1083 		goto bail;
1084 	}
1085 
1086 	if (hugeshift) {
1087 		if (pmd_trans_huge(*(pmd_t *)ptep))
1088 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1089 					     trap, local, ssize, psize);
1090 #ifdef CONFIG_HUGETLB_PAGE
1091 		else
1092 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1093 					      local, ssize, hugeshift, psize);
1094 #else
1095 		else {
1096 			/*
1097 			 * if we have hugeshift, and is not transhuge with
1098 			 * hugetlb disabled, something is really wrong.
1099 			 */
1100 			rc = 1;
1101 			WARN_ON(1);
1102 		}
1103 #endif
1104 		if (current->mm == mm)
1105 			check_paca_psize(ea, mm, psize, user_region);
1106 
1107 		goto bail;
1108 	}
1109 
1110 #ifndef CONFIG_PPC_64K_PAGES
1111 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1112 #else
1113 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1114 		pte_val(*(ptep + PTRS_PER_PTE)));
1115 #endif
1116 	/* Do actual hashing */
1117 #ifdef CONFIG_PPC_64K_PAGES
1118 	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1119 	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1120 		demote_segment_4k(mm, ea);
1121 		psize = MMU_PAGE_4K;
1122 	}
1123 
1124 	/* If this PTE is non-cacheable and we have restrictions on
1125 	 * using non cacheable large pages, then we switch to 4k
1126 	 */
1127 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1128 	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1129 		if (user_region) {
1130 			demote_segment_4k(mm, ea);
1131 			psize = MMU_PAGE_4K;
1132 		} else if (ea < VMALLOC_END) {
1133 			/*
1134 			 * some driver did a non-cacheable mapping
1135 			 * in vmalloc space, so switch vmalloc
1136 			 * to 4k pages
1137 			 */
1138 			printk(KERN_ALERT "Reducing vmalloc segment "
1139 			       "to 4kB pages because of "
1140 			       "non-cacheable mapping\n");
1141 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1142 			copro_flush_all_slbs(mm);
1143 		}
1144 	}
1145 
1146 	if (current->mm == mm)
1147 		check_paca_psize(ea, mm, psize, user_region);
1148 #endif /* CONFIG_PPC_64K_PAGES */
1149 
1150 #ifdef CONFIG_PPC_HAS_HASH_64K
1151 	if (psize == MMU_PAGE_64K)
1152 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1153 	else
1154 #endif /* CONFIG_PPC_HAS_HASH_64K */
1155 	{
1156 		int spp = subpage_protection(mm, ea);
1157 		if (access & spp)
1158 			rc = -2;
1159 		else
1160 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1161 					    local, ssize, spp);
1162 	}
1163 
1164 	/* Dump some info in case of hash insertion failure, they should
1165 	 * never happen so it is really useful to know if/when they do
1166 	 */
1167 	if (rc == -1)
1168 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1169 				   psize, pte_val(*ptep));
1170 #ifndef CONFIG_PPC_64K_PAGES
1171 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1172 #else
1173 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1174 		pte_val(*(ptep + PTRS_PER_PTE)));
1175 #endif
1176 	DBG_LOW(" -> rc=%d\n", rc);
1177 
1178 bail:
1179 	exception_exit(prev_state);
1180 	return rc;
1181 }
1182 EXPORT_SYMBOL_GPL(hash_page_mm);
1183 
hash_page(unsigned long ea,unsigned long access,unsigned long trap)1184 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
1185 {
1186 	struct mm_struct *mm = current->mm;
1187 
1188 	if (REGION_ID(ea) == VMALLOC_REGION_ID)
1189 		mm = &init_mm;
1190 
1191 	return hash_page_mm(mm, ea, access, trap);
1192 }
1193 EXPORT_SYMBOL_GPL(hash_page);
1194 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1195 void hash_preload(struct mm_struct *mm, unsigned long ea,
1196 		  unsigned long access, unsigned long trap)
1197 {
1198 	int hugepage_shift;
1199 	unsigned long vsid;
1200 	pgd_t *pgdir;
1201 	pte_t *ptep;
1202 	unsigned long flags;
1203 	int rc, ssize, local = 0;
1204 
1205 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1206 
1207 #ifdef CONFIG_PPC_MM_SLICES
1208 	/* We only prefault standard pages for now */
1209 	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1210 		return;
1211 #endif
1212 
1213 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1214 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1215 
1216 	/* Get Linux PTE if available */
1217 	pgdir = mm->pgd;
1218 	if (pgdir == NULL)
1219 		return;
1220 
1221 	/* Get VSID */
1222 	ssize = user_segment_size(ea);
1223 	vsid = get_vsid(mm->context.id, ea, ssize);
1224 	if (!vsid)
1225 		return;
1226 	/*
1227 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1228 	 * saves us from holding multiple locks.
