• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 
40 static const u32 hpd_ibx[] = {
41 	[HPD_CRT] = SDE_CRT_HOTPLUG,
42 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47 
48 static const u32 hpd_cpt[] = {
49 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55 
56 static const u32 hpd_mask_i915[] = {
57 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64 
65 static const u32 hpd_status_g4x[] = {
66 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73 
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82 
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 	POSTING_READ(GEN8_##type##_IMR(which)); \
87 	I915_WRITE(GEN8_##type##_IER(which), 0); \
88 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 	POSTING_READ(GEN8_##type##_IIR(which)); \
90 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 	POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93 
94 #define GEN5_IRQ_RESET(type) do { \
95 	I915_WRITE(type##IMR, 0xffffffff); \
96 	POSTING_READ(type##IMR); \
97 	I915_WRITE(type##IER, 0); \
98 	I915_WRITE(type##IIR, 0xffffffff); \
99 	POSTING_READ(type##IIR); \
100 	I915_WRITE(type##IIR, 0xffffffff); \
101 	POSTING_READ(type##IIR); \
102 } while (0)
103 
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 	u32 val = I915_READ(reg); \
109 	if (val) { \
110 		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 		     (reg), val); \
112 		I915_WRITE((reg), 0xffffffff); \
113 		POSTING_READ(reg); \
114 		I915_WRITE((reg), 0xffffffff); \
115 		POSTING_READ(reg); \
116 	} \
117 } while (0)
118 
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 	POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125 
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 	I915_WRITE(type##IMR, (imr_val)); \
129 	I915_WRITE(type##IER, (ier_val)); \
130 	POSTING_READ(type##IER); \
131 } while (0)
132 
133 /* For display hotplug interrupt */
134 static void
ironlake_enable_display_irq(struct drm_i915_private * dev_priv,u32 mask)135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 	assert_spin_locked(&dev_priv->irq_lock);
138 
139 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 		return;
141 
142 	if ((dev_priv->irq_mask & mask) != 0) {
143 		dev_priv->irq_mask &= ~mask;
144 		I915_WRITE(DEIMR, dev_priv->irq_mask);
145 		POSTING_READ(DEIMR);
146 	}
147 }
148 
149 static void
ironlake_disable_display_irq(struct drm_i915_private * dev_priv,u32 mask)150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 	assert_spin_locked(&dev_priv->irq_lock);
153 
154 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
155 		return;
156 
157 	if ((dev_priv->irq_mask & mask) != mask) {
158 		dev_priv->irq_mask |= mask;
159 		I915_WRITE(DEIMR, dev_priv->irq_mask);
160 		POSTING_READ(DEIMR);
161 	}
162 }
163 
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
ilk_update_gt_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 			      uint32_t interrupt_mask,
172 			      uint32_t enabled_irq_mask)
173 {
174 	assert_spin_locked(&dev_priv->irq_lock);
175 
176 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 		return;
178 
179 	dev_priv->gt_irq_mask &= ~interrupt_mask;
180 	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 	POSTING_READ(GTIMR);
183 }
184 
gen5_enable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 	ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189 
gen5_disable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 	ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194 
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
snb_update_pm_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 			      uint32_t interrupt_mask,
203 			      uint32_t enabled_irq_mask)
204 {
205 	uint32_t new_val;
206 
207 	assert_spin_locked(&dev_priv->irq_lock);
208 
209 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 		return;
211 
212 	new_val = dev_priv->pm_irq_mask;
213 	new_val &= ~interrupt_mask;
214 	new_val |= (~enabled_irq_mask & interrupt_mask);
215 
216 	if (new_val != dev_priv->pm_irq_mask) {
217 		dev_priv->pm_irq_mask = new_val;
218 		I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 		POSTING_READ(GEN6_PMIMR);
220 	}
221 }
222 
gen6_enable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 	snb_update_pm_irq(dev_priv, mask, mask);
226 }
227 
gen6_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 	snb_update_pm_irq(dev_priv, mask, 0);
231 }
232 
ivb_can_enable_err_int(struct drm_device * dev)233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 	struct drm_i915_private *dev_priv = dev->dev_private;
236 	struct intel_crtc *crtc;
237 	enum pipe pipe;
238 
239 	assert_spin_locked(&dev_priv->irq_lock);
240 
241 	for_each_pipe(dev_priv, pipe) {
242 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243 
244 		if (crtc->cpu_fifo_underrun_disabled)
245 			return false;
246 	}
247 
248 	return true;
249 }
250 
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
bdw_update_pm_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 			      uint32_t interrupt_mask,
261 			      uint32_t enabled_irq_mask)
262 {
263 	uint32_t new_val;
264 
265 	assert_spin_locked(&dev_priv->irq_lock);
266 
267 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 		return;
269 
270 	new_val = dev_priv->pm_irq_mask;
271 	new_val &= ~interrupt_mask;
272 	new_val |= (~enabled_irq_mask & interrupt_mask);
273 
274 	if (new_val != dev_priv->pm_irq_mask) {
275 		dev_priv->pm_irq_mask = new_val;
276 		I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 		POSTING_READ(GEN8_GT_IMR(2));
278 	}
279 }
280 
gen8_enable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 	bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285 
gen8_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 	bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290 
cpt_can_enable_serr_int(struct drm_device * dev)291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 	struct drm_i915_private *dev_priv = dev->dev_private;
294 	enum pipe pipe;
295 	struct intel_crtc *crtc;
296 
297 	assert_spin_locked(&dev_priv->irq_lock);
298 
299 	for_each_pipe(dev_priv, pipe) {
300 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301 
302 		if (crtc->pch_fifo_underrun_disabled)
303 			return false;
304 	}
305 
306 	return true;
307 }
308 
i9xx_check_fifo_underruns(struct drm_device * dev)309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 	struct drm_i915_private *dev_priv = dev->dev_private;
312 	struct intel_crtc *crtc;
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
316 
317 	for_each_intel_crtc(dev, crtc) {
318 		u32 reg = PIPESTAT(crtc->pipe);
319 		u32 pipestat;
320 
321 		if (crtc->cpu_fifo_underrun_disabled)
322 			continue;
323 
324 		pipestat = I915_READ(reg) & 0xffff0000;
325 		if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 			continue;
327 
328 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 		POSTING_READ(reg);
330 
331 		DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 	}
333 
334 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336 
i9xx_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable,bool old)337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 					     enum pipe pipe,
339 					     bool enable, bool old)
340 {
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 	u32 reg = PIPESTAT(pipe);
343 	u32 pipestat = I915_READ(reg) & 0xffff0000;
344 
345 	assert_spin_locked(&dev_priv->irq_lock);
346 
347 	if (enable) {
348 		I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 		POSTING_READ(reg);
350 	} else {
351 		if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 	}
354 }
355 
ironlake_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 						 enum pipe pipe, bool enable)
358 {
359 	struct drm_i915_private *dev_priv = dev->dev_private;
360 	uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 					  DE_PIPEB_FIFO_UNDERRUN;
362 
363 	if (enable)
364 		ironlake_enable_display_irq(dev_priv, bit);
365 	else
366 		ironlake_disable_display_irq(dev_priv, bit);
367 }
368 
ivybridge_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable,bool old)369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 						  enum pipe pipe,
371 						  bool enable, bool old)
372 {
373 	struct drm_i915_private *dev_priv = dev->dev_private;
374 	if (enable) {
375 		I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376 
377 		if (!ivb_can_enable_err_int(dev))
378 			return;
379 
380 		ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 	} else {
382 		ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383 
384 		if (old &&
385 		    I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 			DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 				  pipe_name(pipe));
388 		}
389 	}
390 }
391 
broadwell_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 						  enum pipe pipe, bool enable)
394 {
395 	struct drm_i915_private *dev_priv = dev->dev_private;
396 
397 	assert_spin_locked(&dev_priv->irq_lock);
398 
399 	if (enable)
400 		dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 	else
402 		dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406 
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 					 uint32_t interrupt_mask,
415 					 uint32_t enabled_irq_mask)
416 {
417 	uint32_t sdeimr = I915_READ(SDEIMR);
418 	sdeimr &= ~interrupt_mask;
419 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
420 
421 	assert_spin_locked(&dev_priv->irq_lock);
422 
423 	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 		return;
425 
426 	I915_WRITE(SDEIMR, sdeimr);
427 	POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 	ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 	ibx_display_interrupt_update((dev_priv), (bits), 0)
433 
ibx_set_fifo_underrun_reporting(struct drm_device * dev,enum transcoder pch_transcoder,bool enable)434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 					    enum transcoder pch_transcoder,
436 					    bool enable)
437 {
438 	struct drm_i915_private *dev_priv = dev->dev_private;
439 	uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 		       SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441 
442 	if (enable)
443 		ibx_enable_display_interrupt(dev_priv, bit);
444 	else
445 		ibx_disable_display_interrupt(dev_priv, bit);
446 }
447 
cpt_set_fifo_underrun_reporting(struct drm_device * dev,enum transcoder pch_transcoder,bool enable,bool old)448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 					    enum transcoder pch_transcoder,
450 					    bool enable, bool old)
451 {
452 	struct drm_i915_private *dev_priv = dev->dev_private;
453 
454 	if (enable) {
455 		I915_WRITE(SERR_INT,
456 			   SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457 
458 		if (!cpt_can_enable_serr_int(dev))
459 			return;
460 
461 		ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 	} else {
463 		ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464 
465 		if (old && I915_READ(SERR_INT) &
466 		    SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 			DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 				  transcoder_name(pch_transcoder));
469 		}
470 	}
471 }
472 
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
__intel_set_cpu_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 						    enum pipe pipe, bool enable)
489 {
490 	struct drm_i915_private *dev_priv = dev->dev_private;
491 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 	bool old;
494 
495 	assert_spin_locked(&dev_priv->irq_lock);
496 
497 	old = !intel_crtc->cpu_fifo_underrun_disabled;
498 	intel_crtc->cpu_fifo_underrun_disabled = !enable;
499 
500 	if (HAS_GMCH_DISPLAY(dev))
501 		i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 	else if (IS_GEN5(dev) || IS_GEN6(dev))
503 		ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 	else if (IS_GEN7(dev))
505 		ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 	else if (IS_GEN8(dev))
507 		broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508 
509 	return old;
510 }
511 
intel_set_cpu_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 					   enum pipe pipe, bool enable)
514 {
515 	struct drm_i915_private *dev_priv = dev->dev_private;
516 	unsigned long flags;
517 	bool ret;
518 
519 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 	ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522 
523 	return ret;
524 }
525 
__cpu_fifo_underrun_reporting_enabled(struct drm_device * dev,enum pipe pipe)526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 						  enum pipe pipe)
528 {
529 	struct drm_i915_private *dev_priv = dev->dev_private;
530 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532 
533 	return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535 
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
intel_set_pch_fifo_underrun_reporting(struct drm_device * dev,enum transcoder pch_transcoder,bool enable)550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 					   enum transcoder pch_transcoder,
552 					   bool enable)
553 {
554 	struct drm_i915_private *dev_priv = dev->dev_private;
555 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 	unsigned long flags;
558 	bool old;
559 
560 	/*
561 	 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 	 * has only one pch transcoder A that all pipes can use. To avoid racy
563 	 * pch transcoder -> pipe lookups from interrupt code simply store the
564 	 * underrun statistics in crtc A. Since we never expose this anywhere
565 	 * nor use it outside of the fifo underrun code here using the "wrong"
566 	 * crtc on LPT won't cause issues.
567 	 */
568 
569 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
570 
571 	old = !intel_crtc->pch_fifo_underrun_disabled;
572 	intel_crtc->pch_fifo_underrun_disabled = !enable;
573 
574 	if (HAS_PCH_IBX(dev))
575 		ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 	else
577 		cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578 
579 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 	return old;
581 }
582 
583 
584 static void
__i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 		       u32 enable_mask, u32 status_mask)
587 {
588 	u32 reg = PIPESTAT(pipe);
589 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590 
591 	assert_spin_locked(&dev_priv->irq_lock);
592 
593 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 		      pipe_name(pipe), enable_mask, status_mask))
597 		return;
598 
599 	if ((pipestat & enable_mask) == enable_mask)
600 		return;
601 
602 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603 
604 	/* Enable the interrupt, clear any pending status */
605 	pipestat |= enable_mask | status_mask;
606 	I915_WRITE(reg, pipestat);
607 	POSTING_READ(reg);
608 }
609 
610 static void
__i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 		        u32 enable_mask, u32 status_mask)
613 {
614 	u32 reg = PIPESTAT(pipe);
615 	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616 
617 	assert_spin_locked(&dev_priv->irq_lock);
618 
619 	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 		      pipe_name(pipe), enable_mask, status_mask))
623 		return;
624 
625 	if ((pipestat & enable_mask) == 0)
626 		return;
627 
628 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629 
630 	pipestat &= ~enable_mask;
631 	I915_WRITE(reg, pipestat);
632 	POSTING_READ(reg);
633 }
634 
vlv_get_pipestat_enable_mask(struct drm_device * dev,u32 status_mask)635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 	u32 enable_mask = status_mask << 16;
638 
639 	/*
640 	 * On pipe A we don't support the PSR interrupt yet,
641 	 * on pipe B and C the same bit MBZ.
642 	 */
643 	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 		return 0;
645 	/*
646 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 	 * A the same bit is for perf counters which we don't use either.
648 	 */
649 	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 		return 0;
651 
652 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659 
660 	return enable_mask;
661 }
662 
663 void
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 		     u32 status_mask)
666 {
667 	u32 enable_mask;
668 
669 	if (IS_VALLEYVIEW(dev_priv->dev))
670 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 							   status_mask);
672 	else
673 		enable_mask = status_mask << 16;
674 	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676 
677 void
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 		      u32 status_mask)
680 {
681 	u32 enable_mask;
682 
683 	if (IS_VALLEYVIEW(dev_priv->dev))
684 		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 							   status_mask);
686 	else
687 		enable_mask = status_mask << 16;
688 	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690 
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
i915_enable_asle_pipestat(struct drm_device * dev)694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 	struct drm_i915_private *dev_priv = dev->dev_private;
697 	unsigned long irqflags;
698 
699 	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 		return;
701 
702 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703 
704 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 	if (INTEL_INFO(dev)->gen >= 4)
706 		i915_enable_pipestat(dev_priv, PIPE_A,
707 				     PIPE_LEGACY_BLC_EVENT_STATUS);
708 
709 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711 
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
i915_pipe_enabled(struct drm_device * dev,int pipe)722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 	struct drm_i915_private *dev_priv = dev->dev_private;
725 
726 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 		/* Locking is horribly broken here, but whatever. */
728 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730 
731 		return intel_crtc->active;
732 	} else {
733 		return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 	}
735 }
736 
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786 
i8xx_get_vblank_counter(struct drm_device * dev,int pipe)787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 	/* Gen2 doesn't have a hardware frame counter */
790 	return 0;
791 }
792 
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
i915_get_vblank_counter(struct drm_device * dev,int pipe)796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 	struct drm_i915_private *dev_priv = dev->dev_private;
799 	unsigned long high_frame;
800 	unsigned long low_frame;
801 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802 
803 	if (!i915_pipe_enabled(dev, pipe)) {
804 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 				"pipe %c\n", pipe_name(pipe));
806 		return 0;
807 	}
808 
809 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 		struct intel_crtc *intel_crtc =
811 			to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 		const struct drm_display_mode *mode =
813 			&intel_crtc->config.adjusted_mode;
814 
815 		htotal = mode->crtc_htotal;
816 		hsync_start = mode->crtc_hsync_start;
817 		vbl_start = mode->crtc_vblank_start;
818 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 	} else {
821 		enum transcoder cpu_transcoder = (enum transcoder) pipe;
822 
823 		htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 		hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825 		vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 		if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 		     PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 			vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 	}
830 
831 	/* Convert to pixel count */
832 	vbl_start *= htotal;
833 
834 	/* Start of vblank event occurs at start of hsync */
835 	vbl_start -= htotal - hsync_start;
836 
837 	high_frame = PIPEFRAME(pipe);
838 	low_frame = PIPEFRAMEPIXEL(pipe);
839 
840 	/*
841 	 * High & low register fields aren't synchronized, so make sure
842 	 * we get a low value that's stable across two reads of the high
843 	 * register.
844 	 */
845 	do {
846 		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 		low   = I915_READ(low_frame);
848 		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 	} while (high1 != high2);
850 
851 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 	pixel = low & PIPE_PIXEL_MASK;
853 	low >>= PIPE_FRAME_LOW_SHIFT;
854 
855 	/*
856 	 * The frame counter increments at beginning of active.
857 	 * Cook up a vblank counter by also checking the pixel
858 	 * counter against vblank start.
859 	 */
860 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862 
gm45_get_vblank_counter(struct drm_device * dev,int pipe)863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 	struct drm_i915_private *dev_priv = dev->dev_private;
866 	int reg = PIPE_FRMCOUNT_GM45(pipe);
867 
868 	if (!i915_pipe_enabled(dev, pipe)) {
869 		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 				 "pipe %c\n", pipe_name(pipe));
871 		return 0;
872 	}
873 
874 	return I915_READ(reg);
875 }
876 
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879 
__intel_get_crtc_scanline(struct intel_crtc * crtc)880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 	struct drm_device *dev = crtc->base.dev;
883 	struct drm_i915_private *dev_priv = dev->dev_private;
884 	const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 	enum pipe pipe = crtc->pipe;
886 	int position, vtotal;
887 
888 	vtotal = mode->crtc_vtotal;
889 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 		vtotal /= 2;
891 
892 	if (IS_GEN2(dev))
893 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 	else
895 		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896 
897 	/*
898 	 * See update_scanline_offset() for the details on the
899 	 * scanline_offset adjustment.
