1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
ironlake_enable_display_irq(struct drm_i915_private * dev_priv,u32 mask)135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
ironlake_disable_display_irq(struct drm_i915_private * dev_priv,u32 mask)150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
ilk_update_gt_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
gen5_enable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
gen5_disable_gt_irq(struct drm_i915_private * dev_priv,uint32_t mask)190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
snb_update_pm_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
gen6_enable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
gen6_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
ivb_can_enable_err_int(struct drm_device * dev)233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(dev_priv, pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 /**
252 * bdw_update_pm_irq - update GT interrupt 2
253 * @dev_priv: driver private
254 * @interrupt_mask: mask of interrupt bits to update
255 * @enabled_irq_mask: mask of interrupt bits to enable
256 *
257 * Copied from the snb function, updated with relevant register offsets
258 */
bdw_update_pm_irq(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260 uint32_t interrupt_mask,
261 uint32_t enabled_irq_mask)
262 {
263 uint32_t new_val;
264
265 assert_spin_locked(&dev_priv->irq_lock);
266
267 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268 return;
269
270 new_val = dev_priv->pm_irq_mask;
271 new_val &= ~interrupt_mask;
272 new_val |= (~enabled_irq_mask & interrupt_mask);
273
274 if (new_val != dev_priv->pm_irq_mask) {
275 dev_priv->pm_irq_mask = new_val;
276 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277 POSTING_READ(GEN8_GT_IMR(2));
278 }
279 }
280
gen8_enable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283 bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
gen8_disable_pm_irq(struct drm_i915_private * dev_priv,uint32_t mask)286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288 bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
cpt_can_enable_serr_int(struct drm_device * dev)291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293 struct drm_i915_private *dev_priv = dev->dev_private;
294 enum pipe pipe;
295 struct intel_crtc *crtc;
296
297 assert_spin_locked(&dev_priv->irq_lock);
298
299 for_each_pipe(dev_priv, pipe) {
300 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302 if (crtc->pch_fifo_underrun_disabled)
303 return false;
304 }
305
306 return true;
307 }
308
i9xx_check_fifo_underruns(struct drm_device * dev)309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311 struct drm_i915_private *dev_priv = dev->dev_private;
312 struct intel_crtc *crtc;
313 unsigned long flags;
314
315 spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317 for_each_intel_crtc(dev, crtc) {
318 u32 reg = PIPESTAT(crtc->pipe);
319 u32 pipestat;
320
321 if (crtc->cpu_fifo_underrun_disabled)
322 continue;
323
324 pipestat = I915_READ(reg) & 0xffff0000;
325 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326 continue;
327
328 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329 POSTING_READ(reg);
330
331 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332 }
333
334 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
i9xx_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable,bool old)337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338 enum pipe pipe,
339 bool enable, bool old)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 u32 reg = PIPESTAT(pipe);
343 u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345 assert_spin_locked(&dev_priv->irq_lock);
346
347 if (enable) {
348 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349 POSTING_READ(reg);
350 } else {
351 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353 }
354 }
355
ironlake_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357 enum pipe pipe, bool enable)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361 DE_PIPEB_FIFO_UNDERRUN;
362
363 if (enable)
364 ironlake_enable_display_irq(dev_priv, bit);
365 else
366 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
ivybridge_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable,bool old)369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370 enum pipe pipe,
371 bool enable, bool old)
372 {
373 struct drm_i915_private *dev_priv = dev->dev_private;
374 if (enable) {
375 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377 if (!ivb_can_enable_err_int(dev))
378 return;
379
380 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381 } else {
382 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384 if (old &&
385 I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386 DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387 pipe_name(pipe));
388 }
389 }
390 }
391
broadwell_set_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393 enum pipe pipe, bool enable)
394 {
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 assert_spin_locked(&dev_priv->irq_lock);
398
399 if (enable)
400 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401 else
402 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408 * ibx_display_interrupt_update - update SDEIMR
409 * @dev_priv: driver private
410 * @interrupt_mask: mask of interrupt bits to update
411 * @enabled_irq_mask: mask of interrupt bits to enable
412 */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,uint32_t interrupt_mask,uint32_t enabled_irq_mask)413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414 uint32_t interrupt_mask,
415 uint32_t enabled_irq_mask)
416 {
417 uint32_t sdeimr = I915_READ(SDEIMR);
418 sdeimr &= ~interrupt_mask;
419 sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424 return;
425
426 I915_WRITE(SDEIMR, sdeimr);
427 POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430 ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432 ibx_display_interrupt_update((dev_priv), (bits), 0)
433
ibx_set_fifo_underrun_reporting(struct drm_device * dev,enum transcoder pch_transcoder,bool enable)434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435 enum transcoder pch_transcoder,
436 bool enable)
437 {
438 struct drm_i915_private *dev_priv = dev->dev_private;
439 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442 if (enable)
443 ibx_enable_display_interrupt(dev_priv, bit);
444 else
445 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
cpt_set_fifo_underrun_reporting(struct drm_device * dev,enum transcoder pch_transcoder,bool enable,bool old)448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449 enum transcoder pch_transcoder,
450 bool enable, bool old)
451 {
452 struct drm_i915_private *dev_priv = dev->dev_private;
453
454 if (enable) {
455 I915_WRITE(SERR_INT,
456 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458 if (!cpt_can_enable_serr_int(dev))
459 return;
460
461 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462 } else {
463 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465 if (old && I915_READ(SERR_INT) &
466 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467 DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468 transcoder_name(pch_transcoder));
469 }
470 }
471 }
472
473 /**
474 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475 * @dev: drm device
476 * @pipe: pipe
477 * @enable: true if we want to report FIFO underrun errors, false otherwise
478 *
479 * This function makes us disable or enable CPU fifo underruns for a specific
480 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481 * reporting for one pipe may also disable all the other CPU error interruts for
482 * the other pipes, due to the fact that there's just one interrupt mask/enable
483 * bit for all the pipes.
484 *
485 * Returns the previous state of underrun reporting.
486 */
__intel_set_cpu_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488 enum pipe pipe, bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 bool old;
494
495 assert_spin_locked(&dev_priv->irq_lock);
496
497 old = !intel_crtc->cpu_fifo_underrun_disabled;
498 intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500 if (HAS_GMCH_DISPLAY(dev))
501 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502 else if (IS_GEN5(dev) || IS_GEN6(dev))
503 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504 else if (IS_GEN7(dev))
505 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506 else if (IS_GEN8(dev))
507 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509 return old;
510 }
511
intel_set_cpu_fifo_underrun_reporting(struct drm_device * dev,enum pipe pipe,bool enable)512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513 enum pipe pipe, bool enable)
514 {
515 struct drm_i915_private *dev_priv = dev->dev_private;
516 unsigned long flags;
517 bool ret;
518
519 spin_lock_irqsave(&dev_priv->irq_lock, flags);
520 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523 return ret;
524 }
525
__cpu_fifo_underrun_reporting_enabled(struct drm_device * dev,enum pipe pipe)526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527 enum pipe pipe)
528 {
529 struct drm_i915_private *dev_priv = dev->dev_private;
530 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533 return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538 * @dev: drm device
539 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540 * @enable: true if we want to report FIFO underrun errors, false otherwise
541 *
542 * This function makes us disable or enable PCH fifo underruns for a specific
543 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544 * underrun reporting for one transcoder may also disable all the other PCH
545 * error interruts for the other transcoders, due to the fact that there's just
546 * one interrupt mask/enable bit for all the transcoders.
547 *
548 * Returns the previous state of underrun reporting.
549 */
intel_set_pch_fifo_underrun_reporting(struct drm_device * dev,enum transcoder pch_transcoder,bool enable)550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551 enum transcoder pch_transcoder,
552 bool enable)
553 {
554 struct drm_i915_private *dev_priv = dev->dev_private;
555 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557 unsigned long flags;
558 bool old;
559
560 /*
561 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562 * has only one pch transcoder A that all pipes can use. To avoid racy
563 * pch transcoder -> pipe lookups from interrupt code simply store the
564 * underrun statistics in crtc A. Since we never expose this anywhere
565 * nor use it outside of the fifo underrun code here using the "wrong"
566 * crtc on LPT won't cause issues.
567 */
568
569 spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571 old = !intel_crtc->pch_fifo_underrun_disabled;
572 intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574 if (HAS_PCH_IBX(dev))
575 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576 else
577 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580 return old;
581 }
582
583
584 static void
__i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586 u32 enable_mask, u32 status_mask)
587 {
588 u32 reg = PIPESTAT(pipe);
589 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591 assert_spin_locked(&dev_priv->irq_lock);
592
593 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594 status_mask & ~PIPESTAT_INT_STATUS_MASK,
595 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596 pipe_name(pipe), enable_mask, status_mask))
597 return;
598
599 if ((pipestat & enable_mask) == enable_mask)
600 return;
601
602 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604 /* Enable the interrupt, clear any pending status */
605 pipestat |= enable_mask | status_mask;
606 I915_WRITE(reg, pipestat);
607 POSTING_READ(reg);
608 }
609
610 static void
__i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 enable_mask,u32 status_mask)611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612 u32 enable_mask, u32 status_mask)
613 {
614 u32 reg = PIPESTAT(pipe);
615 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617 assert_spin_locked(&dev_priv->irq_lock);
618
619 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620 status_mask & ~PIPESTAT_INT_STATUS_MASK,
621 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622 pipe_name(pipe), enable_mask, status_mask))
623 return;
624
625 if ((pipestat & enable_mask) == 0)
626 return;
627
628 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630 pipestat &= ~enable_mask;
631 I915_WRITE(reg, pipestat);
632 POSTING_READ(reg);
633 }
634
vlv_get_pipestat_enable_mask(struct drm_device * dev,u32 status_mask)635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637 u32 enable_mask = status_mask << 16;
638
639 /*
640 * On pipe A we don't support the PSR interrupt yet,
641 * on pipe B and C the same bit MBZ.
642 */
643 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644 return 0;
645 /*
646 * On pipe B and C we don't support the PSR interrupt yet, on pipe
647 * A the same bit is for perf counters which we don't use either.
648 */
649 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650 return 0;
651
652 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653 SPRITE0_FLIP_DONE_INT_EN_VLV |
654 SPRITE1_FLIP_DONE_INT_EN_VLV);
655 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660 return enable_mask;
661 }
662
663 void
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665 u32 status_mask)
666 {
667 u32 enable_mask;
668
669 if (IS_VALLEYVIEW(dev_priv->dev))
670 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671 status_mask);
672 else
673 enable_mask = status_mask << 16;
674 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679 u32 status_mask)
680 {
681 u32 enable_mask;
682
683 if (IS_VALLEYVIEW(dev_priv->dev))
684 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685 status_mask);
686 else
687 enable_mask = status_mask << 16;
688 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693 */
i915_enable_asle_pipestat(struct drm_device * dev)694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696 struct drm_i915_private *dev_priv = dev->dev_private;
697 unsigned long irqflags;
698
699 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700 return;
701
702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705 if (INTEL_INFO(dev)->gen >= 4)
706 i915_enable_pipestat(dev_priv, PIPE_A,
707 PIPE_LEGACY_BLC_EVENT_STATUS);
708
709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713 * i915_pipe_enabled - check if a pipe is enabled
714 * @dev: DRM device
715 * @pipe: pipe to check
716 *
717 * Reading certain registers when the pipe is disabled can hang the chip.
718 * Use this routine to make sure the PLL is running and the pipe is active
719 * before reading such registers if unsure.
720 */
721 static int
i915_pipe_enabled(struct drm_device * dev,int pipe)722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724 struct drm_i915_private *dev_priv = dev->dev_private;
725
726 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727 /* Locking is horribly broken here, but whatever. */
728 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731 return intel_crtc->active;
732 } else {
733 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734 }
735 }
736
737 /*
738 * This timing diagram depicts the video signal in and
739 * around the vertical blanking period.
