• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36 
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42 
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50 
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 
61 void netdev_set_default_ethtool_ops(struct net_device *dev,
62 				    const struct ethtool_ops *ops);
63 
64 /* Backlog congestion levels */
65 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
66 #define NET_RX_DROP		1	/* packet dropped */
67 
68 /*
69  * Transmit return codes: transmit return codes originate from three different
70  * namespaces:
71  *
72  * - qdisc return codes
73  * - driver transmit return codes
74  * - errno values
75  *
76  * Drivers are allowed to return any one of those in their hard_start_xmit()
77  * function. Real network devices commonly used with qdiscs should only return
78  * the driver transmit return codes though - when qdiscs are used, the actual
79  * transmission happens asynchronously, so the value is not propagated to
80  * higher layers. Virtual network devices transmit synchronously, in this case
81  * the driver transmit return codes are consumed by dev_queue_xmit(), all
82  * others are propagated to higher layers.
83  */
84 
85 /* qdisc ->enqueue() return codes. */
86 #define NET_XMIT_SUCCESS	0x00
87 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
88 #define NET_XMIT_CN		0x02	/* congestion notification	*/
89 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
90 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
91 
92 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
93  * indicates that the device will soon be dropping packets, or already drops
94  * some packets of the same priority; prompting us to send less aggressively. */
95 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
96 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
97 
98 /* Driver transmit return codes */
99 #define NETDEV_TX_MASK		0xf0
100 
101 enum netdev_tx {
102 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
103 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
104 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
105 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
106 };
107 typedef enum netdev_tx netdev_tx_t;
108 
109 /*
110  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
111  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
112  */
dev_xmit_complete(int rc)113 static inline bool dev_xmit_complete(int rc)
114 {
115 	/*
116 	 * Positive cases with an skb consumed by a driver:
117 	 * - successful transmission (rc == NETDEV_TX_OK)
118 	 * - error while transmitting (rc < 0)
119 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
120 	 */
121 	if (likely(rc < NET_XMIT_MASK))
122 		return true;
123 
124 	return false;
125 }
126 
127 /*
128  *	Compute the worst case header length according to the protocols
129  *	used.
130  */
131 
132 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
133 # if defined(CONFIG_MAC80211_MESH)
134 #  define LL_MAX_HEADER 128
135 # else
136 #  define LL_MAX_HEADER 96
137 # endif
138 #else
139 # define LL_MAX_HEADER 32
140 #endif
141 
142 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
143     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
144 #define MAX_HEADER LL_MAX_HEADER
145 #else
146 #define MAX_HEADER (LL_MAX_HEADER + 48)
147 #endif
148 
149 /*
150  *	Old network device statistics. Fields are native words
151  *	(unsigned long) so they can be read and written atomically.
152  */
153 
154 struct net_device_stats {
155 	unsigned long	rx_packets;
156 	unsigned long	tx_packets;
157 	unsigned long	rx_bytes;
158 	unsigned long	tx_bytes;
159 	unsigned long	rx_errors;
160 	unsigned long	tx_errors;
161 	unsigned long	rx_dropped;
162 	unsigned long	tx_dropped;
163 	unsigned long	multicast;
164 	unsigned long	collisions;
165 	unsigned long	rx_length_errors;
166 	unsigned long	rx_over_errors;
167 	unsigned long	rx_crc_errors;
168 	unsigned long	rx_frame_errors;
169 	unsigned long	rx_fifo_errors;
170 	unsigned long	rx_missed_errors;
171 	unsigned long	tx_aborted_errors;
172 	unsigned long	tx_carrier_errors;
173 	unsigned long	tx_fifo_errors;
174 	unsigned long	tx_heartbeat_errors;
175 	unsigned long	tx_window_errors;
176 	unsigned long	rx_compressed;
177 	unsigned long	tx_compressed;
178 };
179 
180 
181 #include <linux/cache.h>
182 #include <linux/skbuff.h>
183 
184 #ifdef CONFIG_RPS
185 #include <linux/static_key.h>
186 extern struct static_key rps_needed;
187 #endif
188 
189 struct neighbour;
190 struct neigh_parms;
191 struct sk_buff;
192 
193 struct netdev_hw_addr {
194 	struct list_head	list;
195 	unsigned char		addr[MAX_ADDR_LEN];
196 	unsigned char		type;
197 #define NETDEV_HW_ADDR_T_LAN		1
198 #define NETDEV_HW_ADDR_T_SAN		2
199 #define NETDEV_HW_ADDR_T_SLAVE		3
200 #define NETDEV_HW_ADDR_T_UNICAST	4
201 #define NETDEV_HW_ADDR_T_MULTICAST	5
202 	bool			global_use;
203 	int			sync_cnt;
204 	int			refcount;
205 	int			synced;
206 	struct rcu_head		rcu_head;
207 };
208 
209 struct netdev_hw_addr_list {
210 	struct list_head	list;
211 	int			count;
212 };
213 
214 #define netdev_hw_addr_list_count(l) ((l)->count)
215 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
216 #define netdev_hw_addr_list_for_each(ha, l) \
217 	list_for_each_entry(ha, &(l)->list, list)
218 
219 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
220 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
221 #define netdev_for_each_uc_addr(ha, dev) \
222 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
223 
224 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
225 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
226 #define netdev_for_each_mc_addr(ha, dev) \
227 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
228 
229 struct hh_cache {
230 	u16		hh_len;
231 	u16		__pad;
232 	seqlock_t	hh_lock;
233 
234 	/* cached hardware header; allow for machine alignment needs.        */
235 #define HH_DATA_MOD	16
236 #define HH_DATA_OFF(__len) \
237 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
238 #define HH_DATA_ALIGN(__len) \
239 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
240 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
241 };
242 
243 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
244  * Alternative is:
245  *   dev->hard_header_len ? (dev->hard_header_len +
246  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
247  *
248  * We could use other alignment values, but we must maintain the
249  * relationship HH alignment <= LL alignment.
250  */
251 #define LL_RESERVED_SPACE(dev) \
252 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
253 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
254 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 
256 struct header_ops {
257 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
258 			   unsigned short type, const void *daddr,
259 			   const void *saddr, unsigned int len);
260 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
261 	int	(*rebuild)(struct sk_buff *skb);
262 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
263 	void	(*cache_update)(struct hh_cache *hh,
264 				const struct net_device *dev,
265 				const unsigned char *haddr);
266 };
267 
268 /* These flag bits are private to the generic network queueing
269  * layer, they may not be explicitly referenced by any other
270  * code.
271  */
272 
273 enum netdev_state_t {
274 	__LINK_STATE_START,
275 	__LINK_STATE_PRESENT,
276 	__LINK_STATE_NOCARRIER,
277 	__LINK_STATE_LINKWATCH_PENDING,
278 	__LINK_STATE_DORMANT,
279 };
280 
281 
282 /*
283  * This structure holds at boot time configured netdevice settings. They
284  * are then used in the device probing.
285  */
286 struct netdev_boot_setup {
287 	char name[IFNAMSIZ];
288 	struct ifmap map;
289 };
290 #define NETDEV_BOOT_SETUP_MAX 8
291 
292 int __init netdev_boot_setup(char *str);
293 
294 /*
295  * Structure for NAPI scheduling similar to tasklet but with weighting
296  */
297 struct napi_struct {
298 	/* The poll_list must only be managed by the entity which
299 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
300 	 * whoever atomically sets that bit can add this napi_struct
301 	 * to the per-cpu poll_list, and whoever clears that bit
302 	 * can remove from the list right before clearing the bit.
303 	 */
304 	struct list_head	poll_list;
305 
306 	unsigned long		state;
307 	int			weight;
308 	unsigned int		gro_count;
309 	int			(*poll)(struct napi_struct *, int);
310 #ifdef CONFIG_NETPOLL
311 	spinlock_t		poll_lock;
312 	int			poll_owner;
313 #endif
314 	struct net_device	*dev;
315 	struct sk_buff		*gro_list;
316 	struct sk_buff		*skb;
317 	struct list_head	dev_list;
318 	struct hlist_node	napi_hash_node;
319 	unsigned int		napi_id;
320 };
321 
322 enum {
323 	NAPI_STATE_SCHED,	/* Poll is scheduled */
324 	NAPI_STATE_DISABLE,	/* Disable pending */
325 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
326 	NAPI_STATE_HASHED,	/* In NAPI hash */
327 };
328 
329 enum gro_result {
330 	GRO_MERGED,
331 	GRO_MERGED_FREE,
332 	GRO_HELD,
333 	GRO_NORMAL,
334 	GRO_DROP,
335 };
336 typedef enum gro_result gro_result_t;
337 
338 /*
339  * enum rx_handler_result - Possible return values for rx_handlers.
340  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
341  * further.
342  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
343  * case skb->dev was changed by rx_handler.
344  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
345  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
346  *
347  * rx_handlers are functions called from inside __netif_receive_skb(), to do
348  * special processing of the skb, prior to delivery to protocol handlers.
349  *
350  * Currently, a net_device can only have a single rx_handler registered. Trying
351  * to register a second rx_handler will return -EBUSY.
352  *
353  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
354  * To unregister a rx_handler on a net_device, use
355  * netdev_rx_handler_unregister().
356  *
357  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
358  * do with the skb.
359  *
360  * If the rx_handler consumed to skb in some way, it should return
361  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
362  * the skb to be delivered in some other ways.
363  *
364  * If the rx_handler changed skb->dev, to divert the skb to another
365  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
366  * new device will be called if it exists.
367  *
368  * If the rx_handler consider the skb should be ignored, it should return
369  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
370  * are registered on exact device (ptype->dev == skb->dev).
371  *
372  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
373  * delivered, it should return RX_HANDLER_PASS.
374  *
375  * A device without a registered rx_handler will behave as if rx_handler
376  * returned RX_HANDLER_PASS.
377  */
378 
379 enum rx_handler_result {
380 	RX_HANDLER_CONSUMED,
381 	RX_HANDLER_ANOTHER,
382 	RX_HANDLER_EXACT,
383 	RX_HANDLER_PASS,
384 };
385 typedef enum rx_handler_result rx_handler_result_t;
386 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
387 
388 void __napi_schedule(struct napi_struct *n);
389 
napi_disable_pending(struct napi_struct * n)390 static inline bool napi_disable_pending(struct napi_struct *n)
391 {
392 	return test_bit(NAPI_STATE_DISABLE, &n->state);
393 }
394 
395 /**
396  *	napi_schedule_prep - check if napi can be scheduled
397  *	@n: napi context
398  *
399  * Test if NAPI routine is already running, and if not mark
400  * it as running.  This is used as a condition variable
401  * insure only one NAPI poll instance runs.  We also make
402  * sure there is no pending NAPI disable.
403  */
napi_schedule_prep(struct napi_struct * n)404 static inline bool napi_schedule_prep(struct napi_struct *n)
405 {
406 	return !napi_disable_pending(n) &&
407 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
408 }
409 
410 /**
411  *	napi_schedule - schedule NAPI poll
412  *	@n: napi context
413  *
414  * Schedule NAPI poll routine to be called if it is not already
415  * running.
416  */
napi_schedule(struct napi_struct * n)417 static inline void napi_schedule(struct napi_struct *n)
418 {
419 	if (napi_schedule_prep(n))
420 		__napi_schedule(n);
421 }
422 
423 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)424 static inline bool napi_reschedule(struct napi_struct *napi)
425 {
426 	if (napi_schedule_prep(napi)) {
427 		__napi_schedule(napi);
428 		return true;
429 	}
430 	return false;
431 }
432 
433 /**
434  *	napi_complete - NAPI processing complete
435  *	@n: napi context
436  *
437  * Mark NAPI processing as complete.
438  */
439 void __napi_complete(struct napi_struct *n);
440 void napi_complete(struct napi_struct *n);
441 
442 /**
443  *	napi_by_id - lookup a NAPI by napi_id
444  *	@napi_id: hashed napi_id
445  *
446  * lookup @napi_id in napi_hash table
447  * must be called under rcu_read_lock()
448  */
449 struct napi_struct *napi_by_id(unsigned int napi_id);
450 
451 /**
452  *	napi_hash_add - add a NAPI to global hashtable
453  *	@napi: napi context
454  *
455  * generate a new napi_id and store a @napi under it in napi_hash
456  */
457 void napi_hash_add(struct napi_struct *napi);
458 
459 /**
460  *	napi_hash_del - remove a NAPI from global table
461  *	@napi: napi context
462  *
463  * Warning: caller must observe rcu grace period
464  * before freeing memory containing @napi
465  */
466 void napi_hash_del(struct napi_struct *napi);
467 
468 /**
469  *	napi_disable - prevent NAPI from scheduling
470  *	@n: napi context
471  *
472  * Stop NAPI from being scheduled on this context.
473  * Waits till any outstanding processing completes.
474  */
napi_disable(struct napi_struct * n)475 static inline void napi_disable(struct napi_struct *n)
476 {
477 	might_sleep();
478 	set_bit(NAPI_STATE_DISABLE, &n->state);
479 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
480 		msleep(1);
481 	clear_bit(NAPI_STATE_DISABLE, &n->state);
482 }
483 
484 /**
485  *	napi_enable - enable NAPI scheduling
486  *	@n: napi context
487  *
488  * Resume NAPI from being scheduled on this context.
489  * Must be paired with napi_disable.
490  */
napi_enable(struct napi_struct * n)491 static inline void napi_enable(struct napi_struct *n)
492 {
493 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
494 	smp_mb__before_atomic();
495 	clear_bit(NAPI_STATE_SCHED, &n->state);
496 }
497 
498 #ifdef CONFIG_SMP
499 /**
500  *	napi_synchronize - wait until NAPI is not running
501  *	@n: napi context
502  *
503  * Wait until NAPI is done being scheduled on this context.
504  * Waits till any outstanding processing completes but
505  * does not disable future activations.
506  */
napi_synchronize(const struct napi_struct * n)507 static inline void napi_synchronize(const struct napi_struct *n)
508 {
509 	while (test_bit(NAPI_STATE_SCHED, &n->state))
510 		msleep(1);
511 }
512 #else
513 # define napi_synchronize(n)	barrier()
514 #endif
515 
516 enum netdev_queue_state_t {
517 	__QUEUE_STATE_DRV_XOFF,
518 	__QUEUE_STATE_STACK_XOFF,
519 	__QUEUE_STATE_FROZEN,
520 };
521 
522 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
523 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
524 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
525 
526 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528 					QUEUE_STATE_FROZEN)
529 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
530 					QUEUE_STATE_FROZEN)
531 
532 /*
533  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
534  * netif_tx_* functions below are used to manipulate this flag.  The
535  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
536  * queue independently.  The netif_xmit_*stopped functions below are called
537  * to check if the queue has been stopped by the driver or stack (either
538  * of the XOFF bits are set in the state).  Drivers should not need to call
539  * netif_xmit*stopped functions, they should only be using netif_tx_*.
