1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/fixmap.h>
16 #include <asm/hpet.h>
17 #include <asm/time.h>
18
19 #define HPET_MASK CLOCKSOURCE_MASK(32)
20
21 /* FSEC = 10^-15
22 NSEC = 10^-9 */
23 #define FSEC_PER_NSEC 1000000L
24
25 #define HPET_DEV_USED_BIT 2
26 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
27 #define HPET_DEV_VALID 0x8
28 #define HPET_DEV_FSB_CAP 0x1000
29 #define HPET_DEV_PERI_CAP 0x2000
30
31 #define HPET_MIN_CYCLES 128
32 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
33
34 /*
35 * HPET address is set in acpi/boot.c, when an ACPI entry exists
36 */
37 unsigned long hpet_address;
38 u8 hpet_blockid; /* OS timer block num */
39 u8 hpet_msi_disable;
40
41 #ifdef CONFIG_PCI_MSI
42 static unsigned long hpet_num_timers;
43 #endif
44 static void __iomem *hpet_virt_address;
45
46 struct hpet_dev {
47 struct clock_event_device evt;
48 unsigned int num;
49 int cpu;
50 unsigned int irq;
51 unsigned int flags;
52 char name[10];
53 };
54
EVT_TO_HPET_DEV(struct clock_event_device * evtdev)55 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
56 {
57 return container_of(evtdev, struct hpet_dev, evt);
58 }
59
hpet_readl(unsigned int a)60 inline unsigned int hpet_readl(unsigned int a)
61 {
62 return readl(hpet_virt_address + a);
63 }
64
hpet_writel(unsigned int d,unsigned int a)65 static inline void hpet_writel(unsigned int d, unsigned int a)
66 {
67 writel(d, hpet_virt_address + a);
68 }
69
70 #ifdef CONFIG_X86_64
71 #include <asm/pgtable.h>
72 #endif
73
hpet_set_mapping(void)74 static inline void hpet_set_mapping(void)
75 {
76 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
77 }
78
hpet_clear_mapping(void)79 static inline void hpet_clear_mapping(void)
80 {
81 iounmap(hpet_virt_address);
82 hpet_virt_address = NULL;
83 }
84
85 /*
86 * HPET command line enable / disable
87 */
88 int boot_hpet_disable;
89 int hpet_force_user;
90 static int hpet_verbose;
91
hpet_setup(char * str)92 static int __init hpet_setup(char *str)
93 {
94 while (str) {
95 char *next = strchr(str, ',');
96
97 if (next)
98 *next++ = 0;
99 if (!strncmp("disable", str, 7))
100 boot_hpet_disable = 1;
101 if (!strncmp("force", str, 5))
102 hpet_force_user = 1;
103 if (!strncmp("verbose", str, 7))
104 hpet_verbose = 1;
105 str = next;
106 }
107 return 1;
108 }
109 __setup("hpet=", hpet_setup);
110
disable_hpet(char * str)111 static int __init disable_hpet(char *str)
112 {
113 boot_hpet_disable = 1;
114 return 1;
115 }
116 __setup("nohpet", disable_hpet);
117
is_hpet_capable(void)118 static inline int is_hpet_capable(void)
119 {
120 return !boot_hpet_disable && hpet_address;
121 }
122
123 /*
124 * HPET timer interrupt enable / disable
125 */
126 static int hpet_legacy_int_enabled;
127
128 /**
129 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
130 */
is_hpet_enabled(void)131 int is_hpet_enabled(void)
132 {
133 return is_hpet_capable() && hpet_legacy_int_enabled;
134 }
135 EXPORT_SYMBOL_GPL(is_hpet_enabled);
136
_hpet_print_config(const char * function,int line)137 static void _hpet_print_config(const char *function, int line)
138 {
139 u32 i, timers, l, h;
140 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
141 l = hpet_readl(HPET_ID);
142 h = hpet_readl(HPET_PERIOD);
143 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
144 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
145 l = hpet_readl(HPET_CFG);
146 h = hpet_readl(HPET_STATUS);
147 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
148 l = hpet_readl(HPET_COUNTER);
149 h = hpet_readl(HPET_COUNTER+4);
150 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
151
152 for (i = 0; i < timers; i++) {
153 l = hpet_readl(HPET_Tn_CFG(i));
154 h = hpet_readl(HPET_Tn_CFG(i)+4);
155 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
156 i, l, h);
157 l = hpet_readl(HPET_Tn_CMP(i));
158 h = hpet_readl(HPET_Tn_CMP(i)+4);
159 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
160 i, l, h);
161 l = hpet_readl(HPET_Tn_ROUTE(i));
162 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
163 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
164 i, l, h);
165 }
166 }
167
168 #define hpet_print_config() \
169 do { \
170 if (hpet_verbose) \
171 _hpet_print_config(__FUNCTION__, __LINE__); \
172 } while (0)
173
174 /*
175 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
176 * timer 0 and timer 1 in case of RTC emulation.