740 *
741 * Assumptions about the fictitious mode used in this example:
742 * vblank_start >= 3
743 * vsync_start = vblank_start + 1
744 * vsync_end = vblank_start + 2
745 * vtotal = vblank_start + 3
746 *
747 * start of vblank:
748 * latch double buffered registers
749 * increment frame counter (ctg+)
750 * generate start of vblank interrupt (gen4+)
751 * |
752 * | frame start:
753 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
754 * | may be shifted forward 1-3 extra lines via PIPECONF
755 * | |
756 * | | start of vsync:
757 * | | generate vsync interrupt
758 * | | |
759 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
760 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
761 * ----va---> <-----------------vb--------------------> <--------va-------------
762 * | | <----vs-----> |
763 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766 * | | |
767 * last visible pixel first visible pixel
768 * | increment frame counter (gen3/4)
769 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
770 *
771 * x = horizontal active
772 * _ = horizontal blanking
773 * hs = horizontal sync
774 * va = vertical active
775 * vb = vertical blanking
776 * vs = vertical sync
777 * vbs = vblank_start (number)
778 *
779 * Summary:
780 * - most events happen at the start of horizontal sync
781 * - frame start happens at the start of horizontal blank, 1-4 lines
782 * (depending on PIPECONF settings) after the start of vblank
783 * - gen3/4 pixel and frame counter are synchronized with the start
784 * of horizontal active on the first line of vertical active
785 */
786
i8xx_get_vblank_counter(struct drm_device * dev,int pipe)787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789 /* Gen2 doesn't have a hardware frame counter */
790 return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794 * we use as a pipe index
795 */
i915_get_vblank_counter(struct drm_device * dev,int pipe)796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 unsigned long high_frame;
800 unsigned long low_frame;
801 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803 if (!i915_pipe_enabled(dev, pipe)) {
804 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805 "pipe %c\n", pipe_name(pipe));
806 return 0;
807 }
808
809 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810 struct intel_crtc *intel_crtc =
811 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812 const struct drm_display_mode *mode =
813 &intel_crtc->config.adjusted_mode;
814
815 htotal = mode->crtc_htotal;
816 hsync_start = mode->crtc_hsync_start;
817 vbl_start = mode->crtc_vblank_start;
818 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819 vbl_start = DIV_ROUND_UP(vbl_start, 2);
820 } else {
821 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824 hsync_start = (I915_READ(HSYNC(cpu_transcoder)) & 0x1fff) + 1;
825 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827 PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828 vbl_start = DIV_ROUND_UP(vbl_start, 2);
829 }
830
831 /* Convert to pixel count */
832 vbl_start *= htotal;
833
834 /* Start of vblank event occurs at start of hsync */
835 vbl_start -= htotal - hsync_start;
836
837 high_frame = PIPEFRAME(pipe);
838 low_frame = PIPEFRAMEPIXEL(pipe);
839
840 /*
841 * High & low register fields aren't synchronized, so make sure
842 * we get a low value that's stable across two reads of the high
843 * register.
844 */
845 do {
846 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847 low = I915_READ(low_frame);
848 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849 } while (high1 != high2);
850
851 high1 >>= PIPE_FRAME_HIGH_SHIFT;
852 pixel = low & PIPE_PIXEL_MASK;
853 low >>= PIPE_FRAME_LOW_SHIFT;
854
855 /*
856 * The frame counter increments at beginning of active.
857 * Cook up a vblank counter by also checking the pixel
858 * counter against vblank start.
859 */
860 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
gm45_get_vblank_counter(struct drm_device * dev,int pipe)863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868 if (!i915_pipe_enabled(dev, pipe)) {
869 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870 "pipe %c\n", pipe_name(pipe));
871 return 0;
872 }
873
874 return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
__intel_get_crtc_scanline(struct intel_crtc * crtc)880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882 struct drm_device *dev = crtc->base.dev;
883 struct drm_i915_private *dev_priv = dev->dev_private;
884 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885 enum pipe pipe = crtc->pipe;
886 int position, vtotal;
887
888 vtotal = mode->crtc_vtotal;
889 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890 vtotal /= 2;
891
892 if (IS_GEN2(dev))
893 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894 else
895 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897 /*
898 * See update_scanline_offset() for the details on the
899 * scanline_offset adjustment.
900 */
901 return (position + crtc->scanline_offset) % vtotal;
902 }
903
i915_get_crtc_scanoutpos(struct drm_device * dev,int pipe,unsigned int flags,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime)904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905 unsigned int flags, int *vpos, int *hpos,
906 ktime_t *stime, ktime_t *etime)
907 {
908 struct drm_i915_private *dev_priv = dev->dev_private;
909 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912 int position;
913 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914 bool in_vbl = true;
915 int ret = 0;
916 unsigned long irqflags;
917
918 if (!intel_crtc->active) {
919 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920 "pipe %c\n", pipe_name(pipe));
921 return 0;
922 }
923
924 htotal = mode->crtc_htotal;
925 hsync_start = mode->crtc_hsync_start;
926 vtotal = mode->crtc_vtotal;
927 vbl_start = mode->crtc_vblank_start;
928 vbl_end = mode->crtc_vblank_end;
929
930 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932 vbl_end /= 2;
933 vtotal /= 2;
934 }
935
936 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938 /*
939 * Lock uncore.lock, as we will do multiple timing critical raw
940 * register reads, potentially with preemption disabled, so the
941 * following code must not block on uncore.lock.
942 */
943 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947 /* Get optional system timestamp before query. */
948 if (stime)
949 *stime = ktime_get();
950
951 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952 /* No obvious pixelcount register. Only query vertical
953 * scanout position from Display scan line register.
954 */
955 position = __intel_get_crtc_scanline(intel_crtc);
956 } else {
957 /* Have access to pixelcount since start of frame.
958 * We can split this into vertical and horizontal
959 * scanout position.
960 */
961 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963 /* convert to pixel counts */
964 vbl_start *= htotal;
965 vbl_end *= htotal;
966 vtotal *= htotal;
967
968 /*
969 * In interlaced modes, the pixel counter counts all pixels,
970 * so one field will have htotal more pixels. In order to avoid
971 * the reported position from jumping backwards when the pixel
972 * counter is beyond the length of the shorter field, just
973 * clamp the position the length of the shorter field. This
974 * matches how the scanline counter based position works since
975 * the scanline counter doesn't count the two half lines.
976 */
977 if (position >= vtotal)
978 position = vtotal - 1;
979
980 /*
981 * Start of vblank interrupt is triggered at start of hsync,
982 * just prior to the first active line of vblank. However we
983 * consider lines to start at the leading edge of horizontal
984 * active. So, should we get here before we've crossed into
985 * the horizontal active of the first line in vblank, we would
986 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987 * always add htotal-hsync_start to the current pixel position.
988 */
989 position = (position + htotal - hsync_start) % vtotal;
990 }
991
992 /* Get optional system timestamp after query. */
993 if (etime)
994 *etime = ktime_get();
995
996 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000 in_vbl = position >= vbl_start && position < vbl_end;
1001
1002 /*
1003 * While in vblank, position will be negative
1004 * counting up towards 0 at vbl_end. And outside
1005 * vblank, position will be positive counting
1006 * up since vbl_end.
1007 */
1008 if (position >= vbl_start)
1009 position -= vbl_end;
1010 else
1011 position += vtotal - vbl_end;
1012
1013 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014 *vpos = position;
1015 *hpos = 0;
1016 } else {
1017 *vpos = position / htotal;
1018 *hpos = position - (*vpos * htotal);
1019 }
1020
1021 /* In vblank? */
1022 if (in_vbl)
1023 ret |= DRM_SCANOUTPOS_IN_VBLANK;
1024
1025 return ret;
1026 }
1027
intel_get_crtc_scanline(struct intel_crtc * crtc)1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031 unsigned long irqflags;
1032 int position;
1033
1034 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035 position = __intel_get_crtc_scanline(crtc);
1036 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038 return position;
1039 }
1040
i915_get_vblank_timestamp(struct drm_device * dev,int pipe,int * max_error,struct timeval * vblank_time,unsigned flags)1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042 int *max_error,
1043 struct timeval *vblank_time,
1044 unsigned flags)
1045 {
1046 struct drm_crtc *crtc;
1047
1048 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049 DRM_ERROR("Invalid crtc %d\n", pipe);
1050 return -EINVAL;
1051 }
1052
1053 /* Get drm_crtc to timestamp: */
1054 crtc = intel_get_crtc_for_pipe(dev, pipe);
1055 if (crtc == NULL) {
1056 DRM_ERROR("Invalid crtc %d\n", pipe);
1057 return -EINVAL;
1058 }
1059
1060 if (!crtc->enabled) {
1061 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062 return -EBUSY;
1063 }
1064
1065 /* Helper routine in DRM core does all the work: */
1066 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067 vblank_time, flags,
1068 crtc,
1069 &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
intel_hpd_irq_event(struct drm_device * dev,struct drm_connector * connector)1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073 struct drm_connector *connector)
1074 {
1075 enum drm_connector_status old_status;
1076
1077 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078 old_status = connector->status;
1079
1080 connector->status = connector->funcs->detect(connector, false);
1081 if (old_status == connector->status)
1082 return false;
1083
1084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085 connector->base.id,
1086 connector->name,
1087 drm_get_connector_status_name(old_status),
1088 drm_get_connector_status_name(connector->status));
1089
1090 return true;
1091 }
1092
i915_digport_work_func(struct work_struct * work)1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095 struct drm_i915_private *dev_priv =
1096 container_of(work, struct drm_i915_private, dig_port_work);
1097 unsigned long irqflags;
1098 u32 long_port_mask, short_port_mask;
1099 struct intel_digital_port *intel_dig_port;
1100 int i, ret;
1101 u32 old_bits = 0;
1102
1103 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104 long_port_mask = dev_priv->long_hpd_port_mask;
1105 dev_priv->long_hpd_port_mask = 0;
1106 short_port_mask = dev_priv->short_hpd_port_mask;
1107 dev_priv->short_hpd_port_mask = 0;
1108 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110 for (i = 0; i < I915_MAX_PORTS; i++) {
1111 bool valid = false;
1112 bool long_hpd = false;
1113 intel_dig_port = dev_priv->hpd_irq_port[i];
1114 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115 continue;
1116
1117 if (long_port_mask & (1 << i)) {
1118 valid = true;
1119 long_hpd = true;
1120 } else if (short_port_mask & (1 << i))
1121 valid = true;
1122
1123 if (valid) {
1124 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125 if (ret == true) {
1126 /* if we get true fallback to old school hpd */
1127 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128 }
1129 }
1130 }
1131
1132 if (old_bits) {
1133 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134 dev_priv->hpd_event_bits |= old_bits;
1135 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136 schedule_work(&dev_priv->hotplug_work);
1137 }
1138 }
1139
1140 /*
1141 * Handle hotplug events outside the interrupt handler proper.