900 	 */
901 	return (position + crtc->scanline_offset) % vtotal;
902 }
903 
i915_get_crtc_scanoutpos(struct drm_device * dev,int pipe,unsigned int flags,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime)904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 				    unsigned int flags, int *vpos, int *hpos,
906 				    ktime_t *stime, ktime_t *etime)
907 {
908 	struct drm_i915_private *dev_priv = dev->dev_private;
909 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 	const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 	int position;
913 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 	bool in_vbl = true;
915 	int ret = 0;
916 	unsigned long irqflags;
917 
918 	if (!intel_crtc->active) {
919 		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 				 "pipe %c\n", pipe_name(pipe));
921 		return 0;
922 	}
923 
924 	htotal = mode->crtc_htotal;
925 	hsync_start = mode->crtc_hsync_start;
926 	vtotal = mode->crtc_vtotal;
927 	vbl_start = mode->crtc_vblank_start;
928 	vbl_end = mode->crtc_vblank_end;
929 
930 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 		vbl_end /= 2;
933 		vtotal /= 2;
934 	}
935 
936 	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937 
938 	/*
939 	 * Lock uncore.lock, as we will do multiple timing critical raw
940 	 * register reads, potentially with preemption disabled, so the
941 	 * following code must not block on uncore.lock.
942 	 */
943 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944 
945 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946 
947 	/* Get optional system timestamp before query. */
948 	if (stime)
949 		*stime = ktime_get();
950 
951 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 		/* No obvious pixelcount register. Only query vertical
953 		 * scanout position from Display scan line register.
954 		 */
955 		position = __intel_get_crtc_scanline(intel_crtc);
956 	} else {
957 		/* Have access to pixelcount since start of frame.
958 		 * We can split this into vertical and horizontal
959 		 * scanout position.
960 		 */
961 		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962 
963 		/* convert to pixel counts */
964 		vbl_start *= htotal;
965 		vbl_end *= htotal;
966 		vtotal *= htotal;
967 
968 		/*
969 		 * In interlaced modes, the pixel counter counts all pixels,
970 		 * so one field will have htotal more pixels. In order to avoid
971 		 * the reported position from jumping backwards when the pixel
972 		 * counter is beyond the length of the shorter field, just
973 		 * clamp the position the length of the shorter field. This
974 		 * matches how the scanline counter based position works since
975 		 * the scanline counter doesn't count the two half lines.
976 		 */
977 		if (position >= vtotal)
978 			position = vtotal - 1;
979 
980 		/*
981 		 * Start of vblank interrupt is triggered at start of hsync,
982 		 * just prior to the first active line of vblank. However we
983 		 * consider lines to start at the leading edge of horizontal
984 		 * active. So, should we get here before we've crossed into
985 		 * the horizontal active of the first line in vblank, we would
986 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 		 * always add htotal-hsync_start to the current pixel position.
988 		 */
989 		position = (position + htotal - hsync_start) % vtotal;
990 	}
991 
992 	/* Get optional system timestamp after query. */
993 	if (etime)
994 		*etime = ktime_get();
995 
996 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997 
998 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999 
1000 	in_vbl = position >= vbl_start && position < vbl_end;
1001 
1002 	/*
1003 	 * While in vblank, position will be negative
1004 	 * counting up towards 0 at vbl_end. And outside
1005 	 * vblank, position will be positive counting
1006 	 * up since vbl_end.
1007 	 */
1008 	if (position >= vbl_start)
1009 		position -= vbl_end;
1010 	else
1011 		position += vtotal - vbl_end;
1012 
1013 	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 		*vpos = position;
1015 		*hpos = 0;
1016 	} else {
1017 		*vpos = position / htotal;
1018 		*hpos = position - (*vpos * htotal);
1019 	}
1020 
1021 	/* In vblank? */
1022 	if (in_vbl)
1023 		ret |= DRM_SCANOUTPOS_IN_VBLANK;
1024 
1025 	return ret;
1026 }
1027 
intel_get_crtc_scanline(struct intel_crtc * crtc)1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 	unsigned long irqflags;
1032 	int position;
1033 
1034 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 	position = __intel_get_crtc_scanline(crtc);
1036 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037 
1038 	return position;
1039 }
1040 
i915_get_vblank_timestamp(struct drm_device * dev,int pipe,int * max_error,struct timeval * vblank_time,unsigned flags)1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 			      int *max_error,
1043 			      struct timeval *vblank_time,
1044 			      unsigned flags)
1045 {
1046 	struct drm_crtc *crtc;
1047 
1048 	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 		DRM_ERROR("Invalid crtc %d\n", pipe);
1050 		return -EINVAL;
1051 	}
1052 
1053 	/* Get drm_crtc to timestamp: */
1054 	crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 	if (crtc == NULL) {
1056 		DRM_ERROR("Invalid crtc %d\n", pipe);
1057 		return -EINVAL;
1058 	}
1059 
1060 	if (!crtc->enabled) {
1061 		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 		return -EBUSY;
1063 	}
1064 
1065 	/* Helper routine in DRM core does all the work: */
1066 	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 						     vblank_time, flags,
1068 						     crtc,
1069 						     &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071 
intel_hpd_irq_event(struct drm_device * dev,struct drm_connector * connector)1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 				struct drm_connector *connector)
1074 {
1075 	enum drm_connector_status old_status;
1076 
1077 	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 	old_status = connector->status;
1079 
1080 	connector->status = connector->funcs->detect(connector, false);
1081 	if (old_status == connector->status)
1082 		return false;
1083 
1084 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 		      connector->base.id,
1086 		      connector->name,
1087 		      drm_get_connector_status_name(old_status),
1088 		      drm_get_connector_status_name(connector->status));
1089 
1090 	return true;
1091 }
1092 
i915_digport_work_func(struct work_struct * work)1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 	struct drm_i915_private *dev_priv =
1096 		container_of(work, struct drm_i915_private, dig_port_work);
1097 	unsigned long irqflags;
1098 	u32 long_port_mask, short_port_mask;
1099 	struct intel_digital_port *intel_dig_port;
1100 	int i, ret;
1101 	u32 old_bits = 0;
1102 
1103 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 	long_port_mask = dev_priv->long_hpd_port_mask;
1105 	dev_priv->long_hpd_port_mask = 0;
1106 	short_port_mask = dev_priv->short_hpd_port_mask;
1107 	dev_priv->short_hpd_port_mask = 0;
1108 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109 
1110 	for (i = 0; i < I915_MAX_PORTS; i++) {
1111 		bool valid = false;
1112 		bool long_hpd = false;
1113 		intel_dig_port = dev_priv->hpd_irq_port[i];
1114 		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 			continue;
1116 
1117 		if (long_port_mask & (1 << i))  {
1118 			valid = true;
1119 			long_hpd = true;
1120 		} else if (short_port_mask & (1 << i))
1121 			valid = true;
1122 
1123 		if (valid) {
1124 			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 			if (ret == true) {
1126 				/* if we get true fallback to old school hpd */
1127 				old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 			}
1129 		}
1130 	}
1131 
1132 	if (old_bits) {
1133 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 		dev_priv->hpd_event_bits |= old_bits;
1135 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 		schedule_work(&dev_priv->hotplug_work);
1137 	}
1138 }
1139 
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144 
i915_hotplug_work_func(struct work_struct * work)1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 	struct drm_i915_private *dev_priv =
1148 		container_of(work, struct drm_i915_private, hotplug_work);
1149 	struct drm_device *dev = dev_priv->dev;
1150 	struct drm_mode_config *mode_config = &dev->mode_config;
1151 	struct intel_connector *intel_connector;
1152 	struct intel_encoder *intel_encoder;
1153 	struct drm_connector *connector;
1154 	unsigned long irqflags;
1155 	bool hpd_disabled = false;
1156 	bool changed = false;
1157 	u32 hpd_event_bits;
1158 
1159 	mutex_lock(&mode_config->mutex);
1160 	DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161 
1162 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163 
1164 	hpd_event_bits = dev_priv->hpd_event_bits;
1165 	dev_priv->hpd_event_bits = 0;
1166 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 		intel_connector = to_intel_connector(connector);
1168 		if (!intel_connector->encoder)
1169 			continue;
1170 		intel_encoder = intel_connector->encoder;
1171 		if (intel_encoder->hpd_pin > HPD_NONE &&
1172 		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 			DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 				 "switching from hotplug detection to polling\n",
1176 				connector->name);
1177 			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 			connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 				| DRM_CONNECTOR_POLL_DISCONNECT;
1180 			hpd_disabled = true;
1181 		}
1182 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 				      connector->name, intel_encoder->hpd_pin);
1185 		}
1186 	}
1187 	 /* if there were no outputs to poll, poll was disabled,
1188 	  * therefore make sure it's enabled when disabling HPD on
1189 	  * some connectors */
1190 	if (hpd_disabled) {
1191 		drm_kms_helper_poll_enable(dev);
1192 		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193 				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 	}
1195 
1196 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197 
1198 	list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 		intel_connector = to_intel_connector(connector);
1200 		if (!intel_connector->encoder)
1201 			continue;
1202 		intel_encoder = intel_connector->encoder;
1203 		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 			if (intel_encoder->hot_plug)
1205 				intel_encoder->hot_plug(intel_encoder);
1206 			if (intel_hpd_irq_event(dev, connector))
1207 				changed = true;
1208 		}
1209 	}
1210 	mutex_unlock(&mode_config->mutex);
1211 
1212 	if (changed)
1213 		drm_kms_helper_hotplug_event(dev);
1214 }
1215 
ironlake_rps_change_irq_handler(struct drm_device * dev)1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218 	struct drm_i915_private *dev_priv = dev->dev_private;
1219 	u32 busy_up, busy_down, max_avg, min_avg;
1220 	u8 new_delay;
1221 
1222 	spin_lock(&mchdev_lock);
1223 
1224 	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225 
1226 	new_delay = dev_priv->ips.cur_delay;
1227 
1228 	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229 	busy_up = I915_READ(RCPREVBSYTUPAVG);
1230 	busy_down = I915_READ(RCPREVBSYTDNAVG);
1231 	max_avg = I915_READ(RCBMAXAVG);
1232 	min_avg = I915_READ(RCBMINAVG);
1233 
1234 	/* Handle RCS change request from hw */
1235 	if (busy_up > max_avg) {
1236 		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237 			new_delay = dev_priv->ips.cur_delay - 1;
1238 		if (new_delay < dev_priv->ips.max_delay)
1239 			new_delay = dev_priv->ips.max_delay;
1240 	} else if (busy_down < min_avg) {
1241 		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242 			new_delay = dev_priv->ips.cur_delay + 1;
1243 		if (new_delay > dev_priv->ips.min_delay)
1244 			new_delay = dev_priv->ips.min_delay;
1245 	}
1246 
1247 	if (ironlake_set_drps(dev, new_delay))
1248 		dev_priv->ips.cur_delay = new_delay;
1249 
1250 	spin_unlock(&mchdev_lock);
1251 
1252 	return;
1253 }
1254 
notify_ring(struct drm_device * dev,struct intel_engine_cs * ring)1255 static void notify_ring(struct drm_device *dev,
1256 			struct intel_engine_cs *ring)
1257 {
1258 	if (!intel_ring_initialized(ring))
1259 		return;
1260 
1261 	trace_i915_gem_request_complete(ring);
1262 
1263 	if (drm_core_check_feature(dev, DRIVER_MODESET))
1264 		intel_notify_mmio_flip(ring);
1265 
1266 	wake_up_all(&ring->irq_queue);
1267 	i915_queue_hangcheck(dev);
1268 }
1269 
vlv_c0_residency(struct drm_i915_private * dev_priv,struct intel_rps_ei * rps_ei)1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271 			    struct intel_rps_ei *rps_ei)
1272 {
1273 	u32 cz_ts, cz_freq_khz;
1274 	u32 render_count, media_count;
1275 	u32 elapsed_render, elapsed_media, elapsed_time;
1276 	u32 residency = 0;
1277 
1278 	cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279 	cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280 
1281 	render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282 	media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283 
1284 	if (rps_ei->cz_clock == 0) {
1285 		rps_ei->cz_clock = cz_ts;
1286 		rps_ei->render_c0 = render_count;
1287 		rps_ei->media_c0 = media_count;
1288 
1289 		return dev_priv->rps.cur_freq;
1290 	}
1291 
1292 	elapsed_time = cz_ts - rps_ei->cz_clock;
1293 	rps_ei->cz_clock = cz_ts;
1294 
1295 	elapsed_render = render_count - rps_ei->render_c0;
1296 	rps_ei->render_c0 = render_count;
1297 
1298 	elapsed_media = media_count - rps_ei->media_c0;
1299 	rps_ei->media_c0 = media_count;
1300 
1301 	/* Convert all the counters into common unit of milli sec */
1302 	elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303 	elapsed_render /=  cz_freq_khz;
1304 	elapsed_media /= cz_freq_khz;
1305 
1306 	/*
1307 	 * Calculate overall C0 residency percentage
1308 	 * only if elapsed time is non zero
1309 	 */
1310 	if (elapsed_time) {
1311 		residency =
1312 			((max(elapsed_render, elapsed_media) * 100)
1313 				/ elapsed_time);
1314 	}
1315 
1316 	return residency;
1317 }
1318 
1319 /**
1320  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321  * busy-ness calculated from C0 counters of render & media power wells
1322  * @dev_priv: DRM device private
1323  *
1324  */
vlv_calc_delay_from_C0_counters(struct drm_i915_private * dev_priv)1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327 	u32 residency_C0_up = 0, residency_C0_down = 0;
1328 	int new_delay, adj;
1329 
1330 	dev_priv->rps.ei_interrupt_count++;
1331 
1332 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333 
1334 
1335 	if (dev_priv->rps.up_ei.cz_clock == 0) {
1336 		vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337 		vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338 		return dev_priv->rps.cur_freq;
1339 	}
1340 
1341 
1342 	/*
1343 	 * To down throttle, C0 residency should be less than down threshold
1344 	 * for continous EI intervals. So calculate down EI counters
1345 	 * once in VLV_INT_COUNT_FOR_DOWN_EI
1346 	 */
1347 	if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348 
1349 		dev_priv->rps.ei_interrupt_count = 0;
1350 
1351 		residency_C0_down = vlv_c0_residency(dev_priv,
1352 						     &dev_priv->rps.down_ei);
1353 	} else {
1354 		residency_C0_up = vlv_c0_residency(dev_priv,
1355 						   &dev_priv->rps.up_ei);
1356 	}
1357 
1358 	new_delay = dev_priv->rps.cur_freq;
1359 
1360 	adj = dev_priv->rps.last_adj;
1361 	/* C0 residency is greater than UP threshold. Increase Frequency */
1362 	if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363 		if (adj > 0)
1364 			adj *= 2;
1365 		else
1366 			adj = 1;
1367 
1368 		if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369 			new_delay = dev_priv->rps.cur_freq + adj;
1370 
1371 		/*
1372 		 * For better performance, jump directly
1373 		 * to RPe if we're below it.
1374 		 */
1375 		if (new_delay < dev_priv->rps.efficient_freq)
1376 			new_delay = dev_priv->rps.efficient_freq;
1377 
1378 	} else if (!dev_priv->rps.ei_interrupt_count &&
1379 			(residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380 		if (adj < 0)
1381 			adj *= 2;
1382 		else
1383 			adj = -1;
1384 		/*
1385 		 * This means, C0 residency is less than down threshold over
1386 		 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387 		 */
1388 		if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389 			new_delay = dev_priv->rps.cur_freq + adj;
1390 	}
1391 
1392 	return new_delay;
1393 }
1394 
gen6_pm_rps_work(struct work_struct * work)1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397 	struct drm_i915_private *dev_priv =
1398 		container_of(work, struct drm_i915_private, rps.work);
1399 	u32 pm_iir;
1400 	int new_delay, adj;
1401 
1402 	spin_lock_irq(&dev_priv->irq_lock);
1403 	pm_iir = dev_priv->rps.pm_iir;
1404 	dev_priv->rps.pm_iir = 0;
1405 	if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406 		gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407 	else {
1408 		/* Make sure not to corrupt PMIMR state used by ringbuffer */
1409 		gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410 	}
1411 	spin_unlock_irq(&dev_priv->irq_lock);
1412 
1413 	/* Make sure we didn't queue anything we're not going to process. */
1414 	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415 
1416 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417 		return;
1418 
1419 	mutex_lock(&dev_priv->rps.hw_lock);
1420 
1421 	adj = dev_priv->rps.last_adj;
1422 	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423 		if (adj > 0)
1424 			adj *= 2;
1425 		else {
1426 			/* CHV needs even encode values */
1427 			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428 		}
1429 		new_delay = dev_priv->rps.cur_freq + adj;
1430 
1431 		/*
1432 		 * For better performance, jump directly
1433 		 * to RPe if we're below it.
1434 		 */
1435 		if (new_delay < dev_priv->rps.efficient_freq)
1436 			new_delay = dev_priv->rps.efficient_freq;
1437 	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438 		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439 			new_delay = dev_priv->rps.efficient_freq;
1440 		else
1441 			new_delay = dev_priv->rps.min_freq_softlimit;
1442 		adj = 0;
1443 	} else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444 		new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445 	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446 		if (adj < 0)
1447 			adj *= 2;
1448 		else {
1449 			/* CHV needs even encode values */
1450 			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451 		}
1452 		new_delay = dev_priv->rps.cur_freq + adj;
1453 	} else { /* unknown event */
1454 		new_delay = dev_priv->rps.cur_freq;
1455 	}
1456 
1457 	/* sysfs frequency interfaces may have snuck in while servicing the
1458 	 * interrupt
1459 	 */
1460 	new_delay = clamp_t(int, new_delay,
1461 			    dev_priv->rps.min_freq_softlimit,
1462 			    dev_priv->rps.max_freq_softlimit);
1463 
1464 	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465 
1466 	if (IS_VALLEYVIEW(dev_priv->dev))
1467 		valleyview_set_rps(dev_priv->dev, new_delay);
1468 	else
1469 		gen6_set_rps(dev_priv->dev, new_delay);
1470 
1471 	mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473 
1474 
1475 /**
1476  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477  * occurred.
1478  * @work: workqueue struct
1479  *
1480  * Doesn't actually do anything except notify userspace. As a consequence of
1481  * this event, userspace should try to remap the bad rows since statistically
1482  * it is likely the same row is more likely to go bad again.
1483  */
ivybridge_parity_work(struct work_struct * work)1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486 	struct drm_i915_private *dev_priv =
1487 		container_of(work, struct drm_i915_private, l3_parity.error_work);
1488 	u32 error_status, row, bank, subbank;
1489 	char *parity_event[6];
1490 	uint32_t misccpctl;
1491 	unsigned long flags;
1492 	uint8_t slice = 0;
1493 
1494 	/* We must turn off DOP level clock gating to access the L3 registers.