177 */
178 #ifdef CONFIG_HPET
179
180 static void hpet_reserve_msi_timers(struct hpet_data *hd);
181
hpet_reserve_platform_timers(unsigned int id)182 static void hpet_reserve_platform_timers(unsigned int id)
183 {
184 struct hpet __iomem *hpet = hpet_virt_address;
185 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
186 unsigned int nrtimers, i;
187 struct hpet_data hd;
188
189 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
190
191 memset(&hd, 0, sizeof(hd));
192 hd.hd_phys_address = hpet_address;
193 hd.hd_address = hpet;
194 hd.hd_nirqs = nrtimers;
195 hpet_reserve_timer(&hd, 0);
196
197 #ifdef CONFIG_HPET_EMULATE_RTC
198 hpet_reserve_timer(&hd, 1);
199 #endif
200
201 /*
202 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
203 * is wrong for i8259!) not the output IRQ. Many BIOS writers
204 * don't bother configuring *any* comparator interrupts.
205 */
206 hd.hd_irq[0] = HPET_LEGACY_8254;
207 hd.hd_irq[1] = HPET_LEGACY_RTC;
208
209 for (i = 2; i < nrtimers; timer++, i++) {
210 hd.hd_irq[i] = (readl(&timer->hpet_config) &
211 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
212 }
213
214 hpet_reserve_msi_timers(&hd);
215
216 hpet_alloc(&hd);
217
218 }
219 #else
hpet_reserve_platform_timers(unsigned int id)220 static void hpet_reserve_platform_timers(unsigned int id) { }
221 #endif
222
223 /*
224 * Common hpet info
225 */
226 static unsigned long hpet_freq;
227
228 static void hpet_legacy_set_mode(enum clock_event_mode mode,
229 struct clock_event_device *evt);
230 static int hpet_legacy_next_event(unsigned long delta,
231 struct clock_event_device *evt);
232
233 /*
234 * The hpet clock event device
235 */
236 static struct clock_event_device hpet_clockevent = {
237 .name = "hpet",
238 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
239 .set_mode = hpet_legacy_set_mode,
240 .set_next_event = hpet_legacy_next_event,
241 .irq = 0,
242 .rating = 50,
243 };
244
hpet_stop_counter(void)245 static void hpet_stop_counter(void)
246 {
247 unsigned long cfg = hpet_readl(HPET_CFG);
248 cfg &= ~HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250 }
251
hpet_reset_counter(void)252 static void hpet_reset_counter(void)
253 {
254 hpet_writel(0, HPET_COUNTER);
255 hpet_writel(0, HPET_COUNTER + 4);
256 }
257
hpet_start_counter(void)258 static void hpet_start_counter(void)
259 {
260 unsigned int cfg = hpet_readl(HPET_CFG);
261 cfg |= HPET_CFG_ENABLE;
262 hpet_writel(cfg, HPET_CFG);
263 }
264
hpet_restart_counter(void)265 static void hpet_restart_counter(void)
266 {
267 hpet_stop_counter();
268 hpet_reset_counter();
269 hpet_start_counter();
270 }
271
hpet_resume_device(void)272 static void hpet_resume_device(void)
273 {
274 force_hpet_resume();
275 }
276
hpet_resume_counter(struct clocksource * cs)277 static void hpet_resume_counter(struct clocksource *cs)
278 {
279 hpet_resume_device();
280 hpet_restart_counter();
281 }
282
hpet_enable_legacy_int(void)283 static void hpet_enable_legacy_int(void)
284 {
285 unsigned int cfg = hpet_readl(HPET_CFG);
286
287 cfg |= HPET_CFG_LEGACY;
288 hpet_writel(cfg, HPET_CFG);
289 hpet_legacy_int_enabled = 1;
290 }
291
hpet_legacy_clockevent_register(void)292 static void hpet_legacy_clockevent_register(void)
293 {
294 /* Start HPET legacy interrupts */
295 hpet_enable_legacy_int();
296
297 /*
298 * Start hpet with the boot cpu mask and make it
299 * global after the IO_APIC has been initialized.