540  */
541 
542 struct netdev_queue {
543 /*
544  * read mostly part
545  */
546 	struct net_device	*dev;
547 	struct Qdisc __rcu	*qdisc;
548 	struct Qdisc		*qdisc_sleeping;
549 #ifdef CONFIG_SYSFS
550 	struct kobject		kobj;
551 #endif
552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 	int			numa_node;
554 #endif
555 /*
556  * write mostly part
557  */
558 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
559 	int			xmit_lock_owner;
560 	/*
561 	 * please use this field instead of dev->trans_start
562 	 */
563 	unsigned long		trans_start;
564 
565 	/*
566 	 * Number of TX timeouts for this queue
567 	 * (/sys/class/net/DEV/Q/trans_timeout)
568 	 */
569 	unsigned long		trans_timeout;
570 
571 	unsigned long		state;
572 
573 #ifdef CONFIG_BQL
574 	struct dql		dql;
575 #endif
576 } ____cacheline_aligned_in_smp;
577 
netdev_queue_numa_node_read(const struct netdev_queue * q)578 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
579 {
580 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
581 	return q->numa_node;
582 #else
583 	return NUMA_NO_NODE;
584 #endif
585 }
586 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)587 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 	q->numa_node = node;
591 #endif
592 }
593 
594 #ifdef CONFIG_RPS
595 /*
596  * This structure holds an RPS map which can be of variable length.  The
597  * map is an array of CPUs.
598  */
599 struct rps_map {
600 	unsigned int len;
601 	struct rcu_head rcu;
602 	u16 cpus[0];
603 };
604 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
605 
606 /*
607  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
608  * tail pointer for that CPU's input queue at the time of last enqueue, and
609  * a hardware filter index.
610  */
611 struct rps_dev_flow {
612 	u16 cpu;
613 	u16 filter;
614 	unsigned int last_qtail;
615 };
616 #define RPS_NO_FILTER 0xffff
617 
618 /*
619  * The rps_dev_flow_table structure contains a table of flow mappings.
620  */
621 struct rps_dev_flow_table {
622 	unsigned int mask;
623 	struct rcu_head rcu;
624 	struct rps_dev_flow flows[0];
625 };
626 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
627     ((_num) * sizeof(struct rps_dev_flow)))
628 
629 /*
630  * The rps_sock_flow_table contains mappings of flows to the last CPU
631  * on which they were processed by the application (set in recvmsg).
632  */
633 struct rps_sock_flow_table {
634 	unsigned int mask;
635 	u16 ents[0];
636 };
637 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
638     ((_num) * sizeof(u16)))
639 
640 #define RPS_NO_CPU 0xffff
641 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)642 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
643 					u32 hash)
644 {
645 	if (table && hash) {
646 		unsigned int cpu, index = hash & table->mask;
647 
648 		/* We only give a hint, preemption can change cpu under us */
649 		cpu = raw_smp_processor_id();
650 
651 		if (table->ents[index] != cpu)
652 			table->ents[index] = cpu;
653 	}
654 }
655 
rps_reset_sock_flow(struct rps_sock_flow_table * table,u32 hash)656 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
657 				       u32 hash)
658 {
659 	if (table && hash)
660 		table->ents[hash & table->mask] = RPS_NO_CPU;
661 }
662 
663 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
664 
665 #ifdef CONFIG_RFS_ACCEL
666 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
667 			 u16 filter_id);
668 #endif
669 #endif /* CONFIG_RPS */
670 
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 #ifdef CONFIG_RPS
674 	struct rps_map __rcu		*rps_map;
675 	struct rps_dev_flow_table __rcu	*rps_flow_table;
676 #endif
677 	struct kobject			kobj;
678 	struct net_device		*dev;
679 } ____cacheline_aligned_in_smp;
680 
681 /*
682  * RX queue sysfs structures and functions.
683  */
684 struct rx_queue_attribute {
685 	struct attribute attr;
686 	ssize_t (*show)(struct netdev_rx_queue *queue,
687 	    struct rx_queue_attribute *attr, char *buf);
688 	ssize_t (*store)(struct netdev_rx_queue *queue,
689 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
690 };
691 
692 #ifdef CONFIG_XPS
693 /*
694  * This structure holds an XPS map which can be of variable length.  The
695  * map is an array of queues.
696  */
697 struct xps_map {
698 	unsigned int len;
699 	unsigned int alloc_len;
700 	struct rcu_head rcu;
701 	u16 queues[0];
702 };
703 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
704 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
705     / sizeof(u16))
706 
707 /*
708  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
709  */
710 struct xps_dev_maps {
711 	struct rcu_head rcu;
712 	struct xps_map __rcu *cpu_map[0];
713 };
714 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
715     (nr_cpu_ids * sizeof(struct xps_map *)))
716 #endif /* CONFIG_XPS */
717 
718 #define TC_MAX_QUEUE	16
719 #define TC_BITMASK	15
720 /* HW offloaded queuing disciplines txq count and offset maps */
721 struct netdev_tc_txq {
722 	u16 count;
723 	u16 offset;
724 };
725 
726 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
727 /*
728  * This structure is to hold information about the device
729  * configured to run FCoE protocol stack.
730  */
731 struct netdev_fcoe_hbainfo {
732 	char	manufacturer[64];
733 	char	serial_number[64];
734 	char	hardware_version[64];
735 	char	driver_version[64];
736 	char	optionrom_version[64];
737 	char	firmware_version[64];
738 	char	model[256];
739 	char	model_description[256];
740 };
741 #endif
742 
743 #define MAX_PHYS_PORT_ID_LEN 32
744 
745 /* This structure holds a unique identifier to identify the
746  * physical port used by a netdevice.
747  */
748 struct netdev_phys_port_id {
749 	unsigned char id[MAX_PHYS_PORT_ID_LEN];
750 	unsigned char id_len;
751 };
752 
753 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
754 				       struct sk_buff *skb);
755 
756 /*
757  * This structure defines the management hooks for network devices.
758  * The following hooks can be defined; unless noted otherwise, they are
759  * optional and can be filled with a null pointer.
760  *
761  * int (*ndo_init)(struct net_device *dev);
762  *     This function is called once when network device is registered.
763  *     The network device can use this to any late stage initializaton
764  *     or semantic validattion. It can fail with an error code which will
765  *     be propogated back to register_netdev
766  *
767  * void (*ndo_uninit)(struct net_device *dev);
768  *     This function is called when device is unregistered or when registration
769  *     fails. It is not called if init fails.
770  *
771  * int (*ndo_open)(struct net_device *dev);
772  *     This function is called when network device transistions to the up
773  *     state.
774  *
775  * int (*ndo_stop)(struct net_device *dev);
776  *     This function is called when network device transistions to the down
777  *     state.
778  *
779  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
780  *                               struct net_device *dev);
781  *	Called when a packet needs to be transmitted.
782  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
783  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
784  *	Required can not be NULL.
785  *
786  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
787  *                         void *accel_priv, select_queue_fallback_t fallback);
788  *	Called to decide which queue to when device supports multiple
789  *	transmit queues.
790  *
791  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
792  *	This function is called to allow device receiver to make
793  *	changes to configuration when multicast or promiscious is enabled.
794  *
795  * void (*ndo_set_rx_mode)(struct net_device *dev);
796  *	This function is called device changes address list filtering.
797  *	If driver handles unicast address filtering, it should set
798  *	IFF_UNICAST_FLT to its priv_flags.
799  *
800  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
801  *	This function  is called when the Media Access Control address
802  *	needs to be changed. If this interface is not defined, the
803  *	mac address can not be changed.
804  *
805  * int (*ndo_validate_addr)(struct net_device *dev);
806  *	Test if Media Access Control address is valid for the device.
807  *
808  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
809  *	Called when a user request an ioctl which can't be handled by
810  *	the generic interface code. If not defined ioctl's return
811  *	not supported error code.
812  *
813  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
814  *	Used to set network devices bus interface parameters. This interface
815  *	is retained for legacy reason, new devices should use the bus
816  *	interface (PCI) for low level management.
817  *
818  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
819  *	Called when a user wants to change the Maximum Transfer Unit
820  *	of a device. If not defined, any request to change MTU will
821  *	will return an error.
822  *
823  * void (*ndo_tx_timeout)(struct net_device *dev);
824  *	Callback uses when the transmitter has not made any progress
825  *	for dev->watchdog ticks.
826  *
827  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
828  *                      struct rtnl_link_stats64 *storage);
829  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
830  *	Called when a user wants to get the network device usage
831  *	statistics. Drivers must do one of the following:
832  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
833  *	   rtnl_link_stats64 structure passed by the caller.
834  *	2. Define @ndo_get_stats to update a net_device_stats structure
835  *	   (which should normally be dev->stats) and return a pointer to
836  *	   it. The structure may be changed asynchronously only if each
837  *	   field is written atomically.
838  *	3. Update dev->stats asynchronously and atomically, and define
839  *	   neither operation.
840  *
841  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
842  *	If device support VLAN filtering this function is called when a
843  *	VLAN id is registered.
844  *
845  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
846  *	If device support VLAN filtering this function is called when a
847  *	VLAN id is unregistered.
848  *
849  * void (*ndo_poll_controller)(struct net_device *dev);
850  *
851  *	SR-IOV management functions.
852  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
853  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
854  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
855  *			  int max_tx_rate);
856  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
857  * int (*ndo_get_vf_config)(struct net_device *dev,
858  *			    int vf, struct ifla_vf_info *ivf);
859  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
860  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
861  *			  struct nlattr *port[]);
862  *
863  *      Enable or disable the VF ability to query its RSS Redirection Table and
864  *      Hash Key. This is needed since on some devices VF share this information
865  *      with PF and querying it may adduce a theoretical security risk.
866  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
867  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
868  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
869  * 	Called to setup 'tc' number of traffic classes in the net device. This
870  * 	is always called from the stack with the rtnl lock held and netif tx
871  * 	queues stopped. This allows the netdevice to perform queue management
872  * 	safely.
873  *
874  *	Fiber Channel over Ethernet (FCoE) offload functions.
875  * int (*ndo_fcoe_enable)(struct net_device *dev);
876  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
877  *	so the underlying device can perform whatever needed configuration or
878  *	initialization to support acceleration of FCoE traffic.
879  *
880  * int (*ndo_fcoe_disable)(struct net_device *dev);
881  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
882  *	so the underlying device can perform whatever needed clean-ups to
883  *	stop supporting acceleration of FCoE traffic.
884  *
885  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
886  *			     struct scatterlist *sgl, unsigned int sgc);
887  *	Called when the FCoE Initiator wants to initialize an I/O that
888  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
889  *	perform necessary setup and returns 1 to indicate the device is set up
890  *	successfully to perform DDP on this I/O, otherwise this returns 0.
891  *
892  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
893  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
894  *	indicated by the FC exchange id 'xid', so the underlying device can
895  *	clean up and reuse resources for later DDP requests.
896  *
897  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
898  *			      struct scatterlist *sgl, unsigned int sgc);
899  *	Called when the FCoE Target wants to initialize an I/O that
900  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
901  *	perform necessary setup and returns 1 to indicate the device is set up
902  *	successfully to perform DDP on this I/O, otherwise this returns 0.
903  *
904  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
905  *			       struct netdev_fcoe_hbainfo *hbainfo);
906  *	Called when the FCoE Protocol stack wants information on the underlying
907  *	device. This information is utilized by the FCoE protocol stack to
908  *	register attributes with Fiber Channel management service as per the
909  *	FC-GS Fabric Device Management Information(FDMI) specification.
910  *
911  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
912  *	Called when the underlying device wants to override default World Wide
913  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
914  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
915  *	protocol stack to use.
916  *
917  *	RFS acceleration.
918  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
919  *			    u16 rxq_index, u32 flow_id);
920  *	Set hardware filter for RFS.  rxq_index is the target queue index;
921  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
922  *	Return the filter ID on success, or a negative error code.
923  *
924  *	Slave management functions (for bridge, bonding, etc).
925  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
926  *	Called to make another netdev an underling.
927  *
928  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
929  *	Called to release previously enslaved netdev.
930  *
931  *      Feature/offload setting functions.
932  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
933  *		netdev_features_t features);
934  *	Adjusts the requested feature flags according to device-specific
935  *	constraints, and returns the resulting flags. Must not modify
936  *	the device state.
937  *
938  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
939  *	Called to update device configuration to new features. Passed
940  *	feature set might be less than what was returned by ndo_fix_features()).
941  *	Must return >0 or -errno if it changed dev->features itself.
942  *
943  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
944  *		      struct net_device *dev,
945  *		      const unsigned char *addr, u16 flags)
946  *	Adds an FDB entry to dev for addr.
947  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
948  *		      struct net_device *dev,
949  *		      const unsigned char *addr)
950  *	Deletes the FDB entry from dev coresponding to addr.
951  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
952  *		       struct net_device *dev, struct net_device *filter_dev,
953  *		       int idx)
954  *	Used to add FDB entries to dump requests. Implementers should add
955  *	entries to skb and update idx with the number of entries.
956  *
957  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
958  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
959  *			     struct net_device *dev, u32 filter_mask)
960  *
961  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
962  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
963  *	which do not represent real hardware may define this to allow their
964  *	userspace components to manage their virtual carrier state. Devices
965  *	that determine carrier state from physical hardware properties (eg
966  *	network cables) or protocol-dependent mechanisms (eg
967  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
968  *
969  * int (*ndo_get_phys_port_id)(struct net_device *dev,
970  *			       struct netdev_phys_port_id *ppid);
971  *	Called to get ID of physical port of this device. If driver does
972  *	not implement this, it is assumed that the hw is not able to have
973  *	multiple net devices on single physical port.
974  *
975  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
976  *			      sa_family_t sa_family, __be16 port);
977  *	Called by vxlan to notiy a driver about the UDP port and socket
978  *	address family that vxlan is listnening to. It is called only when
979  *	a new port starts listening. The operation is protected by the
980  *	vxlan_net->sock_lock.
981  *
982  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
983  *			      sa_family_t sa_family, __be16 port);
984  *	Called by vxlan to notify the driver about a UDP port and socket
985  *	address family that vxlan is not listening to anymore. The operation
986  *	is protected by the vxlan_net->sock_lock.
987  *
988  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
989  *				 struct net_device *dev)
990  *	Called by upper layer devices to accelerate switching or other
991  *	station functionality into hardware. 'pdev is the lowerdev
992  *	to use for the offload and 'dev' is the net device that will
993  *	back the offload. Returns a pointer to the private structure
994  *	the upper layer will maintain.
995  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
996  *	Called by upper layer device to delete the station created
997  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
998  *	the station and priv is the structure returned by the add
999  *	operation.
1000  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1001  *				      struct net_device *dev,
1002  *				      void *priv);
1003  *	Callback to use for xmit over the accelerated station. This
1004  *	is used in place of ndo_start_xmit on accelerated net
1005  *	devices.
1006  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1007  *					    struct net_device *dev
1008  *					    netdev_features_t features);
1009  *	Called by core transmit path to determine if device is capable of
1010  *	performing offload operations on a given packet. This is to give
1011  *	the device an opportunity to implement any restrictions that cannot
1012  *	be otherwise expressed by feature flags. The check is called with
1013  *	the set of features that the stack has calculated and it returns
1014  *	those the driver believes to be appropriate.