1495 	 * In order to prevent a get/put style interface, acquire struct mutex
1496 	 * any time we access those registers.
1497 	 */
1498 	mutex_lock(&dev_priv->dev->struct_mutex);
1499 
1500 	/* If we've screwed up tracking, just let the interrupt fire again */
1501 	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502 		goto out;
1503 
1504 	misccpctl = I915_READ(GEN7_MISCCPCTL);
1505 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506 	POSTING_READ(GEN7_MISCCPCTL);
1507 
1508 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509 		u32 reg;
1510 
1511 		slice--;
1512 		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513 			break;
1514 
1515 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516 
1517 		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518 
1519 		error_status = I915_READ(reg);
1520 		row = GEN7_PARITY_ERROR_ROW(error_status);
1521 		bank = GEN7_PARITY_ERROR_BANK(error_status);
1522 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523 
1524 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525 		POSTING_READ(reg);
1526 
1527 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532 		parity_event[5] = NULL;
1533 
1534 		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535 				   KOBJ_CHANGE, parity_event);
1536 
1537 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538 			  slice, row, bank, subbank);
1539 
1540 		kfree(parity_event[4]);
1541 		kfree(parity_event[3]);
1542 		kfree(parity_event[2]);
1543 		kfree(parity_event[1]);
1544 	}
1545 
1546 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547 
1548 out:
1549 	WARN_ON(dev_priv->l3_parity.which_slice);
1550 	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552 	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553 
1554 	mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556 
ivybridge_parity_error_irq_handler(struct drm_device * dev,u32 iir)1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559 	struct drm_i915_private *dev_priv = dev->dev_private;
1560 
1561 	if (!HAS_L3_DPF(dev))
1562 		return;
1563 
1564 	spin_lock(&dev_priv->irq_lock);
1565 	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566 	spin_unlock(&dev_priv->irq_lock);
1567 
1568 	iir &= GT_PARITY_ERROR(dev);
1569 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570 		dev_priv->l3_parity.which_slice |= 1 << 1;
1571 
1572 	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573 		dev_priv->l3_parity.which_slice |= 1 << 0;
1574 
1575 	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577 
ilk_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579 			       struct drm_i915_private *dev_priv,
1580 			       u32 gt_iir)
1581 {
1582 	if (gt_iir &
1583 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584 		notify_ring(dev, &dev_priv->ring[RCS]);
1585 	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586 		notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588 
snb_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590 			       struct drm_i915_private *dev_priv,
1591 			       u32 gt_iir)
1592 {
1593 
1594 	if (gt_iir &
1595 	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596 		notify_ring(dev, &dev_priv->ring[RCS]);
1597 	if (gt_iir & GT_BSD_USER_INTERRUPT)
1598 		notify_ring(dev, &dev_priv->ring[VCS]);
1599 	if (gt_iir & GT_BLT_USER_INTERRUPT)
1600 		notify_ring(dev, &dev_priv->ring[BCS]);
1601 
1602 	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603 		      GT_BSD_CS_ERROR_INTERRUPT |
1604 		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605 		i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606 				  gt_iir);
1607 	}
1608 
1609 	if (gt_iir & GT_PARITY_ERROR(dev))
1610 		ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612 
gen8_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615 	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616 		return;
1617 
1618 	spin_lock(&dev_priv->irq_lock);
1619 	dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620 	gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621 	spin_unlock(&dev_priv->irq_lock);
1622 
1623 	queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625 
gen8_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 master_ctl)1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627 				       struct drm_i915_private *dev_priv,
1628 				       u32 master_ctl)
1629 {
1630 	struct intel_engine_cs *ring;
1631 	u32 rcs, bcs, vcs;
1632 	uint32_t tmp = 0;
1633 	irqreturn_t ret = IRQ_NONE;
1634 
1635 	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1636 		tmp = I915_READ(GEN8_GT_IIR(0));
1637 		if (tmp) {
1638 			I915_WRITE(GEN8_GT_IIR(0), tmp);
1639 			ret = IRQ_HANDLED;
1640 
1641 			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1642 			ring = &dev_priv->ring[RCS];
1643 			if (rcs & GT_RENDER_USER_INTERRUPT)
1644 				notify_ring(dev, ring);
1645 			if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1646 				intel_execlists_handle_ctx_events(ring);
1647 
1648 			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1649 			ring = &dev_priv->ring[BCS];
1650 			if (bcs & GT_RENDER_USER_INTERRUPT)
1651 				notify_ring(dev, ring);
1652 			if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653 				intel_execlists_handle_ctx_events(ring);
1654 		} else
1655 			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1656 	}
1657 
1658 	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1659 		tmp = I915_READ(GEN8_GT_IIR(1));
1660 		if (tmp) {
1661 			I915_WRITE(GEN8_GT_IIR(1), tmp);
1662 			ret = IRQ_HANDLED;
1663 
1664 			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1665 			ring = &dev_priv->ring[VCS];
1666 			if (vcs & GT_RENDER_USER_INTERRUPT)
1667 				notify_ring(dev, ring);
1668 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1669 				intel_execlists_handle_ctx_events(ring);
1670 
1671 			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1672 			ring = &dev_priv->ring[VCS2];
1673 			if (vcs & GT_RENDER_USER_INTERRUPT)
1674 				notify_ring(dev, ring);
1675 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1676 				intel_execlists_handle_ctx_events(ring);
1677 		} else
1678 			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1679 	}
1680 
1681 	if (master_ctl & GEN8_GT_PM_IRQ) {
1682 		tmp = I915_READ(GEN8_GT_IIR(2));
1683 		if (tmp & dev_priv->pm_rps_events) {
1684 			I915_WRITE(GEN8_GT_IIR(2),
1685 				   tmp & dev_priv->pm_rps_events);
1686 			ret = IRQ_HANDLED;
1687 			gen8_rps_irq_handler(dev_priv, tmp);
1688 		} else
1689 			DRM_ERROR("The master control interrupt lied (PM)!\n");
1690 	}
1691 
1692 	if (master_ctl & GEN8_GT_VECS_IRQ) {
1693 		tmp = I915_READ(GEN8_GT_IIR(3));
1694 		if (tmp) {
1695 			I915_WRITE(GEN8_GT_IIR(3), tmp);
1696 			ret = IRQ_HANDLED;
1697 
1698 			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1699 			ring = &dev_priv->ring[VECS];
1700 			if (vcs & GT_RENDER_USER_INTERRUPT)
1701 				notify_ring(dev, ring);
1702 			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1703 				intel_execlists_handle_ctx_events(ring);
1704 		} else
1705 			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1706 	}
1707 
1708 	return ret;
1709 }
1710 
1711 #define HPD_STORM_DETECT_PERIOD 1000
1712 #define HPD_STORM_THRESHOLD 5
1713 
pch_port_to_hotplug_shift(enum port port)1714 static int pch_port_to_hotplug_shift(enum port port)
1715 {
1716 	switch (port) {
1717 	case PORT_A:
1718 	case PORT_E:
1719 	default:
1720 		return -1;
1721 	case PORT_B:
1722 		return 0;
1723 	case PORT_C:
1724 		return 8;
1725 	case PORT_D:
1726 		return 16;
1727 	}
1728 }
1729 
i915_port_to_hotplug_shift(enum port port)1730 static int i915_port_to_hotplug_shift(enum port port)
1731 {
1732 	switch (port) {
1733 	case PORT_A:
1734 	case PORT_E:
1735 	default:
1736 		return -1;
1737 	case PORT_B:
1738 		return 17;
1739 	case PORT_C:
1740 		return 19;
1741 	case PORT_D:
1742 		return 21;
1743 	}
1744 }
1745 
get_port_from_pin(enum hpd_pin pin)1746 static inline enum port get_port_from_pin(enum hpd_pin pin)
1747 {
1748 	switch (pin) {
1749 	case HPD_PORT_B:
1750 		return PORT_B;
1751 	case HPD_PORT_C:
1752 		return PORT_C;
1753 	case HPD_PORT_D:
1754 		return PORT_D;
1755 	default:
1756 		return PORT_A; /* no hpd */
1757 	}
1758 }
1759 
intel_hpd_irq_handler(struct drm_device * dev,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 * hpd)1760 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1761 					 u32 hotplug_trigger,
1762 					 u32 dig_hotplug_reg,
1763 					 const u32 *hpd)
1764 {
1765 	struct drm_i915_private *dev_priv = dev->dev_private;
1766 	int i;
1767 	enum port port;
1768 	bool storm_detected = false;
1769 	bool queue_dig = false, queue_hp = false;
1770 	u32 dig_shift;
1771 	u32 dig_port_mask = 0;
1772 
1773 	if (!hotplug_trigger)
1774 		return;
1775 
1776 	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1777 			 hotplug_trigger, dig_hotplug_reg);
1778 
1779 	spin_lock(&dev_priv->irq_lock);
1780 	for (i = 1; i < HPD_NUM_PINS; i++) {
1781 		if (!(hpd[i] & hotplug_trigger))
1782 			continue;
1783 
1784 		port = get_port_from_pin(i);
1785 		if (port && dev_priv->hpd_irq_port[port]) {
1786 			bool long_hpd;
1787 
1788 			if (HAS_PCH_SPLIT(dev)) {
1789 				dig_shift = pch_port_to_hotplug_shift(port);
1790 				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1791 			} else {
1792 				dig_shift = i915_port_to_hotplug_shift(port);
1793 				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1794 			}
1795 
1796 			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1797 					 port_name(port),
1798 					 long_hpd ? "long" : "short");
1799 			/* for long HPD pulses we want to have the digital queue happen,
1800 			   but we still want HPD storm detection to function. */
1801 			if (long_hpd) {
1802 				dev_priv->long_hpd_port_mask |= (1 << port);
1803 				dig_port_mask |= hpd[i];
1804 			} else {
1805 				/* for short HPD just trigger the digital queue */
1806 				dev_priv->short_hpd_port_mask |= (1 << port);
1807 				hotplug_trigger &= ~hpd[i];
1808 			}
1809 			queue_dig = true;
1810 		}
1811 	}
1812 
1813 	for (i = 1; i < HPD_NUM_PINS; i++) {
1814 		if (hpd[i] & hotplug_trigger &&
1815 		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1816 			/*
1817 			 * On GMCH platforms the interrupt mask bits only
1818 			 * prevent irq generation, not the setting of the
1819 			 * hotplug bits itself. So only WARN about unexpected
1820 			 * interrupts on saner platforms.
1821 			 */
1822 			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1823 				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1824 				  hotplug_trigger, i, hpd[i]);
1825 
1826 			continue;
1827 		}
1828 
1829 		if (!(hpd[i] & hotplug_trigger) ||
1830 		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1831 			continue;
1832 
1833 		if (!(dig_port_mask & hpd[i])) {
1834 			dev_priv->hpd_event_bits |= (1 << i);
1835 			queue_hp = true;
1836 		}
1837 
1838 		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1839 				   dev_priv->hpd_stats[i].hpd_last_jiffies
1840 				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1841 			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1842 			dev_priv->hpd_stats[i].hpd_cnt = 0;
1843 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1844 		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1845 			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1846 			dev_priv->hpd_event_bits &= ~(1 << i);
1847 			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1848 			storm_detected = true;
1849 		} else {
1850 			dev_priv->hpd_stats[i].hpd_cnt++;
1851 			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1852 				      dev_priv->hpd_stats[i].hpd_cnt);
1853 		}
1854 	}
1855 
1856 	if (storm_detected)
1857 		dev_priv->display.hpd_irq_setup(dev);
1858 	spin_unlock(&dev_priv->irq_lock);
1859 
1860 	/*
1861 	 * Our hotplug handler can grab modeset locks (by calling down into the
1862 	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1863 	 * queue for otherwise the flush_work in the pageflip code will
1864 	 * deadlock.
1865 	 */
1866 	if (queue_dig)
1867 		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1868 	if (queue_hp)
1869 		schedule_work(&dev_priv->hotplug_work);
1870 }
1871 
gmbus_irq_handler(struct drm_device * dev)1872 static void gmbus_irq_handler(struct drm_device *dev)
1873 {
1874 	struct drm_i915_private *dev_priv = dev->dev_private;
1875 
1876 	wake_up_all(&dev_priv->gmbus_wait_queue);
1877 }
1878 
dp_aux_irq_handler(struct drm_device * dev)1879 static void dp_aux_irq_handler(struct drm_device *dev)
1880 {
1881 	struct drm_i915_private *dev_priv = dev->dev_private;
1882 
1883 	wake_up_all(&dev_priv->gmbus_wait_queue);
1884 }
1885 
1886 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1888 					 uint32_t crc0, uint32_t crc1,
1889 					 uint32_t crc2, uint32_t crc3,
1890 					 uint32_t crc4)
1891 {
1892 	struct drm_i915_private *dev_priv = dev->dev_private;
1893 	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1894 	struct intel_pipe_crc_entry *entry;
1895 	int head, tail;
1896 
1897 	spin_lock(&pipe_crc->lock);
1898 
1899 	if (!pipe_crc->entries) {
1900 		spin_unlock(&pipe_crc->lock);
1901 		DRM_ERROR("spurious interrupt\n");
1902 		return;
1903 	}
1904 
1905 	head = pipe_crc->head;
1906 	tail = pipe_crc->tail;
1907 
1908 	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1909 		spin_unlock(&pipe_crc->lock);
1910 		DRM_ERROR("CRC buffer overflowing\n");
1911 		return;
1912 	}
1913 
1914 	entry = &pipe_crc->entries[head];
1915 
1916 	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1917 	entry->crc[0] = crc0;
1918 	entry->crc[1] = crc1;
1919 	entry->crc[2] = crc2;
1920 	entry->crc[3] = crc3;
1921 	entry->crc[4] = crc4;
1922 
1923 	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1924 	pipe_crc->head = head;
1925 
1926 	spin_unlock(&pipe_crc->lock);
1927 
1928 	wake_up_interruptible(&pipe_crc->wq);
1929 }
1930 #else
1931 static inline void
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1933 			     uint32_t crc0, uint32_t crc1,
1934 			     uint32_t crc2, uint32_t crc3,
1935 			     uint32_t crc4) {}
1936 #endif
1937 
1938 
hsw_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1940 {
1941 	struct drm_i915_private *dev_priv = dev->dev_private;
1942 
1943 	display_pipe_crc_irq_handler(dev, pipe,
1944 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1945 				     0, 0, 0, 0);
1946 }
1947 
ivb_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1949 {
1950 	struct drm_i915_private *dev_priv = dev->dev_private;
1951 
1952 	display_pipe_crc_irq_handler(dev, pipe,
1953 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1954 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1955 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1956 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1957 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1958 }
1959 
i9xx_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1961 {
1962 	struct drm_i915_private *dev_priv = dev->dev_private;
1963 	uint32_t res1, res2;
1964 
1965 	if (INTEL_INFO(dev)->gen >= 3)
1966 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1967 	else
1968 		res1 = 0;
1969 
1970 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1971 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1972 	else
1973 		res2 = 0;
1974 
1975 	display_pipe_crc_irq_handler(dev, pipe,
1976 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1977 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1978 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1979 				     res1, res2);
1980 }
1981 
1982 /* The RPS events need forcewake, so we add them to a work queue and mask their
1983  * IMR bits until the work is done. Other interrupts can be processed without
1984  * the work queue. */
gen6_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1985 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1986 {
1987 	if (pm_iir & dev_priv->pm_rps_events) {
1988 		spin_lock(&dev_priv->irq_lock);
1989 		dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1990 		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1991 		spin_unlock(&dev_priv->irq_lock);
1992 
1993 		queue_work(dev_priv->wq, &dev_priv->rps.work);
1994 	}
1995 
1996 	if (HAS_VEBOX(dev_priv->dev)) {
1997 		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1998 			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1999 
2000 		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
2001 			i915_handle_error(dev_priv->dev, false,
2002 					  "VEBOX CS error interrupt 0x%08x",
2003 					  pm_iir);
2004 		}
2005 	}
2006 }
2007 
intel_pipe_handle_vblank(struct drm_device * dev,enum pipe pipe)2008 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
2009 {
2010 	if (!drm_handle_vblank(dev, pipe))
2011 		return false;
2012 
2013 	return true;
2014 }
2015 
valleyview_pipestat_irq_handler(struct drm_device * dev,u32 iir)2016 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2017 {
2018 	struct drm_i915_private *dev_priv = dev->dev_private;
2019 	u32 pipe_stats[I915_MAX_PIPES] = { };
2020 	int pipe;
2021 
2022 	spin_lock(&dev_priv->irq_lock);
2023 	for_each_pipe(dev_priv, pipe) {
2024 		int reg;
2025 		u32 mask, iir_bit = 0;
2026 
2027 		/*
2028 		 * PIPESTAT bits get signalled even when the interrupt is
2029 		 * disabled with the mask bits, and some of the status bits do
2030 		 * not generate interrupts at all (like the underrun bit). Hence
2031 		 * we need to be careful that we only handle what we want to
2032 		 * handle.
2033 		 */
2034 		mask = 0;
2035 		if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2036 			mask |= PIPE_FIFO_UNDERRUN_STATUS;
2037 
2038 		switch (pipe) {
2039 		case PIPE_A:
2040 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2041 			break;
2042 		case PIPE_B:
2043 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2044 			break;
2045 		case PIPE_C:
2046 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2047 			break;
2048 		}
2049 		if (iir & iir_bit)
2050 			mask |= dev_priv->pipestat_irq_mask[pipe];
2051 
2052 		if (!mask)
2053 			continue;
2054 
2055 		reg = PIPESTAT(pipe);
2056 		mask |= PIPESTAT_INT_ENABLE_MASK;
2057 		pipe_stats[pipe] = I915_READ(reg) & mask;
2058 
2059 		/*
2060 		 * Clear the PIPE*STAT regs before the IIR
2061 		 */
2062 		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2063 					PIPESTAT_INT_STATUS_MASK))
2064 			I915_WRITE(reg, pipe_stats[pipe]);
2065 	}
2066 	spin_unlock(&dev_priv->irq_lock);
2067 
2068 	for_each_pipe(dev_priv, pipe) {
2069 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2070 		    intel_pipe_handle_vblank(dev, pipe))
2071 			intel_check_page_flip(dev, pipe);
2072 
2073 		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2074 			intel_prepare_page_flip(dev, pipe);
2075 			intel_finish_page_flip(dev, pipe);
2076 		}
2077 
2078 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2079 			i9xx_pipe_crc_irq_handler(dev, pipe);
2080 
2081 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2082 		    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2083 			DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2084 	}
2085 
2086 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2087 		gmbus_irq_handler(dev);
2088 }
2089 
i9xx_hpd_irq_handler(struct drm_device * dev)2090 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2091 {
2092 	struct drm_i915_private *dev_priv = dev->dev_private;
2093 	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2094 
2095 	if (hotplug_status) {
2096 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2097 		/*
2098 		 * Make sure hotplug status is cleared before we clear IIR, or else we
2099 		 * may miss hotplug events.