300 */
301 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
302 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
303 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
304 global_clock_event = &hpet_clockevent;
305 printk(KERN_DEBUG "hpet clockevent registered\n");
306 }
307
308 static int hpet_setup_msi_irq(unsigned int irq);
309
hpet_set_mode(enum clock_event_mode mode,struct clock_event_device * evt,int timer)310 static void hpet_set_mode(enum clock_event_mode mode,
311 struct clock_event_device *evt, int timer)
312 {
313 unsigned int cfg, cmp, now;
314 uint64_t delta;
315
316 switch (mode) {
317 case CLOCK_EVT_MODE_PERIODIC:
318 hpet_stop_counter();
319 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
320 delta >>= evt->shift;
321 now = hpet_readl(HPET_COUNTER);
322 cmp = now + (unsigned int) delta;
323 cfg = hpet_readl(HPET_Tn_CFG(timer));
324 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
325 HPET_TN_SETVAL | HPET_TN_32BIT;
326 hpet_writel(cfg, HPET_Tn_CFG(timer));
327 hpet_writel(cmp, HPET_Tn_CMP(timer));
328 udelay(1);
329 /*
330 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
331 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
332 * bit is automatically cleared after the first write.
333 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
334 * Publication # 24674)
335 */
336 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
337 hpet_start_counter();
338 hpet_print_config();
339 break;
340
341 case CLOCK_EVT_MODE_ONESHOT:
342 cfg = hpet_readl(HPET_Tn_CFG(timer));
343 cfg &= ~HPET_TN_PERIODIC;
344 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
345 hpet_writel(cfg, HPET_Tn_CFG(timer));
346 break;
347
348 case CLOCK_EVT_MODE_UNUSED:
349 case CLOCK_EVT_MODE_SHUTDOWN:
350 cfg = hpet_readl(HPET_Tn_CFG(timer));
351 cfg &= ~HPET_TN_ENABLE;
352 hpet_writel(cfg, HPET_Tn_CFG(timer));
353 break;
354
355 case CLOCK_EVT_MODE_RESUME:
356 if (timer == 0) {
357 hpet_enable_legacy_int();
358 } else {
359 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
360 hpet_setup_msi_irq(hdev->irq);
361 disable_irq(hdev->irq);
362 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
363 enable_irq(hdev->irq);
364 }
365 hpet_print_config();
366 break;
367 }
368 }
369
hpet_next_event(unsigned long delta,struct clock_event_device * evt,int timer)370 static int hpet_next_event(unsigned long delta,
371 struct clock_event_device *evt, int timer)
372 {
373 u32 cnt;
374 s32 res;
375
376 cnt = hpet_readl(HPET_COUNTER);
377 cnt += (u32) delta;
378 hpet_writel(cnt, HPET_Tn_CMP(timer));
379
380 /*
381 * HPETs are a complete disaster. The compare register is
382 * based on a equal comparison and neither provides a less
383 * than or equal functionality (which would require to take
384 * the wraparound into account) nor a simple count down event
385 * mode. Further the write to the comparator register is
386 * delayed internally up to two HPET clock cycles in certain
387 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
388 * longer delays. We worked around that by reading back the
389 * compare register, but that required another workaround for
390 * ICH9,10 chips where the first readout after write can
391 * return the old stale value. We already had a minimum
392 * programming delta of 5us enforced, but a NMI or SMI hitting
393 * between the counter readout and the comparator write can
394 * move us behind that point easily. Now instead of reading
395 * the compare register back several times, we make the ETIME
396 * decision based on the following: Return ETIME if the
397 * counter value after the write is less than HPET_MIN_CYCLES
398 * away from the event or if the counter is already ahead of
399 * the event. The minimum programming delta for the generic
400 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
401 */
402 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
403
404 return res < HPET_MIN_CYCLES ? -ETIME : 0;
405 }
406
hpet_legacy_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)407 static void hpet_legacy_set_mode(enum clock_event_mode mode,
408 struct clock_event_device *evt)
409 {
410 hpet_set_mode(mode, evt, 0);
411 }
412
hpet_legacy_next_event(unsigned long delta,struct clock_event_device * evt)413 static int hpet_legacy_next_event(unsigned long delta,
414 struct clock_event_device *evt)
415 {
416 return hpet_next_event(delta, evt, 0);
417 }
418
419 /*