1015  */
1016 struct net_device_ops {
1017 	int			(*ndo_init)(struct net_device *dev);
1018 	void			(*ndo_uninit)(struct net_device *dev);
1019 	int			(*ndo_open)(struct net_device *dev);
1020 	int			(*ndo_stop)(struct net_device *dev);
1021 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1022 						   struct net_device *dev);
1023 	u16			(*ndo_select_queue)(struct net_device *dev,
1024 						    struct sk_buff *skb,
1025 						    void *accel_priv,
1026 						    select_queue_fallback_t fallback);
1027 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1028 						       int flags);
1029 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1030 	int			(*ndo_set_mac_address)(struct net_device *dev,
1031 						       void *addr);
1032 	int			(*ndo_validate_addr)(struct net_device *dev);
1033 	int			(*ndo_do_ioctl)(struct net_device *dev,
1034 					        struct ifreq *ifr, int cmd);
1035 	int			(*ndo_set_config)(struct net_device *dev,
1036 					          struct ifmap *map);
1037 	int			(*ndo_change_mtu)(struct net_device *dev,
1038 						  int new_mtu);
1039 	int			(*ndo_neigh_setup)(struct net_device *dev,
1040 						   struct neigh_parms *);
1041 	void			(*ndo_tx_timeout) (struct net_device *dev);
1042 
1043 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1044 						     struct rtnl_link_stats64 *storage);
1045 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1046 
1047 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1048 						       __be16 proto, u16 vid);
1049 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1050 						        __be16 proto, u16 vid);
1051 #ifdef CONFIG_NET_POLL_CONTROLLER
1052 	void                    (*ndo_poll_controller)(struct net_device *dev);
1053 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1054 						     struct netpoll_info *info);
1055 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1056 #endif
1057 #ifdef CONFIG_NET_RX_BUSY_POLL
1058 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1059 #endif
1060 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1061 						  int queue, u8 *mac);
1062 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1063 						   int queue, u16 vlan, u8 qos);
1064 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1065 						   int vf, int min_tx_rate,
1066 						   int max_tx_rate);
1067 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1068 						       int vf, bool setting);
1069 	int			(*ndo_get_vf_config)(struct net_device *dev,
1070 						     int vf,
1071 						     struct ifla_vf_info *ivf);
1072 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1073 							 int vf, int link_state);
1074 	int			(*ndo_set_vf_port)(struct net_device *dev,
1075 						   int vf,
1076 						   struct nlattr *port[]);
1077 	int			(*ndo_get_vf_port)(struct net_device *dev,
1078 						   int vf, struct sk_buff *skb);
1079 	int			(*ndo_set_vf_rss_query_en)(
1080 						   struct net_device *dev,
1081 						   int vf, bool setting);
1082 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1083 #if IS_ENABLED(CONFIG_FCOE)
1084 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1085 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1086 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1087 						      u16 xid,
1088 						      struct scatterlist *sgl,
1089 						      unsigned int sgc);
1090 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1091 						     u16 xid);
1092 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1093 						       u16 xid,
1094 						       struct scatterlist *sgl,
1095 						       unsigned int sgc);
1096 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1097 							struct netdev_fcoe_hbainfo *hbainfo);
1098 #endif
1099 
1100 #if IS_ENABLED(CONFIG_LIBFCOE)
1101 #define NETDEV_FCOE_WWNN 0
1102 #define NETDEV_FCOE_WWPN 1
1103 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1104 						    u64 *wwn, int type);
1105 #endif
1106 
1107 #ifdef CONFIG_RFS_ACCEL
1108 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1109 						     const struct sk_buff *skb,
1110 						     u16 rxq_index,
1111 						     u32 flow_id);
1112 #endif
1113 	int			(*ndo_add_slave)(struct net_device *dev,
1114 						 struct net_device *slave_dev);
1115 	int			(*ndo_del_slave)(struct net_device *dev,
1116 						 struct net_device *slave_dev);
1117 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1118 						    netdev_features_t features);
1119 	int			(*ndo_set_features)(struct net_device *dev,
1120 						    netdev_features_t features);
1121 	int			(*ndo_neigh_construct)(struct neighbour *n);
1122 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1123 
1124 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1125 					       struct nlattr *tb[],
1126 					       struct net_device *dev,
1127 					       const unsigned char *addr,
1128 					       u16 flags);
1129 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1130 					       struct nlattr *tb[],
1131 					       struct net_device *dev,
1132 					       const unsigned char *addr);
1133 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1134 						struct netlink_callback *cb,
1135 						struct net_device *dev,
1136 						struct net_device *filter_dev,
1137 						int idx);
1138 
1139 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1140 						      struct nlmsghdr *nlh);
1141 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1142 						      u32 pid, u32 seq,
1143 						      struct net_device *dev,
1144 						      u32 filter_mask);
1145 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1146 						      struct nlmsghdr *nlh);
1147 	int			(*ndo_change_carrier)(struct net_device *dev,
1148 						      bool new_carrier);
1149 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1150 							struct netdev_phys_port_id *ppid);
1151 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1152 						      sa_family_t sa_family,
1153 						      __be16 port);
1154 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1155 						      sa_family_t sa_family,
1156 						      __be16 port);
1157 
1158 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1159 							struct net_device *dev);
1160 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1161 							void *priv);
1162 
1163 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1164 							struct net_device *dev,
1165 							void *priv);
1166 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1167 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1168 						       struct net_device *dev,
1169 						       netdev_features_t features);
1170 };
1171 
1172 /**
1173  * enum net_device_priv_flags - &struct net_device priv_flags
1174  *
1175  * These are the &struct net_device, they are only set internally
1176  * by drivers and used in the kernel. These flags are invisible to
1177  * userspace, this means that the order of these flags can change
1178  * during any kernel release.
1179  *
1180  * You should have a pretty good reason to be extending these flags.
1181  *
1182  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1183  * @IFF_EBRIDGE: Ethernet bridging device
1184  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1185  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1186  * @IFF_MASTER_ALB: bonding master, balance-alb
1187  * @IFF_BONDING: bonding master or slave
1188  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1189  * @IFF_ISATAP: ISATAP interface (RFC4214)
1190  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1191  * @IFF_WAN_HDLC: WAN HDLC device
1192  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1193  *	release skb->dst
1194  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1195  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1196  * @IFF_MACVLAN_PORT: device used as macvlan port
1197  * @IFF_BRIDGE_PORT: device used as bridge port
1198  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1199  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1200  * @IFF_UNICAST_FLT: Supports unicast filtering
1201  * @IFF_TEAM_PORT: device used as team port
1202  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1203  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1204  *	change when it's running
1205  * @IFF_MACVLAN: Macvlan device
1206  */
1207 enum netdev_priv_flags {
1208 	IFF_802_1Q_VLAN			= 1<<0,
1209 	IFF_EBRIDGE			= 1<<1,
1210 	IFF_SLAVE_INACTIVE		= 1<<2,
1211 	IFF_MASTER_8023AD		= 1<<3,
1212 	IFF_MASTER_ALB			= 1<<4,
1213 	IFF_BONDING			= 1<<5,
1214 	IFF_SLAVE_NEEDARP		= 1<<6,
1215 	IFF_ISATAP			= 1<<7,
1216 	IFF_MASTER_ARPMON		= 1<<8,
1217 	IFF_WAN_HDLC			= 1<<9,
1218 	IFF_XMIT_DST_RELEASE		= 1<<10,
1219 	IFF_DONT_BRIDGE			= 1<<11,
1220 	IFF_DISABLE_NETPOLL		= 1<<12,
1221 	IFF_MACVLAN_PORT		= 1<<13,
1222 	IFF_BRIDGE_PORT			= 1<<14,
1223 	IFF_OVS_DATAPATH		= 1<<15,
1224 	IFF_TX_SKB_SHARING		= 1<<16,
1225 	IFF_UNICAST_FLT			= 1<<17,
1226 	IFF_TEAM_PORT			= 1<<18,
1227 	IFF_SUPP_NOFCS			= 1<<19,
1228 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1229 	IFF_MACVLAN			= 1<<21,
1230 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1231 };
1232 
1233 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1234 #define IFF_EBRIDGE			IFF_EBRIDGE
1235 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1236 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1237 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1238 #define IFF_BONDING			IFF_BONDING
1239 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1240 #define IFF_ISATAP			IFF_ISATAP
1241 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1242 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1243 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1244 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1245 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1246 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1247 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1248 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1249 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1250 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1251 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1252 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1253 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1254 #define IFF_MACVLAN			IFF_MACVLAN
1255 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1256 
1257 /**
1258  *	struct net_device - The DEVICE structure.
1259  *		Actually, this whole structure is a big mistake.  It mixes I/O
1260  *		data with strictly "high-level" data, and it has to know about
1261  *		almost every data structure used in the INET module.
1262  *
1263  *	@name:	This is the first field of the "visible" part of this structure
1264  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1265  *	 	of the interface.
1266  *
1267  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1268  *	@ifalias:	SNMP alias
1269  *	@mem_end:	Shared memory end
1270  *	@mem_start:	Shared memory start
1271  *	@base_addr:	Device I/O address
1272  *	@irq:		Device IRQ number
1273  *
1274  *	@state:		Generic network queuing layer state, see netdev_state_t
1275  *	@dev_list:	The global list of network devices
1276  *	@napi_list:	List entry, that is used for polling napi devices
1277  *	@unreg_list:	List entry, that is used, when we are unregistering the
1278  *			device, see the function unregister_netdev
1279  *	@close_list:	List entry, that is used, when we are closing the device
1280  *
1281  *	@adj_list:	Directly linked devices, like slaves for bonding
1282  *	@all_adj_list:	All linked devices, *including* neighbours
1283  *	@features:	Currently active device features
1284  *	@hw_features:	User-changeable features
1285  *
1286  *	@wanted_features:	User-requested features
1287  *	@vlan_features:		Mask of features inheritable by VLAN devices
1288  *
1289  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1290  *				This field indicates what encapsulation
1291  *				offloads the hardware is capable of doing,
1292  *				and drivers will need to set them appropriately.
1293  *
1294  *	@mpls_features:	Mask of features inheritable by MPLS
1295  *
1296  *	@ifindex:	interface index
1297  *	@iflink:	unique device identifier
1298  *
1299  *	@stats:		Statistics struct, which was left as a legacy, use
1300  *			rtnl_link_stats64 instead
1301  *
1302  *	@rx_dropped:	Dropped packets by core network,
1303  *			do not use this in drivers
1304  *	@tx_dropped:	Dropped packets by core network,
1305  *			do not use this in drivers
1306  *
1307  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1308  *
1309  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1310  *				instead of ioctl,
1311  *				see <net/iw_handler.h> for details.
1312  *	@wireless_data:	Instance data managed by the core of wireless extensions
1313  *
1314  *	@netdev_ops:	Includes several pointers to callbacks,
1315  *			if one wants to override the ndo_*() functions
1316  *	@ethtool_ops:	Management operations
1317  *	@fwd_ops:	Management operations
1318  *	@header_ops:	Includes callbacks for creating,parsing,rebuilding,etc
1319  *			of Layer 2 headers.
1320  *
1321  *	@flags:		Interface flags (a la BSD)
1322  *	@priv_flags:	Like 'flags' but invisible to userspace,
1323  *			see if.h for the definitions
1324  *	@gflags:	Global flags ( kept as legacy )
1325  *	@padded:	How much padding added by alloc_netdev()
1326  *	@operstate:	RFC2863 operstate
1327  *	@link_mode:	Mapping policy to operstate
1328  *	@if_port:	Selectable AUI, TP, ...
1329  *	@dma:		DMA channel
1330  *	@mtu:		Interface MTU value
1331  *	@type:		Interface hardware type
1332  *	@hard_header_len: Hardware header length
1333  *
1334  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1335  *			  cases can this be guaranteed
1336  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1337  *			  cases can this be guaranteed. Some cases also use
1338  *			  LL_MAX_HEADER instead to allocate the skb
1339  *
1340  *	interface address info:
1341  *
1342  * 	@perm_addr:		Permanent hw address
1343  * 	@addr_assign_type:	Hw address assignment type
1344  * 	@addr_len:		Hardware address length
1345  * 	@neigh_priv_len;	Used in neigh_alloc(),
1346  * 				initialized only in atm/clip.c
1347  * 	@dev_id:		Used to differentiate devices that share
1348  * 				the same link layer address
1349  * 	@dev_port:		Used to differentiate devices that share
1350  * 				the same function
1351  *	@addr_list_lock:	XXX: need comments on this one
1352  *	@uc:			unicast mac addresses
1353  *	@mc:			multicast mac addresses
1354  *	@dev_addrs:		list of device hw addresses
1355  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1356  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1357  *				has been enabled due to the need to listen to
1358  *				additional unicast addresses in a device that
1359  *				does not implement ndo_set_rx_mode()
1360  *	@promiscuity:		Number of times, the NIC is told to work in
1361  *				Promiscuous mode, if it becomes 0 the NIC will
1362  *				exit from working in Promiscuous mode
1363  *	@allmulti:		Counter, enables or disables allmulticast mode
1364  *
1365  *	@vlan_info:	VLAN info
1366  *	@dsa_ptr:	dsa specific data
1367  *	@tipc_ptr:	TIPC specific data
1368  *	@atalk_ptr:	AppleTalk link
1369  *	@ip_ptr:	IPv4 specific data
1370  *	@dn_ptr:	DECnet specific data
1371  *	@ip6_ptr:	IPv6 specific data
1372  *	@ax25_ptr:	AX.25 specific data
1373  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1374  *
1375  *	@last_rx:	Time of last Rx
1376  *	@dev_addr:	Hw address (before bcast,
1377  *			because most packets are unicast)
1378  *
1379  *	@_rx:			Array of RX queues
1380  *	@num_rx_queues:		Number of RX queues
1381  *				allocated at register_netdev() time
1382  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1383  *
1384  *	@rx_handler:		handler for received packets
1385  *	@rx_handler_data: 	XXX: need comments on this one
1386  *	@ingress_queue:		XXX: need comments on this one
1387  *	@broadcast:		hw bcast address
1388  *
1389  *	@_tx:			Array of TX queues
1390  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1391  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1392  *	@qdisc:			Root qdisc from userspace point of view
1393  *	@tx_queue_len:		Max frames per queue allowed
1394  *	@tx_global_lock: 	XXX: need comments on this one
1395  *
1396  *	@xps_maps:	XXX: need comments on this one
1397  *
1398  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1399  *			indexed by RX queue number. Assigned by driver.
1400  *			This must only be set if the ndo_rx_flow_steer
1401  *			operation is defined
1402  *
1403  *	@trans_start:		Time (in jiffies) of last Tx
1404  *	@watchdog_timeo:	Represents the timeout that is used by
1405  *				the watchdog ( see dev_watchdog() )
1406  *	@watchdog_timer:	List of timers
1407  *
1408  *	@pcpu_refcnt:		Number of references to this device
1409  *	@todo_list:		Delayed register/unregister
1410  *	@index_hlist:		Device index hash chain
1411  *	@link_watch_list:	XXX: need comments on this one
1412  *
1413  *	@reg_state:		Register/unregister state machine
1414  *	@dismantle:		Device is going to be freed
1415  *	@rtnl_link_state:	This enum represents the phases of creating
1416  *				a new link
1417  *
1418  *	@destructor:		Called from unregister,
1419  *				can be used to call free_netdev
1420  *	@npinfo:		XXX: need comments on this one
1421  * 	@nd_net:		Network namespace this network device is inside
1422  *
1423  * 	@ml_priv:	Mid-layer private
1424  * 	@lstats:	Loopback statistics
1425  * 	@tstats:	Tunnel statistics
1426  * 	@dstats:	Dummy statistics
1427  * 	@vstats:	Virtual ethernet statistics
1428  *
1429  *	@garp_port:	GARP
1430  *	@mrp_port:	MRP
1431  *
1432  *	@dev:		Class/net/name entry
1433  *	@sysfs_groups:	Space for optional device, statistics and wireless
1434  *			sysfs groups
1435  *
1436  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1437  *	@rtnl_link_ops:	Rtnl_link_ops
1438  *
1439  *	@gso_max_size:	Maximum size of generic segmentation offload
1440  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1441  *			NIC for GSO
1442  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1443  *			NIC for GSO
1444  *
1445  *	@dcbnl_ops:	Data Center Bridging netlink ops
1446  *	@num_tc:	Number of traffic classes in the net device
1447  *	@tc_to_txq:	XXX: need comments on this one
1448  *	@prio_tc_map	XXX: need comments on this one
1449  *
1450  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1451  *
1452  *	@priomap:	XXX: need comments on this one
1453  *	@phydev:	Physical device may attach itself
1454  *			for hardware timestamping
1455  *
1456  *	@qdisc_tx_busylock:	XXX: need comments on this one
1457  *
1458  *	@group:		The group, that the device belongs to
1459  *	@pm_qos_req:	Power Management QoS object
1460  *
1461  *	FIXME: cleanup struct net_device such that network protocol info
1462  *	moves out.