2100 		 */
2101 		POSTING_READ(PORT_HOTPLUG_STAT);
2102 
2103 		if (IS_G4X(dev)) {
2104 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2105 
2106 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2107 		} else {
2108 			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2109 
2110 			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2111 		}
2112 
2113 		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2114 		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2115 			dp_aux_irq_handler(dev);
2116 	}
2117 }
2118 
valleyview_irq_handler(int irq,void * arg)2119 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2120 {
2121 	struct drm_device *dev = arg;
2122 	struct drm_i915_private *dev_priv = dev->dev_private;
2123 	u32 iir, gt_iir, pm_iir;
2124 	irqreturn_t ret = IRQ_NONE;
2125 
2126 	if (!intel_irqs_enabled(dev_priv))
2127 		return IRQ_NONE;
2128 
2129 	while (true) {
2130 		/* Find, clear, then process each source of interrupt */
2131 
2132 		gt_iir = I915_READ(GTIIR);
2133 		if (gt_iir)
2134 			I915_WRITE(GTIIR, gt_iir);
2135 
2136 		pm_iir = I915_READ(GEN6_PMIIR);
2137 		if (pm_iir)
2138 			I915_WRITE(GEN6_PMIIR, pm_iir);
2139 
2140 		iir = I915_READ(VLV_IIR);
2141 		if (iir) {
2142 			/* Consume port before clearing IIR or we'll miss events */
2143 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2144 				i9xx_hpd_irq_handler(dev);
2145 			I915_WRITE(VLV_IIR, iir);
2146 		}
2147 
2148 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2149 			goto out;
2150 
2151 		ret = IRQ_HANDLED;
2152 
2153 		if (gt_iir)
2154 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2155 		if (pm_iir)
2156 			gen6_rps_irq_handler(dev_priv, pm_iir);
2157 		/* Call regardless, as some status bits might not be
2158 		 * signalled in iir */
2159 		valleyview_pipestat_irq_handler(dev, iir);
2160 	}
2161 
2162 out:
2163 	return ret;
2164 }
2165 
cherryview_irq_handler(int irq,void * arg)2166 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2167 {
2168 	struct drm_device *dev = arg;
2169 	struct drm_i915_private *dev_priv = dev->dev_private;
2170 	u32 master_ctl, iir;
2171 	irqreturn_t ret = IRQ_NONE;
2172 
2173 	if (!intel_irqs_enabled(dev_priv))
2174 		return IRQ_NONE;
2175 
2176 	for (;;) {
2177 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2178 		iir = I915_READ(VLV_IIR);
2179 
2180 		if (master_ctl == 0 && iir == 0)
2181 			break;
2182 
2183 		ret = IRQ_HANDLED;
2184 
2185 		I915_WRITE(GEN8_MASTER_IRQ, 0);
2186 
2187 		/* Find, clear, then process each source of interrupt */
2188 
2189 		if (iir) {
2190 			/* Consume port before clearing IIR or we'll miss events */
2191 			if (iir & I915_DISPLAY_PORT_INTERRUPT)
2192 				i9xx_hpd_irq_handler(dev);
2193 			I915_WRITE(VLV_IIR, iir);
2194 		}
2195 
2196 		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2197 
2198 		/* Call regardless, as some status bits might not be
2199 		 * signalled in iir */
2200 		valleyview_pipestat_irq_handler(dev, iir);
2201 
2202 		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2203 		POSTING_READ(GEN8_MASTER_IRQ);
2204 	}
2205 
2206 	return ret;
2207 }
2208 
ibx_irq_handler(struct drm_device * dev,u32 pch_iir)2209 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2210 {
2211 	struct drm_i915_private *dev_priv = dev->dev_private;
2212 	int pipe;
2213 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2214 	u32 dig_hotplug_reg;
2215 
2216 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2217 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2218 
2219 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2220 
2221 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2222 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2223 			       SDE_AUDIO_POWER_SHIFT);
2224 		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2225 				 port_name(port));
2226 	}
2227 
2228 	if (pch_iir & SDE_AUX_MASK)
2229 		dp_aux_irq_handler(dev);
2230 
2231 	if (pch_iir & SDE_GMBUS)
2232 		gmbus_irq_handler(dev);
2233 
2234 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2235 		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2236 
2237 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2238 		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2239 
2240 	if (pch_iir & SDE_POISON)
2241 		DRM_ERROR("PCH poison interrupt\n");
2242 
2243 	if (pch_iir & SDE_FDI_MASK)
2244 		for_each_pipe(dev_priv, pipe)
2245 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2246 					 pipe_name(pipe),
2247 					 I915_READ(FDI_RX_IIR(pipe)));
2248 
2249 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2250 		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2251 
2252 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2253 		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2254 
2255 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2256 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2257 							  false))
2258 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2259 
2260 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2261 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2262 							  false))
2263 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2264 }
2265 
ivb_err_int_handler(struct drm_device * dev)2266 static void ivb_err_int_handler(struct drm_device *dev)
2267 {
2268 	struct drm_i915_private *dev_priv = dev->dev_private;
2269 	u32 err_int = I915_READ(GEN7_ERR_INT);
2270 	enum pipe pipe;
2271 
2272 	if (err_int & ERR_INT_POISON)
2273 		DRM_ERROR("Poison interrupt\n");
2274 
2275 	for_each_pipe(dev_priv, pipe) {
2276 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2277 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2278 								  false))
2279 				DRM_ERROR("Pipe %c FIFO underrun\n",
2280 					  pipe_name(pipe));
2281 		}
2282 
2283 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2284 			if (IS_IVYBRIDGE(dev))
2285 				ivb_pipe_crc_irq_handler(dev, pipe);
2286 			else
2287 				hsw_pipe_crc_irq_handler(dev, pipe);
2288 		}
2289 	}
2290 
2291 	I915_WRITE(GEN7_ERR_INT, err_int);
2292 }
2293 
cpt_serr_int_handler(struct drm_device * dev)2294 static void cpt_serr_int_handler(struct drm_device *dev)
2295 {
2296 	struct drm_i915_private *dev_priv = dev->dev_private;
2297 	u32 serr_int = I915_READ(SERR_INT);
2298 
2299 	if (serr_int & SERR_INT_POISON)
2300 		DRM_ERROR("PCH poison interrupt\n");
2301 
2302 	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2303 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2304 							  false))
2305 			DRM_ERROR("PCH transcoder A FIFO underrun\n");
2306 
2307 	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2308 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2309 							  false))
2310 			DRM_ERROR("PCH transcoder B FIFO underrun\n");
2311 
2312 	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2313 		if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2314 							  false))
2315 			DRM_ERROR("PCH transcoder C FIFO underrun\n");
2316 
2317 	I915_WRITE(SERR_INT, serr_int);
2318 }
2319 
cpt_irq_handler(struct drm_device * dev,u32 pch_iir)2320 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2321 {
2322 	struct drm_i915_private *dev_priv = dev->dev_private;
2323 	int pipe;
2324 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2325 	u32 dig_hotplug_reg;
2326 
2327 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2328 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2329 
2330 	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2331 
2332 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2333 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2334 			       SDE_AUDIO_POWER_SHIFT_CPT);
2335 		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2336 				 port_name(port));
2337 	}
2338 
2339 	if (pch_iir & SDE_AUX_MASK_CPT)
2340 		dp_aux_irq_handler(dev);
2341 
2342 	if (pch_iir & SDE_GMBUS_CPT)
2343 		gmbus_irq_handler(dev);
2344 
2345 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2346 		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2347 
2348 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2349 		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2350 
2351 	if (pch_iir & SDE_FDI_MASK_CPT)
2352 		for_each_pipe(dev_priv, pipe)
2353 			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2354 					 pipe_name(pipe),
2355 					 I915_READ(FDI_RX_IIR(pipe)));
2356 
2357 	if (pch_iir & SDE_ERROR_CPT)
2358 		cpt_serr_int_handler(dev);
2359 }
2360 
ilk_display_irq_handler(struct drm_device * dev,u32 de_iir)2361 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2362 {
2363 	struct drm_i915_private *dev_priv = dev->dev_private;
2364 	enum pipe pipe;
2365 
2366 	if (de_iir & DE_AUX_CHANNEL_A)
2367 		dp_aux_irq_handler(dev);
2368 
2369 	if (de_iir & DE_GSE)
2370 		intel_opregion_asle_intr(dev);
2371 
2372 	if (de_iir & DE_POISON)
2373 		DRM_ERROR("Poison interrupt\n");
2374 
2375 	for_each_pipe(dev_priv, pipe) {
2376 		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2377 		    intel_pipe_handle_vblank(dev, pipe))
2378 			intel_check_page_flip(dev, pipe);
2379 
2380 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2381 			if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2382 				DRM_ERROR("Pipe %c FIFO underrun\n",
2383 					  pipe_name(pipe));
2384 
2385 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2386 			i9xx_pipe_crc_irq_handler(dev, pipe);
2387 
2388 		/* plane/pipes map 1:1 on ilk+ */
2389 		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2390 			intel_prepare_page_flip(dev, pipe);
2391 			intel_finish_page_flip_plane(dev, pipe);
2392 		}
2393 	}
2394 
2395 	/* check event from PCH */
2396 	if (de_iir & DE_PCH_EVENT) {
2397 		u32 pch_iir = I915_READ(SDEIIR);
2398 
2399 		if (HAS_PCH_CPT(dev))
2400 			cpt_irq_handler(dev, pch_iir);
2401 		else
2402 			ibx_irq_handler(dev, pch_iir);
2403 
2404 		/* should clear PCH hotplug event before clear CPU irq */
2405 		I915_WRITE(SDEIIR, pch_iir);
2406 	}
2407 
2408 	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2409 		ironlake_rps_change_irq_handler(dev);
2410 }
2411 
ivb_display_irq_handler(struct drm_device * dev,u32 de_iir)2412 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2413 {
2414 	struct drm_i915_private *dev_priv = dev->dev_private;
2415 	enum pipe pipe;
2416 
2417 	if (de_iir & DE_ERR_INT_IVB)
2418 		ivb_err_int_handler(dev);
2419 
2420 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2421 		dp_aux_irq_handler(dev);
2422 
2423 	if (de_iir & DE_GSE_IVB)
2424 		intel_opregion_asle_intr(dev);
2425 
2426 	for_each_pipe(dev_priv, pipe) {
2427 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2428 		    intel_pipe_handle_vblank(dev, pipe))
2429 			intel_check_page_flip(dev, pipe);
2430 
2431 		/* plane/pipes map 1:1 on ilk+ */
2432 		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2433 			intel_prepare_page_flip(dev, pipe);
2434 			intel_finish_page_flip_plane(dev, pipe);
2435 		}
2436 	}
2437 
2438 	/* check event from PCH */
2439 	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2440 		u32 pch_iir = I915_READ(SDEIIR);
2441 
2442 		cpt_irq_handler(dev, pch_iir);
2443 
2444 		/* clear PCH hotplug event before clear CPU irq */
2445 		I915_WRITE(SDEIIR, pch_iir);
2446 	}
2447 }
2448 
2449 /*
2450  * To handle irqs with the minimum potential races with fresh interrupts, we:
2451  * 1 - Disable Master Interrupt Control.
2452  * 2 - Find the source(s) of the interrupt.
2453  * 3 - Clear the Interrupt Identity bits (IIR).
2454  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2455  * 5 - Re-enable Master Interrupt Control.
2456  */
ironlake_irq_handler(int irq,void * arg)2457 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2458 {
2459 	struct drm_device *dev = arg;
2460 	struct drm_i915_private *dev_priv = dev->dev_private;
2461 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2462 	irqreturn_t ret = IRQ_NONE;
2463 
2464 	if (!intel_irqs_enabled(dev_priv))
2465 		return IRQ_NONE;
2466 
2467 	/* We get interrupts on unclaimed registers, so check for this before we
2468 	 * do any I915_{READ,WRITE}. */
2469 	intel_uncore_check_errors(dev);
2470 
2471 	/* disable master interrupt before clearing iir  */
2472 	de_ier = I915_READ(DEIER);
2473 	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2474 	POSTING_READ(DEIER);
2475 
2476 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2477 	 * interrupts will will be stored on its back queue, and then we'll be
2478 	 * able to process them after we restore SDEIER (as soon as we restore
2479 	 * it, we'll get an interrupt if SDEIIR still has something to process
2480 	 * due to its back queue). */
2481 	if (!HAS_PCH_NOP(dev)) {
2482 		sde_ier = I915_READ(SDEIER);
2483 		I915_WRITE(SDEIER, 0);
2484 		POSTING_READ(SDEIER);
2485 	}
2486 
2487 	/* Find, clear, then process each source of interrupt */
2488 
2489 	gt_iir = I915_READ(GTIIR);
2490 	if (gt_iir) {
2491 		I915_WRITE(GTIIR, gt_iir);
2492 		ret = IRQ_HANDLED;
2493 		if (INTEL_INFO(dev)->gen >= 6)
2494 			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2495 		else
2496 			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2497 	}
2498 
2499 	de_iir = I915_READ(DEIIR);
2500 	if (de_iir) {
2501 		I915_WRITE(DEIIR, de_iir);
2502 		ret = IRQ_HANDLED;
2503 		if (INTEL_INFO(dev)->gen >= 7)
2504 			ivb_display_irq_handler(dev, de_iir);
2505 		else
2506 			ilk_display_irq_handler(dev, de_iir);
2507 	}
2508 
2509 	if (INTEL_INFO(dev)->gen >= 6) {
2510 		u32 pm_iir = I915_READ(GEN6_PMIIR);
2511 		if (pm_iir) {
2512 			I915_WRITE(GEN6_PMIIR, pm_iir);
2513 			ret = IRQ_HANDLED;
2514 			gen6_rps_irq_handler(dev_priv, pm_iir);
2515 		}
2516 	}
2517 
2518 	I915_WRITE(DEIER, de_ier);
2519 	POSTING_READ(DEIER);
2520 	if (!HAS_PCH_NOP(dev)) {
2521 		I915_WRITE(SDEIER, sde_ier);
2522 		POSTING_READ(SDEIER);
2523 	}
2524 
2525 	return ret;
2526 }
2527 
gen8_irq_handler(int irq,void * arg)2528 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2529 {
2530 	struct drm_device *dev = arg;
2531 	struct drm_i915_private *dev_priv = dev->dev_private;
2532 	u32 master_ctl;
2533 	irqreturn_t ret = IRQ_NONE;
2534 	uint32_t tmp = 0;
2535 	enum pipe pipe;
2536 
2537 	if (!intel_irqs_enabled(dev_priv))
2538 		return IRQ_NONE;
2539 
2540 	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2541 	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2542 	if (!master_ctl)
2543 		return IRQ_NONE;
2544 
2545 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2546 	POSTING_READ(GEN8_MASTER_IRQ);
2547 
2548 	/* Find, clear, then process each source of interrupt */
2549 
2550 	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2551 
2552 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2553 		tmp = I915_READ(GEN8_DE_MISC_IIR);
2554 		if (tmp) {
2555 			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2556 			ret = IRQ_HANDLED;
2557 			if (tmp & GEN8_DE_MISC_GSE)
2558 				intel_opregion_asle_intr(dev);
2559 			else
2560 				DRM_ERROR("Unexpected DE Misc interrupt\n");
2561 		}
2562 		else
2563 			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2564 	}
2565 
2566 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2567 		tmp = I915_READ(GEN8_DE_PORT_IIR);
2568 		if (tmp) {
2569 			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2570 			ret = IRQ_HANDLED;
2571 			if (tmp & GEN8_AUX_CHANNEL_A)
2572 				dp_aux_irq_handler(dev);
2573 			else
2574 				DRM_ERROR("Unexpected DE Port interrupt\n");
2575 		}
2576 		else
2577 			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2578 	}
2579 
2580 	for_each_pipe(dev_priv, pipe) {
2581 		uint32_t pipe_iir;
2582 
2583 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2584 			continue;
2585 
2586 		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2587 		if (pipe_iir) {
2588 			ret = IRQ_HANDLED;
2589 			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2590 			if (pipe_iir & GEN8_PIPE_VBLANK &&
2591 			    intel_pipe_handle_vblank(dev, pipe))
2592 				intel_check_page_flip(dev, pipe);
2593 
2594 			if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2595 				intel_prepare_page_flip(dev, pipe);
2596 				intel_finish_page_flip_plane(dev, pipe);
2597 			}
2598 
2599 			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2600 				hsw_pipe_crc_irq_handler(dev, pipe);
2601 
2602 			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2603 				if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2604 									  false))
2605 					DRM_ERROR("Pipe %c FIFO underrun\n",
2606 						  pipe_name(pipe));
2607 			}
2608 
2609 			if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2610 				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2611 					  pipe_name(pipe),
2612 					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2613 			}
2614 		} else
2615 			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2616 	}
2617 
2618 	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2619 		/*
2620 		 * FIXME(BDW): Assume for now that the new interrupt handling
2621 		 * scheme also closed the SDE interrupt handling race we've seen
2622 		 * on older pch-split platforms. But this needs testing.
2623 		 */
2624 		u32 pch_iir = I915_READ(SDEIIR);
2625 		if (pch_iir) {
2626 			I915_WRITE(SDEIIR, pch_iir);
2627 			ret = IRQ_HANDLED;
2628 			cpt_irq_handler(dev, pch_iir);
2629 		} else
2630 			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2631 
2632 	}
2633 
2634 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2635 	POSTING_READ(GEN8_MASTER_IRQ);
2636 
2637 	return ret;
2638 }
2639 
i915_error_wake_up(struct drm_i915_private * dev_priv,bool reset_completed)2640 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2641 			       bool reset_completed)
2642 {
2643 	struct intel_engine_cs *ring;
2644 	int i;
2645 
2646 	/*
2647 	 * Notify all waiters for GPU completion events that reset state has
2648 	 * been changed, and that they need to restart their wait after
2649 	 * checking for potential errors (and bail out to drop locks if there is
2650 	 * a gpu reset pending so that i915_error_work_func can acquire them).