420 * HPET MSI Support
421 */
422 #ifdef CONFIG_PCI_MSI
423
424 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
425 static struct hpet_dev *hpet_devs;
426
hpet_msi_unmask(struct irq_data * data)427 void hpet_msi_unmask(struct irq_data *data)
428 {
429 struct hpet_dev *hdev = data->handler_data;
430 unsigned int cfg;
431
432 /* unmask it */
433 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
435 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
436 }
437
hpet_msi_mask(struct irq_data * data)438 void hpet_msi_mask(struct irq_data *data)
439 {
440 struct hpet_dev *hdev = data->handler_data;
441 unsigned int cfg;
442
443 /* mask it */
444 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
446 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
447 }
448
hpet_msi_write(struct hpet_dev * hdev,struct msi_msg * msg)449 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
450 {
451 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
452 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
453 }
454
hpet_msi_read(struct hpet_dev * hdev,struct msi_msg * msg)455 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
456 {
457 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
458 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
459 msg->address_hi = 0;
460 }
461
hpet_msi_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)462 static void hpet_msi_set_mode(enum clock_event_mode mode,
463 struct clock_event_device *evt)
464 {
465 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
466 hpet_set_mode(mode, evt, hdev->num);
467 }
468
hpet_msi_next_event(unsigned long delta,struct clock_event_device * evt)469 static int hpet_msi_next_event(unsigned long delta,
470 struct clock_event_device *evt)
471 {
472 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473 return hpet_next_event(delta, evt, hdev->num);
474 }
475
hpet_setup_msi_irq(unsigned int irq)476 static int hpet_setup_msi_irq(unsigned int irq)
477 {
478 if (x86_msi.setup_hpet_msi(irq, hpet_blockid)) {
479 irq_free_hwirq(irq);
480 return -EINVAL;
481 }
482 return 0;
483 }
484
hpet_assign_irq(struct hpet_dev * dev)485 static int hpet_assign_irq(struct hpet_dev *dev)
486 {
487 unsigned int irq = irq_alloc_hwirq(-1);
488
489 if (!irq)
490 return -EINVAL;
491
492 irq_set_handler_data(irq, dev);
493
494 if (hpet_setup_msi_irq(irq))
495 return -EINVAL;
496
497 dev->irq = irq;
498 return 0;
499 }
500
hpet_interrupt_handler(int irq,void * data)501 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
502 {
503 struct hpet_dev *dev = (struct hpet_dev *)data;
504 struct clock_event_device *hevt = &dev->evt;
505
506 if (!hevt->event_handler) {
507 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
508 dev->num);
509 return IRQ_HANDLED;
510 }
511
512 hevt->event_handler(hevt);
513 return IRQ_HANDLED;
514 }
515
hpet_setup_irq(struct hpet_dev * dev)516 static int hpet_setup_irq(struct hpet_dev *dev)
517 {
518
519 if (request_irq(dev->irq, hpet_interrupt_handler,
520 IRQF_TIMER | IRQF_NOBALANCING,
521 dev->name, dev))
522 return -1;
523
524 disable_irq(dev->irq);
525 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
526 enable_irq(dev->irq);
527
528 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
529 dev->name, dev->irq);
530
531 return 0;
532 }
533
534 /* This should be called in specific @cpu */
init_one_hpet_msi_clockevent(struct hpet_dev * hdev,int cpu)535 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
536 {
537 struct clock_event_device *evt = &hdev->evt;
538
539 WARN_ON(cpu != smp_processor_id());
540 if (!(hdev->flags & HPET_DEV_VALID))
541 return;
542
543 if (hpet_setup_msi_irq(hdev->irq))
544 return;
545
546 hdev->cpu = cpu;
547 per_cpu(cpu_hpet_dev, cpu) = hdev;
548 evt->name = hdev->name;
549 hpet_setup_irq(hdev);
550 evt->irq = hdev->irq;
551
552 evt->rating = 110;
553 evt->features = CLOCK_EVT_FEAT_ONESHOT;
554 if (hdev->flags & HPET_DEV_PERI_CAP)
555 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
556
557 evt->set_mode = hpet_msi_set_mode;
558 evt->set_next_event = hpet_msi_next_event;
559 evt->cpumask = cpumask_of(hdev->cpu);
560
561 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
562 0x7FFFFFFF);
563 }
564
565 #ifdef CONFIG_HPET
566 /* Reserve at least one timer for userspace (/dev/hpet) */
567 #define RESERVE_TIMERS 1
568 #else
569 #define RESERVE_TIMERS 0
570 #endif
571