1229 	 */
1230 	local_irq_save(flags);
1231 
1232 	/*
1233 	 * THP pages use update_mmu_cache_pmd. We don't do
1234 	 * hash preload there. Hence can ignore THP here
1235 	 */
1236 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugepage_shift);
1237 	if (!ptep)
1238 		goto out_exit;
1239 
1240 	WARN_ON(hugepage_shift);
1241 #ifdef CONFIG_PPC_64K_PAGES
1242 	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1243 	 * a 64K kernel), then we don't preload, hash_page() will take
1244 	 * care of it once we actually try to access the page.
1245 	 * That way we don't have to duplicate all of the logic for segment
1246 	 * page size demotion here
1247 	 */
1248 	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1249 		goto out_exit;
1250 #endif /* CONFIG_PPC_64K_PAGES */
1251 
1252 	/* Is that local to this CPU ? */
1253 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1254 		local = 1;
1255 
1256 	/* Hash it in */
1257 #ifdef CONFIG_PPC_HAS_HASH_64K
1258 	if (mm->context.user_psize == MMU_PAGE_64K)
1259 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1260 	else
1261 #endif /* CONFIG_PPC_HAS_HASH_64K */
1262 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1263 				    subpage_protection(mm, ea));
1264 
1265 	/* Dump some info in case of hash insertion failure, they should
1266 	 * never happen so it is really useful to know if/when they do
1267 	 */
1268 	if (rc == -1)
1269 		hash_failure_debug(ea, access, vsid, trap, ssize,
1270 				   mm->context.user_psize,
1271 				   mm->context.user_psize,
1272 				   pte_val(*ptep));
1273 out_exit:
1274 	local_irq_restore(flags);
1275 }
1276 
1277 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1278  *          do not forget to update the assembly call site !
1279  */
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,int local)1280 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1281 		     int local)
1282 {
1283 	unsigned long hash, index, shift, hidx, slot;
1284 
1285 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1286 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1287 		hash = hpt_hash(vpn, shift, ssize);
1288 		hidx = __rpte_to_hidx(pte, index);
1289 		if (hidx & _PTEIDX_SECONDARY)
1290 			hash = ~hash;
1291 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1292 		slot += hidx & _PTEIDX_GROUP_IX;
1293 		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1294 		/*
1295 		 * We use same base page size and actual psize, because we don't
1296 		 * use these functions for hugepage
1297 		 */
1298 		ppc_md.hpte_invalidate(slot, vpn, psize, psize, ssize, local);
1299 	} pte_iterate_hashed_end();
1300 
1301 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1302 	/* Transactions are not aborted by tlbiel, only tlbie.
1303 	 * Without, syncing a page back to a block device w/ PIO could pick up
1304 	 * transactional data (bad!) so we force an abort here.  Before the
1305 	 * sync the page will be made read-only, which will flush_hash_page.
1306 	 * BIG ISSUE here: if the kernel uses a page from userspace without
1307 	 * unmapping it first, it may see the speculated version.