1463  */
1464 
1465 struct net_device {
1466 	char			name[IFNAMSIZ];
1467 	struct hlist_node	name_hlist;
1468 	char 			*ifalias;
1469 	/*
1470 	 *	I/O specific fields
1471 	 *	FIXME: Merge these and struct ifmap into one
1472 	 */
1473 	unsigned long		mem_end;
1474 	unsigned long		mem_start;
1475 	unsigned long		base_addr;
1476 	int			irq;
1477 
1478 	/*
1479 	 *	Some hardware also needs these fields (state,dev_list,
1480 	 *	napi_list,unreg_list,close_list) but they are not
1481 	 *	part of the usual set specified in Space.c.
1482 	 */
1483 
1484 	unsigned long		state;
1485 
1486 	struct list_head	dev_list;
1487 	struct list_head	napi_list;
1488 	struct list_head	unreg_list;
1489 	struct list_head	close_list;
1490 
1491 	struct {
1492 		struct list_head upper;
1493 		struct list_head lower;
1494 	} adj_list;
1495 
1496 	struct {
1497 		struct list_head upper;
1498 		struct list_head lower;
1499 	} all_adj_list;
1500 
1501 	netdev_features_t	features;
1502 	netdev_features_t	hw_features;
1503 	netdev_features_t	wanted_features;
1504 	netdev_features_t	vlan_features;
1505 	netdev_features_t	hw_enc_features;
1506 	netdev_features_t	mpls_features;
1507 
1508 	int			ifindex;
1509 	int			iflink;
1510 
1511 	struct net_device_stats	stats;
1512 
1513 	atomic_long_t		rx_dropped;
1514 	atomic_long_t		tx_dropped;
1515 
1516 	atomic_t		carrier_changes;
1517 
1518 #ifdef CONFIG_WIRELESS_EXT
1519 	const struct iw_handler_def *	wireless_handlers;
1520 	struct iw_public_data *	wireless_data;
1521 #endif
1522 	const struct net_device_ops *netdev_ops;
1523 	const struct ethtool_ops *ethtool_ops;
1524 	const struct forwarding_accel_ops *fwd_ops;
1525 
1526 	const struct header_ops *header_ops;
1527 
1528 	unsigned int		flags;
1529 	unsigned int		priv_flags;
1530 
1531 	unsigned short		gflags;
1532 	unsigned short		padded;
1533 
1534 	unsigned char		operstate;
1535 	unsigned char		link_mode;
1536 
1537 	unsigned char		if_port;
1538 	unsigned char		dma;
1539 
1540 	unsigned int		mtu;
1541 	unsigned short		type;
1542 	unsigned short		hard_header_len;
1543 
1544 	unsigned short		needed_headroom;
1545 	unsigned short		needed_tailroom;
1546 
1547 	/* Interface address info. */
1548 	unsigned char		perm_addr[MAX_ADDR_LEN];
1549 	unsigned char		addr_assign_type;
1550 	unsigned char		addr_len;
1551 	unsigned short		neigh_priv_len;
1552 	unsigned short          dev_id;
1553 	unsigned short          dev_port;
1554 	spinlock_t		addr_list_lock;
1555 	struct netdev_hw_addr_list	uc;
1556 	struct netdev_hw_addr_list	mc;
1557 	struct netdev_hw_addr_list	dev_addrs;
1558 
1559 #ifdef CONFIG_SYSFS
1560 	struct kset		*queues_kset;
1561 #endif
1562 
1563 	unsigned char		name_assign_type;
1564 
1565 	bool			uc_promisc;
1566 	unsigned int		promiscuity;
1567 	unsigned int		allmulti;
1568 
1569 
1570 	/* Protocol specific pointers */
1571 
1572 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1573 	struct vlan_info __rcu	*vlan_info;
1574 #endif
1575 #if IS_ENABLED(CONFIG_NET_DSA)
1576 	struct dsa_switch_tree	*dsa_ptr;
1577 #endif
1578 #if IS_ENABLED(CONFIG_TIPC)
1579 	struct tipc_bearer __rcu *tipc_ptr;
1580 #endif
1581 	void 			*atalk_ptr;
1582 	struct in_device __rcu	*ip_ptr;
1583 	struct dn_dev __rcu     *dn_ptr;
1584 	struct inet6_dev __rcu	*ip6_ptr;
1585 	void			*ax25_ptr;
1586 	struct wireless_dev	*ieee80211_ptr;
1587 
1588 /*
1589  * Cache lines mostly used on receive path (including eth_type_trans())
1590  */
1591 	unsigned long		last_rx;
1592 
1593 	/* Interface address info used in eth_type_trans() */
1594 	unsigned char		*dev_addr;
1595 
1596 
1597 #ifdef CONFIG_SYSFS
1598 	struct netdev_rx_queue	*_rx;
1599 
1600 	unsigned int		num_rx_queues;
1601 	unsigned int		real_num_rx_queues;
1602 
1603 #endif
1604 
1605 	rx_handler_func_t __rcu	*rx_handler;
1606 	void __rcu		*rx_handler_data;
1607 
1608 	struct netdev_queue __rcu *ingress_queue;
1609 	unsigned char		broadcast[MAX_ADDR_LEN];
1610 
1611 
1612 /*
1613  * Cache lines mostly used on transmit path
1614  */
1615 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1616 	unsigned int		num_tx_queues;
1617 	unsigned int		real_num_tx_queues;
1618 	struct Qdisc		*qdisc;
1619 	unsigned long		tx_queue_len;
1620 	spinlock_t		tx_global_lock;
1621 
1622 #ifdef CONFIG_XPS
1623 	struct xps_dev_maps __rcu *xps_maps;
1624 #endif
1625 #ifdef CONFIG_RFS_ACCEL
1626 	struct cpu_rmap		*rx_cpu_rmap;
1627 #endif
1628 
1629 	/* These may be needed for future network-power-down code. */
1630 
1631 	/*
1632 	 * trans_start here is expensive for high speed devices on SMP,
1633 	 * please use netdev_queue->trans_start instead.
1634 	 */
1635 	unsigned long		trans_start;
1636 
1637 	int			watchdog_timeo;
1638 	struct timer_list	watchdog_timer;
1639 
1640 	int __percpu		*pcpu_refcnt;
1641 	struct list_head	todo_list;
1642 
1643 	struct hlist_node	index_hlist;
1644 	struct list_head	link_watch_list;
1645 
1646 	enum { NETREG_UNINITIALIZED=0,
1647 	       NETREG_REGISTERED,	/* completed register_netdevice */
1648 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1649 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1650 	       NETREG_RELEASED,		/* called free_netdev */
1651 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1652 	} reg_state:8;
1653 
1654 	bool dismantle;
1655 
1656 	enum {
1657 		RTNL_LINK_INITIALIZED,
1658 		RTNL_LINK_INITIALIZING,
1659 	} rtnl_link_state:16;
1660 
1661 	void (*destructor)(struct net_device *dev);
1662 
1663 #ifdef CONFIG_NETPOLL
1664 	struct netpoll_info __rcu	*npinfo;
1665 #endif
1666 
1667 #ifdef CONFIG_NET_NS
1668 	struct net		*nd_net;
1669 #endif
1670 
1671 	/* mid-layer private */
1672 	union {
1673 		void					*ml_priv;
1674 		struct pcpu_lstats __percpu		*lstats;
1675 		struct pcpu_sw_netstats __percpu	*tstats;
1676 		struct pcpu_dstats __percpu		*dstats;
1677 		struct pcpu_vstats __percpu		*vstats;
1678 	};
1679 
1680 	struct garp_port __rcu	*garp_port;
1681 	struct mrp_port __rcu	*mrp_port;
1682 
1683 	struct device	dev;
1684 	const struct attribute_group *sysfs_groups[4];
1685 	const struct attribute_group *sysfs_rx_queue_group;
1686 
1687 	const struct rtnl_link_ops *rtnl_link_ops;
1688 
1689 	/* for setting kernel sock attribute on TCP connection setup */
1690 #define GSO_MAX_SIZE		65536
1691 	unsigned int		gso_max_size;
1692 #define GSO_MAX_SEGS		65535
1693 	u16			gso_max_segs;
1694 	u16			gso_min_segs;
1695 #ifdef CONFIG_DCB
1696 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1697 #endif
1698 	u8 num_tc;
1699 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1700 	u8 prio_tc_map[TC_BITMASK + 1];
1701 
1702 #if IS_ENABLED(CONFIG_FCOE)
1703 	unsigned int		fcoe_ddp_xid;
1704 #endif
1705 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1706 	struct netprio_map __rcu *priomap;
1707 #endif
1708 	struct phy_device *phydev;
1709 	struct lock_class_key *qdisc_tx_busylock;
1710 	int group;
1711 	struct pm_qos_request	pm_qos_req;
1712 };
1713 #define to_net_dev(d) container_of(d, struct net_device, dev)
1714 
1715 #define	NETDEV_ALIGN		32
1716 
1717 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1718 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1719 {
1720 	return dev->prio_tc_map[prio & TC_BITMASK];
1721 }
1722 
1723 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1724 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1725 {
1726 	if (tc >= dev->num_tc)
1727 		return -EINVAL;
1728 
1729 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1730 	return 0;
1731 }
1732 
1733 static inline
netdev_reset_tc(struct net_device * dev)1734 void netdev_reset_tc(struct net_device *dev)
1735 {
1736 	dev->num_tc = 0;
1737 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1738 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1739 }
1740 
1741 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1742 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1743 {
1744 	if (tc >= dev->num_tc)
1745 		return -EINVAL;
1746 
1747 	dev->tc_to_txq[tc].count = count;
1748 	dev->tc_to_txq[tc].offset = offset;
1749 	return 0;
1750 }
1751 
1752 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1753 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1754 {
1755 	if (num_tc > TC_MAX_QUEUE)
1756 		return -EINVAL;
1757 
1758 	dev->num_tc = num_tc;
1759 	return 0;
1760 }
1761 
1762 static inline
netdev_get_num_tc(struct net_device * dev)1763 int netdev_get_num_tc(struct net_device *dev)
1764 {
1765 	return dev->num_tc;
1766 }
1767 
1768 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1769 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1770 					 unsigned int index)
1771 {
1772 	return &dev->_tx[index];
1773 }
1774 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)1775 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1776 						    const struct sk_buff *skb)
1777 {
1778 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1779 }
1780 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1781 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1782 					    void (*f)(struct net_device *,
1783 						      struct netdev_queue *,
1784 						      void *),
1785 					    void *arg)
1786 {
1787 	unsigned int i;
1788 
1789 	for (i = 0; i < dev->num_tx_queues; i++)
1790 		f(dev, &dev->_tx[i], arg);
1791 }
1792 
1793 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1794 				    struct sk_buff *skb,
1795 				    void *accel_priv);
1796 
1797 /*
1798  * Net namespace inlines
1799  */
1800 static inline
dev_net(const struct net_device * dev)1801 struct net *dev_net(const struct net_device *dev)
1802 {
1803 	return read_pnet(&dev->nd_net);
1804 }
1805 
1806 static inline
dev_net_set(struct net_device * dev,struct net * net)1807 void dev_net_set(struct net_device *dev, struct net *net)
1808 {
1809 #ifdef CONFIG_NET_NS
1810 	release_net(dev->nd_net);
1811 	dev->nd_net = hold_net(net);
1812 #endif
1813 }
1814 
netdev_uses_dsa(struct net_device * dev)1815 static inline bool netdev_uses_dsa(struct net_device *dev)
1816 {
1817 #if IS_ENABLED(CONFIG_NET_DSA)
1818 	if (dev->dsa_ptr != NULL)
1819 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1820 #endif
1821 	return false;
1822 }
1823 
1824 /**
1825  *	netdev_priv - access network device private data
1826  *	@dev: network device
1827  *
1828  * Get network device private data
1829  */
netdev_priv(const struct net_device * dev)1830 static inline void *netdev_priv(const struct net_device *dev)
1831 {
1832 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1833 }
1834 
1835 /* Set the sysfs physical device reference for the network logical device
1836  * if set prior to registration will cause a symlink during initialization.
1837  */
1838 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1839 
1840 /* Set the sysfs device type for the network logical device to allow
1841  * fine-grained identification of different network device types. For
1842  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1843  */
1844 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1845 
1846 /* Default NAPI poll() weight
1847  * Device drivers are strongly advised to not use bigger value
1848  */
1849 #define NAPI_POLL_WEIGHT 64
1850 
1851 /**
1852  *	netif_napi_add - initialize a napi context
1853  *	@dev:  network device
1854  *	@napi: napi context
1855  *	@poll: polling function
1856  *	@weight: default weight
1857  *
1858  * netif_napi_add() must be used to initialize a napi context prior to calling
1859  * *any* of the other napi related functions.