hpet_msi_capability_lookup(unsigned int start_timer)572 static void hpet_msi_capability_lookup(unsigned int start_timer)
573 {
574 unsigned int id;
575 unsigned int num_timers;
576 unsigned int num_timers_used = 0;
577 int i;
578
579 if (hpet_msi_disable)
580 return;
581
582 if (boot_cpu_has(X86_FEATURE_ARAT))
583 return;
584 id = hpet_readl(HPET_ID);
585
586 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
587 num_timers++; /* Value read out starts from 0 */
588 hpet_print_config();
589
590 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
591 if (!hpet_devs)
592 return;
593
594 hpet_num_timers = num_timers;
595
596 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
597 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
598 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
599
600 /* Only consider HPET timer with MSI support */
601 if (!(cfg & HPET_TN_FSB_CAP))
602 continue;
603
604 hdev->flags = 0;
605 if (cfg & HPET_TN_PERIODIC_CAP)
606 hdev->flags |= HPET_DEV_PERI_CAP;
607 hdev->num = i;
608
609 sprintf(hdev->name, "hpet%d", i);
610 if (hpet_assign_irq(hdev))
611 continue;
612
613 hdev->flags |= HPET_DEV_FSB_CAP;
614 hdev->flags |= HPET_DEV_VALID;
615 num_timers_used++;
616 if (num_timers_used == num_possible_cpus())
617 break;
618 }
619
620 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
621 num_timers, num_timers_used);
622 }
623
624 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)625 static void hpet_reserve_msi_timers(struct hpet_data *hd)
626 {
627 int i;
628
629 if (!hpet_devs)
630 return;
631
632 for (i = 0; i < hpet_num_timers; i++) {
633 struct hpet_dev *hdev = &hpet_devs[i];
634
635 if (!(hdev->flags & HPET_DEV_VALID))
636 continue;
637
638 hd->hd_irq[hdev->num] = hdev->irq;
639 hpet_reserve_timer(hd, hdev->num);
640 }
641 }
642 #endif
643
hpet_get_unused_timer(void)644 static struct hpet_dev *hpet_get_unused_timer(void)
645 {
646 int i;
647
648 if (!hpet_devs)
649 return NULL;
650
651 for (i = 0; i < hpet_num_timers; i++) {
652 struct hpet_dev *hdev = &hpet_devs[i];
653
654 if (!(hdev->flags & HPET_DEV_VALID))
655 continue;
656 if (test_and_set_bit(HPET_DEV_USED_BIT,
657 (unsigned long *)&hdev->flags))
658 continue;
659 return hdev;
660 }
661 return NULL;
662 }
663
664 struct hpet_work_struct {
665 struct delayed_work work;
666 struct completion complete;
667 };
668
hpet_work(struct work_struct * w)669 static void hpet_work(struct work_struct *w)
670 {
671 struct hpet_dev *hdev;
672 int cpu = smp_processor_id();
673 struct hpet_work_struct *hpet_work;
674
675 hpet_work = container_of(w, struct hpet_work_struct, work.work);
676
677 hdev = hpet_get_unused_timer();
678 if (hdev)
679 init_one_hpet_msi_clockevent(hdev, cpu);
680
681 complete(&hpet_work->complete);
682 }
683
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)684 static int hpet_cpuhp_notify(struct notifier_block *n,
685 unsigned long action, void *hcpu)
686 {
687 unsigned long cpu = (unsigned long)hcpu;
688 struct hpet_work_struct work;
689 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
690
691 switch (action & 0xf) {
692 case CPU_ONLINE:
693 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
694 init_completion(&work.complete);
695 /* FIXME: add schedule_work_on() */
696 schedule_delayed_work_on(cpu, &work.work, 0);
697 wait_for_completion(&work.complete);
698 destroy_delayed_work_on_stack(&work.work);
699 break;
700 case CPU_DEAD:
701 if (hdev) {
702 free_irq(hdev->irq, hdev);
703 hdev->flags &= ~HPET_DEV_USED;
704 per_cpu(cpu_hpet_dev, cpu) = NULL;
705 }
706 break;
707 }
708 return NOTIFY_OK;
709 }
710 #else
711
hpet_setup_msi_irq(unsigned int irq)712 static int hpet_setup_msi_irq(unsigned int irq)
713 {
714 return 0;
715 }
hpet_msi_capability_lookup(unsigned int start_timer)716 static void hpet_msi_capability_lookup(unsigned int start_timer)
717 {
718 return;
719 }
720
721 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)722 static void hpet_reserve_msi_timers(struct hpet_data *hd)
723 {
724 return;
725 }
726 #endif
727
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)728 static int hpet_cpuhp_notify(struct notifier_block *n,
729 unsigned long action, void *hcpu)
730 {
731 return NOTIFY_OK;
732 }
733
734 #endif
735
736 /*
737 * Clock source related code
738 */
read_hpet(struct clocksource * cs)739 static cycle_t read_hpet(struct clocksource *cs)
740 {
741 return (cycle_t)hpet_readl(HPET_COUNTER);