1142 */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
i915_hotplug_work_func(struct work_struct * work)1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147 struct drm_i915_private *dev_priv =
1148 container_of(work, struct drm_i915_private, hotplug_work);
1149 struct drm_device *dev = dev_priv->dev;
1150 struct drm_mode_config *mode_config = &dev->mode_config;
1151 struct intel_connector *intel_connector;
1152 struct intel_encoder *intel_encoder;
1153 struct drm_connector *connector;
1154 unsigned long irqflags;
1155 bool hpd_disabled = false;
1156 bool changed = false;
1157 u32 hpd_event_bits;
1158
1159 mutex_lock(&mode_config->mutex);
1160 DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161
1162 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163
1164 hpd_event_bits = dev_priv->hpd_event_bits;
1165 dev_priv->hpd_event_bits = 0;
1166 list_for_each_entry(connector, &mode_config->connector_list, head) {
1167 intel_connector = to_intel_connector(connector);
1168 if (!intel_connector->encoder)
1169 continue;
1170 intel_encoder = intel_connector->encoder;
1171 if (intel_encoder->hpd_pin > HPD_NONE &&
1172 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173 connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174 DRM_INFO("HPD interrupt storm detected on connector %s: "
1175 "switching from hotplug detection to polling\n",
1176 connector->name);
1177 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179 | DRM_CONNECTOR_POLL_DISCONNECT;
1180 hpd_disabled = true;
1181 }
1182 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184 connector->name, intel_encoder->hpd_pin);
1185 }
1186 }
1187 /* if there were no outputs to poll, poll was disabled,
1188 * therefore make sure it's enabled when disabling HPD on
1189 * some connectors */
1190 if (hpd_disabled) {
1191 drm_kms_helper_poll_enable(dev);
1192 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194 }
1195
1196 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197
1198 list_for_each_entry(connector, &mode_config->connector_list, head) {
1199 intel_connector = to_intel_connector(connector);
1200 if (!intel_connector->encoder)
1201 continue;
1202 intel_encoder = intel_connector->encoder;
1203 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204 if (intel_encoder->hot_plug)
1205 intel_encoder->hot_plug(intel_encoder);
1206 if (intel_hpd_irq_event(dev, connector))
1207 changed = true;
1208 }
1209 }
1210 mutex_unlock(&mode_config->mutex);
1211
1212 if (changed)
1213 drm_kms_helper_hotplug_event(dev);
1214 }
1215
ironlake_rps_change_irq_handler(struct drm_device * dev)1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218 struct drm_i915_private *dev_priv = dev->dev_private;
1219 u32 busy_up, busy_down, max_avg, min_avg;
1220 u8 new_delay;
1221
1222 spin_lock(&mchdev_lock);
1223
1224 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225
1226 new_delay = dev_priv->ips.cur_delay;
1227
1228 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229 busy_up = I915_READ(RCPREVBSYTUPAVG);
1230 busy_down = I915_READ(RCPREVBSYTDNAVG);
1231 max_avg = I915_READ(RCBMAXAVG);
1232 min_avg = I915_READ(RCBMINAVG);
1233
1234 /* Handle RCS change request from hw */
1235 if (busy_up > max_avg) {
1236 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237 new_delay = dev_priv->ips.cur_delay - 1;
1238 if (new_delay < dev_priv->ips.max_delay)
1239 new_delay = dev_priv->ips.max_delay;
1240 } else if (busy_down < min_avg) {
1241 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242 new_delay = dev_priv->ips.cur_delay + 1;
1243 if (new_delay > dev_priv->ips.min_delay)
1244 new_delay = dev_priv->ips.min_delay;
1245 }
1246
1247 if (ironlake_set_drps(dev, new_delay))
1248 dev_priv->ips.cur_delay = new_delay;
1249
1250 spin_unlock(&mchdev_lock);
1251
1252 return;
1253 }
1254
notify_ring(struct drm_device * dev,struct intel_engine_cs * ring)1255 static void notify_ring(struct drm_device *dev,
1256 struct intel_engine_cs *ring)
1257 {
1258 if (!intel_ring_initialized(ring))
1259 return;
1260
1261 trace_i915_gem_request_complete(ring);
1262
1263 if (drm_core_check_feature(dev, DRIVER_MODESET))
1264 intel_notify_mmio_flip(ring);
1265
1266 wake_up_all(&ring->irq_queue);
1267 i915_queue_hangcheck(dev);
1268 }
1269
vlv_c0_residency(struct drm_i915_private * dev_priv,struct intel_rps_ei * rps_ei)1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271 struct intel_rps_ei *rps_ei)
1272 {
1273 u32 cz_ts, cz_freq_khz;
1274 u32 render_count, media_count;
1275 u32 elapsed_render, elapsed_media, elapsed_time;
1276 u32 residency = 0;
1277
1278 cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279 cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280
1281 render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282 media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283
1284 if (rps_ei->cz_clock == 0) {
1285 rps_ei->cz_clock = cz_ts;
1286 rps_ei->render_c0 = render_count;
1287 rps_ei->media_c0 = media_count;
1288
1289 return dev_priv->rps.cur_freq;
1290 }
1291
1292 elapsed_time = cz_ts - rps_ei->cz_clock;
1293 rps_ei->cz_clock = cz_ts;
1294
1295 elapsed_render = render_count - rps_ei->render_c0;
1296 rps_ei->render_c0 = render_count;
1297
1298 elapsed_media = media_count - rps_ei->media_c0;
1299 rps_ei->media_c0 = media_count;
1300
1301 /* Convert all the counters into common unit of milli sec */
1302 elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303 elapsed_render /= cz_freq_khz;
1304 elapsed_media /= cz_freq_khz;
1305
1306 /*
1307 * Calculate overall C0 residency percentage
1308 * only if elapsed time is non zero
1309 */
1310 if (elapsed_time) {
1311 residency =
1312 ((max(elapsed_render, elapsed_media) * 100)
1313 / elapsed_time);
1314 }
1315
1316 return residency;
1317 }
1318
1319 /**
1320 * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321 * busy-ness calculated from C0 counters of render & media power wells
1322 * @dev_priv: DRM device private
1323 *
1324 */
vlv_calc_delay_from_C0_counters(struct drm_i915_private * dev_priv)1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327 u32 residency_C0_up = 0, residency_C0_down = 0;
1328 int new_delay, adj;
1329
1330 dev_priv->rps.ei_interrupt_count++;
1331
1332 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333
1334
1335 if (dev_priv->rps.up_ei.cz_clock == 0) {
1336 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338 return dev_priv->rps.cur_freq;
1339 }
1340
1341
1342 /*
1343 * To down throttle, C0 residency should be less than down threshold
1344 * for continous EI intervals. So calculate down EI counters
1345 * once in VLV_INT_COUNT_FOR_DOWN_EI
1346 */
1347 if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348
1349 dev_priv->rps.ei_interrupt_count = 0;
1350
1351 residency_C0_down = vlv_c0_residency(dev_priv,
1352 &dev_priv->rps.down_ei);
1353 } else {
1354 residency_C0_up = vlv_c0_residency(dev_priv,
1355 &dev_priv->rps.up_ei);
1356 }
1357
1358 new_delay = dev_priv->rps.cur_freq;
1359
1360 adj = dev_priv->rps.last_adj;
1361 /* C0 residency is greater than UP threshold. Increase Frequency */
1362 if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363 if (adj > 0)
1364 adj *= 2;
1365 else
1366 adj = 1;
1367
1368 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369 new_delay = dev_priv->rps.cur_freq + adj;
1370
1371 /*
1372 * For better performance, jump directly
1373 * to RPe if we're below it.
1374 */
1375 if (new_delay < dev_priv->rps.efficient_freq)
1376 new_delay = dev_priv->rps.efficient_freq;
1377
1378 } else if (!dev_priv->rps.ei_interrupt_count &&
1379 (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380 if (adj < 0)
1381 adj *= 2;
1382 else
1383 adj = -1;
1384 /*
1385 * This means, C0 residency is less than down threshold over
1386 * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387 */
1388 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389 new_delay = dev_priv->rps.cur_freq + adj;
1390 }
1391
1392 return new_delay;
1393 }
1394
gen6_pm_rps_work(struct work_struct * work)1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397 struct drm_i915_private *dev_priv =
1398 container_of(work, struct drm_i915_private, rps.work);
1399 u32 pm_iir;
1400 int new_delay, adj;
1401
1402 spin_lock_irq(&dev_priv->irq_lock);
1403 pm_iir = dev_priv->rps.pm_iir;
1404 dev_priv->rps.pm_iir = 0;
1405 if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407 else {
1408 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1409 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410 }
1411 spin_unlock_irq(&dev_priv->irq_lock);
1412
1413 /* Make sure we didn't queue anything we're not going to process. */
1414 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415
1416 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417 return;
1418
1419 mutex_lock(&dev_priv->rps.hw_lock);
1420
1421 adj = dev_priv->rps.last_adj;
1422 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423 if (adj > 0)
1424 adj *= 2;
1425 else {
1426 /* CHV needs even encode values */
1427 adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428 }
1429 new_delay = dev_priv->rps.cur_freq + adj;
1430
1431 /*
1432 * For better performance, jump directly
1433 * to RPe if we're below it.
1434 */
1435 if (new_delay < dev_priv->rps.efficient_freq)
1436 new_delay = dev_priv->rps.efficient_freq;
1437 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439 new_delay = dev_priv->rps.efficient_freq;
1440 else
1441 new_delay = dev_priv->rps.min_freq_softlimit;
1442 adj = 0;
1443 } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446 if (adj < 0)
1447 adj *= 2;
1448 else {
1449 /* CHV needs even encode values */
1450 adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451 }
1452 new_delay = dev_priv->rps.cur_freq + adj;
1453 } else { /* unknown event */
1454 new_delay = dev_priv->rps.cur_freq;
1455 }
1456
1457 /* sysfs frequency interfaces may have snuck in while servicing the
1458 * interrupt
1459 */
1460 new_delay = clamp_t(int, new_delay,
1461 dev_priv->rps.min_freq_softlimit,
1462 dev_priv->rps.max_freq_softlimit);
1463
1464 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465
1466 if (IS_VALLEYVIEW(dev_priv->dev))
1467 valleyview_set_rps(dev_priv->dev, new_delay);
1468 else
1469 gen6_set_rps(dev_priv->dev, new_delay);
1470
1471 mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473
1474
1475 /**
1476 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477 * occurred.
1478 * @work: workqueue struct
1479 *
1480 * Doesn't actually do anything except notify userspace. As a consequence of
1481 * this event, userspace should try to remap the bad rows since statistically
1482 * it is likely the same row is more likely to go bad again.
1483 */
ivybridge_parity_work(struct work_struct * work)1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486 struct drm_i915_private *dev_priv =
1487 container_of(work, struct drm_i915_private, l3_parity.error_work);
1488 u32 error_status, row, bank, subbank;
1489 char *parity_event[6];
1490 uint32_t misccpctl;
1491 unsigned long flags;
1492 uint8_t slice = 0;
1493
1494 /* We must turn off DOP level clock gating to access the L3 registers.
1495 * In order to prevent a get/put style interface, acquire struct mutex
1496 * any time we access those registers.