2651 	 */
2652 
2653 	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2654 	for_each_ring(ring, dev_priv, i)
2655 		wake_up_all(&ring->irq_queue);
2656 
2657 	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2658 	wake_up_all(&dev_priv->pending_flip_queue);
2659 
2660 	/*
2661 	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2662 	 * reset state is cleared.
2663 	 */
2664 	if (reset_completed)
2665 		wake_up_all(&dev_priv->gpu_error.reset_queue);
2666 }
2667 
2668 /**
2669  * i915_error_work_func - do process context error handling work
2670  * @work: work struct
2671  *
2672  * Fire an error uevent so userspace can see that a hang or error
2673  * was detected.
2674  */
i915_error_work_func(struct work_struct * work)2675 static void i915_error_work_func(struct work_struct *work)
2676 {
2677 	struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2678 						    work);
2679 	struct drm_i915_private *dev_priv =
2680 		container_of(error, struct drm_i915_private, gpu_error);
2681 	struct drm_device *dev = dev_priv->dev;
2682 	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2683 	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2684 	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2685 	int ret;
2686 
2687 	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2688 
2689 	/*
2690 	 * Note that there's only one work item which does gpu resets, so we
2691 	 * need not worry about concurrent gpu resets potentially incrementing
2692 	 * error->reset_counter twice. We only need to take care of another
2693 	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2694 	 * quick check for that is good enough: schedule_work ensures the
2695 	 * correct ordering between hang detection and this work item, and since
2696 	 * the reset in-progress bit is only ever set by code outside of this
2697 	 * work we don't need to worry about any other races.
2698 	 */
2699 	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2700 		DRM_DEBUG_DRIVER("resetting chip\n");
2701 		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2702 				   reset_event);
2703 
2704 		/*
2705 		 * In most cases it's guaranteed that we get here with an RPM
2706 		 * reference held, for example because there is a pending GPU
2707 		 * request that won't finish until the reset is done. This
2708 		 * isn't the case at least when we get here by doing a
2709 		 * simulated reset via debugs, so get an RPM reference.
2710 		 */
2711 		intel_runtime_pm_get(dev_priv);
2712 		/*
2713 		 * All state reset _must_ be completed before we update the
2714 		 * reset counter, for otherwise waiters might miss the reset
2715 		 * pending state and not properly drop locks, resulting in
2716 		 * deadlocks with the reset work.
2717 		 */
2718 		ret = i915_reset(dev);
2719 
2720 		intel_display_handle_reset(dev);
2721 
2722 		intel_runtime_pm_put(dev_priv);
2723 
2724 		if (ret == 0) {
2725 			/*
2726 			 * After all the gem state is reset, increment the reset
2727 			 * counter and wake up everyone waiting for the reset to
2728 			 * complete.
2729 			 *
2730 			 * Since unlock operations are a one-sided barrier only,
2731 			 * we need to insert a barrier here to order any seqno
2732 			 * updates before
2733 			 * the counter increment.
2734 			 */
2735 			smp_mb__before_atomic();
2736 			atomic_inc(&dev_priv->gpu_error.reset_counter);
2737 
2738 			kobject_uevent_env(&dev->primary->kdev->kobj,
2739 					   KOBJ_CHANGE, reset_done_event);
2740 		} else {
2741 			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2742 		}
2743 
2744 		/*
2745 		 * Note: The wake_up also serves as a memory barrier so that
2746 		 * waiters see the update value of the reset counter atomic_t.
2747 		 */
2748 		i915_error_wake_up(dev_priv, true);
2749 	}
2750 }
2751 
i915_report_and_clear_eir(struct drm_device * dev)2752 static void i915_report_and_clear_eir(struct drm_device *dev)
2753 {
2754 	struct drm_i915_private *dev_priv = dev->dev_private;
2755 	uint32_t instdone[I915_NUM_INSTDONE_REG];
2756 	u32 eir = I915_READ(EIR);
2757 	int pipe, i;
2758 
2759 	if (!eir)
2760 		return;
2761 
2762 	pr_err("render error detected, EIR: 0x%08x\n", eir);
2763 
2764 	i915_get_extra_instdone(dev, instdone);
2765 
2766 	if (IS_G4X(dev)) {
2767 		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2768 			u32 ipeir = I915_READ(IPEIR_I965);
2769 
2770 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2771 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2772 			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2773 				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2774 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2775 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2776 			I915_WRITE(IPEIR_I965, ipeir);
2777 			POSTING_READ(IPEIR_I965);
2778 		}
2779 		if (eir & GM45_ERROR_PAGE_TABLE) {
2780 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2781 			pr_err("page table error\n");
2782 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2783 			I915_WRITE(PGTBL_ER, pgtbl_err);
2784 			POSTING_READ(PGTBL_ER);
2785 		}
2786 	}
2787 
2788 	if (!IS_GEN2(dev)) {
2789 		if (eir & I915_ERROR_PAGE_TABLE) {
2790 			u32 pgtbl_err = I915_READ(PGTBL_ER);
2791 			pr_err("page table error\n");
2792 			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2793 			I915_WRITE(PGTBL_ER, pgtbl_err);
2794 			POSTING_READ(PGTBL_ER);
2795 		}
2796 	}
2797 
2798 	if (eir & I915_ERROR_MEMORY_REFRESH) {
2799 		pr_err("memory refresh error:\n");
2800 		for_each_pipe(dev_priv, pipe)
2801 			pr_err("pipe %c stat: 0x%08x\n",
2802 			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2803 		/* pipestat has already been acked */
2804 	}
2805 	if (eir & I915_ERROR_INSTRUCTION) {
2806 		pr_err("instruction error\n");
2807 		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2808 		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2809 			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2810 		if (INTEL_INFO(dev)->gen < 4) {
2811 			u32 ipeir = I915_READ(IPEIR);
2812 
2813 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2814 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2815 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2816 			I915_WRITE(IPEIR, ipeir);
2817 			POSTING_READ(IPEIR);
2818 		} else {
2819 			u32 ipeir = I915_READ(IPEIR_I965);
2820 
2821 			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2822 			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2823 			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2824 			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2825 			I915_WRITE(IPEIR_I965, ipeir);
2826 			POSTING_READ(IPEIR_I965);
2827 		}
2828 	}
2829 
2830 	I915_WRITE(EIR, eir);
2831 	POSTING_READ(EIR);
2832 	eir = I915_READ(EIR);
2833 	if (eir) {
2834 		/*
2835 		 * some errors might have become stuck,
2836 		 * mask them.
2837 		 */
2838 		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2839 		I915_WRITE(EMR, I915_READ(EMR) | eir);
2840 		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2841 	}
2842 }
2843 
2844 /**
2845  * i915_handle_error - handle an error interrupt
2846  * @dev: drm device
2847  *
2848  * Do some basic checking of regsiter state at error interrupt time and
2849  * dump it to the syslog.  Also call i915_capture_error_state() to make
2850  * sure we get a record and make it available in debugfs.  Fire a uevent
2851  * so userspace knows something bad happened (should trigger collection
2852  * of a ring dump etc.).
2853  */
i915_handle_error(struct drm_device * dev,bool wedged,const char * fmt,...)2854 void i915_handle_error(struct drm_device *dev, bool wedged,
2855 		       const char *fmt, ...)
2856 {
2857 	struct drm_i915_private *dev_priv = dev->dev_private;
2858 	va_list args;
2859 	char error_msg[80];
2860 
2861 	va_start(args, fmt);
2862 	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2863 	va_end(args);
2864 
2865 	i915_capture_error_state(dev, wedged, error_msg);
2866 	i915_report_and_clear_eir(dev);
2867 
2868 	if (wedged) {
2869 		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2870 				&dev_priv->gpu_error.reset_counter);
2871 
2872 		/*
2873 		 * Wakeup waiting processes so that the reset work function
2874 		 * i915_error_work_func doesn't deadlock trying to grab various
2875 		 * locks. By bumping the reset counter first, the woken
2876 		 * processes will see a reset in progress and back off,
2877 		 * releasing their locks and then wait for the reset completion.
2878 		 * We must do this for _all_ gpu waiters that might hold locks
2879 		 * that the reset work needs to acquire.
2880 		 *
2881 		 * Note: The wake_up serves as the required memory barrier to
2882 		 * ensure that the waiters see the updated value of the reset
2883 		 * counter atomic_t.
2884 		 */
2885 		i915_error_wake_up(dev_priv, false);
2886 	}
2887 
2888 	/*
2889 	 * Our reset work can grab modeset locks (since it needs to reset the
2890 	 * state of outstanding pagelips). Hence it must not be run on our own
2891 	 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2892 	 * code will deadlock.
2893 	 */
2894 	schedule_work(&dev_priv->gpu_error.work);
2895 }
2896 
2897 /* Called from drm generic code, passed 'crtc' which
2898  * we use as a pipe index
2899  */
i915_enable_vblank(struct drm_device * dev,int pipe)2900 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2901 {
2902 	struct drm_i915_private *dev_priv = dev->dev_private;
2903 	unsigned long irqflags;
2904 
2905 	if (!i915_pipe_enabled(dev, pipe))
2906 		return -EINVAL;
2907 
2908 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2909 	if (INTEL_INFO(dev)->gen >= 4)
2910 		i915_enable_pipestat(dev_priv, pipe,
2911 				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2912 	else
2913 		i915_enable_pipestat(dev_priv, pipe,
2914 				     PIPE_VBLANK_INTERRUPT_STATUS);
2915 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2916 
2917 	return 0;
2918 }
2919 
ironlake_enable_vblank(struct drm_device * dev,int pipe)2920 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2921 {
2922 	struct drm_i915_private *dev_priv = dev->dev_private;
2923 	unsigned long irqflags;
2924 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2925 						     DE_PIPE_VBLANK(pipe);
2926 
2927 	if (!i915_pipe_enabled(dev, pipe))
2928 		return -EINVAL;
2929 
2930 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2931 	ironlake_enable_display_irq(dev_priv, bit);
2932 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2933 
2934 	return 0;
2935 }
2936 
valleyview_enable_vblank(struct drm_device * dev,int pipe)2937 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2938 {
2939 	struct drm_i915_private *dev_priv = dev->dev_private;
2940 	unsigned long irqflags;
2941 
2942 	if (!i915_pipe_enabled(dev, pipe))
2943 		return -EINVAL;
2944 
2945 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2946 	i915_enable_pipestat(dev_priv, pipe,
2947 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2948 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2949 
2950 	return 0;
2951 }
2952 
gen8_enable_vblank(struct drm_device * dev,int pipe)2953 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2954 {
2955 	struct drm_i915_private *dev_priv = dev->dev_private;
2956 	unsigned long irqflags;
2957 
2958 	if (!i915_pipe_enabled(dev, pipe))
2959 		return -EINVAL;
2960 
2961 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2962 	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2963 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2964 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2965 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2966 	return 0;
2967 }
2968 
2969 /* Called from drm generic code, passed 'crtc' which
2970  * we use as a pipe index
2971  */
i915_disable_vblank(struct drm_device * dev,int pipe)2972 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2973 {
2974 	struct drm_i915_private *dev_priv = dev->dev_private;
2975 	unsigned long irqflags;
2976 
2977 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2978 	i915_disable_pipestat(dev_priv, pipe,
2979 			      PIPE_VBLANK_INTERRUPT_STATUS |
2980 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2981 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2982 }
2983 
ironlake_disable_vblank(struct drm_device * dev,int pipe)2984 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986 	struct drm_i915_private *dev_priv = dev->dev_private;
2987 	unsigned long irqflags;
2988 	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2989 						     DE_PIPE_VBLANK(pipe);
2990 
2991 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2992 	ironlake_disable_display_irq(dev_priv, bit);
2993 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2994 }
2995 
valleyview_disable_vblank(struct drm_device * dev,int pipe)2996 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2997 {
2998 	struct drm_i915_private *dev_priv = dev->dev_private;
2999 	unsigned long irqflags;
3000 
3001 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3002 	i915_disable_pipestat(dev_priv, pipe,
3003 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3004 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3005 }
3006 
gen8_disable_vblank(struct drm_device * dev,int pipe)3007 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3008 {
3009 	struct drm_i915_private *dev_priv = dev->dev_private;
3010 	unsigned long irqflags;
3011 
3012 	if (!i915_pipe_enabled(dev, pipe))
3013 		return;
3014 
3015 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3016 	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3017 	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3018 	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3019 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3020 }
3021 
3022 static u32
ring_last_seqno(struct intel_engine_cs * ring)3023 ring_last_seqno(struct intel_engine_cs *ring)
3024 {
3025 	return list_entry(ring->request_list.prev,
3026 			  struct drm_i915_gem_request, list)->seqno;
3027 }
3028 
3029 static bool
ring_idle(struct intel_engine_cs * ring,u32 seqno)3030 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3031 {
3032 	return (list_empty(&ring->request_list) ||
3033 		i915_seqno_passed(seqno, ring_last_seqno(ring)));
3034 }
3035 
3036 static bool
ipehr_is_semaphore_wait(struct drm_device * dev,u32 ipehr)3037 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3038 {
3039 	if (INTEL_INFO(dev)->gen >= 8) {
3040 		return (ipehr >> 23) == 0x1c;
3041 	} else {
3042 		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3043 		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3044 				 MI_SEMAPHORE_REGISTER);
3045 	}
3046 }
3047 
3048 static struct intel_engine_cs *
semaphore_wait_to_signaller_ring(struct intel_engine_cs * ring,u32 ipehr,u64 offset)3049 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3050 {
3051 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3052 	struct intel_engine_cs *signaller;
3053 	int i;
3054 
3055 	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3056 		for_each_ring(signaller, dev_priv, i) {
3057 			if (ring == signaller)
3058 				continue;
3059 
3060 			if (offset == signaller->semaphore.signal_ggtt[ring->id])
3061 				return signaller;
3062 		}
3063 	} else {
3064 		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3065 
3066 		for_each_ring(signaller, dev_priv, i) {
3067 			if(ring == signaller)
3068 				continue;
3069 
3070 			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3071 				return signaller;
3072 		}
3073 	}
3074 
3075 	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3076 		  ring->id, ipehr, offset);
3077 
3078 	return NULL;
3079 }
3080 
3081 static struct intel_engine_cs *
semaphore_waits_for(struct intel_engine_cs * ring,u32 * seqno)3082 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3083 {
3084 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3085 	u32 cmd, ipehr, head;
3086 	u64 offset = 0;
3087 	int i, backwards;
3088 
3089 	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3090 	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3091 		return NULL;
3092 
3093 	/*
3094 	 * HEAD is likely pointing to the dword after the actual command,
3095 	 * so scan backwards until we find the MBOX. But limit it to just 3
3096 	 * or 4 dwords depending on the semaphore wait command size.
3097 	 * Note that we don't care about ACTHD here since that might
3098 	 * point at at batch, and semaphores are always emitted into the
3099 	 * ringbuffer itself.
3100 	 */
3101 	head = I915_READ_HEAD(ring) & HEAD_ADDR;
3102 	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3103 
3104 	for (i = backwards; i; --i) {
3105 		/*
3106 		 * Be paranoid and presume the hw has gone off into the wild -
3107 		 * our ring is smaller than what the hardware (and hence
3108 		 * HEAD_ADDR) allows. Also handles wrap-around.
3109 		 */
3110 		head &= ring->buffer->size - 1;
3111 
3112 		/* This here seems to blow up */
3113 		cmd = ioread32(ring->buffer->virtual_start + head);
3114 		if (cmd == ipehr)
3115 			break;
3116 
3117 		head -= 4;
3118 	}
3119 
3120 	if (!i)
3121 		return NULL;
3122 
3123 	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3124 	if (INTEL_INFO(ring->dev)->gen >= 8) {
3125 		offset = ioread32(ring->buffer->virtual_start + head + 12);
3126 		offset <<= 32;
3127 		offset = ioread32(ring->buffer->virtual_start + head + 8);
3128 	}
3129 	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3130 }
3131 
semaphore_passed(struct intel_engine_cs * ring)3132 static int semaphore_passed(struct intel_engine_cs *ring)
3133 {
3134 	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3135 	struct intel_engine_cs *signaller;
3136 	u32 seqno;
3137 
3138 	ring->hangcheck.deadlock++;
3139 
3140 	signaller = semaphore_waits_for(ring, &seqno);
3141 	if (signaller == NULL)
3142 		return -1;
3143 
3144 	/* Prevent pathological recursion due to driver bugs */
3145 	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3146 		return -1;
3147 
3148 	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3149 		return 1;
3150 
3151 	/* cursory check for an unkickable deadlock */
3152 	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3153 	    semaphore_passed(signaller) < 0)
3154 		return -1;
3155 
3156 	return 0;
3157 }
3158 
semaphore_clear_deadlocks(struct drm_i915_private * dev_priv)3159 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3160 {
3161 	struct intel_engine_cs *ring;
3162 	int i;
3163 
3164 	for_each_ring(ring, dev_priv, i)
3165 		ring->hangcheck.deadlock = 0;
3166 }
3167 
3168 static enum intel_ring_hangcheck_action
ring_stuck(struct intel_engine_cs * ring,u64 acthd)3169 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3170 {
3171 	struct drm_device *dev = ring->dev;
3172 	struct drm_i915_private *dev_priv = dev->dev_private;
3173 	u32 tmp;
3174 
3175 	if (acthd != ring->hangcheck.acthd) {
3176 		if (acthd > ring->hangcheck.max_acthd) {
3177 			ring->hangcheck.max_acthd = acthd;
3178 			return HANGCHECK_ACTIVE;
3179 		}
3180 
3181 		return HANGCHECK_ACTIVE_LOOP;
3182 	}
3183 
3184 	if (IS_GEN2(dev))
3185 		return HANGCHECK_HUNG;
3186 
3187 	/* Is the chip hanging on a WAIT_FOR_EVENT?
3188 	 * If so we can simply poke the RB_WAIT bit
3189 	 * and break the hang. This should work on
3190 	 * all but the second generation chipsets.