742 }
743
744 static struct clocksource clocksource_hpet = {
745 .name = "hpet",
746 .rating = 250,
747 .read = read_hpet,
748 .mask = HPET_MASK,
749 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
750 .resume = hpet_resume_counter,
751 .archdata = { .vclock_mode = VCLOCK_HPET },
752 };
753
hpet_clocksource_register(void)754 static int hpet_clocksource_register(void)
755 {
756 u64 start, now;
757 cycle_t t1;
758
759 /* Start the counter */
760 hpet_restart_counter();
761
762 /* Verify whether hpet counter works */
763 t1 = hpet_readl(HPET_COUNTER);
764 rdtscll(start);
765
766 /*
767 * We don't know the TSC frequency yet, but waiting for
768 * 200000 TSC cycles is safe:
769 * 4 GHz == 50us
770 * 1 GHz == 200us
771 */
772 do {
773 rep_nop();
774 rdtscll(now);
775 } while ((now - start) < 200000UL);
776
777 if (t1 == hpet_readl(HPET_COUNTER)) {
778 printk(KERN_WARNING
779 "HPET counter not counting. HPET disabled\n");
780 return -ENODEV;
781 }
782
783 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
784 return 0;
785 }
786
787 static u32 *hpet_boot_cfg;
788
789 /**
790 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
791 */
hpet_enable(void)792 int __init hpet_enable(void)
793 {
794 u32 hpet_period, cfg, id;
795 u64 freq;
796 unsigned int i, last;
797
798 if (!is_hpet_capable())
799 return 0;
800
801 hpet_set_mapping();
802
803 /*
804 * Read the period and check for a sane value:
805 */
806 hpet_period = hpet_readl(HPET_PERIOD);
807
808 /*
809 * AMD SB700 based systems with spread spectrum enabled use a
810 * SMM based HPET emulation to provide proper frequency
811 * setting. The SMM code is initialized with the first HPET
812 * register access and takes some time to complete. During
813 * this time the config register reads 0xffffffff. We check
814 * for max. 1000 loops whether the config register reads a non
815 * 0xffffffff value to make sure that HPET is up and running
816 * before we go further. A counting loop is safe, as the HPET
817 * access takes thousands of CPU cycles. On non SB700 based
818 * machines this check is only done once and has no side
819 * effects.
820 */
821 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
822 if (i == 1000) {
823 printk(KERN_WARNING
824 "HPET config register value = 0xFFFFFFFF. "
825 "Disabling HPET\n");
826 goto out_nohpet;
827 }
828 }
829
830 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
831 goto out_nohpet;
832
833 /*
834 * The period is a femto seconds value. Convert it to a
835 * frequency.
836 */
837 freq = FSEC_PER_SEC;
838 do_div(freq, hpet_period);
839 hpet_freq = freq;
840
841 /*
842 * Read the HPET ID register to retrieve the IRQ routing
843 * information and the number of channels
844 */
845 id = hpet_readl(HPET_ID);
846 hpet_print_config();
847
848 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
849
850 #ifdef CONFIG_HPET_EMULATE_RTC
851 /*
852 * The legacy routing mode needs at least two channels, tick timer
853 * and the rtc emulation channel.
854 */
855 if (!last)
856 goto out_nohpet;
857 #endif
858
859 cfg = hpet_readl(HPET_CFG);
860 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
861 GFP_KERNEL);
862 if (hpet_boot_cfg)
863 *hpet_boot_cfg = cfg;
864 else
865 pr_warn("HPET initial state will not be saved\n");
866 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
867 hpet_writel(cfg, HPET_CFG);
868 if (cfg)
869 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
870 cfg);
871
872 for (i = 0; i <= last; ++i) {
873 cfg = hpet_readl(HPET_Tn_CFG(i));
874 if (hpet_boot_cfg)
875 hpet_boot_cfg[i + 1] = cfg;
876 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
877 hpet_writel(cfg, HPET_Tn_CFG(i));
878 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
879 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
880 | HPET_TN_FSB | HPET_TN_FSB_CAP);
881 if (cfg)
882 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
883 cfg, i);
884 }
885 hpet_print_config();
886
887 if (hpet_clocksource_register())
888 goto out_nohpet;
889
890 if (id & HPET_ID_LEGSUP) {
891 hpet_legacy_clockevent_register();
892 return 1;
893 }
894 return 0;
895
896 out_nohpet:
897 hpet_clear_mapping();
898 hpet_address = 0;
899 return 0;
900 }
901
902 /*
903 * Needs to be late, as the reserve_timer code calls kalloc !
904 *
905 * Not a problem on i386 as hpet_enable is called from late_time_init,
906 * but on x86_64 it is necessary !