1497 */
1498 mutex_lock(&dev_priv->dev->struct_mutex);
1499
1500 /* If we've screwed up tracking, just let the interrupt fire again */
1501 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502 goto out;
1503
1504 misccpctl = I915_READ(GEN7_MISCCPCTL);
1505 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506 POSTING_READ(GEN7_MISCCPCTL);
1507
1508 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509 u32 reg;
1510
1511 slice--;
1512 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513 break;
1514
1515 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516
1517 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518
1519 error_status = I915_READ(reg);
1520 row = GEN7_PARITY_ERROR_ROW(error_status);
1521 bank = GEN7_PARITY_ERROR_BANK(error_status);
1522 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523
1524 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525 POSTING_READ(reg);
1526
1527 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532 parity_event[5] = NULL;
1533
1534 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535 KOBJ_CHANGE, parity_event);
1536
1537 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538 slice, row, bank, subbank);
1539
1540 kfree(parity_event[4]);
1541 kfree(parity_event[3]);
1542 kfree(parity_event[2]);
1543 kfree(parity_event[1]);
1544 }
1545
1546 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547
1548 out:
1549 WARN_ON(dev_priv->l3_parity.which_slice);
1550 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553
1554 mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556
ivybridge_parity_error_irq_handler(struct drm_device * dev,u32 iir)1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560
1561 if (!HAS_L3_DPF(dev))
1562 return;
1563
1564 spin_lock(&dev_priv->irq_lock);
1565 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566 spin_unlock(&dev_priv->irq_lock);
1567
1568 iir &= GT_PARITY_ERROR(dev);
1569 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570 dev_priv->l3_parity.which_slice |= 1 << 1;
1571
1572 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573 dev_priv->l3_parity.which_slice |= 1 << 0;
1574
1575 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577
ilk_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579 struct drm_i915_private *dev_priv,
1580 u32 gt_iir)
1581 {
1582 if (gt_iir &
1583 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584 notify_ring(dev, &dev_priv->ring[RCS]);
1585 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586 notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588
snb_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 gt_iir)1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590 struct drm_i915_private *dev_priv,
1591 u32 gt_iir)
1592 {
1593
1594 if (gt_iir &
1595 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596 notify_ring(dev, &dev_priv->ring[RCS]);
1597 if (gt_iir & GT_BSD_USER_INTERRUPT)
1598 notify_ring(dev, &dev_priv->ring[VCS]);
1599 if (gt_iir & GT_BLT_USER_INTERRUPT)
1600 notify_ring(dev, &dev_priv->ring[BCS]);
1601
1602 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603 GT_BSD_CS_ERROR_INTERRUPT |
1604 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606 gt_iir);
1607 }
1608
1609 if (gt_iir & GT_PARITY_ERROR(dev))
1610 ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612
gen8_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616 return;
1617
1618 spin_lock(&dev_priv->irq_lock);
1619 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620 gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621 spin_unlock(&dev_priv->irq_lock);
1622
1623 queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625
gen8_gt_irq_handler(struct drm_device * dev,struct drm_i915_private * dev_priv,u32 master_ctl)1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627 struct drm_i915_private *dev_priv,
1628 u32 master_ctl)
1629 {
1630 struct intel_engine_cs *ring;
1631 u32 rcs, bcs, vcs;
1632 uint32_t tmp = 0;
1633 irqreturn_t ret = IRQ_NONE;
1634
1635 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1636 tmp = I915_READ(GEN8_GT_IIR(0));
1637 if (tmp) {
1638 I915_WRITE(GEN8_GT_IIR(0), tmp);
1639 ret = IRQ_HANDLED;
1640
1641 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1642 ring = &dev_priv->ring[RCS];
1643 if (rcs & GT_RENDER_USER_INTERRUPT)
1644 notify_ring(dev, ring);
1645 if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1646 intel_execlists_handle_ctx_events(ring);
1647
1648 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1649 ring = &dev_priv->ring[BCS];
1650 if (bcs & GT_RENDER_USER_INTERRUPT)
1651 notify_ring(dev, ring);
1652 if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653 intel_execlists_handle_ctx_events(ring);
1654 } else
1655 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1656 }
1657
1658 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1659 tmp = I915_READ(GEN8_GT_IIR(1));
1660 if (tmp) {
1661 I915_WRITE(GEN8_GT_IIR(1), tmp);
1662 ret = IRQ_HANDLED;
1663
1664 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1665 ring = &dev_priv->ring[VCS];
1666 if (vcs & GT_RENDER_USER_INTERRUPT)
1667 notify_ring(dev, ring);
1668 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1669 intel_execlists_handle_ctx_events(ring);
1670
1671 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1672 ring = &dev_priv->ring[VCS2];
1673 if (vcs & GT_RENDER_USER_INTERRUPT)
1674 notify_ring(dev, ring);
1675 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1676 intel_execlists_handle_ctx_events(ring);
1677 } else
1678 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1679 }
1680
1681 if (master_ctl & GEN8_GT_PM_IRQ) {
1682 tmp = I915_READ(GEN8_GT_IIR(2));
1683 if (tmp & dev_priv->pm_rps_events) {
1684 I915_WRITE(GEN8_GT_IIR(2),
1685 tmp & dev_priv->pm_rps_events);
1686 ret = IRQ_HANDLED;
1687 gen8_rps_irq_handler(dev_priv, tmp);
1688 } else
1689 DRM_ERROR("The master control interrupt lied (PM)!\n");
1690 }
1691
1692 if (master_ctl & GEN8_GT_VECS_IRQ) {
1693 tmp = I915_READ(GEN8_GT_IIR(3));
1694 if (tmp) {
1695 I915_WRITE(GEN8_GT_IIR(3), tmp);
1696 ret = IRQ_HANDLED;
1697
1698 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1699 ring = &dev_priv->ring[VECS];
1700 if (vcs & GT_RENDER_USER_INTERRUPT)
1701 notify_ring(dev, ring);
1702 if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1703 intel_execlists_handle_ctx_events(ring);
1704 } else
1705 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1706 }
1707
1708 return ret;
1709 }
1710
1711 #define HPD_STORM_DETECT_PERIOD 1000
1712 #define HPD_STORM_THRESHOLD 5
1713
pch_port_to_hotplug_shift(enum port port)1714 static int pch_port_to_hotplug_shift(enum port port)
1715 {
1716 switch (port) {
1717 case PORT_A:
1718 case PORT_E:
1719 default:
1720 return -1;
1721 case PORT_B:
1722 return 0;
1723 case PORT_C:
1724 return 8;
1725 case PORT_D:
1726 return 16;
1727 }
1728 }
1729
i915_port_to_hotplug_shift(enum port port)1730 static int i915_port_to_hotplug_shift(enum port port)
1731 {
1732 switch (port) {
1733 case PORT_A:
1734 case PORT_E:
1735 default:
1736 return -1;
1737 case PORT_B:
1738 return 17;
1739 case PORT_C:
1740 return 19;
1741 case PORT_D:
1742 return 21;
1743 }
1744 }
1745
get_port_from_pin(enum hpd_pin pin)1746 static inline enum port get_port_from_pin(enum hpd_pin pin)
1747 {
1748 switch (pin) {
1749 case HPD_PORT_B:
1750 return PORT_B;
1751 case HPD_PORT_C:
1752 return PORT_C;
1753 case HPD_PORT_D:
1754 return PORT_D;
1755 default:
1756 return PORT_A; /* no hpd */
1757 }
1758 }
1759
intel_hpd_irq_handler(struct drm_device * dev,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 * hpd)1760 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1761 u32 hotplug_trigger,
1762 u32 dig_hotplug_reg,
1763 const u32 *hpd)
1764 {
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 int i;
1767 enum port port;
1768 bool storm_detected = false;
1769 bool queue_dig = false, queue_hp = false;
1770 u32 dig_shift;
1771 u32 dig_port_mask = 0;
1772
1773 if (!hotplug_trigger)
1774 return;
1775
1776 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1777 hotplug_trigger, dig_hotplug_reg);
1778
1779 spin_lock(&dev_priv->irq_lock);
1780 for (i = 1; i < HPD_NUM_PINS; i++) {
1781 if (!(hpd[i] & hotplug_trigger))
1782 continue;
1783
1784 port = get_port_from_pin(i);
1785 if (port && dev_priv->hpd_irq_port[port]) {
1786 bool long_hpd;
1787
1788 if (HAS_PCH_SPLIT(dev)) {
1789 dig_shift = pch_port_to_hotplug_shift(port);
1790 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1791 } else {
1792 dig_shift = i915_port_to_hotplug_shift(port);
1793 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1794 }
1795
1796 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1797 port_name(port),
1798 long_hpd ? "long" : "short");
1799 /* for long HPD pulses we want to have the digital queue happen,
1800 but we still want HPD storm detection to function. */
1801 if (long_hpd) {
1802 dev_priv->long_hpd_port_mask |= (1 << port);
1803 dig_port_mask |= hpd[i];
1804 } else {
1805 /* for short HPD just trigger the digital queue */
1806 dev_priv->short_hpd_port_mask |= (1 << port);
1807 hotplug_trigger &= ~hpd[i];
1808 }
1809 queue_dig = true;
1810 }
1811 }
1812
1813 for (i = 1; i < HPD_NUM_PINS; i++) {
1814 if (hpd[i] & hotplug_trigger &&
1815 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1816 /*
1817 * On GMCH platforms the interrupt mask bits only
1818 * prevent irq generation, not the setting of the
1819 * hotplug bits itself. So only WARN about unexpected
1820 * interrupts on saner platforms.
1821 */
1822 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1823 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1824 hotplug_trigger, i, hpd[i]);
1825
1826 continue;
1827 }
1828
1829 if (!(hpd[i] & hotplug_trigger) ||
1830 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1831 continue;
1832
1833 if (!(dig_port_mask & hpd[i])) {
1834 dev_priv->hpd_event_bits |= (1 << i);
1835 queue_hp = true;
1836 }
1837
1838 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1839 dev_priv->hpd_stats[i].hpd_last_jiffies
1840 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1841 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1842 dev_priv->hpd_stats[i].hpd_cnt = 0;
1843 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1844 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1845 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1846 dev_priv->hpd_event_bits &= ~(1 << i);
1847 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1848 storm_detected = true;
1849 } else {
1850 dev_priv->hpd_stats[i].hpd_cnt++;
1851 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1852 dev_priv->hpd_stats[i].hpd_cnt);
1853 }
1854 }
1855
1856 if (storm_detected)
1857 dev_priv->display.hpd_irq_setup(dev);
1858 spin_unlock(&dev_priv->irq_lock);
1859
1860 /*
1861 * Our hotplug handler can grab modeset locks (by calling down into the
1862 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1863 * queue for otherwise the flush_work in the pageflip code will
1864 * deadlock.