3191 	 */
3192 	tmp = I915_READ_CTL(ring);
3193 	if (tmp & RING_WAIT) {
3194 		i915_handle_error(dev, false,
3195 				  "Kicking stuck wait on %s",
3196 				  ring->name);
3197 		I915_WRITE_CTL(ring, tmp);
3198 		return HANGCHECK_KICK;
3199 	}
3200 
3201 	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3202 		switch (semaphore_passed(ring)) {
3203 		default:
3204 			return HANGCHECK_HUNG;
3205 		case 1:
3206 			i915_handle_error(dev, false,
3207 					  "Kicking stuck semaphore on %s",
3208 					  ring->name);
3209 			I915_WRITE_CTL(ring, tmp);
3210 			return HANGCHECK_KICK;
3211 		case 0:
3212 			return HANGCHECK_WAIT;
3213 		}
3214 	}
3215 
3216 	return HANGCHECK_HUNG;
3217 }
3218 
3219 /**
3220  * This is called when the chip hasn't reported back with completed
3221  * batchbuffers in a long time. We keep track per ring seqno progress and
3222  * if there are no progress, hangcheck score for that ring is increased.
3223  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3224  * we kick the ring. If we see no progress on three subsequent calls
3225  * we assume chip is wedged and try to fix it by resetting the chip.
3226  */
i915_hangcheck_elapsed(unsigned long data)3227 static void i915_hangcheck_elapsed(unsigned long data)
3228 {
3229 	struct drm_device *dev = (struct drm_device *)data;
3230 	struct drm_i915_private *dev_priv = dev->dev_private;
3231 	struct intel_engine_cs *ring;
3232 	int i;
3233 	int busy_count = 0, rings_hung = 0;
3234 	bool stuck[I915_NUM_RINGS] = { 0 };
3235 #define BUSY 1
3236 #define KICK 5
3237 #define HUNG 20
3238 
3239 	if (!i915.enable_hangcheck)
3240 		return;
3241 
3242 	for_each_ring(ring, dev_priv, i) {
3243 		u64 acthd;
3244 		u32 seqno;
3245 		bool busy = true;
3246 
3247 		semaphore_clear_deadlocks(dev_priv);
3248 
3249 		seqno = ring->get_seqno(ring, false);
3250 		acthd = intel_ring_get_active_head(ring);
3251 
3252 		if (ring->hangcheck.seqno == seqno) {
3253 			if (ring_idle(ring, seqno)) {
3254 				ring->hangcheck.action = HANGCHECK_IDLE;
3255 
3256 				if (waitqueue_active(&ring->irq_queue)) {
3257 					/* Issue a wake-up to catch stuck h/w. */
3258 					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3259 						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3260 							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3261 								  ring->name);
3262 						else
3263 							DRM_INFO("Fake missed irq on %s\n",
3264 								 ring->name);
3265 						wake_up_all(&ring->irq_queue);
3266 					}
3267 					/* Safeguard against driver failure */
3268 					ring->hangcheck.score += BUSY;
3269 				} else
3270 					busy = false;
3271 			} else {
3272 				/* We always increment the hangcheck score
3273 				 * if the ring is busy and still processing
3274 				 * the same request, so that no single request
3275 				 * can run indefinitely (such as a chain of
3276 				 * batches). The only time we do not increment
3277 				 * the hangcheck score on this ring, if this
3278 				 * ring is in a legitimate wait for another
3279 				 * ring. In that case the waiting ring is a
3280 				 * victim and we want to be sure we catch the
3281 				 * right culprit. Then every time we do kick
3282 				 * the ring, add a small increment to the
3283 				 * score so that we can catch a batch that is
3284 				 * being repeatedly kicked and so responsible
3285 				 * for stalling the machine.
3286 				 */
3287 				ring->hangcheck.action = ring_stuck(ring,
3288 								    acthd);
3289 
3290 				switch (ring->hangcheck.action) {
3291 				case HANGCHECK_IDLE:
3292 				case HANGCHECK_WAIT:
3293 				case HANGCHECK_ACTIVE:
3294 					break;
3295 				case HANGCHECK_ACTIVE_LOOP:
3296 					ring->hangcheck.score += BUSY;
3297 					break;
3298 				case HANGCHECK_KICK:
3299 					ring->hangcheck.score += KICK;
3300 					break;
3301 				case HANGCHECK_HUNG:
3302 					ring->hangcheck.score += HUNG;
3303 					stuck[i] = true;
3304 					break;
3305 				}
3306 			}
3307 		} else {
3308 			ring->hangcheck.action = HANGCHECK_ACTIVE;
3309 
3310 			/* Gradually reduce the count so that we catch DoS
3311 			 * attempts across multiple batches.
3312 			 */
3313 			if (ring->hangcheck.score > 0)
3314 				ring->hangcheck.score--;
3315 
3316 			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3317 		}
3318 
3319 		ring->hangcheck.seqno = seqno;
3320 		ring->hangcheck.acthd = acthd;
3321 		busy_count += busy;
3322 	}
3323 
3324 	for_each_ring(ring, dev_priv, i) {
3325 		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3326 			DRM_INFO("%s on %s\n",
3327 				 stuck[i] ? "stuck" : "no progress",
3328 				 ring->name);
3329 			rings_hung++;
3330 		}
3331 	}
3332 
3333 	if (rings_hung)
3334 		return i915_handle_error(dev, true, "Ring hung");
3335 
3336 	if (busy_count)
3337 		/* Reset timer case chip hangs without another request
3338 		 * being added */
3339 		i915_queue_hangcheck(dev);
3340 }
3341 
i915_queue_hangcheck(struct drm_device * dev)3342 void i915_queue_hangcheck(struct drm_device *dev)
3343 {
3344 	struct drm_i915_private *dev_priv = dev->dev_private;
3345 	if (!i915.enable_hangcheck)
3346 		return;
3347 
3348 	mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3349 		  round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3350 }
3351 
ibx_irq_reset(struct drm_device * dev)3352 static void ibx_irq_reset(struct drm_device *dev)
3353 {
3354 	struct drm_i915_private *dev_priv = dev->dev_private;
3355 
3356 	if (HAS_PCH_NOP(dev))
3357 		return;
3358 
3359 	GEN5_IRQ_RESET(SDE);
3360 
3361 	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3362 		I915_WRITE(SERR_INT, 0xffffffff);
3363 }
3364 
3365 /*
3366  * SDEIER is also touched by the interrupt handler to work around missed PCH
3367  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3368  * instead we unconditionally enable all PCH interrupt sources here, but then
3369  * only unmask them as needed with SDEIMR.
3370  *
3371  * This function needs to be called before interrupts are enabled.
3372  */
ibx_irq_pre_postinstall(struct drm_device * dev)3373 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3374 {
3375 	struct drm_i915_private *dev_priv = dev->dev_private;
3376 
3377 	if (HAS_PCH_NOP(dev))
3378 		return;
3379 
3380 	WARN_ON(I915_READ(SDEIER) != 0);
3381 	I915_WRITE(SDEIER, 0xffffffff);
3382 	POSTING_READ(SDEIER);
3383 }
3384 
gen5_gt_irq_reset(struct drm_device * dev)3385 static void gen5_gt_irq_reset(struct drm_device *dev)
3386 {
3387 	struct drm_i915_private *dev_priv = dev->dev_private;
3388 
3389 	GEN5_IRQ_RESET(GT);
3390 	if (INTEL_INFO(dev)->gen >= 6)
3391 		GEN5_IRQ_RESET(GEN6_PM);
3392 }
3393 
3394 /* drm_dma.h hooks
3395 */
ironlake_irq_reset(struct drm_device * dev)3396 static void ironlake_irq_reset(struct drm_device *dev)
3397 {
3398 	struct drm_i915_private *dev_priv = dev->dev_private;
3399 
3400 	I915_WRITE(HWSTAM, 0xffffffff);
3401 
3402 	GEN5_IRQ_RESET(DE);
3403 	if (IS_GEN7(dev))
3404 		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3405 
3406 	gen5_gt_irq_reset(dev);
3407 
3408 	ibx_irq_reset(dev);
3409 }
3410 
valleyview_irq_preinstall(struct drm_device * dev)3411 static void valleyview_irq_preinstall(struct drm_device *dev)
3412 {
3413 	struct drm_i915_private *dev_priv = dev->dev_private;
3414 	int pipe;
3415 
3416 	/* VLV magic */
3417 	I915_WRITE(VLV_IMR, 0);
3418 	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3419 	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3420 	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3421 
3422 	/* and GT */
3423 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3424 	I915_WRITE(GTIIR, I915_READ(GTIIR));
3425 
3426 	gen5_gt_irq_reset(dev);
3427 
3428 	I915_WRITE(DPINVGTT, 0xff);
3429 
3430 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3431 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3432 	for_each_pipe(dev_priv, pipe)
3433 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3434 	I915_WRITE(VLV_IIR, 0xffffffff);
3435 	I915_WRITE(VLV_IMR, 0xffffffff);
3436 	I915_WRITE(VLV_IER, 0x0);
3437 	POSTING_READ(VLV_IER);
3438 }
3439 
gen8_gt_irq_reset(struct drm_i915_private * dev_priv)3440 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3441 {
3442 	GEN8_IRQ_RESET_NDX(GT, 0);
3443 	GEN8_IRQ_RESET_NDX(GT, 1);
3444 	GEN8_IRQ_RESET_NDX(GT, 2);
3445 	GEN8_IRQ_RESET_NDX(GT, 3);
3446 }
3447 
gen8_irq_reset(struct drm_device * dev)3448 static void gen8_irq_reset(struct drm_device *dev)
3449 {
3450 	struct drm_i915_private *dev_priv = dev->dev_private;
3451 	int pipe;
3452 
3453 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3454 	POSTING_READ(GEN8_MASTER_IRQ);
3455 
3456 	gen8_gt_irq_reset(dev_priv);
3457 
3458 	for_each_pipe(dev_priv, pipe)
3459 		if (intel_display_power_enabled(dev_priv,
3460 						POWER_DOMAIN_PIPE(pipe)))
3461 			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3462 
3463 	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3464 	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3465 	GEN5_IRQ_RESET(GEN8_PCU_);
3466 
3467 	ibx_irq_reset(dev);
3468 }
3469 
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv)3470 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3471 {
3472 	unsigned long irqflags;
3473 	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3474 
3475 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3476 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3477 			  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3478 	GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3479 			  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3480 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3481 }
3482 
cherryview_irq_preinstall(struct drm_device * dev)3483 static void cherryview_irq_preinstall(struct drm_device *dev)
3484 {
3485 	struct drm_i915_private *dev_priv = dev->dev_private;
3486 	int pipe;
3487 
3488 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3489 	POSTING_READ(GEN8_MASTER_IRQ);
3490 
3491 	gen8_gt_irq_reset(dev_priv);
3492 
3493 	GEN5_IRQ_RESET(GEN8_PCU_);
3494 
3495 	POSTING_READ(GEN8_PCU_IIR);
3496 
3497 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3498 
3499 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3500 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3501 
3502 	for_each_pipe(dev_priv, pipe)
3503 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3504 
3505 	I915_WRITE(VLV_IMR, 0xffffffff);
3506 	I915_WRITE(VLV_IER, 0x0);
3507 	I915_WRITE(VLV_IIR, 0xffffffff);
3508 	POSTING_READ(VLV_IIR);
3509 }
3510 
ibx_hpd_irq_setup(struct drm_device * dev)3511 static void ibx_hpd_irq_setup(struct drm_device *dev)
3512 {
3513 	struct drm_i915_private *dev_priv = dev->dev_private;
3514 	struct intel_encoder *intel_encoder;
3515 	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3516 
3517 	if (HAS_PCH_IBX(dev)) {
3518 		hotplug_irqs = SDE_HOTPLUG_MASK;
3519 		for_each_intel_encoder(dev, intel_encoder)
3520 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3521 				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3522 	} else {
3523 		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3524 		for_each_intel_encoder(dev, intel_encoder)
3525 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3526 				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3527 	}
3528 
3529 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3530 
3531 	/*
3532 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3533 	 * duration to 2ms (which is the minimum in the Display Port spec)
3534 	 *
3535 	 * This register is the same on all known PCH chips.
3536 	 */
3537 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3538 	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3539 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3540 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3541 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3542 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3543 }
3544 
ibx_irq_postinstall(struct drm_device * dev)3545 static void ibx_irq_postinstall(struct drm_device *dev)
3546 {
3547 	struct drm_i915_private *dev_priv = dev->dev_private;
3548 	u32 mask;
3549 
3550 	if (HAS_PCH_NOP(dev))
3551 		return;
3552 
3553 	if (HAS_PCH_IBX(dev))
3554 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3555 	else
3556 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3557 
3558 	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3559 	I915_WRITE(SDEIMR, ~mask);
3560 }
3561 
gen5_gt_irq_postinstall(struct drm_device * dev)3562 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3563 {
3564 	struct drm_i915_private *dev_priv = dev->dev_private;
3565 	u32 pm_irqs, gt_irqs;
3566 
3567 	pm_irqs = gt_irqs = 0;
3568 
3569 	dev_priv->gt_irq_mask = ~0;
3570 	if (HAS_L3_DPF(dev)) {
3571 		/* L3 parity interrupt is always unmasked. */
3572 		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3573 		gt_irqs |= GT_PARITY_ERROR(dev);
3574 	}
3575 
3576 	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3577 	if (IS_GEN5(dev)) {
3578 		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3579 			   ILK_BSD_USER_INTERRUPT;
3580 	} else {
3581 		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3582 	}
3583 
3584 	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3585 
3586 	if (INTEL_INFO(dev)->gen >= 6) {
3587 		pm_irqs |= dev_priv->pm_rps_events;
3588 
3589 		if (HAS_VEBOX(dev))
3590 			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3591 
3592 		dev_priv->pm_irq_mask = 0xffffffff;
3593 		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3594 	}
3595 }
3596 
ironlake_irq_postinstall(struct drm_device * dev)3597 static int ironlake_irq_postinstall(struct drm_device *dev)
3598 {
3599 	unsigned long irqflags;
3600 	struct drm_i915_private *dev_priv = dev->dev_private;
3601 	u32 display_mask, extra_mask;
3602 
3603 	if (INTEL_INFO(dev)->gen >= 7) {
3604 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3605 				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3606 				DE_PLANEB_FLIP_DONE_IVB |
3607 				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3608 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3609 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3610 	} else {
3611 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3612 				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3613 				DE_AUX_CHANNEL_A |
3614 				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3615 				DE_POISON);
3616 		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3617 				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3618 	}
3619 
3620 	dev_priv->irq_mask = ~display_mask;
3621 
3622 	I915_WRITE(HWSTAM, 0xeffe);
3623 
3624 	ibx_irq_pre_postinstall(dev);
3625 
3626 	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3627 
3628 	gen5_gt_irq_postinstall(dev);
3629 
3630 	ibx_irq_postinstall(dev);
3631 
3632 	if (IS_IRONLAKE_M(dev)) {
3633 		/* Enable PCU event interrupts
3634 		 *
3635 		 * spinlocking not required here for correctness since interrupt
3636 		 * setup is guaranteed to run in single-threaded context. But we
3637 		 * need it to make the assert_spin_locked happy. */
3638 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3639 		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3640 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3641 	}
3642 
3643 	return 0;
3644 }
3645 
valleyview_display_irqs_install(struct drm_i915_private * dev_priv)3646 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3647 {
3648 	u32 pipestat_mask;
3649 	u32 iir_mask;
3650 
3651 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3652 			PIPE_FIFO_UNDERRUN_STATUS;
3653 
3654 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3655 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3656 	POSTING_READ(PIPESTAT(PIPE_A));
3657 
3658 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3659 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3660 
3661 	i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3662 					       PIPE_GMBUS_INTERRUPT_STATUS);
3663 	i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3664 
3665 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3666 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3667 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3668 	dev_priv->irq_mask &= ~iir_mask;
3669 
3670 	I915_WRITE(VLV_IIR, iir_mask);
3671 	I915_WRITE(VLV_IIR, iir_mask);
3672 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3673 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3674 	POSTING_READ(VLV_IER);
3675 }
3676 
valleyview_display_irqs_uninstall(struct drm_i915_private * dev_priv)3677 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3678 {
3679 	u32 pipestat_mask;
3680 	u32 iir_mask;
3681 
3682 	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3683 		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3684 		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3685 
3686 	dev_priv->irq_mask |= iir_mask;
3687 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3688 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3689 	I915_WRITE(VLV_IIR, iir_mask);
3690 	I915_WRITE(VLV_IIR, iir_mask);
3691 	POSTING_READ(VLV_IIR);
3692 
3693 	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3694 			PIPE_CRC_DONE_INTERRUPT_STATUS;
3695 
3696 	i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3697 					        PIPE_GMBUS_INTERRUPT_STATUS);
3698 	i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3699 
3700 	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3701 			PIPE_FIFO_UNDERRUN_STATUS;
3702 	I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3703 	I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3704 	POSTING_READ(PIPESTAT(PIPE_A));
3705 }
3706 
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3707 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3708 {
3709 	assert_spin_locked(&dev_priv->irq_lock);
3710 
3711 	if (dev_priv->display_irqs_enabled)
3712 		return;
3713 
3714 	dev_priv->display_irqs_enabled = true;
3715 
3716 	if (dev_priv->dev->irq_enabled)
3717 		valleyview_display_irqs_install(dev_priv);
3718 }
3719 
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3720 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3721 {
3722 	assert_spin_locked(&dev_priv->irq_lock);
3723 
3724 	if (!dev_priv->display_irqs_enabled)
3725 		return;
3726 
3727 	dev_priv->display_irqs_enabled = false;
3728 
3729 	if (dev_priv->dev->irq_enabled)
3730 		valleyview_display_irqs_uninstall(dev_priv);
3731 }
3732 
valleyview_irq_postinstall(struct drm_device * dev)3733 static int valleyview_irq_postinstall(struct drm_device *dev)
3734 {
3735 	struct drm_i915_private *dev_priv = dev->dev_private;
3736 	unsigned long irqflags;
3737 
3738 	dev_priv->irq_mask = ~0;
3739 
3740 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3741 	POSTING_READ(PORT_HOTPLUG_EN);
3742 
3743 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3744 	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3745 	I915_WRITE(VLV_IIR, 0xffffffff);
3746 	POSTING_READ(VLV_IER);
3747 
3748 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3749 	 * just to make the assert_spin_locked check happy. */
3750 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3751 	if (dev_priv->display_irqs_enabled)
3752 		valleyview_display_irqs_install(dev_priv);
3753 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3754 
3755 	I915_WRITE(VLV_IIR, 0xffffffff);
3756 	I915_WRITE(VLV_IIR, 0xffffffff);
3757 
3758 	gen5_gt_irq_postinstall(dev);
3759 
3760 	/* ack & enable invalid PTE error interrupts */
3761 #if 0 /* FIXME: add support to irq handler for checking these bits */
3762 	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3763 	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3764 #endif
3765 
3766 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3767 
3768 	return 0;
3769 }
3770 
gen8_gt_irq_postinstall(struct drm_i915_private * dev_priv)3771 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3772 {
3773 	/* These are interrupts we'll toggle with the ring mask register */
3774 	uint32_t gt_interrupts[] = {
3775 		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3776 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3777 			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3778 			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3779 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3780 		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3781 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3782 			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3783 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3784 		0,
3785 		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3786 			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3787 		};
3788 
3789 	dev_priv->pm_irq_mask = 0xffffffff;
3790 	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3791 	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3792 	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3793 	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3794 }
3795 
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3796 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3797 {
3798 	uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3799 		GEN8_PIPE_CDCLK_CRC_DONE |
3800 		GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3801 	uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3802 		GEN8_PIPE_FIFO_UNDERRUN;
3803 	int pipe;
3804 	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3805 	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3806 	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3807 
3808 	for_each_pipe(dev_priv, pipe)
3809 		if (intel_display_power_enabled(dev_priv,
3810 				POWER_DOMAIN_PIPE(pipe)))
3811 			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3812 					  dev_priv->de_irq_mask[pipe],
3813 					  de_pipe_enables);
3814 
3815 	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3816 }
3817 
gen8_irq_postinstall(struct drm_device * dev)3818 static int gen8_irq_postinstall(struct drm_device *dev)
3819 {
3820 	struct drm_i915_private *dev_priv = dev->dev_private;
3821 
3822 	ibx_irq_pre_postinstall(dev);
3823 
3824 	gen8_gt_irq_postinstall(dev_priv);
3825 	gen8_de_irq_postinstall(dev_priv);
3826 
3827 	ibx_irq_postinstall(dev);
3828 
3829 	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3830 	POSTING_READ(GEN8_MASTER_IRQ);
3831 
3832 	return 0;
3833 }
3834 
cherryview_irq_postinstall(struct drm_device * dev)3835 static int cherryview_irq_postinstall(struct drm_device *dev)
3836 {
3837 	struct drm_i915_private *dev_priv = dev->dev_private;
3838 	u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3839 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3840 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3841 		I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3842 	u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3843 		PIPE_CRC_DONE_INTERRUPT_STATUS;
3844 	unsigned long irqflags;
3845 	int pipe;
3846 
3847 	/*
3848 	 * Leave vblank interrupts masked initially.  enable/disable will
3849 	 * toggle them based on usage.