1860  */
1861 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1862 		    int (*poll)(struct napi_struct *, int), int weight);
1863 
1864 /**
1865  *  netif_napi_del - remove a napi context
1866  *  @napi: napi context
1867  *
1868  *  netif_napi_del() removes a napi context from the network device napi list
1869  */
1870 void netif_napi_del(struct napi_struct *napi);
1871 
1872 struct napi_gro_cb {
1873 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1874 	void *frag0;
1875 
1876 	/* Length of frag0. */
1877 	unsigned int frag0_len;
1878 
1879 	/* This indicates where we are processing relative to skb->data. */
1880 	int data_offset;
1881 
1882 	/* This is non-zero if the packet cannot be merged with the new skb. */
1883 	u16	flush;
1884 
1885 	/* Save the IP ID here and check when we get to the transport layer */
1886 	u16	flush_id;
1887 
1888 	/* Number of segments aggregated. */
1889 	u16	count;
1890 
1891 	/* jiffies when first packet was created/queued */
1892 	unsigned long age;
1893 
1894 	/* Used in ipv6_gro_receive() and foo-over-udp */
1895 	u16	proto;
1896 
1897 	/* This is non-zero if the packet may be of the same flow. */
1898 	u8	same_flow:1;
1899 
1900 	/* Used in tunnel GRO receive */
1901 	u8	encap_mark:1;
1902 
1903 	/* GRO checksum is valid */
1904 	u8	csum_valid:1;
1905 
1906 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1907 	u8	csum_cnt:3;
1908 
1909 	/* Free the skb? */
1910 	u8	free:2;
1911 #define NAPI_GRO_FREE		  1
1912 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1913 
1914 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1915 	u8	is_ipv6:1;
1916 
1917 	/* 7 bit hole */
1918 
1919 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1920 	__wsum	csum;
1921 
1922 	/* used in skb_gro_receive() slow path */
1923 	struct sk_buff *last;
1924 };
1925 
1926 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1927 
1928 struct packet_type {
1929 	__be16			type;	/* This is really htons(ether_type). */
1930 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1931 	int			(*func) (struct sk_buff *,
1932 					 struct net_device *,
1933 					 struct packet_type *,
1934 					 struct net_device *);
1935 	bool			(*id_match)(struct packet_type *ptype,
1936 					    struct sock *sk);
1937 	void			*af_packet_priv;
1938 	struct list_head	list;
1939 };
1940 
1941 struct offload_callbacks {
1942 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1943 						netdev_features_t features);
1944 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1945 					       struct sk_buff *skb);
1946 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1947 };
1948 
1949 struct packet_offload {
1950 	__be16			 type;	/* This is really htons(ether_type). */
1951 	struct offload_callbacks callbacks;
1952 	struct list_head	 list;
1953 };
1954 
1955 struct udp_offload {
1956 	__be16			 port;
1957 	u8			 ipproto;
1958 	struct offload_callbacks callbacks;
1959 };
1960 
1961 /* often modified stats are per cpu, other are shared (netdev->stats) */
1962 struct pcpu_sw_netstats {
1963 	u64     rx_packets;
1964 	u64     rx_bytes;
1965 	u64     tx_packets;
1966 	u64     tx_bytes;
1967 	struct u64_stats_sync   syncp;
1968 };
1969 
1970 #define netdev_alloc_pcpu_stats(type)				\
1971 ({								\
1972 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1973 	if (pcpu_stats)	{					\
1974 		int i;						\
1975 		for_each_possible_cpu(i) {			\
1976 			typeof(type) *stat;			\
1977 			stat = per_cpu_ptr(pcpu_stats, i);	\
1978 			u64_stats_init(&stat->syncp);		\
1979 		}						\
1980 	}							\
1981 	pcpu_stats;						\
1982 })
1983 
1984 #include <linux/notifier.h>
1985 
1986 /* netdevice notifier chain. Please remember to update the rtnetlink
1987  * notification exclusion list in rtnetlink_event() when adding new
1988  * types.
1989  */
1990 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1991 #define NETDEV_DOWN	0x0002
1992 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1993 				   detected a hardware crash and restarted
1994 				   - we can use this eg to kick tcp sessions
1995 				   once done */
1996 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1997 #define NETDEV_REGISTER 0x0005
1998 #define NETDEV_UNREGISTER	0x0006
1999 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2000 #define NETDEV_CHANGEADDR	0x0008
2001 #define NETDEV_GOING_DOWN	0x0009
2002 #define NETDEV_CHANGENAME	0x000A
2003 #define NETDEV_FEAT_CHANGE	0x000B
2004 #define NETDEV_BONDING_FAILOVER 0x000C
2005 #define NETDEV_PRE_UP		0x000D
2006 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2007 #define NETDEV_POST_TYPE_CHANGE	0x000F
2008 #define NETDEV_POST_INIT	0x0010
2009 #define NETDEV_UNREGISTER_FINAL 0x0011
2010 #define NETDEV_RELEASE		0x0012
2011 #define NETDEV_NOTIFY_PEERS	0x0013
2012 #define NETDEV_JOIN		0x0014
2013 #define NETDEV_CHANGEUPPER	0x0015
2014 #define NETDEV_RESEND_IGMP	0x0016
2015 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2016 #define NETDEV_CHANGEINFODATA	0x0018
2017 
2018 int register_netdevice_notifier(struct notifier_block *nb);
2019 int unregister_netdevice_notifier(struct notifier_block *nb);
2020 
2021 struct netdev_notifier_info {
2022 	struct net_device *dev;
2023 };
2024 
2025 struct netdev_notifier_change_info {
2026 	struct netdev_notifier_info info; /* must be first */
2027 	unsigned int flags_changed;
2028 };
2029 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2030 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2031 					     struct net_device *dev)
2032 {
2033 	info->dev = dev;
2034 }
2035 
2036 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2037 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2038 {
2039 	return info->dev;
2040 }
2041 
2042 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2043 
2044 
2045 extern rwlock_t				dev_base_lock;		/* Device list lock */
2046 
2047 #define for_each_netdev(net, d)		\
2048 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2049 #define for_each_netdev_reverse(net, d)	\
2050 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2051 #define for_each_netdev_rcu(net, d)		\
2052 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2053 #define for_each_netdev_safe(net, d, n)	\
2054 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2055 #define for_each_netdev_continue(net, d)		\
2056 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2057 #define for_each_netdev_continue_rcu(net, d)		\
2058 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2059 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2060 		for_each_netdev_rcu(&init_net, slave)	\
2061 			if (netdev_master_upper_dev_get_rcu(slave) == bond)
2062 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2063 
next_net_device(struct net_device * dev)2064 static inline struct net_device *next_net_device(struct net_device *dev)
2065 {
2066 	struct list_head *lh;
2067 	struct net *net;
2068 
2069 	net = dev_net(dev);
2070 	lh = dev->dev_list.next;
2071 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2072 }
2073 
next_net_device_rcu(struct net_device * dev)2074 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2075 {
2076 	struct list_head *lh;
2077 	struct net *net;
2078 
2079 	net = dev_net(dev);
2080 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2081 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2082 }
2083 
first_net_device(struct net * net)2084 static inline struct net_device *first_net_device(struct net *net)
2085 {
2086 	return list_empty(&net->dev_base_head) ? NULL :
2087 		net_device_entry(net->dev_base_head.next);
2088 }
2089 
first_net_device_rcu(struct net * net)2090 static inline struct net_device *first_net_device_rcu(struct net *net)
2091 {
2092 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2093 
2094 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2095 }
2096 
2097 int netdev_boot_setup_check(struct net_device *dev);
2098 unsigned long netdev_boot_base(const char *prefix, int unit);
2099 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2100 				       const char *hwaddr);
2101 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2102 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2103 void dev_add_pack(struct packet_type *pt);
2104 void dev_remove_pack(struct packet_type *pt);
2105 void __dev_remove_pack(struct packet_type *pt);
2106 void dev_add_offload(struct packet_offload *po);
2107 void dev_remove_offload(struct packet_offload *po);
2108 
2109 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2110 				      unsigned short mask);
2111 struct net_device *dev_get_by_name(struct net *net, const char *name);
2112 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2113 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2114 int dev_alloc_name(struct net_device *dev, const char *name);
2115 int dev_open(struct net_device *dev);
2116 int dev_close(struct net_device *dev);
2117 void dev_disable_lro(struct net_device *dev);
2118 int dev_loopback_xmit(struct sk_buff *newskb);
2119 int dev_queue_xmit(struct sk_buff *skb);
2120 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2121 int register_netdevice(struct net_device *dev);
2122 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2123 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2124 static inline void unregister_netdevice(struct net_device *dev)
2125 {
2126 	unregister_netdevice_queue(dev, NULL);
2127 }
2128 
2129 int netdev_refcnt_read(const struct net_device *dev);
2130 void free_netdev(struct net_device *dev);
2131 void netdev_freemem(struct net_device *dev);
2132 void synchronize_net(void);
2133 int init_dummy_netdev(struct net_device *dev);
2134 
2135 DECLARE_PER_CPU(int, xmit_recursion);
dev_recursion_level(void)2136 static inline int dev_recursion_level(void)
2137 {
2138 	return this_cpu_read(xmit_recursion);
2139 }
2140 
2141 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2142 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2143 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2144 int netdev_get_name(struct net *net, char *name, int ifindex);
2145 int dev_restart(struct net_device *dev);
2146 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2147 
skb_gro_offset(const struct sk_buff * skb)2148 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2149 {
2150 	return NAPI_GRO_CB(skb)->data_offset;
2151 }
2152 
skb_gro_len(const struct sk_buff * skb)2153 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2154 {
2155 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2156 }
2157 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2158 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2159 {
2160 	NAPI_GRO_CB(skb)->data_offset += len;
2161 }
2162 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2163 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2164 					unsigned int offset)
2165 {
2166 	return NAPI_GRO_CB(skb)->frag0 + offset;
2167 }
2168 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2169 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2170 {
2171 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2172 }
2173 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2174 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2175 					unsigned int offset)
2176 {
2177 	if (!pskb_may_pull(skb, hlen))
2178 		return NULL;
2179 
2180 	NAPI_GRO_CB(skb)->frag0 = NULL;
2181 	NAPI_GRO_CB(skb)->frag0_len = 0;
2182 	return skb->data + offset;
2183 }
2184 
skb_gro_network_header(struct sk_buff * skb)2185 static inline void *skb_gro_network_header(struct sk_buff *skb)
2186 {
2187 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2188 	       skb_network_offset(skb);
2189 }
2190 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2191 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2192 					const void *start, unsigned int len)
2193 {
2194 	if (NAPI_GRO_CB(skb)->csum_valid)
2195 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2196 						  csum_partial(start, len, 0));
2197 }
2198 
2199 /* GRO checksum functions. These are logical equivalents of the normal
2200  * checksum functions (in skbuff.h) except that they operate on the GRO
2201  * offsets and fields in sk_buff.
2202  */
2203 
2204 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2205 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2206 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2207 						      bool zero_okay,
2208 						      __sum16 check)
2209 {
2210 	return (skb->ip_summed != CHECKSUM_PARTIAL &&
2211 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2212 		(!zero_okay || check));
2213 }
2214 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2215 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2216 							   __wsum psum)
2217 {
2218 	if (NAPI_GRO_CB(skb)->csum_valid &&
2219 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2220 		return 0;
2221 
2222 	NAPI_GRO_CB(skb)->csum = psum;
2223 
2224 	return __skb_gro_checksum_complete(skb);
2225 }
2226 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2227 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2228 {
2229 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2230 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2231 		NAPI_GRO_CB(skb)->csum_cnt--;
2232 	} else {
2233 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2234 		 * verified a new top level checksum or an encapsulated one
2235 		 * during GRO. This saves work if we fallback to normal path.
2236 		 */
2237 		__skb_incr_checksum_unnecessary(skb);
2238 	}
2239 }
2240 
2241 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2242 				    compute_pseudo)			\
2243 ({									\
2244 	__sum16 __ret = 0;						\
2245 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2246 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2247 				compute_pseudo(skb, proto));		\
2248 	if (__ret)							\
2249 		__skb_mark_checksum_bad(skb);				\
2250 	else								\
2251 		skb_gro_incr_csum_unnecessary(skb);			\
2252 	__ret;								\
2253 })
2254 
2255 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2256 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2257 
2258 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2259 					     compute_pseudo)		\
2260 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2261 
2262 #define skb_gro_checksum_simple_validate(skb)				\
2263 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2264 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2265 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2266 {
2267 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2268 		!NAPI_GRO_CB(skb)->csum_valid);
2269 }
2270 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2271 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2272 					      __sum16 check, __wsum pseudo)
2273 {
2274 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2275 	NAPI_GRO_CB(skb)->csum_valid = 1;
2276 }
2277 
2278 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2279 do {									\
2280 	if (__skb_gro_checksum_convert_check(skb))			\
2281 		__skb_gro_checksum_convert(skb, check,			\
2282 					   compute_pseudo(skb, proto));	\
2283 } while (0)
2284 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2285 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2286 				  unsigned short type,
2287 				  const void *daddr, const void *saddr,
2288 				  unsigned int len)
2289 {
2290 	if (!dev->header_ops || !dev->header_ops->create)
2291 		return 0;
2292 
2293 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2294 }
2295 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2296 static inline int dev_parse_header(const struct sk_buff *skb,
2297 				   unsigned char *haddr)
2298 {
2299 	const struct net_device *dev = skb->dev;
2300 
2301 	if (!dev->header_ops || !dev->header_ops->parse)
2302 		return 0;
2303 	return dev->header_ops->parse(skb, haddr);
2304 }
2305 
dev_rebuild_header(struct sk_buff * skb)2306 static inline int dev_rebuild_header(struct sk_buff *skb)
2307 {
2308 	const struct net_device *dev = skb->dev;
2309 
2310 	if (!dev->header_ops || !dev->header_ops->rebuild)
2311 		return 0;
2312 	return dev->header_ops->rebuild(skb);
2313 }
2314 
2315 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2316 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2317 static inline int unregister_gifconf(unsigned int family)
2318 {
2319 	return register_gifconf(family, NULL);
2320 }
2321 
2322 #ifdef CONFIG_NET_FLOW_LIMIT
2323 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2324 struct sd_flow_limit {
2325 	u64			count;
2326 	unsigned int		num_buckets;
2327 	unsigned int		history_head;
2328 	u16			history[FLOW_LIMIT_HISTORY];
2329 	u8			buckets[];
2330 };
2331 
2332 extern int netdev_flow_limit_table_len;
2333 #endif /* CONFIG_NET_FLOW_LIMIT */
2334 
2335 /*
2336  * Incoming packets are placed on per-cpu queues
2337  */
2338 struct softnet_data {
2339 	struct Qdisc		*output_queue;
2340 	struct Qdisc		**output_queue_tailp;
2341 	struct list_head	poll_list;
2342 	struct sk_buff		*completion_queue;
2343 	struct sk_buff_head	process_queue;
2344 
2345 	/* stats */
2346 	unsigned int		processed;
2347 	unsigned int		time_squeeze;
2348 	unsigned int		cpu_collision;
2349 	unsigned int		received_rps;
2350 
2351 #ifdef CONFIG_RPS
2352 	struct softnet_data	*rps_ipi_list;
2353 
2354 	/* Elements below can be accessed between CPUs for RPS */
2355 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2356 	struct softnet_data	*rps_ipi_next;
2357 	unsigned int		cpu;
2358 	unsigned int		input_queue_head;
2359 	unsigned int		input_queue_tail;
2360 #endif
2361 	unsigned int		dropped;
2362 	struct sk_buff_head	input_pkt_queue;
2363 	struct napi_struct	backlog;
2364 
2365 #ifdef CONFIG_NET_FLOW_LIMIT
2366 	struct sd_flow_limit __rcu *flow_limit;
2367 #endif
2368 };
2369 
input_queue_head_incr(struct softnet_data * sd)2370 static inline void input_queue_head_incr(struct softnet_data *sd)
2371 {
2372 #ifdef CONFIG_RPS
2373 	sd->input_queue_head++;
2374 #endif
2375 }
2376 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2377 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2378 					      unsigned int *qtail)
2379 {
2380 #ifdef CONFIG_RPS
2381 	*qtail = ++sd->input_queue_tail;
2382 #endif
2383 }
2384 
2385 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2386 
2387 void __netif_schedule(struct Qdisc *q);
2388 void netif_schedule_queue(struct netdev_queue *txq);
2389 
netif_tx_schedule_all(struct net_device * dev)2390 static inline void netif_tx_schedule_all(struct net_device *dev)
2391 {
2392 	unsigned int i;
2393 
2394 	for (i = 0; i < dev->num_tx_queues; i++)
2395 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2396 }
2397 
netif_tx_start_queue(struct netdev_queue * dev_queue)2398 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2399 {
2400 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2401 }
2402 
2403 /**
2404  *	netif_start_queue - allow transmit
2405  *	@dev: network device
2406  *
2407  *	Allow upper layers to call the device hard_start_xmit routine.