1308 	 */
1309 	if (local && cpu_has_feature(CPU_FTR_TM) &&
1310 	    current->thread.regs &&
1311 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1312 		tm_enable();
1313 		tm_abort(TM_CAUSE_TLBI);
1314 	}
1315 #endif
1316 }
1317 
flush_hash_range(unsigned long number,int local)1318 void flush_hash_range(unsigned long number, int local)
1319 {
1320 	if (ppc_md.flush_hash_range)
1321 		ppc_md.flush_hash_range(number, local);
1322 	else {
1323 		int i;
1324 		struct ppc64_tlb_batch *batch =
1325 			&__get_cpu_var(ppc64_tlb_batch);
1326 
1327 		for (i = 0; i < number; i++)
1328 			flush_hash_page(batch->vpn[i], batch->pte[i],
1329 					batch->psize, batch->ssize, local);
1330 	}
1331 }
1332 
1333 /*
1334  * low_hash_fault is called when we the low level hash code failed
1335  * to instert a PTE due to an hypervisor error
1336  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1337 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1338 {
1339 	enum ctx_state prev_state = exception_enter();
1340 
1341 	if (user_mode(regs)) {
1342 #ifdef CONFIG_PPC_SUBPAGE_PROT
1343 		if (rc == -2)
1344 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1345 		else
1346 #endif
1347 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1348 	} else
1349 		bad_page_fault(regs, address, SIGBUS);
1350 
1351 	exception_exit(prev_state);
1352 }
1353 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1354 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1355 			   unsigned long pa, unsigned long rflags,
1356 			   unsigned long vflags, int psize, int ssize)
1357 {
1358 	unsigned long hpte_group;
1359 	long slot;
1360 
1361 repeat:
1362 	hpte_group = ((hash & htab_hash_mask) *
1363 		       HPTES_PER_GROUP) & ~0x7UL;
1364 
1365 	/* Insert into the hash table, primary slot */
1366 	slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1367 				  psize, psize, ssize);
1368 
1369 	/* Primary is full, try the secondary */
1370 	if (unlikely(slot == -1)) {
1371 		hpte_group = ((~hash & htab_hash_mask) *
1372 			      HPTES_PER_GROUP) & ~0x7UL;
1373 		slot = ppc_md.hpte_insert(hpte_group, vpn, pa, rflags,
1374 					  vflags | HPTE_V_SECONDARY,
1375 					  psize, psize, ssize);
1376 		if (slot == -1) {
1377 			if (mftb() & 0x1)
1378 				hpte_group = ((hash & htab_hash_mask) *
1379 					      HPTES_PER_GROUP)&~0x7UL;
1380 
1381 			ppc_md.hpte_remove(hpte_group);
1382 			goto repeat;
1383 		}
1384 	}
1385 
1386 	return slot;
1387 }
1388 
1389 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1390 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1391 {
1392 	unsigned long hash;
1393 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1394 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1395 	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1396 	long ret;
1397 
1398 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1399 
1400 	/* Don't create HPTE entries for bad address */
1401 	if (!vsid)
1402 		return;
1403 
1404 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1405 				    HPTE_V_BOLTED,
1406 				    mmu_linear_psize, mmu_kernel_ssize);
1407 
1408 	BUG_ON (ret < 0);
1409 	spin_lock(&linear_map_hash_lock);
1410 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1411 	linear_map_hash_slots[lmi] = ret | 0x80;
1412 	spin_unlock(&linear_map_hash_lock);
1413 }
1414 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1415 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1416 {
1417 	unsigned long hash, hidx, slot;
1418 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1419 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1420 
1421 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1422 	spin_lock(&linear_map_hash_lock);
1423 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1424 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1425 	linear_map_hash_slots[lmi] = 0;
1426 	spin_unlock(&linear_map_hash_lock);
1427 	if (hidx & _PTEIDX_SECONDARY)
1428 		hash = ~hash;
1429 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1430 	slot += hidx & _PTEIDX_GROUP_IX;
1431 	ppc_md.hpte_invalidate(slot, vpn, mmu_linear_psize, mmu_linear_psize,
1432 			       mmu_kernel_ssize, 0);
1433 }
1434 
kernel_map_pages(struct page * page,int numpages,int enable)1435 void kernel_map_pages(struct page *page, int numpages, int enable)
1436 {
1437 	unsigned long flags, vaddr, lmi;
1438 	int i;
1439 
1440 	local_irq_save(flags);
1441 	for (i = 0; i < numpages; i++, page++) {
1442 		vaddr = (unsigned long)page_address(page);
1443 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1444 		if (lmi >= linear_map_hash_count)
1445 			continue;
1446 		if (enable)
1447 			kernel_map_linear_page(vaddr, lmi);
1448 		else
1449 			kernel_unmap_linear_page(vaddr, lmi);
1450 	}
1451 	local_irq_restore(flags);
1452 }
1453 #endif /* CONFIG_DEBUG_PAGEALLOC */
1454 
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1455 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1456 				phys_addr_t first_memblock_size)
1457 {
1458 	/* We don't currently support the first MEMBLOCK not mapping 0
1459 	 * physical on those processors
1460 	 */
1461 	BUG_ON(first_memblock_base != 0);
1462 
1463 	/* On LPAR systems, the first entry is our RMA region,
1464 	 * non-LPAR 64-bit hash MMU systems don't have a limitation
1465 	 * on real mode access, but using the first entry works well
1466 	 * enough. We also clamp it to 1G to avoid some funky things
1467 	 * such as RTAS bugs etc...
1468 	 */
1469 	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1470 
1471 	/* Finally limit subsequent allocations */
1472 	memblock_set_current_limit(ppc64_rma_size);
1473 }
1474