1865 */
1866 if (queue_dig)
1867 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1868 if (queue_hp)
1869 schedule_work(&dev_priv->hotplug_work);
1870 }
1871
gmbus_irq_handler(struct drm_device * dev)1872 static void gmbus_irq_handler(struct drm_device *dev)
1873 {
1874 struct drm_i915_private *dev_priv = dev->dev_private;
1875
1876 wake_up_all(&dev_priv->gmbus_wait_queue);
1877 }
1878
dp_aux_irq_handler(struct drm_device * dev)1879 static void dp_aux_irq_handler(struct drm_device *dev)
1880 {
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882
1883 wake_up_all(&dev_priv->gmbus_wait_queue);
1884 }
1885
1886 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1888 uint32_t crc0, uint32_t crc1,
1889 uint32_t crc2, uint32_t crc3,
1890 uint32_t crc4)
1891 {
1892 struct drm_i915_private *dev_priv = dev->dev_private;
1893 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1894 struct intel_pipe_crc_entry *entry;
1895 int head, tail;
1896
1897 spin_lock(&pipe_crc->lock);
1898
1899 if (!pipe_crc->entries) {
1900 spin_unlock(&pipe_crc->lock);
1901 DRM_ERROR("spurious interrupt\n");
1902 return;
1903 }
1904
1905 head = pipe_crc->head;
1906 tail = pipe_crc->tail;
1907
1908 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1909 spin_unlock(&pipe_crc->lock);
1910 DRM_ERROR("CRC buffer overflowing\n");
1911 return;
1912 }
1913
1914 entry = &pipe_crc->entries[head];
1915
1916 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1917 entry->crc[0] = crc0;
1918 entry->crc[1] = crc1;
1919 entry->crc[2] = crc2;
1920 entry->crc[3] = crc3;
1921 entry->crc[4] = crc4;
1922
1923 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1924 pipe_crc->head = head;
1925
1926 spin_unlock(&pipe_crc->lock);
1927
1928 wake_up_interruptible(&pipe_crc->wq);
1929 }
1930 #else
1931 static inline void
display_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe,uint32_t crc0,uint32_t crc1,uint32_t crc2,uint32_t crc3,uint32_t crc4)1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1933 uint32_t crc0, uint32_t crc1,
1934 uint32_t crc2, uint32_t crc3,
1935 uint32_t crc4) {}
1936 #endif
1937
1938
hsw_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1940 {
1941 struct drm_i915_private *dev_priv = dev->dev_private;
1942
1943 display_pipe_crc_irq_handler(dev, pipe,
1944 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1945 0, 0, 0, 0);
1946 }
1947
ivb_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951
1952 display_pipe_crc_irq_handler(dev, pipe,
1953 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1954 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1955 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1956 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1957 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1958 }
1959
i9xx_pipe_crc_irq_handler(struct drm_device * dev,enum pipe pipe)1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1961 {
1962 struct drm_i915_private *dev_priv = dev->dev_private;
1963 uint32_t res1, res2;
1964
1965 if (INTEL_INFO(dev)->gen >= 3)
1966 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1967 else
1968 res1 = 0;
1969
1970 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1971 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1972 else
1973 res2 = 0;
1974
1975 display_pipe_crc_irq_handler(dev, pipe,
1976 I915_READ(PIPE_CRC_RES_RED(pipe)),
1977 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1978 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1979 res1, res2);
1980 }
1981
1982 /* The RPS events need forcewake, so we add them to a work queue and mask their
1983 * IMR bits until the work is done. Other interrupts can be processed without
1984 * the work queue. */
gen6_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1985 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1986 {
1987 if (pm_iir & dev_priv->pm_rps_events) {
1988 spin_lock(&dev_priv->irq_lock);
1989 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1990 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1991 spin_unlock(&dev_priv->irq_lock);
1992
1993 queue_work(dev_priv->wq, &dev_priv->rps.work);
1994 }
1995
1996 if (HAS_VEBOX(dev_priv->dev)) {
1997 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1998 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1999
2000 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
2001 i915_handle_error(dev_priv->dev, false,
2002 "VEBOX CS error interrupt 0x%08x",
2003 pm_iir);
2004 }
2005 }
2006 }
2007
intel_pipe_handle_vblank(struct drm_device * dev,enum pipe pipe)2008 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
2009 {
2010 if (!drm_handle_vblank(dev, pipe))
2011 return false;
2012
2013 return true;
2014 }
2015
valleyview_pipestat_irq_handler(struct drm_device * dev,u32 iir)2016 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2017 {
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019 u32 pipe_stats[I915_MAX_PIPES] = { };
2020 int pipe;
2021
2022 spin_lock(&dev_priv->irq_lock);
2023 for_each_pipe(dev_priv, pipe) {
2024 int reg;
2025 u32 mask, iir_bit = 0;
2026
2027 /*
2028 * PIPESTAT bits get signalled even when the interrupt is
2029 * disabled with the mask bits, and some of the status bits do
2030 * not generate interrupts at all (like the underrun bit). Hence
2031 * we need to be careful that we only handle what we want to
2032 * handle.
2033 */
2034 mask = 0;
2035 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2036 mask |= PIPE_FIFO_UNDERRUN_STATUS;
2037
2038 switch (pipe) {
2039 case PIPE_A:
2040 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2041 break;
2042 case PIPE_B:
2043 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2044 break;
2045 case PIPE_C:
2046 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2047 break;
2048 }
2049 if (iir & iir_bit)
2050 mask |= dev_priv->pipestat_irq_mask[pipe];
2051
2052 if (!mask)
2053 continue;
2054
2055 reg = PIPESTAT(pipe);
2056 mask |= PIPESTAT_INT_ENABLE_MASK;
2057 pipe_stats[pipe] = I915_READ(reg) & mask;
2058
2059 /*
2060 * Clear the PIPE*STAT regs before the IIR
2061 */
2062 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2063 PIPESTAT_INT_STATUS_MASK))
2064 I915_WRITE(reg, pipe_stats[pipe]);
2065 }
2066 spin_unlock(&dev_priv->irq_lock);
2067
2068 for_each_pipe(dev_priv, pipe) {
2069 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2070 intel_pipe_handle_vblank(dev, pipe))
2071 intel_check_page_flip(dev, pipe);
2072
2073 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2074 intel_prepare_page_flip(dev, pipe);
2075 intel_finish_page_flip(dev, pipe);
2076 }
2077
2078 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2079 i9xx_pipe_crc_irq_handler(dev, pipe);
2080
2081 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2082 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2083 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2084 }
2085
2086 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2087 gmbus_irq_handler(dev);
2088 }
2089
i9xx_hpd_irq_handler(struct drm_device * dev)2090 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2091 {
2092 struct drm_i915_private *dev_priv = dev->dev_private;
2093 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2094
2095 if (hotplug_status) {
2096 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2097 /*
2098 * Make sure hotplug status is cleared before we clear IIR, or else we
2099 * may miss hotplug events.
2100 */
2101 POSTING_READ(PORT_HOTPLUG_STAT);
2102
2103 if (IS_G4X(dev)) {
2104 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2105
2106 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2107 } else {
2108 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2109
2110 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2111 }
2112
2113 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2114 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2115 dp_aux_irq_handler(dev);
2116 }
2117 }
2118
valleyview_irq_handler(int irq,void * arg)2119 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2120 {
2121 struct drm_device *dev = arg;
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 u32 iir, gt_iir, pm_iir;
2124 irqreturn_t ret = IRQ_NONE;
2125
2126 if (!intel_irqs_enabled(dev_priv))
2127 return IRQ_NONE;
2128
2129 while (true) {
2130 /* Find, clear, then process each source of interrupt */
2131
2132 gt_iir = I915_READ(GTIIR);
2133 if (gt_iir)
2134 I915_WRITE(GTIIR, gt_iir);
2135
2136 pm_iir = I915_READ(GEN6_PMIIR);
2137 if (pm_iir)
2138 I915_WRITE(GEN6_PMIIR, pm_iir);
2139
2140 iir = I915_READ(VLV_IIR);
2141 if (iir) {
2142 /* Consume port before clearing IIR or we'll miss events */
2143 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2144 i9xx_hpd_irq_handler(dev);
2145 I915_WRITE(VLV_IIR, iir);
2146 }
2147
2148 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2149 goto out;
2150
2151 ret = IRQ_HANDLED;
2152
2153 if (gt_iir)
2154 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2155 if (pm_iir)
2156 gen6_rps_irq_handler(dev_priv, pm_iir);
2157 /* Call regardless, as some status bits might not be
2158 * signalled in iir */
2159 valleyview_pipestat_irq_handler(dev, iir);
2160 }
2161
2162 out:
2163 return ret;
2164 }
2165
cherryview_irq_handler(int irq,void * arg)2166 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2167 {
2168 struct drm_device *dev = arg;
2169 struct drm_i915_private *dev_priv = dev->dev_private;
2170 u32 master_ctl, iir;
2171 irqreturn_t ret = IRQ_NONE;
2172
2173 if (!intel_irqs_enabled(dev_priv))
2174 return IRQ_NONE;
2175
2176 for (;;) {
2177 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2178 iir = I915_READ(VLV_IIR);
2179
2180 if (master_ctl == 0 && iir == 0)
2181 break;
2182
2183 ret = IRQ_HANDLED;
2184
2185 I915_WRITE(GEN8_MASTER_IRQ, 0);
2186
2187 /* Find, clear, then process each source of interrupt */
2188
2189 if (iir) {
2190 /* Consume port before clearing IIR or we'll miss events */
2191 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2192 i9xx_hpd_irq_handler(dev);
2193 I915_WRITE(VLV_IIR, iir);
2194 }
2195
2196 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2197
2198 /* Call regardless, as some status bits might not be
2199 * signalled in iir */
2200 valleyview_pipestat_irq_handler(dev, iir);
2201
2202 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2203 POSTING_READ(GEN8_MASTER_IRQ);
2204 }
2205
2206 return ret;
2207 }
2208
ibx_irq_handler(struct drm_device * dev,u32 pch_iir)2209 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2210 {
2211 struct drm_i915_private *dev_priv = dev->dev_private;
2212 int pipe;
2213 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2214 u32 dig_hotplug_reg;
2215
2216 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2217 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2218
2219 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2220
2221 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2222 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2223 SDE_AUDIO_POWER_SHIFT);
2224 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2225 port_name(port));
2226 }
2227
2228 if (pch_iir & SDE_AUX_MASK)
2229 dp_aux_irq_handler(dev);
2230
2231 if (pch_iir & SDE_GMBUS)
2232 gmbus_irq_handler(dev);
2233
2234 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2235 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2236
2237 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2238 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2239
2240 if (pch_iir & SDE_POISON)
2241 DRM_ERROR("PCH poison interrupt\n");
2242
2243 if (pch_iir & SDE_FDI_MASK)
2244 for_each_pipe(dev_priv, pipe)
2245 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2246 pipe_name(pipe),
2247 I915_READ(FDI_RX_IIR(pipe)));
2248
2249 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2250 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2251
2252 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2253 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2254
2255 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2256 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2257 false))
2258 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2259
2260 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2261 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2262 false))
2263 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2264 }
2265
ivb_err_int_handler(struct drm_device * dev)2266 static void ivb_err_int_handler(struct drm_device *dev)
2267 {
2268 struct drm_i915_private *dev_priv = dev->dev_private;
2269 u32 err_int = I915_READ(GEN7_ERR_INT);
2270 enum pipe pipe;
2271
2272 if (err_int & ERR_INT_POISON)
2273 DRM_ERROR("Poison interrupt\n");
2274
2275 for_each_pipe(dev_priv, pipe) {
2276 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2277 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2278 false))
2279 DRM_ERROR("Pipe %c FIFO underrun\n",
2280 pipe_name(pipe));
2281 }
2282
2283 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2284 if (IS_IVYBRIDGE(dev))
2285 ivb_pipe_crc_irq_handler(dev, pipe);
2286 else
2287 hsw_pipe_crc_irq_handler(dev, pipe);
2288 }
2289 }
2290
2291 I915_WRITE(GEN7_ERR_INT, err_int);
2292 }
2293
cpt_serr_int_handler(struct drm_device * dev)2294 static void cpt_serr_int_handler(struct drm_device *dev)
2295 {
2296 struct drm_i915_private *dev_priv = dev->dev_private;
2297 u32 serr_int = I915_READ(SERR_INT);
2298
2299 if (serr_int & SERR_INT_POISON)
2300 DRM_ERROR("PCH poison interrupt\n");
2301
2302 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2303 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2304 false))
2305 DRM_ERROR("PCH transcoder A FIFO underrun\n");
2306
2307 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2308 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2309 false))
2310 DRM_ERROR("PCH transcoder B FIFO underrun\n");
2311
2312 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2313 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2314 false))
2315 DRM_ERROR("PCH transcoder C FIFO underrun\n");
2316
2317 I915_WRITE(SERR_INT, serr_int);
2318 }
2319
cpt_irq_handler(struct drm_device * dev,u32 pch_iir)2320 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2321 {
2322 struct drm_i915_private *dev_priv = dev->dev_private;
2323 int pipe;
2324 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2325 u32 dig_hotplug_reg;
2326
2327 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2328 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2329
2330 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2331
2332 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2333 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2334 SDE_AUDIO_POWER_SHIFT_CPT);
2335 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2336 port_name(port));
2337 }
2338
2339 if (pch_iir & SDE_AUX_MASK_CPT)
2340 dp_aux_irq_handler(dev);
2341
2342 if (pch_iir & SDE_GMBUS_CPT)
2343 gmbus_irq_handler(dev);
2344
2345 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2346 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2347
2348 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2349 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2350
2351 if (pch_iir & SDE_FDI_MASK_CPT)
2352 for_each_pipe(dev_priv, pipe)
2353 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2354 pipe_name(pipe),
2355 I915_READ(FDI_RX_IIR(pipe)));
2356
2357 if (pch_iir & SDE_ERROR_CPT)
2358 cpt_serr_int_handler(dev);
2359 }
2360
ilk_display_irq_handler(struct drm_device * dev,u32 de_iir)2361 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2362 {
2363 struct drm_i915_private *dev_priv = dev->dev_private;
2364 enum pipe pipe;
2365
2366 if (de_iir & DE_AUX_CHANNEL_A)
2367 dp_aux_irq_handler(dev);
2368
2369 if (de_iir & DE_GSE)
2370 intel_opregion_asle_intr(dev);
2371
2372 if (de_iir & DE_POISON)
2373 DRM_ERROR("Poison interrupt\n");
2374
2375 for_each_pipe(dev_priv, pipe) {
2376 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2377 intel_pipe_handle_vblank(dev, pipe))
2378 intel_check_page_flip(dev, pipe);
2379
2380 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2381 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2382 DRM_ERROR("Pipe %c FIFO underrun\n",
2383 pipe_name(pipe));
2384
2385 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2386 i9xx_pipe_crc_irq_handler(dev, pipe);
2387
2388 /* plane/pipes map 1:1 on ilk+ */
2389 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2390 intel_prepare_page_flip(dev, pipe);
2391 intel_finish_page_flip_plane(dev, pipe);
2392 }
2393 }
2394
2395 /* check event from PCH */
2396 if (de_iir & DE_PCH_EVENT) {
2397 u32 pch_iir = I915_READ(SDEIIR);
2398
2399 if (HAS_PCH_CPT(dev))
2400 cpt_irq_handler(dev, pch_iir);
2401 else
2402 ibx_irq_handler(dev, pch_iir);
2403
2404 /* should clear PCH hotplug event before clear CPU irq */
2405 I915_WRITE(SDEIIR, pch_iir);
2406 }
2407
2408 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2409 ironlake_rps_change_irq_handler(dev);
2410 }
2411
ivb_display_irq_handler(struct drm_device * dev,u32 de_iir)2412 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2413 {
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 enum pipe pipe;
2416
2417 if (de_iir & DE_ERR_INT_IVB)
2418 ivb_err_int_handler(dev);
2419
2420 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2421 dp_aux_irq_handler(dev);
2422
2423 if (de_iir & DE_GSE_IVB)
2424 intel_opregion_asle_intr(dev);
2425
2426 for_each_pipe(dev_priv, pipe) {
2427 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2428 intel_pipe_handle_vblank(dev, pipe))
2429 intel_check_page_flip(dev, pipe);
2430
2431 /* plane/pipes map 1:1 on ilk+ */
2432 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2433 intel_prepare_page_flip(dev, pipe);
2434 intel_finish_page_flip_plane(dev, pipe);
2435 }
2436 }
2437
2438 /* check event from PCH */
2439 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2440 u32 pch_iir = I915_READ(SDEIIR);
2441
2442 cpt_irq_handler(dev, pch_iir);
2443
2444 /* clear PCH hotplug event before clear CPU irq */
2445 I915_WRITE(SDEIIR, pch_iir);
2446 }
2447 }
2448
2449 /*
2450 * To handle irqs with the minimum potential races with fresh interrupts, we:
2451 * 1 - Disable Master Interrupt Control.