2408  */
netif_start_queue(struct net_device * dev)2409 static inline void netif_start_queue(struct net_device *dev)
2410 {
2411 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2412 }
2413 
netif_tx_start_all_queues(struct net_device * dev)2414 static inline void netif_tx_start_all_queues(struct net_device *dev)
2415 {
2416 	unsigned int i;
2417 
2418 	for (i = 0; i < dev->num_tx_queues; i++) {
2419 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2420 		netif_tx_start_queue(txq);
2421 	}
2422 }
2423 
2424 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2425 
2426 /**
2427  *	netif_wake_queue - restart transmit
2428  *	@dev: network device
2429  *
2430  *	Allow upper layers to call the device hard_start_xmit routine.
2431  *	Used for flow control when transmit resources are available.
2432  */
netif_wake_queue(struct net_device * dev)2433 static inline void netif_wake_queue(struct net_device *dev)
2434 {
2435 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2436 }
2437 
netif_tx_wake_all_queues(struct net_device * dev)2438 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2439 {
2440 	unsigned int i;
2441 
2442 	for (i = 0; i < dev->num_tx_queues; i++) {
2443 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2444 		netif_tx_wake_queue(txq);
2445 	}
2446 }
2447 
netif_tx_stop_queue(struct netdev_queue * dev_queue)2448 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2449 {
2450 	if (WARN_ON(!dev_queue)) {
2451 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2452 		return;
2453 	}
2454 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2455 }
2456 
2457 /**
2458  *	netif_stop_queue - stop transmitted packets
2459  *	@dev: network device
2460  *
2461  *	Stop upper layers calling the device hard_start_xmit routine.
2462  *	Used for flow control when transmit resources are unavailable.
2463  */
netif_stop_queue(struct net_device * dev)2464 static inline void netif_stop_queue(struct net_device *dev)
2465 {
2466 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2467 }
2468 
netif_tx_stop_all_queues(struct net_device * dev)2469 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2470 {
2471 	unsigned int i;
2472 
2473 	for (i = 0; i < dev->num_tx_queues; i++) {
2474 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2475 		netif_tx_stop_queue(txq);
2476 	}
2477 }
2478 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)2479 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2480 {
2481 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2482 }
2483 
2484 /**
2485  *	netif_queue_stopped - test if transmit queue is flowblocked
2486  *	@dev: network device
2487  *
2488  *	Test if transmit queue on device is currently unable to send.
2489  */
netif_queue_stopped(const struct net_device * dev)2490 static inline bool netif_queue_stopped(const struct net_device *dev)
2491 {
2492 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2493 }
2494 
netif_xmit_stopped(const struct netdev_queue * dev_queue)2495 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2496 {
2497 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2498 }
2499 
2500 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)2501 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2502 {
2503 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2504 }
2505 
2506 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)2507 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2508 {
2509 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2510 }
2511 
2512 /**
2513  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2514  *	@dev_queue: pointer to transmit queue
2515  *
2516  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2517  * to give appropriate hint to the cpu.
2518  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)2519 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2520 {
2521 #ifdef CONFIG_BQL
2522 	prefetchw(&dev_queue->dql.num_queued);
2523 #endif
2524 }
2525 
2526 /**
2527  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2528  *	@dev_queue: pointer to transmit queue
2529  *
2530  * BQL enabled drivers might use this helper in their TX completion path,
2531  * to give appropriate hint to the cpu.
2532  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)2533 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2534 {
2535 #ifdef CONFIG_BQL
2536 	prefetchw(&dev_queue->dql.limit);
2537 #endif
2538 }
2539 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)2540 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2541 					unsigned int bytes)
2542 {
2543 #ifdef CONFIG_BQL
2544 	dql_queued(&dev_queue->dql, bytes);
2545 
2546 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2547 		return;
2548 
2549 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2550 
2551 	/*
2552 	 * The XOFF flag must be set before checking the dql_avail below,
2553 	 * because in netdev_tx_completed_queue we update the dql_completed
2554 	 * before checking the XOFF flag.
2555 	 */
2556 	smp_mb();
2557 
2558 	/* check again in case another CPU has just made room avail */
2559 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2560 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2561 #endif
2562 }
2563 
2564 /**
2565  * 	netdev_sent_queue - report the number of bytes queued to hardware
2566  * 	@dev: network device
2567  * 	@bytes: number of bytes queued to the hardware device queue
2568  *
2569  * 	Report the number of bytes queued for sending/completion to the network
2570  * 	device hardware queue. @bytes should be a good approximation and should
2571  * 	exactly match netdev_completed_queue() @bytes
2572  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)2573 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2574 {
2575 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2576 }
2577 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)2578 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2579 					     unsigned int pkts, unsigned int bytes)
2580 {
2581 #ifdef CONFIG_BQL
2582 	if (unlikely(!bytes))
2583 		return;
2584 
2585 	dql_completed(&dev_queue->dql, bytes);
2586 
2587 	/*
2588 	 * Without the memory barrier there is a small possiblity that
2589 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2590 	 * be stopped forever
2591 	 */
2592 	smp_mb();
2593 
2594 	if (dql_avail(&dev_queue->dql) < 0)
2595 		return;
2596 
2597 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2598 		netif_schedule_queue(dev_queue);
2599 #endif
2600 }
2601 
2602 /**
2603  * 	netdev_completed_queue - report bytes and packets completed by device
2604  * 	@dev: network device
2605  * 	@pkts: actual number of packets sent over the medium
2606  * 	@bytes: actual number of bytes sent over the medium
2607  *
2608  * 	Report the number of bytes and packets transmitted by the network device
2609  * 	hardware queue over the physical medium, @bytes must exactly match the
2610  * 	@bytes amount passed to netdev_sent_queue()
2611  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)2612 static inline void netdev_completed_queue(struct net_device *dev,
2613 					  unsigned int pkts, unsigned int bytes)
2614 {
2615 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2616 }
2617 
netdev_tx_reset_queue(struct netdev_queue * q)2618 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2619 {
2620 #ifdef CONFIG_BQL
2621 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2622 	dql_reset(&q->dql);
2623 #endif
2624 }
2625 
2626 /**
2627  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2628  * 	@dev_queue: network device
2629  *
2630  * 	Reset the bytes and packet count of a network device and clear the
2631  * 	software flow control OFF bit for this network device
2632  */
netdev_reset_queue(struct net_device * dev_queue)2633 static inline void netdev_reset_queue(struct net_device *dev_queue)
2634 {
2635 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2636 }
2637 
2638 /**
2639  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2640  * 	@dev: network device
2641  * 	@queue_index: given tx queue index
2642  *
2643  * 	Returns 0 if given tx queue index >= number of device tx queues,
2644  * 	otherwise returns the originally passed tx queue index.
2645  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)2646 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2647 {
2648 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2649 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2650 				     dev->name, queue_index,
2651 				     dev->real_num_tx_queues);
2652 		return 0;
2653 	}
2654 
2655 	return queue_index;
2656 }
2657 
2658 /**
2659  *	netif_running - test if up
2660  *	@dev: network device
2661  *
2662  *	Test if the device has been brought up.
2663  */
netif_running(const struct net_device * dev)2664 static inline bool netif_running(const struct net_device *dev)
2665 {
2666 	return test_bit(__LINK_STATE_START, &dev->state);
2667 }
2668 
2669 /*
2670  * Routines to manage the subqueues on a device.  We only need start
2671  * stop, and a check if it's stopped.  All other device management is
2672  * done at the overall netdevice level.
2673  * Also test the device if we're multiqueue.
2674  */
2675 
2676 /**
2677  *	netif_start_subqueue - allow sending packets on subqueue
2678  *	@dev: network device
2679  *	@queue_index: sub queue index
2680  *
2681  * Start individual transmit queue of a device with multiple transmit queues.
2682  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)2683 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2684 {
2685 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2686 
2687 	netif_tx_start_queue(txq);
2688 }
2689 
2690 /**
2691  *	netif_stop_subqueue - stop sending packets on subqueue
2692  *	@dev: network device
2693  *	@queue_index: sub queue index
2694  *
2695  * Stop individual transmit queue of a device with multiple transmit queues.
2696  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)2697 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2698 {
2699 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2700 	netif_tx_stop_queue(txq);
2701 }
2702 
2703 /**
2704  *	netif_subqueue_stopped - test status of subqueue
2705  *	@dev: network device
2706  *	@queue_index: sub queue index
2707  *
2708  * Check individual transmit queue of a device with multiple transmit queues.
2709  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)2710 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2711 					    u16 queue_index)
2712 {
2713 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2714 
2715 	return netif_tx_queue_stopped(txq);
2716 }
2717 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)2718 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2719 					  struct sk_buff *skb)
2720 {
2721 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2722 }
2723 
2724 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2725 
2726 #ifdef CONFIG_XPS
2727 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2728 			u16 index);
2729 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2730 static inline int netif_set_xps_queue(struct net_device *dev,
2731 				      const struct cpumask *mask,
2732 				      u16 index)
2733 {
2734 	return 0;
2735 }
2736 #endif
2737 
2738 /*
2739  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2740  * as a distribution range limit for the returned value.
2741  */
skb_tx_hash(const struct net_device * dev,struct sk_buff * skb)2742 static inline u16 skb_tx_hash(const struct net_device *dev,
2743 			      struct sk_buff *skb)
2744 {
2745 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2746 }
2747 
2748 /**
2749  *	netif_is_multiqueue - test if device has multiple transmit queues
2750  *	@dev: network device
2751  *
2752  * Check if device has multiple transmit queues
2753  */
netif_is_multiqueue(const struct net_device * dev)2754 static inline bool netif_is_multiqueue(const struct net_device *dev)
2755 {
2756 	return dev->num_tx_queues > 1;
2757 }
2758 
2759 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2760 
2761 #ifdef CONFIG_SYSFS
2762 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2763 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2764 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2765 						unsigned int rxq)
2766 {
2767 	return 0;
2768 }
2769 #endif
2770 
netif_copy_real_num_queues(struct net_device * to_dev,const struct net_device * from_dev)2771 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2772 					     const struct net_device *from_dev)
2773 {
2774 	int err;
2775 
2776 	err = netif_set_real_num_tx_queues(to_dev,
2777 					   from_dev->real_num_tx_queues);
2778 	if (err)
2779 		return err;
2780 #ifdef CONFIG_SYSFS
2781 	return netif_set_real_num_rx_queues(to_dev,
2782 					    from_dev->real_num_rx_queues);
2783 #else
2784 	return 0;
2785 #endif
2786 }
2787 
2788 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)2789 static inline unsigned int get_netdev_rx_queue_index(
2790 		struct netdev_rx_queue *queue)
2791 {
2792 	struct net_device *dev = queue->dev;
2793 	int index = queue - dev->_rx;
2794 
2795 	BUG_ON(index >= dev->num_rx_queues);
2796 	return index;
2797 }
2798 #endif
2799 
2800 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2801 int netif_get_num_default_rss_queues(void);
2802 
2803 enum skb_free_reason {
2804 	SKB_REASON_CONSUMED,
2805 	SKB_REASON_DROPPED,
2806 };
2807 
2808 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2809 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2810 
2811 /*
2812  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2813  * interrupt context or with hardware interrupts being disabled.
2814  * (in_irq() || irqs_disabled())
2815  *
2816  * We provide four helpers that can be used in following contexts :
2817  *
2818  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2819  *  replacing kfree_skb(skb)
2820  *
2821  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2822  *  Typically used in place of consume_skb(skb) in TX completion path
2823  *
2824  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2825  *  replacing kfree_skb(skb)
2826  *
2827  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2828  *  and consumed a packet. Used in place of consume_skb(skb)
2829  */
dev_kfree_skb_irq(struct sk_buff * skb)2830 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2831 {
2832 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2833 }
2834 
dev_consume_skb_irq(struct sk_buff * skb)2835 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2836 {
2837 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2838 }
2839 
dev_kfree_skb_any(struct sk_buff * skb)2840 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2841 {
2842 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2843 }
2844 
dev_consume_skb_any(struct sk_buff * skb)2845 static inline void dev_consume_skb_any(struct sk_buff *skb)
2846 {
2847 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2848 }
2849 
2850 int netif_rx(struct sk_buff *skb);
2851 int netif_rx_ni(struct sk_buff *skb);
2852 int netif_receive_skb(struct sk_buff *skb);
2853 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2854 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2855 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2856 gro_result_t napi_gro_frags(struct napi_struct *napi);
2857 struct packet_offload *gro_find_receive_by_type(__be16 type);
2858 struct packet_offload *gro_find_complete_by_type(__be16 type);
2859 
napi_free_frags(struct napi_struct * napi)2860 static inline void napi_free_frags(struct napi_struct *napi)
2861 {
2862 	kfree_skb(napi->skb);
2863 	napi->skb = NULL;
2864 }
2865 
2866 int netdev_rx_handler_register(struct net_device *dev,
2867 			       rx_handler_func_t *rx_handler,
2868 			       void *rx_handler_data);
2869 void netdev_rx_handler_unregister(struct net_device *dev);
2870 
2871 bool dev_valid_name(const char *name);
2872 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2873 int dev_ethtool(struct net *net, struct ifreq *);
2874 unsigned int dev_get_flags(const struct net_device *);
2875 int __dev_change_flags(struct net_device *, unsigned int flags);
2876 int dev_change_flags(struct net_device *, unsigned int);
2877 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2878 			unsigned int gchanges);
2879 int dev_change_name(struct net_device *, const char *);
2880 int dev_set_alias(struct net_device *, const char *, size_t);
2881 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2882 int dev_set_mtu(struct net_device *, int);
2883 void dev_set_group(struct net_device *, int);
2884 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2885 int dev_change_carrier(struct net_device *, bool new_carrier);
2886 int dev_get_phys_port_id(struct net_device *dev,
2887 			 struct netdev_phys_port_id *ppid);
2888 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2889 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2890 				    struct netdev_queue *txq, int *ret);
2891 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2892 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2893 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2894 
2895 extern int		netdev_budget;
2896 
2897 /* Called by rtnetlink.c:rtnl_unlock() */
2898 void netdev_run_todo(void);
2899 
2900 /**
2901  *	dev_put - release reference to device
2902  *	@dev: network device
2903  *
2904  * Release reference to device to allow it to be freed.
2905  */
dev_put(struct net_device * dev)2906 static inline void dev_put(struct net_device *dev)
2907 {
2908 	this_cpu_dec(*dev->pcpu_refcnt);
2909 }
2910 
2911 /**
2912  *	dev_hold - get reference to device
2913  *	@dev: network device
2914  *
2915  * Hold reference to device to keep it from being freed.
2916  */
dev_hold(struct net_device * dev)2917 static inline void dev_hold(struct net_device *dev)
2918 {
2919 	this_cpu_inc(*dev->pcpu_refcnt);
2920 }
2921 
2922 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2923  * and _off may be called from IRQ context, but it is caller
2924  * who is responsible for serialization of these calls.