907 */
hpet_late_init(void)908 static __init int hpet_late_init(void)
909 {
910 int cpu;
911
912 if (boot_hpet_disable)
913 return -ENODEV;
914
915 if (!hpet_address) {
916 if (!force_hpet_address)
917 return -ENODEV;
918
919 hpet_address = force_hpet_address;
920 hpet_enable();
921 }
922
923 if (!hpet_virt_address)
924 return -ENODEV;
925
926 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
927 hpet_msi_capability_lookup(2);
928 else
929 hpet_msi_capability_lookup(0);
930
931 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
932 hpet_print_config();
933
934 if (hpet_msi_disable)
935 return 0;
936
937 if (boot_cpu_has(X86_FEATURE_ARAT))
938 return 0;
939
940 cpu_notifier_register_begin();
941 for_each_online_cpu(cpu) {
942 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
943 }
944
945 /* This notifier should be called after workqueue is ready */
946 __hotcpu_notifier(hpet_cpuhp_notify, -20);
947 cpu_notifier_register_done();
948
949 return 0;
950 }
951 fs_initcall(hpet_late_init);
952
hpet_disable(void)953 void hpet_disable(void)
954 {
955 if (is_hpet_capable() && hpet_virt_address) {
956 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
957
958 if (hpet_boot_cfg)
959 cfg = *hpet_boot_cfg;
960 else if (hpet_legacy_int_enabled) {
961 cfg &= ~HPET_CFG_LEGACY;
962 hpet_legacy_int_enabled = 0;
963 }
964 cfg &= ~HPET_CFG_ENABLE;
965 hpet_writel(cfg, HPET_CFG);
966
967 if (!hpet_boot_cfg)
968 return;
969
970 id = hpet_readl(HPET_ID);
971 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
972
973 for (id = 0; id <= last; ++id)
974 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
975
976 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
977 hpet_writel(*hpet_boot_cfg, HPET_CFG);
978 }
979 }
980
981 #ifdef CONFIG_HPET_EMULATE_RTC
982
983 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
984 * is enabled, we support RTC interrupt functionality in software.
985 * RTC has 3 kinds of interrupts:
986 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
987 * is updated
988 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
989 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
990 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
991 * (1) and (2) above are implemented using polling at a frequency of
992 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
993 * overhead. (DEFAULT_RTC_INT_FREQ)
994 * For (3), we use interrupts at 64Hz or user specified periodic
995 * frequency, whichever is higher.
996 */
997 #include <linux/mc146818rtc.h>
998 #include <linux/rtc.h>
999 #include <asm/rtc.h>
1000
1001 #define DEFAULT_RTC_INT_FREQ 64
1002 #define DEFAULT_RTC_SHIFT 6
1003 #define RTC_NUM_INTS 1
1004
1005 static unsigned long hpet_rtc_flags;
1006 static int hpet_prev_update_sec;
1007 static struct rtc_time hpet_alarm_time;
1008 static unsigned long hpet_pie_count;
1009 static u32 hpet_t1_cmp;
1010 static u32 hpet_default_delta;
1011 static u32 hpet_pie_delta;
1012 static unsigned long hpet_pie_limit;
1013
1014 static rtc_irq_handler irq_handler;
1015
1016 /*
1017 * Check that the hpet counter c1 is ahead of the c2
1018 */
hpet_cnt_ahead(u32 c1,u32 c2)1019 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1020 {
1021 return (s32)(c2 - c1) < 0;
1022 }
1023
1024 /*
1025 * Registers a IRQ handler.
1026 */
hpet_register_irq_handler(rtc_irq_handler handler)1027 int hpet_register_irq_handler(rtc_irq_handler handler)
1028 {
1029 if (!is_hpet_enabled())
1030 return -ENODEV;
1031 if (irq_handler)
1032 return -EBUSY;
1033
1034 irq_handler = handler;
1035
1036 return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1039
1040 /*
1041 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1042 * and does cleanup.
1043 */
hpet_unregister_irq_handler(rtc_irq_handler handler)1044 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1045 {
1046 if (!is_hpet_enabled())
1047 return;
1048
1049 irq_handler = NULL;
1050 hpet_rtc_flags = 0;
1051 }
1052 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1053
1054 /*
1055 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1056 * is not supported by all HPET implementations for timer 1.
1057 *
1058 * hpet_rtc_timer_init() is called when the rtc is initialized.
1059 */
hpet_rtc_timer_init(void)1060 int hpet_rtc_timer_init(void)
1061 {
1062 unsigned int cfg, cnt, delta;
1063 unsigned long flags;
1064
1065 if (!is_hpet_enabled())
1066 return 0;
1067
1068 if (!hpet_default_delta) {
1069 uint64_t clc;
1070
1071 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1072 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1073 hpet_default_delta = clc;
1074 }
1075
1076 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1077 delta = hpet_default_delta;
1078 else
1079 delta = hpet_pie_delta;
1080
1081 local_irq_save(flags);
1082
1083 cnt = delta + hpet_readl(HPET_COUNTER);
1084 hpet_writel(cnt, HPET_T1_CMP);
1085 hpet_t1_cmp = cnt;
1086
1087 cfg = hpet_readl(HPET_T1_CFG);
1088 cfg &= ~HPET_TN_PERIODIC;
1089 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1090 hpet_writel(cfg, HPET_T1_CFG);
1091
1092 local_irq_restore(flags);
1093
1094 return 1;
1095 }
1096 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1097
hpet_disable_rtc_channel(void)1098 static void hpet_disable_rtc_channel(void)
1099 {
1100 unsigned long cfg;
1101 cfg = hpet_readl(HPET_T1_CFG);
1102 cfg &= ~HPET_TN_ENABLE;
1103 hpet_writel(cfg, HPET_T1_CFG);
1104 }
1105
1106 /*
1107 * The functions below are called from rtc driver.