2452 * 2 - Find the source(s) of the interrupt.
2453 * 3 - Clear the Interrupt Identity bits (IIR).
2454 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2455 * 5 - Re-enable Master Interrupt Control.
2456 */
ironlake_irq_handler(int irq,void * arg)2457 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2458 {
2459 struct drm_device *dev = arg;
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2462 irqreturn_t ret = IRQ_NONE;
2463
2464 if (!intel_irqs_enabled(dev_priv))
2465 return IRQ_NONE;
2466
2467 /* We get interrupts on unclaimed registers, so check for this before we
2468 * do any I915_{READ,WRITE}. */
2469 intel_uncore_check_errors(dev);
2470
2471 /* disable master interrupt before clearing iir */
2472 de_ier = I915_READ(DEIER);
2473 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2474 POSTING_READ(DEIER);
2475
2476 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2477 * interrupts will will be stored on its back queue, and then we'll be
2478 * able to process them after we restore SDEIER (as soon as we restore
2479 * it, we'll get an interrupt if SDEIIR still has something to process
2480 * due to its back queue). */
2481 if (!HAS_PCH_NOP(dev)) {
2482 sde_ier = I915_READ(SDEIER);
2483 I915_WRITE(SDEIER, 0);
2484 POSTING_READ(SDEIER);
2485 }
2486
2487 /* Find, clear, then process each source of interrupt */
2488
2489 gt_iir = I915_READ(GTIIR);
2490 if (gt_iir) {
2491 I915_WRITE(GTIIR, gt_iir);
2492 ret = IRQ_HANDLED;
2493 if (INTEL_INFO(dev)->gen >= 6)
2494 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2495 else
2496 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2497 }
2498
2499 de_iir = I915_READ(DEIIR);
2500 if (de_iir) {
2501 I915_WRITE(DEIIR, de_iir);
2502 ret = IRQ_HANDLED;
2503 if (INTEL_INFO(dev)->gen >= 7)
2504 ivb_display_irq_handler(dev, de_iir);
2505 else
2506 ilk_display_irq_handler(dev, de_iir);
2507 }
2508
2509 if (INTEL_INFO(dev)->gen >= 6) {
2510 u32 pm_iir = I915_READ(GEN6_PMIIR);
2511 if (pm_iir) {
2512 I915_WRITE(GEN6_PMIIR, pm_iir);
2513 ret = IRQ_HANDLED;
2514 gen6_rps_irq_handler(dev_priv, pm_iir);
2515 }
2516 }
2517
2518 I915_WRITE(DEIER, de_ier);
2519 POSTING_READ(DEIER);
2520 if (!HAS_PCH_NOP(dev)) {
2521 I915_WRITE(SDEIER, sde_ier);
2522 POSTING_READ(SDEIER);
2523 }
2524
2525 return ret;
2526 }
2527
gen8_irq_handler(int irq,void * arg)2528 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2529 {
2530 struct drm_device *dev = arg;
2531 struct drm_i915_private *dev_priv = dev->dev_private;
2532 u32 master_ctl;
2533 irqreturn_t ret = IRQ_NONE;
2534 uint32_t tmp = 0;
2535 enum pipe pipe;
2536
2537 if (!intel_irqs_enabled(dev_priv))
2538 return IRQ_NONE;
2539
2540 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2541 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2542 if (!master_ctl)
2543 return IRQ_NONE;
2544
2545 I915_WRITE(GEN8_MASTER_IRQ, 0);
2546 POSTING_READ(GEN8_MASTER_IRQ);
2547
2548 /* Find, clear, then process each source of interrupt */
2549
2550 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2551
2552 if (master_ctl & GEN8_DE_MISC_IRQ) {
2553 tmp = I915_READ(GEN8_DE_MISC_IIR);
2554 if (tmp) {
2555 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2556 ret = IRQ_HANDLED;
2557 if (tmp & GEN8_DE_MISC_GSE)
2558 intel_opregion_asle_intr(dev);
2559 else
2560 DRM_ERROR("Unexpected DE Misc interrupt\n");
2561 }
2562 else
2563 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2564 }
2565
2566 if (master_ctl & GEN8_DE_PORT_IRQ) {
2567 tmp = I915_READ(GEN8_DE_PORT_IIR);
2568 if (tmp) {
2569 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2570 ret = IRQ_HANDLED;
2571 if (tmp & GEN8_AUX_CHANNEL_A)
2572 dp_aux_irq_handler(dev);
2573 else
2574 DRM_ERROR("Unexpected DE Port interrupt\n");
2575 }
2576 else
2577 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2578 }
2579
2580 for_each_pipe(dev_priv, pipe) {
2581 uint32_t pipe_iir;
2582
2583 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2584 continue;
2585
2586 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2587 if (pipe_iir) {
2588 ret = IRQ_HANDLED;
2589 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2590 if (pipe_iir & GEN8_PIPE_VBLANK &&
2591 intel_pipe_handle_vblank(dev, pipe))
2592 intel_check_page_flip(dev, pipe);
2593
2594 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2595 intel_prepare_page_flip(dev, pipe);
2596 intel_finish_page_flip_plane(dev, pipe);
2597 }
2598
2599 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2600 hsw_pipe_crc_irq_handler(dev, pipe);
2601
2602 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2603 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2604 false))
2605 DRM_ERROR("Pipe %c FIFO underrun\n",
2606 pipe_name(pipe));
2607 }
2608
2609 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2610 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2611 pipe_name(pipe),
2612 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2613 }
2614 } else
2615 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2616 }
2617
2618 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2619 /*
2620 * FIXME(BDW): Assume for now that the new interrupt handling
2621 * scheme also closed the SDE interrupt handling race we've seen
2622 * on older pch-split platforms. But this needs testing.
2623 */
2624 u32 pch_iir = I915_READ(SDEIIR);
2625 if (pch_iir) {
2626 I915_WRITE(SDEIIR, pch_iir);
2627 ret = IRQ_HANDLED;
2628 cpt_irq_handler(dev, pch_iir);
2629 } else
2630 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2631
2632 }
2633
2634 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2635 POSTING_READ(GEN8_MASTER_IRQ);
2636
2637 return ret;
2638 }
2639
i915_error_wake_up(struct drm_i915_private * dev_priv,bool reset_completed)2640 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2641 bool reset_completed)
2642 {
2643 struct intel_engine_cs *ring;
2644 int i;
2645
2646 /*
2647 * Notify all waiters for GPU completion events that reset state has
2648 * been changed, and that they need to restart their wait after
2649 * checking for potential errors (and bail out to drop locks if there is
2650 * a gpu reset pending so that i915_error_work_func can acquire them).
2651 */
2652
2653 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2654 for_each_ring(ring, dev_priv, i)
2655 wake_up_all(&ring->irq_queue);
2656
2657 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2658 wake_up_all(&dev_priv->pending_flip_queue);
2659
2660 /*
2661 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2662 * reset state is cleared.
2663 */
2664 if (reset_completed)
2665 wake_up_all(&dev_priv->gpu_error.reset_queue);
2666 }
2667
2668 /**
2669 * i915_error_work_func - do process context error handling work
2670 * @work: work struct
2671 *
2672 * Fire an error uevent so userspace can see that a hang or error
2673 * was detected.
2674 */
i915_error_work_func(struct work_struct * work)2675 static void i915_error_work_func(struct work_struct *work)
2676 {
2677 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2678 work);
2679 struct drm_i915_private *dev_priv =
2680 container_of(error, struct drm_i915_private, gpu_error);
2681 struct drm_device *dev = dev_priv->dev;
2682 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2683 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2684 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2685 int ret;
2686
2687 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2688
2689 /*
2690 * Note that there's only one work item which does gpu resets, so we
2691 * need not worry about concurrent gpu resets potentially incrementing
2692 * error->reset_counter twice. We only need to take care of another
2693 * racing irq/hangcheck declaring the gpu dead for a second time. A
2694 * quick check for that is good enough: schedule_work ensures the
2695 * correct ordering between hang detection and this work item, and since
2696 * the reset in-progress bit is only ever set by code outside of this
2697 * work we don't need to worry about any other races.
2698 */
2699 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2700 DRM_DEBUG_DRIVER("resetting chip\n");
2701 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2702 reset_event);
2703
2704 /*
2705 * In most cases it's guaranteed that we get here with an RPM
2706 * reference held, for example because there is a pending GPU
2707 * request that won't finish until the reset is done. This
2708 * isn't the case at least when we get here by doing a
2709 * simulated reset via debugs, so get an RPM reference.
2710 */
2711 intel_runtime_pm_get(dev_priv);
2712 /*
2713 * All state reset _must_ be completed before we update the
2714 * reset counter, for otherwise waiters might miss the reset
2715 * pending state and not properly drop locks, resulting in
2716 * deadlocks with the reset work.