2925  *
2926  * The name carrier is inappropriate, these functions should really be
2927  * called netif_lowerlayer_*() because they represent the state of any
2928  * kind of lower layer not just hardware media.
2929  */
2930 
2931 void linkwatch_init_dev(struct net_device *dev);
2932 void linkwatch_fire_event(struct net_device *dev);
2933 void linkwatch_forget_dev(struct net_device *dev);
2934 
2935 /**
2936  *	netif_carrier_ok - test if carrier present
2937  *	@dev: network device
2938  *
2939  * Check if carrier is present on device
2940  */
netif_carrier_ok(const struct net_device * dev)2941 static inline bool netif_carrier_ok(const struct net_device *dev)
2942 {
2943 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2944 }
2945 
2946 unsigned long dev_trans_start(struct net_device *dev);
2947 
2948 void __netdev_watchdog_up(struct net_device *dev);
2949 
2950 void netif_carrier_on(struct net_device *dev);
2951 
2952 void netif_carrier_off(struct net_device *dev);
2953 
2954 /**
2955  *	netif_dormant_on - mark device as dormant.
2956  *	@dev: network device
2957  *
2958  * Mark device as dormant (as per RFC2863).
2959  *
2960  * The dormant state indicates that the relevant interface is not
2961  * actually in a condition to pass packets (i.e., it is not 'up') but is
2962  * in a "pending" state, waiting for some external event.  For "on-
2963  * demand" interfaces, this new state identifies the situation where the
2964  * interface is waiting for events to place it in the up state.
2965  *
2966  */
netif_dormant_on(struct net_device * dev)2967 static inline void netif_dormant_on(struct net_device *dev)
2968 {
2969 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2970 		linkwatch_fire_event(dev);
2971 }
2972 
2973 /**
2974  *	netif_dormant_off - set device as not dormant.
2975  *	@dev: network device
2976  *
2977  * Device is not in dormant state.
2978  */
netif_dormant_off(struct net_device * dev)2979 static inline void netif_dormant_off(struct net_device *dev)
2980 {
2981 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2982 		linkwatch_fire_event(dev);
2983 }
2984 
2985 /**
2986  *	netif_dormant - test if carrier present
2987  *	@dev: network device
2988  *
2989  * Check if carrier is present on device
2990  */
netif_dormant(const struct net_device * dev)2991 static inline bool netif_dormant(const struct net_device *dev)
2992 {
2993 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2994 }
2995 
2996 
2997 /**
2998  *	netif_oper_up - test if device is operational
2999  *	@dev: network device
3000  *
3001  * Check if carrier is operational
3002  */
netif_oper_up(const struct net_device * dev)3003 static inline bool netif_oper_up(const struct net_device *dev)
3004 {
3005 	return (dev->operstate == IF_OPER_UP ||
3006 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3007 }
3008 
3009 /**
3010  *	netif_device_present - is device available or removed
3011  *	@dev: network device
3012  *
3013  * Check if device has not been removed from system.
3014  */
netif_device_present(struct net_device * dev)3015 static inline bool netif_device_present(struct net_device *dev)
3016 {
3017 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3018 }
3019 
3020 void netif_device_detach(struct net_device *dev);
3021 
3022 void netif_device_attach(struct net_device *dev);
3023 
3024 /*
3025  * Network interface message level settings
3026  */
3027 
3028 enum {
3029 	NETIF_MSG_DRV		= 0x0001,
3030 	NETIF_MSG_PROBE		= 0x0002,
3031 	NETIF_MSG_LINK		= 0x0004,
3032 	NETIF_MSG_TIMER		= 0x0008,
3033 	NETIF_MSG_IFDOWN	= 0x0010,
3034 	NETIF_MSG_IFUP		= 0x0020,
3035 	NETIF_MSG_RX_ERR	= 0x0040,
3036 	NETIF_MSG_TX_ERR	= 0x0080,
3037 	NETIF_MSG_TX_QUEUED	= 0x0100,
3038 	NETIF_MSG_INTR		= 0x0200,
3039 	NETIF_MSG_TX_DONE	= 0x0400,
3040 	NETIF_MSG_RX_STATUS	= 0x0800,
3041 	NETIF_MSG_PKTDATA	= 0x1000,
3042 	NETIF_MSG_HW		= 0x2000,
3043 	NETIF_MSG_WOL		= 0x4000,
3044 };
3045 
3046 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3047 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3048 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3049 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3050 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3051 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3052 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3053 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3054 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3055 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3056 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3057 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3058 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3059 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3060 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3061 
netif_msg_init(int debug_value,int default_msg_enable_bits)3062 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3063 {
3064 	/* use default */
3065 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3066 		return default_msg_enable_bits;
3067 	if (debug_value == 0)	/* no output */
3068 		return 0;
3069 	/* set low N bits */
3070 	return (1 << debug_value) - 1;
3071 }
3072 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3073 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3074 {
3075 	spin_lock(&txq->_xmit_lock);
3076 	txq->xmit_lock_owner = cpu;
3077 }
3078 
__netif_tx_lock_bh(struct netdev_queue * txq)3079 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3080 {
3081 	spin_lock_bh(&txq->_xmit_lock);
3082 	txq->xmit_lock_owner = smp_processor_id();
3083 }
3084 
__netif_tx_trylock(struct netdev_queue * txq)3085 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3086 {
3087 	bool ok = spin_trylock(&txq->_xmit_lock);
3088 	if (likely(ok))
3089 		txq->xmit_lock_owner = smp_processor_id();
3090 	return ok;
3091 }
3092 
__netif_tx_unlock(struct netdev_queue * txq)3093 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3094 {
3095 	txq->xmit_lock_owner = -1;
3096 	spin_unlock(&txq->_xmit_lock);
3097 }
3098 
__netif_tx_unlock_bh(struct netdev_queue * txq)3099 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3100 {
3101 	txq->xmit_lock_owner = -1;
3102 	spin_unlock_bh(&txq->_xmit_lock);
3103 }
3104 
txq_trans_update(struct netdev_queue * txq)3105 static inline void txq_trans_update(struct netdev_queue *txq)
3106 {
3107 	if (txq->xmit_lock_owner != -1)
3108 		txq->trans_start = jiffies;
3109 }
3110 
3111 /**
3112  *	netif_tx_lock - grab network device transmit lock
3113  *	@dev: network device
3114  *
3115  * Get network device transmit lock
3116  */
netif_tx_lock(struct net_device * dev)3117 static inline void netif_tx_lock(struct net_device *dev)
3118 {
3119 	unsigned int i;
3120 	int cpu;
3121 
3122 	spin_lock(&dev->tx_global_lock);
3123 	cpu = smp_processor_id();
3124 	for (i = 0; i < dev->num_tx_queues; i++) {
3125 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3126 
3127 		/* We are the only thread of execution doing a
3128 		 * freeze, but we have to grab the _xmit_lock in
3129 		 * order to synchronize with threads which are in
3130 		 * the ->hard_start_xmit() handler and already
3131 		 * checked the frozen bit.
3132 		 */
3133 		__netif_tx_lock(txq, cpu);
3134 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3135 		__netif_tx_unlock(txq);
3136 	}
3137 }
3138 
netif_tx_lock_bh(struct net_device * dev)3139 static inline void netif_tx_lock_bh(struct net_device *dev)
3140 {
3141 	local_bh_disable();
3142 	netif_tx_lock(dev);
3143 }
3144 
netif_tx_unlock(struct net_device * dev)3145 static inline void netif_tx_unlock(struct net_device *dev)
3146 {
3147 	unsigned int i;
3148 
3149 	for (i = 0; i < dev->num_tx_queues; i++) {
3150 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3151 
3152 		/* No need to grab the _xmit_lock here.  If the
3153 		 * queue is not stopped for another reason, we
3154 		 * force a schedule.
3155 		 */
3156 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3157 		netif_schedule_queue(txq);
3158 	}
3159 	spin_unlock(&dev->tx_global_lock);
3160 }
3161 
netif_tx_unlock_bh(struct net_device * dev)3162 static inline void netif_tx_unlock_bh(struct net_device *dev)
3163 {
3164 	netif_tx_unlock(dev);
3165 	local_bh_enable();
3166 }
3167 
3168 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3169 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3170 		__netif_tx_lock(txq, cpu);		\
3171 	}						\
3172 }
3173 
3174 #define HARD_TX_TRYLOCK(dev, txq)			\
3175 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3176 		__netif_tx_trylock(txq) :		\
3177 		true )
3178 
3179 #define HARD_TX_UNLOCK(dev, txq) {			\
3180 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3181 		__netif_tx_unlock(txq);			\
3182 	}						\
3183 }
3184 
netif_tx_disable(struct net_device * dev)3185 static inline void netif_tx_disable(struct net_device *dev)
3186 {
3187 	unsigned int i;
3188 	int cpu;
3189 
3190 	local_bh_disable();
3191 	cpu = smp_processor_id();
3192 	for (i = 0; i < dev->num_tx_queues; i++) {
3193 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3194 
3195 		__netif_tx_lock(txq, cpu);
3196 		netif_tx_stop_queue(txq);
3197 		__netif_tx_unlock(txq);
3198 	}
3199 	local_bh_enable();
3200 }
3201 
netif_addr_lock(struct net_device * dev)3202 static inline void netif_addr_lock(struct net_device *dev)
3203 {
3204 	spin_lock(&dev->addr_list_lock);
3205 }
3206 
netif_addr_lock_nested(struct net_device * dev)3207 static inline void netif_addr_lock_nested(struct net_device *dev)
3208 {
3209 	int subclass = SINGLE_DEPTH_NESTING;
3210 
3211 	if (dev->netdev_ops->ndo_get_lock_subclass)
3212 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3213 
3214 	spin_lock_nested(&dev->addr_list_lock, subclass);
3215 }
3216 
netif_addr_lock_bh(struct net_device * dev)3217 static inline void netif_addr_lock_bh(struct net_device *dev)
3218 {
3219 	spin_lock_bh(&dev->addr_list_lock);
3220 }
3221 
netif_addr_unlock(struct net_device * dev)3222 static inline void netif_addr_unlock(struct net_device *dev)
3223 {
3224 	spin_unlock(&dev->addr_list_lock);
3225 }
3226 
netif_addr_unlock_bh(struct net_device * dev)3227 static inline void netif_addr_unlock_bh(struct net_device *dev)
3228 {
3229 	spin_unlock_bh(&dev->addr_list_lock);
3230 }
3231 
3232 /*
3233  * dev_addrs walker. Should be used only for read access. Call with
3234  * rcu_read_lock held.
3235  */
3236 #define for_each_dev_addr(dev, ha) \
3237 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3238 
3239 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3240 
3241 void ether_setup(struct net_device *dev);
3242 
3243 /* Support for loadable net-drivers */
3244 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3245 				    unsigned char name_assign_type,
3246 				    void (*setup)(struct net_device *),
3247 				    unsigned int txqs, unsigned int rxqs);
3248 int dev_get_valid_name(struct net *net, struct net_device *dev,
3249 		       const char *name);
3250 
3251 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3252 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3253 
3254 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3255 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3256 			 count)
3257 
3258 int register_netdev(struct net_device *dev);
3259 void unregister_netdev(struct net_device *dev);
3260 
3261 /* General hardware address lists handling functions */
3262 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3263 		   struct netdev_hw_addr_list *from_list, int addr_len);
3264 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3265 		      struct netdev_hw_addr_list *from_list, int addr_len);
3266 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3267 		       struct net_device *dev,
3268 		       int (*sync)(struct net_device *, const unsigned char *),
3269 		       int (*unsync)(struct net_device *,
3270 				     const unsigned char *));
3271 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3272 			  struct net_device *dev,
3273 			  int (*unsync)(struct net_device *,
3274 					const unsigned char *));
3275 void __hw_addr_init(struct netdev_hw_addr_list *list);
3276 
3277 /* Functions used for device addresses handling */
3278 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3279 		 unsigned char addr_type);
3280 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3281 		 unsigned char addr_type);
3282 void dev_addr_flush(struct net_device *dev);
3283 int dev_addr_init(struct net_device *dev);
3284 
3285 /* Functions used for unicast addresses handling */
3286 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3287 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3288 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3289 int dev_uc_sync(struct net_device *to, struct net_device *from);
3290 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3291 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3292 void dev_uc_flush(struct net_device *dev);
3293 void dev_uc_init(struct net_device *dev);
3294 
3295 /**
3296  *  __dev_uc_sync - Synchonize device's unicast list
3297  *  @dev:  device to sync
3298  *  @sync: function to call if address should be added
3299  *  @unsync: function to call if address should be removed
3300  *
3301  *  Add newly added addresses to the interface, and release
3302  *  addresses that have been deleted.
3303  **/
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3304 static inline int __dev_uc_sync(struct net_device *dev,
3305 				int (*sync)(struct net_device *,
3306 					    const unsigned char *),
3307 				int (*unsync)(struct net_device *,
3308 					      const unsigned char *))
3309 {
3310 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3311 }
3312 
3313 /**
3314  *  __dev_uc_unsync - Remove synchronized addresses from device
3315  *  @dev:  device to sync
3316  *  @unsync: function to call if address should be removed
3317  *
3318  *  Remove all addresses that were added to the device by dev_uc_sync().
3319  **/
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3320 static inline void __dev_uc_unsync(struct net_device *dev,
3321 				   int (*unsync)(struct net_device *,
3322 						 const unsigned char *))
3323 {
3324 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3325 }
3326 
3327 /* Functions used for multicast addresses handling */
3328 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3329 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3330 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3331 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3332 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3333 int dev_mc_sync(struct net_device *to, struct net_device *from);
3334 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3335 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3336 void dev_mc_flush(struct net_device *dev);
3337 void dev_mc_init(struct net_device *dev);
3338 
3339 /**
3340  *  __dev_mc_sync - Synchonize device's multicast list
3341  *  @dev:  device to sync
3342  *  @sync: function to call if address should be added
3343  *  @unsync: function to call if address should be removed
3344  *
3345  *  Add newly added addresses to the interface, and release
3346  *  addresses that have been deleted.
3347  **/
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3348 static inline int __dev_mc_sync(struct net_device *dev,
3349 				int (*sync)(struct net_device *,
3350 					    const unsigned char *),
3351 				int (*unsync)(struct net_device *,
3352 					      const unsigned char *))
3353 {
3354 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3355 }
3356 
3357 /**
3358  *  __dev_mc_unsync - Remove synchronized addresses from device
3359  *  @dev:  device to sync
3360  *  @unsync: function to call if address should be removed
3361  *
3362  *  Remove all addresses that were added to the device by dev_mc_sync().