1108 * Return 0 if HPET is not being used.
1109 * Otherwise do the necessary changes and return 1.
1110 */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1111 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1112 {
1113 if (!is_hpet_enabled())
1114 return 0;
1115
1116 hpet_rtc_flags &= ~bit_mask;
1117 if (unlikely(!hpet_rtc_flags))
1118 hpet_disable_rtc_channel();
1119
1120 return 1;
1121 }
1122 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1123
hpet_set_rtc_irq_bit(unsigned long bit_mask)1124 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1125 {
1126 unsigned long oldbits = hpet_rtc_flags;
1127
1128 if (!is_hpet_enabled())
1129 return 0;
1130
1131 hpet_rtc_flags |= bit_mask;
1132
1133 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1134 hpet_prev_update_sec = -1;
1135
1136 if (!oldbits)
1137 hpet_rtc_timer_init();
1138
1139 return 1;
1140 }
1141 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1142
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1143 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1144 unsigned char sec)
1145 {
1146 if (!is_hpet_enabled())
1147 return 0;
1148
1149 hpet_alarm_time.tm_hour = hrs;
1150 hpet_alarm_time.tm_min = min;
1151 hpet_alarm_time.tm_sec = sec;
1152
1153 return 1;
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1156
hpet_set_periodic_freq(unsigned long freq)1157 int hpet_set_periodic_freq(unsigned long freq)
1158 {
1159 uint64_t clc;
1160
1161 if (!is_hpet_enabled())
1162 return 0;
1163
1164 if (freq <= DEFAULT_RTC_INT_FREQ)
1165 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1166 else {
1167 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1168 do_div(clc, freq);
1169 clc >>= hpet_clockevent.shift;
1170 hpet_pie_delta = clc;
1171 hpet_pie_limit = 0;
1172 }
1173 return 1;
1174 }
1175 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1176
hpet_rtc_dropped_irq(void)1177 int hpet_rtc_dropped_irq(void)
1178 {
1179 return is_hpet_enabled();
1180 }
1181 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1182
hpet_rtc_timer_reinit(void)1183 static void hpet_rtc_timer_reinit(void)
1184 {
1185 unsigned int delta;
1186 int lost_ints = -1;
1187
1188 if (unlikely(!hpet_rtc_flags))
1189 hpet_disable_rtc_channel();
1190
1191 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1192 delta = hpet_default_delta;
1193 else
1194 delta = hpet_pie_delta;
1195
1196 /*
1197 * Increment the comparator value until we are ahead of the
1198 * current count.
1199 */
1200 do {
1201 hpet_t1_cmp += delta;
1202 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1203 lost_ints++;
1204 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1205
1206 if (lost_ints) {
1207 if (hpet_rtc_flags & RTC_PIE)
1208 hpet_pie_count += lost_ints;
1209 if (printk_ratelimit())
1210 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1211 lost_ints);
1212 }
1213 }
1214
hpet_rtc_interrupt(int irq,void * dev_id)1215 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1216 {
1217 struct rtc_time curr_time;
1218 unsigned long rtc_int_flag = 0;
1219
1220 hpet_rtc_timer_reinit();
1221 memset(&curr_time, 0, sizeof(struct rtc_time));
1222
1223 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1224 get_rtc_time(&curr_time);
1225
1226 if (hpet_rtc_flags & RTC_UIE &&
1227 curr_time.tm_sec != hpet_prev_update_sec) {
1228 if (hpet_prev_update_sec >= 0)
1229 rtc_int_flag = RTC_UF;
1230 hpet_prev_update_sec = curr_time.tm_sec;
1231 }
1232
1233 if (hpet_rtc_flags & RTC_PIE &&
1234 ++hpet_pie_count >= hpet_pie_limit) {
1235 rtc_int_flag |= RTC_PF;
1236 hpet_pie_count = 0;
1237 }
1238
1239 if (hpet_rtc_flags & RTC_AIE &&
1240 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1241 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1242 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1243 rtc_int_flag |= RTC_AF;
1244
1245 if (rtc_int_flag) {
1246 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1247 if (irq_handler)
1248 irq_handler(rtc_int_flag, dev_id);
1249 }
1250 return IRQ_HANDLED;
1251 }
1252 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1253 #endif
1254