2717 */
2718 ret = i915_reset(dev);
2719
2720 intel_display_handle_reset(dev);
2721
2722 intel_runtime_pm_put(dev_priv);
2723
2724 if (ret == 0) {
2725 /*
2726 * After all the gem state is reset, increment the reset
2727 * counter and wake up everyone waiting for the reset to
2728 * complete.
2729 *
2730 * Since unlock operations are a one-sided barrier only,
2731 * we need to insert a barrier here to order any seqno
2732 * updates before
2733 * the counter increment.
2734 */
2735 smp_mb__before_atomic();
2736 atomic_inc(&dev_priv->gpu_error.reset_counter);
2737
2738 kobject_uevent_env(&dev->primary->kdev->kobj,
2739 KOBJ_CHANGE, reset_done_event);
2740 } else {
2741 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2742 }
2743
2744 /*
2745 * Note: The wake_up also serves as a memory barrier so that
2746 * waiters see the update value of the reset counter atomic_t.
2747 */
2748 i915_error_wake_up(dev_priv, true);
2749 }
2750 }
2751
i915_report_and_clear_eir(struct drm_device * dev)2752 static void i915_report_and_clear_eir(struct drm_device *dev)
2753 {
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 uint32_t instdone[I915_NUM_INSTDONE_REG];
2756 u32 eir = I915_READ(EIR);
2757 int pipe, i;
2758
2759 if (!eir)
2760 return;
2761
2762 pr_err("render error detected, EIR: 0x%08x\n", eir);
2763
2764 i915_get_extra_instdone(dev, instdone);
2765
2766 if (IS_G4X(dev)) {
2767 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2768 u32 ipeir = I915_READ(IPEIR_I965);
2769
2770 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2771 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2772 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2773 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2774 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2775 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2776 I915_WRITE(IPEIR_I965, ipeir);
2777 POSTING_READ(IPEIR_I965);
2778 }
2779 if (eir & GM45_ERROR_PAGE_TABLE) {
2780 u32 pgtbl_err = I915_READ(PGTBL_ER);
2781 pr_err("page table error\n");
2782 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2783 I915_WRITE(PGTBL_ER, pgtbl_err);
2784 POSTING_READ(PGTBL_ER);
2785 }
2786 }
2787
2788 if (!IS_GEN2(dev)) {
2789 if (eir & I915_ERROR_PAGE_TABLE) {
2790 u32 pgtbl_err = I915_READ(PGTBL_ER);
2791 pr_err("page table error\n");
2792 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2793 I915_WRITE(PGTBL_ER, pgtbl_err);
2794 POSTING_READ(PGTBL_ER);
2795 }
2796 }
2797
2798 if (eir & I915_ERROR_MEMORY_REFRESH) {
2799 pr_err("memory refresh error:\n");
2800 for_each_pipe(dev_priv, pipe)
2801 pr_err("pipe %c stat: 0x%08x\n",
2802 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2803 /* pipestat has already been acked */
2804 }
2805 if (eir & I915_ERROR_INSTRUCTION) {
2806 pr_err("instruction error\n");
2807 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2808 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2809 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2810 if (INTEL_INFO(dev)->gen < 4) {
2811 u32 ipeir = I915_READ(IPEIR);
2812
2813 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2814 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2815 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2816 I915_WRITE(IPEIR, ipeir);
2817 POSTING_READ(IPEIR);
2818 } else {
2819 u32 ipeir = I915_READ(IPEIR_I965);
2820
2821 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2822 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2823 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2824 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2825 I915_WRITE(IPEIR_I965, ipeir);
2826 POSTING_READ(IPEIR_I965);
2827 }
2828 }
2829
2830 I915_WRITE(EIR, eir);
2831 POSTING_READ(EIR);
2832 eir = I915_READ(EIR);
2833 if (eir) {
2834 /*
2835 * some errors might have become stuck,
2836 * mask them.
2837 */
2838 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2839 I915_WRITE(EMR, I915_READ(EMR) | eir);
2840 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2841 }
2842 }
2843
2844 /**
2845 * i915_handle_error - handle an error interrupt
2846 * @dev: drm device
2847 *
2848 * Do some basic checking of regsiter state at error interrupt time and
2849 * dump it to the syslog. Also call i915_capture_error_state() to make
2850 * sure we get a record and make it available in debugfs. Fire a uevent
2851 * so userspace knows something bad happened (should trigger collection
2852 * of a ring dump etc.).
2853 */
i915_handle_error(struct drm_device * dev,bool wedged,const char * fmt,...)2854 void i915_handle_error(struct drm_device *dev, bool wedged,
2855 const char *fmt, ...)
2856 {
2857 struct drm_i915_private *dev_priv = dev->dev_private;
2858 va_list args;
2859 char error_msg[80];
2860
2861 va_start(args, fmt);
2862 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2863 va_end(args);
2864
2865 i915_capture_error_state(dev, wedged, error_msg);
2866 i915_report_and_clear_eir(dev);
2867
2868 if (wedged) {
2869 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2870 &dev_priv->gpu_error.reset_counter);
2871
2872 /*
2873 * Wakeup waiting processes so that the reset work function
2874 * i915_error_work_func doesn't deadlock trying to grab various
2875 * locks. By bumping the reset counter first, the woken
2876 * processes will see a reset in progress and back off,
2877 * releasing their locks and then wait for the reset completion.
2878 * We must do this for _all_ gpu waiters that might hold locks
2879 * that the reset work needs to acquire.
2880 *
2881 * Note: The wake_up serves as the required memory barrier to
2882 * ensure that the waiters see the updated value of the reset
2883 * counter atomic_t.
2884 */
2885 i915_error_wake_up(dev_priv, false);
2886 }
2887
2888 /*
2889 * Our reset work can grab modeset locks (since it needs to reset the
2890 * state of outstanding pagelips). Hence it must not be run on our own
2891 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2892 * code will deadlock.
2893 */
2894 schedule_work(&dev_priv->gpu_error.work);
2895 }
2896
2897 /* Called from drm generic code, passed 'crtc' which
2898 * we use as a pipe index
2899 */
i915_enable_vblank(struct drm_device * dev,int pipe)2900 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2901 {
2902 struct drm_i915_private *dev_priv = dev->dev_private;
2903 unsigned long irqflags;
2904
2905 if (!i915_pipe_enabled(dev, pipe))
2906 return -EINVAL;
2907
2908 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2909 if (INTEL_INFO(dev)->gen >= 4)
2910 i915_enable_pipestat(dev_priv, pipe,
2911 PIPE_START_VBLANK_INTERRUPT_STATUS);
2912 else
2913 i915_enable_pipestat(dev_priv, pipe,
2914 PIPE_VBLANK_INTERRUPT_STATUS);
2915 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2916
2917 return 0;
2918 }
2919
ironlake_enable_vblank(struct drm_device * dev,int pipe)2920 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2921 {
2922 struct drm_i915_private *dev_priv = dev->dev_private;
2923 unsigned long irqflags;
2924 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2925 DE_PIPE_VBLANK(pipe);
2926
2927 if (!i915_pipe_enabled(dev, pipe))
2928 return -EINVAL;
2929
2930 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2931 ironlake_enable_display_irq(dev_priv, bit);
2932 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2933
2934 return 0;
2935 }
2936
valleyview_enable_vblank(struct drm_device * dev,int pipe)2937 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2938 {
2939 struct drm_i915_private *dev_priv = dev->dev_private;
2940 unsigned long irqflags;
2941
2942 if (!i915_pipe_enabled(dev, pipe))
2943 return -EINVAL;
2944
2945 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2946 i915_enable_pipestat(dev_priv, pipe,
2947 PIPE_START_VBLANK_INTERRUPT_STATUS);
2948 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2949
2950 return 0;
2951 }
2952
gen8_enable_vblank(struct drm_device * dev,int pipe)2953 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2954 {
2955 struct drm_i915_private *dev_priv = dev->dev_private;
2956 unsigned long irqflags;
2957
2958 if (!i915_pipe_enabled(dev, pipe))
2959 return -EINVAL;
2960
2961 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2962 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2963 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2964 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2965 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2966 return 0;
2967 }
2968
2969 /* Called from drm generic code, passed 'crtc' which
2970 * we use as a pipe index
2971 */
i915_disable_vblank(struct drm_device * dev,int pipe)2972 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2973 {
2974 struct drm_i915_private *dev_priv = dev->dev_private;
2975 unsigned long irqflags;
2976
2977 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2978 i915_disable_pipestat(dev_priv, pipe,
2979 PIPE_VBLANK_INTERRUPT_STATUS |
2980 PIPE_START_VBLANK_INTERRUPT_STATUS);
2981 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2982 }
2983
ironlake_disable_vblank(struct drm_device * dev,int pipe)2984 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 unsigned long irqflags;
2988 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2989 DE_PIPE_VBLANK(pipe);
2990
2991 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2992 ironlake_disable_display_irq(dev_priv, bit);
2993 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2994 }
2995
valleyview_disable_vblank(struct drm_device * dev,int pipe)2996 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2997 {
2998 struct drm_i915_private *dev_priv = dev->dev_private;
2999 unsigned long irqflags;
3000
3001 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3002 i915_disable_pipestat(dev_priv, pipe,
3003 PIPE_START_VBLANK_INTERRUPT_STATUS);
3004 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3005 }
3006
gen8_disable_vblank(struct drm_device * dev,int pipe)3007 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
3008 {
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 unsigned long irqflags;
3011
3012 if (!i915_pipe_enabled(dev, pipe))
3013 return;
3014
3015 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3016 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3017 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3018 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3019 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3020 }
3021
3022 static u32
ring_last_seqno(struct intel_engine_cs * ring)3023 ring_last_seqno(struct intel_engine_cs *ring)
3024 {
3025 return list_entry(ring->request_list.prev,
3026 struct drm_i915_gem_request, list)->seqno;
3027 }
3028
3029 static bool
ring_idle(struct intel_engine_cs * ring,u32 seqno)3030 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3031 {
3032 return (list_empty(&ring->request_list) ||
3033 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3034 }
3035
3036 static bool
ipehr_is_semaphore_wait(struct drm_device * dev,u32 ipehr)3037 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3038 {
3039 if (INTEL_INFO(dev)->gen >= 8) {
3040 return (ipehr >> 23) == 0x1c;
3041 } else {
3042 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3043 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3044 MI_SEMAPHORE_REGISTER);
3045 }
3046 }
3047
3048 static struct intel_engine_cs *
semaphore_wait_to_signaller_ring(struct intel_engine_cs * ring,u32 ipehr,u64 offset)3049 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3050 {
3051 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3052 struct intel_engine_cs *signaller;
3053 int i;
3054
3055 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3056 for_each_ring(signaller, dev_priv, i) {
3057 if (ring == signaller)
3058 continue;
3059
3060 if (offset == signaller->semaphore.signal_ggtt[ring->id])
3061 return signaller;
3062 }
3063 } else {
3064 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3065
3066 for_each_ring(signaller, dev_priv, i) {
3067 if(ring == signaller)
3068 continue;
3069
3070 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3071 return signaller;
3072 }
3073 }
3074
3075 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3076 ring->id, ipehr, offset);
3077
3078 return NULL;
3079 }
3080
3081 static struct intel_engine_cs *
semaphore_waits_for(struct intel_engine_cs * ring,u32 * seqno)3082 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3083 {
3084 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3085 u32 cmd, ipehr, head;
3086 u64 offset = 0;
3087 int i, backwards;
3088
3089 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3090 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3091 return NULL;
3092
3093 /*
3094 * HEAD is likely pointing to the dword after the actual command,
3095 * so scan backwards until we find the MBOX. But limit it to just 3
3096 * or 4 dwords depending on the semaphore wait command size.
3097 * Note that we don't care about ACTHD here since that might
3098 * point at at batch, and semaphores are always emitted into the
3099 * ringbuffer itself.