3363  **/
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3364 static inline void __dev_mc_unsync(struct net_device *dev,
3365 				   int (*unsync)(struct net_device *,
3366 						 const unsigned char *))
3367 {
3368 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3369 }
3370 
3371 /* Functions used for secondary unicast and multicast support */
3372 void dev_set_rx_mode(struct net_device *dev);
3373 void __dev_set_rx_mode(struct net_device *dev);
3374 int dev_set_promiscuity(struct net_device *dev, int inc);
3375 int dev_set_allmulti(struct net_device *dev, int inc);
3376 void netdev_state_change(struct net_device *dev);
3377 void netdev_notify_peers(struct net_device *dev);
3378 void netdev_features_change(struct net_device *dev);
3379 /* Load a device via the kmod */
3380 void dev_load(struct net *net, const char *name);
3381 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3382 					struct rtnl_link_stats64 *storage);
3383 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3384 			     const struct net_device_stats *netdev_stats);
3385 
3386 extern int		netdev_max_backlog;
3387 extern int		netdev_tstamp_prequeue;
3388 extern int		weight_p;
3389 extern int		bpf_jit_enable;
3390 
3391 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3392 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3393 						     struct list_head **iter);
3394 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3395 						     struct list_head **iter);
3396 
3397 /* iterate through upper list, must be called under RCU read lock */
3398 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3399 	for (iter = &(dev)->adj_list.upper, \
3400 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3401 	     updev; \
3402 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3403 
3404 /* iterate through upper list, must be called under RCU read lock */
3405 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3406 	for (iter = &(dev)->all_adj_list.upper, \
3407 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3408 	     updev; \
3409 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3410 
3411 void *netdev_lower_get_next_private(struct net_device *dev,
3412 				    struct list_head **iter);
3413 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3414 					struct list_head **iter);
3415 
3416 #define netdev_for_each_lower_private(dev, priv, iter) \
3417 	for (iter = (dev)->adj_list.lower.next, \
3418 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3419 	     priv; \
3420 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3421 
3422 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3423 	for (iter = &(dev)->adj_list.lower, \
3424 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3425 	     priv; \
3426 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3427 
3428 void *netdev_lower_get_next(struct net_device *dev,
3429 				struct list_head **iter);
3430 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3431 	for (iter = &(dev)->adj_list.lower, \
3432 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3433 	     ldev; \
3434 	     ldev = netdev_lower_get_next(dev, &(iter)))
3435 
3436 void *netdev_adjacent_get_private(struct list_head *adj_list);
3437 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3438 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3439 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3440 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3441 int netdev_master_upper_dev_link(struct net_device *dev,
3442 				 struct net_device *upper_dev);
3443 int netdev_master_upper_dev_link_private(struct net_device *dev,
3444 					 struct net_device *upper_dev,
3445 					 void *private);
3446 void netdev_upper_dev_unlink(struct net_device *dev,
3447 			     struct net_device *upper_dev);
3448 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3449 void *netdev_lower_dev_get_private(struct net_device *dev,
3450 				   struct net_device *lower_dev);
3451 int dev_get_nest_level(struct net_device *dev,
3452 		       bool (*type_check)(struct net_device *dev));
3453 int skb_checksum_help(struct sk_buff *skb);
3454 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3455 				  netdev_features_t features, bool tx_path);
3456 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3457 				    netdev_features_t features);
3458 
3459 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)3460 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3461 {
3462 	return __skb_gso_segment(skb, features, true);
3463 }
3464 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3465 
can_checksum_protocol(netdev_features_t features,__be16 protocol)3466 static inline bool can_checksum_protocol(netdev_features_t features,
3467 					 __be16 protocol)
3468 {
3469 	return ((features & NETIF_F_GEN_CSUM) ||
3470 		((features & NETIF_F_V4_CSUM) &&
3471 		 protocol == htons(ETH_P_IP)) ||
3472 		((features & NETIF_F_V6_CSUM) &&
3473 		 protocol == htons(ETH_P_IPV6)) ||
3474 		((features & NETIF_F_FCOE_CRC) &&
3475 		 protocol == htons(ETH_P_FCOE)));
3476 }
3477 
3478 #ifdef CONFIG_BUG
3479 void netdev_rx_csum_fault(struct net_device *dev);
3480 #else
netdev_rx_csum_fault(struct net_device * dev)3481 static inline void netdev_rx_csum_fault(struct net_device *dev)
3482 {
3483 }
3484 #endif
3485 /* rx skb timestamps */
3486 void net_enable_timestamp(void);
3487 void net_disable_timestamp(void);
3488 
3489 #ifdef CONFIG_PROC_FS
3490 int __init dev_proc_init(void);
3491 #else
3492 #define dev_proc_init() 0
3493 #endif
3494 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)3495 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3496 					      struct sk_buff *skb, struct net_device *dev,
3497 					      bool more)
3498 {
3499 	skb->xmit_more = more ? 1 : 0;
3500 	return ops->ndo_start_xmit(skb, dev);
3501 }
3502 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3503 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3504 					    struct netdev_queue *txq, bool more)
3505 {
3506 	const struct net_device_ops *ops = dev->netdev_ops;
3507 	int rc;
3508 
3509 	rc = __netdev_start_xmit(ops, skb, dev, more);
3510 	if (rc == NETDEV_TX_OK)
3511 		txq_trans_update(txq);
3512 
3513 	return rc;
3514 }
3515 
3516 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3517 				const void *ns);
3518 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3519 				 const void *ns);
3520 
netdev_class_create_file(struct class_attribute * class_attr)3521 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3522 {
3523 	return netdev_class_create_file_ns(class_attr, NULL);
3524 }
3525 
netdev_class_remove_file(struct class_attribute * class_attr)3526 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3527 {
3528 	netdev_class_remove_file_ns(class_attr, NULL);
3529 }
3530 
3531 extern struct kobj_ns_type_operations net_ns_type_operations;
3532 
3533 const char *netdev_drivername(const struct net_device *dev);
3534 
3535 void linkwatch_run_queue(void);
3536 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)3537 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3538 							  netdev_features_t f2)
3539 {
3540 	if (f1 & NETIF_F_GEN_CSUM)
3541 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3542 	if (f2 & NETIF_F_GEN_CSUM)
3543 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3544 	f1 &= f2;
3545 	if (f1 & NETIF_F_GEN_CSUM)
3546 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3547 
3548 	return f1;
3549 }
3550 
netdev_get_wanted_features(struct net_device * dev)3551 static inline netdev_features_t netdev_get_wanted_features(
3552 	struct net_device *dev)
3553 {
3554 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3555 }
3556 netdev_features_t netdev_increment_features(netdev_features_t all,
3557 	netdev_features_t one, netdev_features_t mask);
3558 
3559 /* Allow TSO being used on stacked device :
3560  * Performing the GSO segmentation before last device
3561  * is a performance improvement.
3562  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)3563 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3564 							netdev_features_t mask)
3565 {
3566 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3567 }
3568 
3569 int __netdev_update_features(struct net_device *dev);
3570 void netdev_update_features(struct net_device *dev);
3571 void netdev_change_features(struct net_device *dev);
3572 
3573 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3574 					struct net_device *dev);
3575 
3576 netdev_features_t netif_skb_features(struct sk_buff *skb);
3577 
net_gso_ok(netdev_features_t features,int gso_type)3578 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3579 {
3580 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3581 
3582 	/* check flags correspondence */
3583 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3584 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3585 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3586 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3587 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3588 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3589 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3590 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3591 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3592 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3593 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3594 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3595 	BUILD_BUG_ON(SKB_GSO_MPLS    != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT));
3596 
3597 	return (features & feature) == feature;
3598 }
3599 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)3600 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3601 {
3602 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3603 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3604 }
3605 
netif_needs_gso(struct net_device * dev,struct sk_buff * skb,netdev_features_t features)3606 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3607 				   netdev_features_t features)
3608 {
3609 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3610 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3611 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3612 }
3613 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)3614 static inline void netif_set_gso_max_size(struct net_device *dev,
3615 					  unsigned int size)
3616 {
3617 	dev->gso_max_size = size;
3618 }
3619 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)3620 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3621 					int pulled_hlen, u16 mac_offset,
3622 					int mac_len)
3623 {
3624 	skb->protocol = protocol;
3625 	skb->encapsulation = 1;
3626 	skb_push(skb, pulled_hlen);
3627 	skb_reset_transport_header(skb);
3628 	skb->mac_header = mac_offset;
3629 	skb->network_header = skb->mac_header + mac_len;
3630 	skb->mac_len = mac_len;
3631 }
3632 
netif_is_macvlan(struct net_device * dev)3633 static inline bool netif_is_macvlan(struct net_device *dev)
3634 {
3635 	return dev->priv_flags & IFF_MACVLAN;
3636 }
3637 
netif_is_bond_master(struct net_device * dev)3638 static inline bool netif_is_bond_master(struct net_device *dev)
3639 {
3640 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3641 }
3642 
netif_is_bond_slave(struct net_device * dev)3643 static inline bool netif_is_bond_slave(struct net_device *dev)
3644 {
3645 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3646 }
3647 
netif_supports_nofcs(struct net_device * dev)3648 static inline bool netif_supports_nofcs(struct net_device *dev)
3649 {
3650 	return dev->priv_flags & IFF_SUPP_NOFCS;
3651 }
3652 
3653 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)3654 static inline void netif_keep_dst(struct net_device *dev)
3655 {
3656 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3657 }
3658 
3659 extern struct pernet_operations __net_initdata loopback_net_ops;
3660 
3661 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3662 
3663 /* netdev_printk helpers, similar to dev_printk */
3664 
netdev_name(const struct net_device * dev)3665 static inline const char *netdev_name(const struct net_device *dev)
3666 {
3667 	if (!dev->name[0] || strchr(dev->name, '%'))
3668 		return "(unnamed net_device)";
3669 	return dev->name;
3670 }
3671 
netdev_reg_state(const struct net_device * dev)3672 static inline const char *netdev_reg_state(const struct net_device *dev)
3673 {
3674 	switch (dev->reg_state) {
3675 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3676 	case NETREG_REGISTERED: return "";
3677 	case NETREG_UNREGISTERING: return " (unregistering)";
3678 	case NETREG_UNREGISTERED: return " (unregistered)";
3679 	case NETREG_RELEASED: return " (released)";
3680 	case NETREG_DUMMY: return " (dummy)";
3681 	}
3682 
3683 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3684 	return " (unknown)";
3685 }
3686 
3687 __printf(3, 4)
3688 void netdev_printk(const char *level, const struct net_device *dev,
3689 		   const char *format, ...);
3690 __printf(2, 3)
3691 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3692 __printf(2, 3)
3693 void netdev_alert(const struct net_device *dev, const char *format, ...);
3694 __printf(2, 3)
3695 void netdev_crit(const struct net_device *dev, const char *format, ...);
3696 __printf(2, 3)
3697 void netdev_err(const struct net_device *dev, const char *format, ...);
3698 __printf(2, 3)
3699 void netdev_warn(const struct net_device *dev, const char *format, ...);
3700 __printf(2, 3)
3701 void netdev_notice(const struct net_device *dev, const char *format, ...);
3702 __printf(2, 3)
3703 void netdev_info(const struct net_device *dev, const char *format, ...);
3704 
3705 #define MODULE_ALIAS_NETDEV(device) \
3706 	MODULE_ALIAS("netdev-" device)
3707 
3708 #if defined(CONFIG_DYNAMIC_DEBUG)
3709 #define netdev_dbg(__dev, format, args...)			\
3710 do {								\
3711 	dynamic_netdev_dbg(__dev, format, ##args);		\
3712 } while (0)
3713 #elif defined(DEBUG)
3714 #define netdev_dbg(__dev, format, args...)			\
3715 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3716 #else
3717 #define netdev_dbg(__dev, format, args...)			\
3718 ({								\
3719 	if (0)							\
3720 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3721 })
3722 #endif
3723 
3724 #if defined(VERBOSE_DEBUG)
3725 #define netdev_vdbg	netdev_dbg
3726 #else
3727 
3728 #define netdev_vdbg(dev, format, args...)			\
3729 ({								\
3730 	if (0)							\
3731 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3732 	0;							\
3733 })
3734 #endif
3735 
3736 /*
3737  * netdev_WARN() acts like dev_printk(), but with the key difference
3738  * of using a WARN/WARN_ON to get the message out, including the
3739  * file/line information and a backtrace.
3740  */
3741 #define netdev_WARN(dev, format, args...)			\
3742 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3743 	     netdev_reg_state(dev), ##args)
3744 
3745 /* netif printk helpers, similar to netdev_printk */
3746 
3747 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3748 do {					  			\
3749 	if (netif_msg_##type(priv))				\
3750 		netdev_printk(level, (dev), fmt, ##args);	\
3751 } while (0)
3752 
3753 #define netif_level(level, priv, type, dev, fmt, args...)	\
3754 do {								\
3755 	if (netif_msg_##type(priv))				\
3756 		netdev_##level(dev, fmt, ##args);		\
3757 } while (0)
3758 
3759 #define netif_emerg(priv, type, dev, fmt, args...)		\
3760 	netif_level(emerg, priv, type, dev, fmt, ##args)
3761 #define netif_alert(priv, type, dev, fmt, args...)		\
3762 	netif_level(alert, priv, type, dev, fmt, ##args)
3763 #define netif_crit(priv, type, dev, fmt, args...)		\
3764 	netif_level(crit, priv, type, dev, fmt, ##args)
3765 #define netif_err(priv, type, dev, fmt, args...)		\
3766 	netif_level(err, priv, type, dev, fmt, ##args)
3767 #define netif_warn(priv, type, dev, fmt, args...)		\
3768 	netif_level(warn, priv, type, dev, fmt, ##args)
3769 #define netif_notice(priv, type, dev, fmt, args...)		\
3770 	netif_level(notice, priv, type, dev, fmt, ##args)
3771 #define netif_info(priv, type, dev, fmt, args...)		\
3772 	netif_level(info, priv, type, dev, fmt, ##args)
3773 
3774 #if defined(CONFIG_DYNAMIC_DEBUG)
3775 #define netif_dbg(priv, type, netdev, format, args...)		\
3776 do {								\
3777 	if (netif_msg_##type(priv))				\
3778 		dynamic_netdev_dbg(netdev, format, ##args);	\
3779 } while (0)
3780 #elif defined(DEBUG)
3781 #define netif_dbg(priv, type, dev, format, args...)		\
3782 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3783 #else
3784 #define netif_dbg(priv, type, dev, format, args...)			\
3785 ({									\
3786 	if (0)								\
3787 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3788 	0;								\
3789 })
3790 #endif
3791 
3792 #if defined(VERBOSE_DEBUG)
3793 #define netif_vdbg	netif_dbg
3794 #else
3795 #define netif_vdbg(priv, type, dev, format, args...)		\
3796 ({								\
3797 	if (0)							\
3798 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3799 	0;							\
3800 })
3801 #endif
3802 
3803 /*
3804  *	The list of packet types we will receive (as opposed to discard)
3805  *	and the routines to invoke.
3806  *
3807  *	Why 16. Because with 16 the only overlap we get on a hash of the
3808  *	low nibble of the protocol value is RARP/SNAP/X.25.
3809  *
3810  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3811  *             sure which should go first, but I bet it won't make much
3812  *             difference if we are running VLANs.  The good news is that
3813  *             this protocol won't be in the list unless compiled in, so
3814  *             the average user (w/out VLANs) will not be adversely affected.
3815  *             --BLG
3816  *
3817  *		0800	IP
3818  *		8100    802.1Q VLAN
3819  *		0001	802.3
3820  *		0002	AX.25
3821  *		0004	802.2
3822  *		8035	RARP
3823  *		0005	SNAP
3824  *		0805	X.25
3825  *		0806	ARP
3826  *		8137	IPX
3827  *		0009	Localtalk
3828  *		86DD	IPv6
3829  */
3830 #define PTYPE_HASH_SIZE	(16)
3831 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3832 
3833 #endif	/* _LINUX_NETDEVICE_H */
3834