3850 	 */
3851 	dev_priv->irq_mask = ~enable_mask;
3852 
3853 	for_each_pipe(dev_priv, pipe)
3854 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3855 
3856 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3857 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3858 	for_each_pipe(dev_priv, pipe)
3859 		i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3860 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3861 
3862 	I915_WRITE(VLV_IIR, 0xffffffff);
3863 	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3864 	I915_WRITE(VLV_IER, enable_mask);
3865 
3866 	gen8_gt_irq_postinstall(dev_priv);
3867 
3868 	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3869 	POSTING_READ(GEN8_MASTER_IRQ);
3870 
3871 	return 0;
3872 }
3873 
gen8_irq_uninstall(struct drm_device * dev)3874 static void gen8_irq_uninstall(struct drm_device *dev)
3875 {
3876 	struct drm_i915_private *dev_priv = dev->dev_private;
3877 
3878 	if (!dev_priv)
3879 		return;
3880 
3881 	gen8_irq_reset(dev);
3882 }
3883 
valleyview_irq_uninstall(struct drm_device * dev)3884 static void valleyview_irq_uninstall(struct drm_device *dev)
3885 {
3886 	struct drm_i915_private *dev_priv = dev->dev_private;
3887 	unsigned long irqflags;
3888 	int pipe;
3889 
3890 	if (!dev_priv)
3891 		return;
3892 
3893 	I915_WRITE(VLV_MASTER_IER, 0);
3894 
3895 	for_each_pipe(dev_priv, pipe)
3896 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3897 
3898 	I915_WRITE(HWSTAM, 0xffffffff);
3899 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3900 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3901 
3902 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3903 	if (dev_priv->display_irqs_enabled)
3904 		valleyview_display_irqs_uninstall(dev_priv);
3905 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3906 
3907 	dev_priv->irq_mask = 0;
3908 
3909 	I915_WRITE(VLV_IIR, 0xffffffff);
3910 	I915_WRITE(VLV_IMR, 0xffffffff);
3911 	I915_WRITE(VLV_IER, 0x0);
3912 	POSTING_READ(VLV_IER);
3913 }
3914 
cherryview_irq_uninstall(struct drm_device * dev)3915 static void cherryview_irq_uninstall(struct drm_device *dev)
3916 {
3917 	struct drm_i915_private *dev_priv = dev->dev_private;
3918 	int pipe;
3919 
3920 	if (!dev_priv)
3921 		return;
3922 
3923 	I915_WRITE(GEN8_MASTER_IRQ, 0);
3924 	POSTING_READ(GEN8_MASTER_IRQ);
3925 
3926 #define GEN8_IRQ_FINI_NDX(type, which)				\
3927 do {								\
3928 	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);	\
3929 	I915_WRITE(GEN8_##type##_IER(which), 0);		\
3930 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3931 	POSTING_READ(GEN8_##type##_IIR(which));			\
3932 	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);	\
3933 } while (0)
3934 
3935 #define GEN8_IRQ_FINI(type)				\
3936 do {							\
3937 	I915_WRITE(GEN8_##type##_IMR, 0xffffffff);	\
3938 	I915_WRITE(GEN8_##type##_IER, 0);		\
3939 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3940 	POSTING_READ(GEN8_##type##_IIR);		\
3941 	I915_WRITE(GEN8_##type##_IIR, 0xffffffff);	\
3942 } while (0)
3943 
3944 	GEN8_IRQ_FINI_NDX(GT, 0);
3945 	GEN8_IRQ_FINI_NDX(GT, 1);
3946 	GEN8_IRQ_FINI_NDX(GT, 2);
3947 	GEN8_IRQ_FINI_NDX(GT, 3);
3948 
3949 	GEN8_IRQ_FINI(PCU);
3950 
3951 #undef GEN8_IRQ_FINI
3952 #undef GEN8_IRQ_FINI_NDX
3953 
3954 	I915_WRITE(PORT_HOTPLUG_EN, 0);
3955 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3956 
3957 	for_each_pipe(dev_priv, pipe)
3958 		I915_WRITE(PIPESTAT(pipe), 0xffff);
3959 
3960 	I915_WRITE(VLV_IMR, 0xffffffff);
3961 	I915_WRITE(VLV_IER, 0x0);
3962 	I915_WRITE(VLV_IIR, 0xffffffff);
3963 	POSTING_READ(VLV_IIR);
3964 }
3965 
ironlake_irq_uninstall(struct drm_device * dev)3966 static void ironlake_irq_uninstall(struct drm_device *dev)
3967 {
3968 	struct drm_i915_private *dev_priv = dev->dev_private;
3969 
3970 	if (!dev_priv)
3971 		return;
3972 
3973 	ironlake_irq_reset(dev);
3974 }
3975 
i8xx_irq_preinstall(struct drm_device * dev)3976 static void i8xx_irq_preinstall(struct drm_device * dev)
3977 {
3978 	struct drm_i915_private *dev_priv = dev->dev_private;
3979 	int pipe;
3980 
3981 	for_each_pipe(dev_priv, pipe)
3982 		I915_WRITE(PIPESTAT(pipe), 0);
3983 	I915_WRITE16(IMR, 0xffff);
3984 	I915_WRITE16(IER, 0x0);
3985 	POSTING_READ16(IER);
3986 }
3987 
i8xx_irq_postinstall(struct drm_device * dev)3988 static int i8xx_irq_postinstall(struct drm_device *dev)
3989 {
3990 	struct drm_i915_private *dev_priv = dev->dev_private;
3991 	unsigned long irqflags;
3992 
3993 	I915_WRITE16(EMR,
3994 		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3995 
3996 	/* Unmask the interrupts that we always want on. */
3997 	dev_priv->irq_mask =
3998 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3999 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4000 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4001 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4002 	I915_WRITE16(IMR, dev_priv->irq_mask);
4003 
4004 	I915_WRITE16(IER,
4005 		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4006 		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4007 		     I915_USER_INTERRUPT);
4008 	POSTING_READ16(IER);
4009 
4010 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4011 	 * just to make the assert_spin_locked check happy. */
4012 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4013 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4014 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4015 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4016 
4017 	return 0;
4018 }
4019 
4020 /*
4021  * Returns true when a page flip has completed.
4022  */
i8xx_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)4023 static bool i8xx_handle_vblank(struct drm_device *dev,
4024 			       int plane, int pipe, u32 iir)
4025 {
4026 	struct drm_i915_private *dev_priv = dev->dev_private;
4027 	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4028 
4029 	if (!intel_pipe_handle_vblank(dev, pipe))
4030 		return false;
4031 
4032 	if ((iir & flip_pending) == 0)
4033 		goto check_page_flip;
4034 
4035 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4036 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4037 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4038 	 * the flip is completed (no longer pending). Since this doesn't raise
4039 	 * an interrupt per se, we watch for the change at vblank.
4040 	 */
4041 	if (I915_READ16(ISR) & flip_pending)
4042 		goto check_page_flip;
4043 
4044 	intel_prepare_page_flip(dev, plane);
4045 	intel_finish_page_flip(dev, pipe);
4046 	return true;
4047 
4048 check_page_flip:
4049 	intel_check_page_flip(dev, pipe);
4050 	return false;
4051 }
4052 
i8xx_irq_handler(int irq,void * arg)4053 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4054 {
4055 	struct drm_device *dev = arg;
4056 	struct drm_i915_private *dev_priv = dev->dev_private;
4057 	u16 iir, new_iir;
4058 	u32 pipe_stats[2];
4059 	unsigned long irqflags;
4060 	int pipe;
4061 	u16 flip_mask =
4062 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4063 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4064 
4065 	if (!intel_irqs_enabled(dev_priv))
4066 		return IRQ_NONE;
4067 
4068 	iir = I915_READ16(IIR);
4069 	if (iir == 0)
4070 		return IRQ_NONE;
4071 
4072 	while (iir & ~flip_mask) {
4073 		/* Can't rely on pipestat interrupt bit in iir as it might
4074 		 * have been cleared after the pipestat interrupt was received.
4075 		 * It doesn't set the bit in iir again, but it still produces
4076 		 * interrupts (for non-MSI).
4077 		 */
4078 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4079 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4080 			i915_handle_error(dev, false,
4081 					  "Command parser error, iir 0x%08x",
4082 					  iir);
4083 
4084 		for_each_pipe(dev_priv, pipe) {
4085 			int reg = PIPESTAT(pipe);
4086 			pipe_stats[pipe] = I915_READ(reg);
4087 
4088 			/*
4089 			 * Clear the PIPE*STAT regs before the IIR
4090 			 */
4091 			if (pipe_stats[pipe] & 0x8000ffff)
4092 				I915_WRITE(reg, pipe_stats[pipe]);
4093 		}
4094 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4095 
4096 		I915_WRITE16(IIR, iir & ~flip_mask);
4097 		new_iir = I915_READ16(IIR); /* Flush posted writes */
4098 
4099 		i915_update_dri1_breadcrumb(dev);
4100 
4101 		if (iir & I915_USER_INTERRUPT)
4102 			notify_ring(dev, &dev_priv->ring[RCS]);
4103 
4104 		for_each_pipe(dev_priv, pipe) {
4105 			int plane = pipe;
4106 			if (HAS_FBC(dev))
4107 				plane = !plane;
4108 
4109 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4110 			    i8xx_handle_vblank(dev, plane, pipe, iir))
4111 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4112 
4113 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4114 				i9xx_pipe_crc_irq_handler(dev, pipe);
4115 
4116 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4117 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4118 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4119 		}
4120 
4121 		iir = new_iir;
4122 	}
4123 
4124 	return IRQ_HANDLED;
4125 }
4126 
i8xx_irq_uninstall(struct drm_device * dev)4127 static void i8xx_irq_uninstall(struct drm_device * dev)
4128 {
4129 	struct drm_i915_private *dev_priv = dev->dev_private;
4130 	int pipe;
4131 
4132 	for_each_pipe(dev_priv, pipe) {
4133 		/* Clear enable bits; then clear status bits */
4134 		I915_WRITE(PIPESTAT(pipe), 0);
4135 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4136 	}
4137 	I915_WRITE16(IMR, 0xffff);
4138 	I915_WRITE16(IER, 0x0);
4139 	I915_WRITE16(IIR, I915_READ16(IIR));
4140 }
4141 
i915_irq_preinstall(struct drm_device * dev)4142 static void i915_irq_preinstall(struct drm_device * dev)
4143 {
4144 	struct drm_i915_private *dev_priv = dev->dev_private;
4145 	int pipe;
4146 
4147 	if (I915_HAS_HOTPLUG(dev)) {
4148 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4149 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4150 	}
4151 
4152 	I915_WRITE16(HWSTAM, 0xeffe);
4153 	for_each_pipe(dev_priv, pipe)
4154 		I915_WRITE(PIPESTAT(pipe), 0);
4155 	I915_WRITE(IMR, 0xffffffff);
4156 	I915_WRITE(IER, 0x0);
4157 	POSTING_READ(IER);
4158 }
4159 
i915_irq_postinstall(struct drm_device * dev)4160 static int i915_irq_postinstall(struct drm_device *dev)
4161 {
4162 	struct drm_i915_private *dev_priv = dev->dev_private;
4163 	u32 enable_mask;
4164 	unsigned long irqflags;
4165 
4166 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4167 
4168 	/* Unmask the interrupts that we always want on. */
4169 	dev_priv->irq_mask =
4170 		~(I915_ASLE_INTERRUPT |
4171 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4172 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4173 		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4174 		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4175 
4176 	enable_mask =
4177 		I915_ASLE_INTERRUPT |
4178 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4179 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4180 		I915_USER_INTERRUPT;
4181 
4182 	if (I915_HAS_HOTPLUG(dev)) {
4183 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4184 		POSTING_READ(PORT_HOTPLUG_EN);
4185 
4186 		/* Enable in IER... */
4187 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4188 		/* and unmask in IMR */
4189 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4190 	}
4191 
4192 	I915_WRITE(IMR, dev_priv->irq_mask);
4193 	I915_WRITE(IER, enable_mask);
4194 	POSTING_READ(IER);
4195 
4196 	i915_enable_asle_pipestat(dev);
4197 
4198 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4199 	 * just to make the assert_spin_locked check happy. */
4200 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4201 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4202 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4203 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4204 
4205 	return 0;
4206 }
4207 
4208 /*
4209  * Returns true when a page flip has completed.
4210  */
i915_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)4211 static bool i915_handle_vblank(struct drm_device *dev,
4212 			       int plane, int pipe, u32 iir)
4213 {
4214 	struct drm_i915_private *dev_priv = dev->dev_private;
4215 	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4216 
4217 	if (!intel_pipe_handle_vblank(dev, pipe))
4218 		return false;
4219 
4220 	if ((iir & flip_pending) == 0)
4221 		goto check_page_flip;
4222 
4223 	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4224 	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4225 	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4226 	 * the flip is completed (no longer pending). Since this doesn't raise
4227 	 * an interrupt per se, we watch for the change at vblank.
4228 	 */
4229 	if (I915_READ(ISR) & flip_pending)
4230 		goto check_page_flip;
4231 
4232 	intel_prepare_page_flip(dev, plane);
4233 	intel_finish_page_flip(dev, pipe);
4234 	return true;
4235 
4236 check_page_flip:
4237 	intel_check_page_flip(dev, pipe);
4238 	return false;
4239 }
4240 
i915_irq_handler(int irq,void * arg)4241 static irqreturn_t i915_irq_handler(int irq, void *arg)
4242 {
4243 	struct drm_device *dev = arg;
4244 	struct drm_i915_private *dev_priv = dev->dev_private;
4245 	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4246 	unsigned long irqflags;
4247 	u32 flip_mask =
4248 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4249 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4250 	int pipe, ret = IRQ_NONE;
4251 
4252 	if (!intel_irqs_enabled(dev_priv))
4253 		return IRQ_NONE;
4254 
4255 	iir = I915_READ(IIR);
4256 	do {
4257 		bool irq_received = (iir & ~flip_mask) != 0;
4258 		bool blc_event = false;
4259 
4260 		/* Can't rely on pipestat interrupt bit in iir as it might
4261 		 * have been cleared after the pipestat interrupt was received.
4262 		 * It doesn't set the bit in iir again, but it still produces
4263 		 * interrupts (for non-MSI).
4264 		 */
4265 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4266 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4267 			i915_handle_error(dev, false,
4268 					  "Command parser error, iir 0x%08x",
4269 					  iir);
4270 
4271 		for_each_pipe(dev_priv, pipe) {
4272 			int reg = PIPESTAT(pipe);
4273 			pipe_stats[pipe] = I915_READ(reg);
4274 
4275 			/* Clear the PIPE*STAT regs before the IIR */
4276 			if (pipe_stats[pipe] & 0x8000ffff) {
4277 				I915_WRITE(reg, pipe_stats[pipe]);
4278 				irq_received = true;
4279 			}
4280 		}
4281 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4282 
4283 		if (!irq_received)
4284 			break;
4285 
4286 		/* Consume port.  Then clear IIR or we'll miss events */
4287 		if (I915_HAS_HOTPLUG(dev) &&
4288 		    iir & I915_DISPLAY_PORT_INTERRUPT)
4289 			i9xx_hpd_irq_handler(dev);
4290 
4291 		I915_WRITE(IIR, iir & ~flip_mask);
4292 		new_iir = I915_READ(IIR); /* Flush posted writes */
4293 
4294 		if (iir & I915_USER_INTERRUPT)
4295 			notify_ring(dev, &dev_priv->ring[RCS]);
4296 
4297 		for_each_pipe(dev_priv, pipe) {
4298 			int plane = pipe;
4299 			if (HAS_FBC(dev))
4300 				plane = !plane;
4301 
4302 			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4303 			    i915_handle_vblank(dev, plane, pipe, iir))
4304 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4305 
4306 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4307 				blc_event = true;
4308 
4309 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4310 				i9xx_pipe_crc_irq_handler(dev, pipe);
4311 
4312 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4313 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4314 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4315 		}
4316 
4317 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4318 			intel_opregion_asle_intr(dev);
4319 
4320 		/* With MSI, interrupts are only generated when iir
4321 		 * transitions from zero to nonzero.  If another bit got
4322 		 * set while we were handling the existing iir bits, then
4323 		 * we would never get another interrupt.
4324 		 *
4325 		 * This is fine on non-MSI as well, as if we hit this path
4326 		 * we avoid exiting the interrupt handler only to generate
4327 		 * another one.
4328 		 *
4329 		 * Note that for MSI this could cause a stray interrupt report
4330 		 * if an interrupt landed in the time between writing IIR and
4331 		 * the posting read.  This should be rare enough to never
4332 		 * trigger the 99% of 100,000 interrupts test for disabling
4333 		 * stray interrupts.
4334 		 */
4335 		ret = IRQ_HANDLED;
4336 		iir = new_iir;
4337 	} while (iir & ~flip_mask);
4338 
4339 	i915_update_dri1_breadcrumb(dev);
4340 
4341 	return ret;
4342 }
4343 
i915_irq_uninstall(struct drm_device * dev)4344 static void i915_irq_uninstall(struct drm_device * dev)
4345 {
4346 	struct drm_i915_private *dev_priv = dev->dev_private;
4347 	int pipe;
4348 
4349 	if (I915_HAS_HOTPLUG(dev)) {
4350 		I915_WRITE(PORT_HOTPLUG_EN, 0);
4351 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4352 	}
4353 
4354 	I915_WRITE16(HWSTAM, 0xffff);
4355 	for_each_pipe(dev_priv, pipe) {
4356 		/* Clear enable bits; then clear status bits */
4357 		I915_WRITE(PIPESTAT(pipe), 0);
4358 		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4359 	}
4360 	I915_WRITE(IMR, 0xffffffff);
4361 	I915_WRITE(IER, 0x0);
4362 
4363 	I915_WRITE(IIR, I915_READ(IIR));
4364 }
4365 
i965_irq_preinstall(struct drm_device * dev)4366 static void i965_irq_preinstall(struct drm_device * dev)
4367 {
4368 	struct drm_i915_private *dev_priv = dev->dev_private;
4369 	int pipe;
4370 
4371 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4372 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4373 
4374 	I915_WRITE(HWSTAM, 0xeffe);
4375 	for_each_pipe(dev_priv, pipe)
4376 		I915_WRITE(PIPESTAT(pipe), 0);
4377 	I915_WRITE(IMR, 0xffffffff);
4378 	I915_WRITE(IER, 0x0);
4379 	POSTING_READ(IER);
4380 }
4381 
i965_irq_postinstall(struct drm_device * dev)4382 static int i965_irq_postinstall(struct drm_device *dev)
4383 {
4384 	struct drm_i915_private *dev_priv = dev->dev_private;
4385 	u32 enable_mask;
4386 	u32 error_mask;
4387 	unsigned long irqflags;
4388 
4389 	/* Unmask the interrupts that we always want on. */
4390 	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4391 			       I915_DISPLAY_PORT_INTERRUPT |
4392 			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4393 			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4394 			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4395 			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4396 			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4397 
4398 	enable_mask = ~dev_priv->irq_mask;
4399 	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4400 			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4401 	enable_mask |= I915_USER_INTERRUPT;
4402 
4403 	if (IS_G4X(dev))
4404 		enable_mask |= I915_BSD_USER_INTERRUPT;
4405 
4406 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4407 	 * just to make the assert_spin_locked check happy. */
4408 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4409 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4410 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4411 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4412 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4413 
4414 	/*
4415 	 * Enable some error detection, note the instruction error mask
4416 	 * bit is reserved, so we leave it masked.
4417 	 */
4418 	if (IS_G4X(dev)) {
4419 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4420 			       GM45_ERROR_MEM_PRIV |
4421 			       GM45_ERROR_CP_PRIV |
4422 			       I915_ERROR_MEMORY_REFRESH);
4423 	} else {
4424 		error_mask = ~(I915_ERROR_PAGE_TABLE |
4425 			       I915_ERROR_MEMORY_REFRESH);
4426 	}
4427 	I915_WRITE(EMR, error_mask);
4428 
4429 	I915_WRITE(IMR, dev_priv->irq_mask);
4430 	I915_WRITE(IER, enable_mask);
4431 	POSTING_READ(IER);
4432 
4433 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4434 	POSTING_READ(PORT_HOTPLUG_EN);
4435 
4436 	i915_enable_asle_pipestat(dev);
4437 
4438 	return 0;
4439 }
4440 
i915_hpd_irq_setup(struct drm_device * dev)4441 static void i915_hpd_irq_setup(struct drm_device *dev)
4442 {
4443 	struct drm_i915_private *dev_priv = dev->dev_private;
4444 	struct intel_encoder *intel_encoder;
4445 	u32 hotplug_en;
4446 
4447 	assert_spin_locked(&dev_priv->irq_lock);
4448 
4449 	if (I915_HAS_HOTPLUG(dev)) {
4450 		hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4451 		hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4452 		/* Note HDMI and DP share hotplug bits */
4453 		/* enable bits are the same for all generations */
4454 		for_each_intel_encoder(dev, intel_encoder)
4455 			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4456 				hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4457 		/* Programming the CRT detection parameters tends
4458 		   to generate a spurious hotplug event about three
4459 		   seconds later.  So just do it once.
4460 		*/
4461 		if (IS_G4X(dev))
4462 			hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4463 		hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4464 		hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4465 
4466 		/* Ignore TV since it's buggy */
4467 		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4468 	}
4469 }
4470 
i965_irq_handler(int irq,void * arg)4471 static irqreturn_t i965_irq_handler(int irq, void *arg)
4472 {
4473 	struct drm_device *dev = arg;
4474 	struct drm_i915_private *dev_priv = dev->dev_private;
4475 	u32 iir, new_iir;
4476 	u32 pipe_stats[I915_MAX_PIPES];
4477 	unsigned long irqflags;
4478 	int ret = IRQ_NONE, pipe;
4479 	u32 flip_mask =
4480 		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4481 		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4482 
4483 	if (!intel_irqs_enabled(dev_priv))
4484 		return IRQ_NONE;
4485 
4486 	iir = I915_READ(IIR);
4487 
4488 	for (;;) {
4489 		bool irq_received = (iir & ~flip_mask) != 0;
4490 		bool blc_event = false;
4491 
4492 		/* Can't rely on pipestat interrupt bit in iir as it might
4493 		 * have been cleared after the pipestat interrupt was received.
4494 		 * It doesn't set the bit in iir again, but it still produces
4495 		 * interrupts (for non-MSI).
4496 		 */
4497 		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4498 		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4499 			i915_handle_error(dev, false,
4500 					  "Command parser error, iir 0x%08x",
4501 					  iir);
4502 
4503 		for_each_pipe(dev_priv, pipe) {
4504 			int reg = PIPESTAT(pipe);
4505 			pipe_stats[pipe] = I915_READ(reg);
4506 
4507 			/*
4508 			 * Clear the PIPE*STAT regs before the IIR
4509 			 */
4510 			if (pipe_stats[pipe] & 0x8000ffff) {
4511 				I915_WRITE(reg, pipe_stats[pipe]);
4512 				irq_received = true;
4513 			}
4514 		}
4515 		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4516 
4517 		if (!irq_received)
4518 			break;
4519 
4520 		ret = IRQ_HANDLED;
4521 
4522 		/* Consume port.  Then clear IIR or we'll miss events */
4523 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4524 			i9xx_hpd_irq_handler(dev);
4525 
4526 		I915_WRITE(IIR, iir & ~flip_mask);
4527 		new_iir = I915_READ(IIR); /* Flush posted writes */
4528 
4529 		if (iir & I915_USER_INTERRUPT)
4530 			notify_ring(dev, &dev_priv->ring[RCS]);
4531 		if (iir & I915_BSD_USER_INTERRUPT)
4532 			notify_ring(dev, &dev_priv->ring[VCS]);
4533 
4534 		for_each_pipe(dev_priv, pipe) {
4535 			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4536 			    i915_handle_vblank(dev, pipe, pipe, iir))
4537 				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4538 
4539 			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4540 				blc_event = true;
4541 
4542 			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4543 				i9xx_pipe_crc_irq_handler(dev, pipe);
4544 
4545 			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4546 			    intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4547 				DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4548 		}
4549 
4550 		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4551 			intel_opregion_asle_intr(dev);
4552 
4553 		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4554 			gmbus_irq_handler(dev);
4555 
4556 		/* With MSI, interrupts are only generated when iir
4557 		 * transitions from zero to nonzero.  If another bit got
4558 		 * set while we were handling the existing iir bits, then
4559 		 * we would never get another interrupt.
4560 		 *
4561 		 * This is fine on non-MSI as well, as if we hit this path
4562 		 * we avoid exiting the interrupt handler only to generate
4563 		 * another one.
4564 		 *
4565 		 * Note that for MSI this could cause a stray interrupt report
4566 		 * if an interrupt landed in the time between writing IIR and
4567 		 * the posting read.  This should be rare enough to never
4568 		 * trigger the 99% of 100,000 interrupts test for disabling
4569 		 * stray interrupts.
4570 		 */
4571 		iir = new_iir;
4572 	}
4573 
4574 	i915_update_dri1_breadcrumb(dev);
4575 
4576 	return ret;
4577 }
4578 
i965_irq_uninstall(struct drm_device * dev)4579 static void i965_irq_uninstall(struct drm_device * dev)
4580 {
4581 	struct drm_i915_private *dev_priv = dev->dev_private;
4582 	int pipe;
4583 
4584 	if (!dev_priv)
4585 		return;
4586 
4587 	I915_WRITE(PORT_HOTPLUG_EN, 0);
4588 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4589 
4590 	I915_WRITE(HWSTAM, 0xffffffff);
4591 	for_each_pipe(dev_priv, pipe)
4592 		I915_WRITE(PIPESTAT(pipe), 0);
4593 	I915_WRITE(IMR, 0xffffffff);
4594 	I915_WRITE(IER, 0x0);
4595 
4596 	for_each_pipe(dev_priv, pipe)
4597 		I915_WRITE(PIPESTAT(pipe),
4598 			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4599 	I915_WRITE(IIR, I915_READ(IIR));
4600 }
4601 
intel_hpd_irq_reenable(struct work_struct * work)4602 static void intel_hpd_irq_reenable(struct work_struct *work)
4603 {
4604 	struct drm_i915_private *dev_priv =
4605 		container_of(work, typeof(*dev_priv),
4606 			     hotplug_reenable_work.work);
4607 	struct drm_device *dev = dev_priv->dev;
4608 	struct drm_mode_config *mode_config = &dev->mode_config;
4609 	unsigned long irqflags;
4610 	int i;
4611 
4612 	intel_runtime_pm_get(dev_priv);
4613 
4614 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4615 	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4616 		struct drm_connector *connector;
4617 
4618 		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4619 			continue;
4620 
4621 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4622 
4623 		list_for_each_entry(connector, &mode_config->connector_list, head) {
4624 			struct intel_connector *intel_connector = to_intel_connector(connector);
4625 
4626 			if (intel_connector->encoder->hpd_pin == i) {
4627 				if (connector->polled != intel_connector->polled)
4628 					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4629 							 connector->name);
4630 				connector->polled = intel_connector->polled;
4631 				if (!connector->polled)
4632 					connector->polled = DRM_CONNECTOR_POLL_HPD;
4633 			}
4634 		}
4635 	}
4636 	if (dev_priv->display.hpd_irq_setup)
4637 		dev_priv->display.hpd_irq_setup(dev);
4638 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4639 
4640 	intel_runtime_pm_put(dev_priv);
4641 }
4642 
intel_irq_init(struct drm_device * dev)4643 void intel_irq_init(struct drm_device *dev)
4644 {
4645 	struct drm_i915_private *dev_priv = dev->dev_private;
4646 
4647 	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4648 	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4649 	INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4650 	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4651 	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4652 
4653 	/* Let's track the enabled rps events */
4654 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4655 		/* WaGsvRC0ResidencyMethod:vlv */
4656 		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4657 	else
4658 		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4659 
4660 	setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4661 		    i915_hangcheck_elapsed,
4662 		    (unsigned long) dev);
4663 	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4664 			  intel_hpd_irq_reenable);
4665 
4666 	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4667 
4668 	/* Haven't installed the IRQ handler yet */
4669 	dev_priv->pm._irqs_disabled = true;
4670 
4671 	if (IS_GEN2(dev)) {
4672 		dev->max_vblank_count = 0;
4673 		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4674 	} else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4675 		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4676 		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4677 	} else {
4678 		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4679 		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4680 	}
4681 
4682 	/*
4683 	 * Opt out of the vblank disable timer on everything except gen2.
4684 	 * Gen2 doesn't have a hardware frame counter and so depends on
4685 	 * vblank interrupts to produce sane vblank seuquence numbers.
4686 	 */
4687 	if (!IS_GEN2(dev))
4688 		dev->vblank_disable_immediate = true;
4689 
4690 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4691 		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4692 		dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4693 	}
4694 
4695 	if (IS_CHERRYVIEW(dev)) {
4696 		dev->driver->irq_handler = cherryview_irq_handler;
4697 		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4698 		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4699 		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4700 		dev->driver->enable_vblank = valleyview_enable_vblank;
4701 		dev->driver->disable_vblank = valleyview_disable_vblank;
4702 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4703 	} else if (IS_VALLEYVIEW(dev)) {
4704 		dev->driver->irq_handler = valleyview_irq_handler;
4705 		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4706 		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4707 		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4708 		dev->driver->enable_vblank = valleyview_enable_vblank;
4709 		dev->driver->disable_vblank = valleyview_disable_vblank;
4710 		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4711 	} else if (IS_GEN8(dev)) {
4712 		dev->driver->irq_handler = gen8_irq_handler;
4713 		dev->driver->irq_preinstall = gen8_irq_reset;
4714 		dev->driver->irq_postinstall = gen8_irq_postinstall;
4715 		dev->driver->irq_uninstall = gen8_irq_uninstall;
4716 		dev->driver->enable_vblank = gen8_enable_vblank;
4717 		dev->driver->disable_vblank = gen8_disable_vblank;
4718 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4719 	} else if (HAS_PCH_SPLIT(dev)) {
4720 		dev->driver->irq_handler = ironlake_irq_handler;
4721 		dev->driver->irq_preinstall = ironlake_irq_reset;
4722 		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4723 		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4724 		dev->driver->enable_vblank = ironlake_enable_vblank;
4725 		dev->driver->disable_vblank = ironlake_disable_vblank;
4726 		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4727 	} else {
4728 		if (INTEL_INFO(dev)->gen == 2) {
4729 			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4730 			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4731 			dev->driver->irq_handler = i8xx_irq_handler;
4732 			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4733 		} else if (INTEL_INFO(dev)->gen == 3) {
4734 			dev->driver->irq_preinstall = i915_irq_preinstall;
4735 			dev->driver->irq_postinstall = i915_irq_postinstall;
4736 			dev->driver->irq_uninstall = i915_irq_uninstall;
4737 			dev->driver->irq_handler = i915_irq_handler;
4738 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4739 		} else {
4740 			dev->driver->irq_preinstall = i965_irq_preinstall;
4741 			dev->driver->irq_postinstall = i965_irq_postinstall;
4742 			dev->driver->irq_uninstall = i965_irq_uninstall;
4743 			dev->driver->irq_handler = i965_irq_handler;
4744 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4745 		}
4746 		dev->driver->enable_vblank = i915_enable_vblank;
4747 		dev->driver->disable_vblank = i915_disable_vblank;
4748 	}
4749 }
4750 
intel_hpd_init(struct drm_device * dev)4751 void intel_hpd_init(struct drm_device *dev)
4752 {
4753 	struct drm_i915_private *dev_priv = dev->dev_private;
4754 	struct drm_mode_config *mode_config = &dev->mode_config;
4755 	struct drm_connector *connector;
4756 	unsigned long irqflags;
4757 	int i;
4758 
4759 	for (i = 1; i < HPD_NUM_PINS; i++) {
4760 		dev_priv->hpd_stats[i].hpd_cnt = 0;
4761 		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4762 	}
4763 	list_for_each_entry(connector, &mode_config->connector_list, head) {
4764 		struct intel_connector *intel_connector = to_intel_connector(connector);
4765 		connector->polled = intel_connector->polled;
4766 		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4767 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4768 		if (intel_connector->mst_port)
4769 			connector->polled = DRM_CONNECTOR_POLL_HPD;
4770 	}
4771 
4772 	/* Interrupt setup is already guaranteed to be single-threaded, this is
4773 	 * just to make the assert_spin_locked checks happy. */
4774 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4775 	if (dev_priv->display.hpd_irq_setup)
4776 		dev_priv->display.hpd_irq_setup(dev);
4777 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4778 }
4779 
4780 /* Disable interrupts so we can allow runtime PM. */
intel_runtime_pm_disable_interrupts(struct drm_device * dev)4781 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4782 {
4783 	struct drm_i915_private *dev_priv = dev->dev_private;
4784 
4785 	dev->driver->irq_uninstall(dev);
4786 	dev_priv->pm._irqs_disabled = true;
4787 }
4788 
4789 /* Restore interrupts so we can recover from runtime PM. */
intel_runtime_pm_restore_interrupts(struct drm_device * dev)4790 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4791 {
4792 	struct drm_i915_private *dev_priv = dev->dev_private;
4793 
4794 	dev_priv->pm._irqs_disabled = false;
4795 	dev->driver->irq_preinstall(dev);
4796 	dev->driver->irq_postinstall(dev);
4797 	synchronize_irq(dev_priv->dev->irq);
4798 }
4799