3100 */
3101 head = I915_READ_HEAD(ring) & HEAD_ADDR;
3102 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3103
3104 for (i = backwards; i; --i) {
3105 /*
3106 * Be paranoid and presume the hw has gone off into the wild -
3107 * our ring is smaller than what the hardware (and hence
3108 * HEAD_ADDR) allows. Also handles wrap-around.
3109 */
3110 head &= ring->buffer->size - 1;
3111
3112 /* This here seems to blow up */
3113 cmd = ioread32(ring->buffer->virtual_start + head);
3114 if (cmd == ipehr)
3115 break;
3116
3117 head -= 4;
3118 }
3119
3120 if (!i)
3121 return NULL;
3122
3123 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3124 if (INTEL_INFO(ring->dev)->gen >= 8) {
3125 offset = ioread32(ring->buffer->virtual_start + head + 12);
3126 offset <<= 32;
3127 offset = ioread32(ring->buffer->virtual_start + head + 8);
3128 }
3129 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3130 }
3131
semaphore_passed(struct intel_engine_cs * ring)3132 static int semaphore_passed(struct intel_engine_cs *ring)
3133 {
3134 struct drm_i915_private *dev_priv = ring->dev->dev_private;
3135 struct intel_engine_cs *signaller;
3136 u32 seqno;
3137
3138 ring->hangcheck.deadlock++;
3139
3140 signaller = semaphore_waits_for(ring, &seqno);
3141 if (signaller == NULL)
3142 return -1;
3143
3144 /* Prevent pathological recursion due to driver bugs */
3145 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3146 return -1;
3147
3148 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3149 return 1;
3150
3151 /* cursory check for an unkickable deadlock */
3152 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3153 semaphore_passed(signaller) < 0)
3154 return -1;
3155
3156 return 0;
3157 }
3158
semaphore_clear_deadlocks(struct drm_i915_private * dev_priv)3159 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3160 {
3161 struct intel_engine_cs *ring;
3162 int i;
3163
3164 for_each_ring(ring, dev_priv, i)
3165 ring->hangcheck.deadlock = 0;
3166 }
3167
3168 static enum intel_ring_hangcheck_action
ring_stuck(struct intel_engine_cs * ring,u64 acthd)3169 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3170 {
3171 struct drm_device *dev = ring->dev;
3172 struct drm_i915_private *dev_priv = dev->dev_private;
3173 u32 tmp;
3174
3175 if (acthd != ring->hangcheck.acthd) {
3176 if (acthd > ring->hangcheck.max_acthd) {
3177 ring->hangcheck.max_acthd = acthd;
3178 return HANGCHECK_ACTIVE;
3179 }
3180
3181 return HANGCHECK_ACTIVE_LOOP;
3182 }
3183
3184 if (IS_GEN2(dev))
3185 return HANGCHECK_HUNG;
3186
3187 /* Is the chip hanging on a WAIT_FOR_EVENT?
3188 * If so we can simply poke the RB_WAIT bit
3189 * and break the hang. This should work on
3190 * all but the second generation chipsets.
3191 */
3192 tmp = I915_READ_CTL(ring);
3193 if (tmp & RING_WAIT) {
3194 i915_handle_error(dev, false,
3195 "Kicking stuck wait on %s",
3196 ring->name);
3197 I915_WRITE_CTL(ring, tmp);
3198 return HANGCHECK_KICK;
3199 }
3200
3201 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3202 switch (semaphore_passed(ring)) {
3203 default:
3204 return HANGCHECK_HUNG;
3205 case 1:
3206 i915_handle_error(dev, false,
3207 "Kicking stuck semaphore on %s",
3208 ring->name);
3209 I915_WRITE_CTL(ring, tmp);
3210 return HANGCHECK_KICK;
3211 case 0:
3212 return HANGCHECK_WAIT;
3213 }
3214 }
3215
3216 return HANGCHECK_HUNG;
3217 }
3218
3219 /**
3220 * This is called when the chip hasn't reported back with completed
3221 * batchbuffers in a long time. We keep track per ring seqno progress and
3222 * if there are no progress, hangcheck score for that ring is increased.
3223 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3224 * we kick the ring. If we see no progress on three subsequent calls
3225 * we assume chip is wedged and try to fix it by resetting the chip.
3226 */
i915_hangcheck_elapsed(unsigned long data)3227 static void i915_hangcheck_elapsed(unsigned long data)
3228 {
3229 struct drm_device *dev = (struct drm_device *)data;
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231 struct intel_engine_cs *ring;
3232 int i;
3233 int busy_count = 0, rings_hung = 0;
3234 bool stuck[I915_NUM_RINGS] = { 0 };
3235 #define BUSY 1
3236 #define KICK 5
3237 #define HUNG 20
3238
3239 if (!i915.enable_hangcheck)
3240 return;
3241
3242 for_each_ring(ring, dev_priv, i) {
3243 u64 acthd;
3244 u32 seqno;
3245 bool busy = true;
3246
3247 semaphore_clear_deadlocks(dev_priv);
3248
3249 seqno = ring->get_seqno(ring, false);
3250 acthd = intel_ring_get_active_head(ring);
3251
3252 if (ring->hangcheck.seqno == seqno) {
3253 if (ring_idle(ring, seqno)) {
3254 ring->hangcheck.action = HANGCHECK_IDLE;
3255
3256 if (waitqueue_active(&ring->irq_queue)) {
3257 /* Issue a wake-up to catch stuck h/w. */
3258 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3259 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3260 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3261 ring->name);
3262 else
3263 DRM_INFO("Fake missed irq on %s\n",
3264 ring->name);
3265 wake_up_all(&ring->irq_queue);
3266 }
3267 /* Safeguard against driver failure */
3268 ring->hangcheck.score += BUSY;
3269 } else
3270 busy = false;
3271 } else {
3272 /* We always increment the hangcheck score
3273 * if the ring is busy and still processing
3274 * the same request, so that no single request
3275 * can run indefinitely (such as a chain of
3276 * batches). The only time we do not increment
3277 * the hangcheck score on this ring, if this
3278 * ring is in a legitimate wait for another
3279 * ring. In that case the waiting ring is a
3280 * victim and we want to be sure we catch the
3281 * right culprit. Then every time we do kick
3282 * the ring, add a small increment to the
3283 * score so that we can catch a batch that is
3284 * being repeatedly kicked and so responsible
3285 * for stalling the machine.
3286 */
3287 ring->hangcheck.action = ring_stuck(ring,
3288 acthd);
3289
3290 switch (ring->hangcheck.action) {
3291 case HANGCHECK_IDLE:
3292 case HANGCHECK_WAIT:
3293 case HANGCHECK_ACTIVE:
3294 break;
3295 case HANGCHECK_ACTIVE_LOOP:
3296 ring->hangcheck.score += BUSY;
3297 break;
3298 case HANGCHECK_KICK:
3299 ring->hangcheck.score += KICK;
3300 break;
3301 case HANGCHECK_HUNG:
3302 ring->hangcheck.score += HUNG;
3303 stuck[i] = true;
3304 break;
3305 }
3306 }
3307 } else {
3308 ring->hangcheck.action = HANGCHECK_ACTIVE;
3309
3310 /* Gradually reduce the count so that we catch DoS
3311 * attempts across multiple batches.
3312 */
3313 if (ring->hangcheck.score > 0)
3314 ring->hangcheck.score--;
3315
3316 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3317 }
3318
3319 ring->hangcheck.seqno = seqno;
3320 ring->hangcheck.acthd = acthd;
3321 busy_count += busy;
3322 }
3323
3324 for_each_ring(ring, dev_priv, i) {
3325 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3326 DRM_INFO("%s on %s\n",
3327 stuck[i] ? "stuck" : "no progress",
3328 ring->name);
3329 rings_hung++;
3330 }
3331 }
3332
3333 if (rings_hung)
3334 return i915_handle_error(dev, true, "Ring hung");
3335
3336 if (busy_count)
3337 /* Reset timer case chip hangs without another request
3338 * being added */
3339 i915_queue_hangcheck(dev);
3340 }
3341
i915_queue_hangcheck(struct drm_device * dev)3342 void i915_queue_hangcheck(struct drm_device *dev)
3343 {
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 if (!i915.enable_hangcheck)
3346 return;
3347
3348 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3349 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3350 }
3351
ibx_irq_reset(struct drm_device * dev)3352 static void ibx_irq_reset(struct drm_device *dev)
3353 {
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355
3356 if (HAS_PCH_NOP(dev))
3357 return;
3358
3359 GEN5_IRQ_RESET(SDE);
3360
3361 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3362 I915_WRITE(SERR_INT, 0xffffffff);
3363 }
3364
3365 /*
3366 * SDEIER is also touched by the interrupt handler to work around missed PCH
3367 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3368 * instead we unconditionally enable all PCH interrupt sources here, but then
3369 * only unmask them as needed with SDEIMR.
3370 *
3371 * This function needs to be called before interrupts are enabled.
3372 */
ibx_irq_pre_postinstall(struct drm_device * dev)3373 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3374 {
3375 struct drm_i915_private *dev_priv = dev->dev_private;
3376
3377 if (HAS_PCH_NOP(dev))
3378 return;
3379
3380 WARN_ON(I915_READ(SDEIER) != 0);
3381 I915_WRITE(SDEIER, 0xffffffff);
3382 POSTING_READ(SDEIER);
3383 }
3384
gen5_gt_irq_reset(struct drm_device * dev)3385 static void gen5_gt_irq_reset(struct drm_device *dev)
3386 {
3387 struct drm_i915_private *dev_priv = dev->dev_private;
3388
3389 GEN5_IRQ_RESET(GT);
3390 if (INTEL_INFO(dev)->gen >= 6)
3391 GEN5_IRQ_RESET(GEN6_PM);
3392 }
3393
3394 /* drm_dma.h hooks
3395 */
ironlake_irq_reset(struct drm_device * dev)3396 static void ironlake_irq_reset(struct drm_device *dev)
3397 {
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399
3400 I915_WRITE(HWSTAM, 0xffffffff);
3401
3402 GEN5_IRQ_RESET(DE);
3403 if (IS_GEN7(dev))
3404 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3405
3406 gen5_gt_irq_reset(dev);
3407
3408 ibx_irq_reset(dev);
3409 }
3410
valleyview_irq_preinstall(struct drm_device * dev)3411 static void valleyview_irq_preinstall(struct drm_device *dev)
3412 {
3413 struct drm_i915_private *dev_priv = dev->dev_private;
3414 int pipe;
3415
3416 /* VLV magic */
3417 I915_WRITE(VLV_IMR, 0);
3418 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3419 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3420 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3421
3422 /* and GT */
3423 I915_WRITE(GTIIR, I915_READ(GTIIR));
3424 I915_WRITE(GTIIR, I915_READ(GTIIR));
3425
3426 gen5_gt_irq_reset(dev);
3427
3428 I915_WRITE(DPINVGTT, 0xff);
3429
3430 I915_WRITE(PORT_HOTPLUG_EN, 0);
3431 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3432 for_each_pipe(dev_priv, pipe)
3433 I915_WRITE(PIPESTAT(pipe), 0xffff);
3434 I915_WRITE(VLV_IIR, 0xffffffff);
3435 I915_WRITE(VLV_IMR, 0xffffffff);
3436 I915_WRITE(VLV_IER, 0x0);
3437 POSTING_READ(VLV_IER);
3438 }
3439
gen8_gt_irq_reset(struct drm_i915_private * dev_priv)3440 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3441 {
3442 GEN8_IRQ_RESET_NDX(GT, 0);
3443 GEN8_IRQ_RESET_NDX(GT, 1);
3444 GEN8_IRQ_RESET_NDX(GT, 2);
3445 GEN8_IRQ_RESET_NDX(GT, 3);
3446 }
3447
gen8_irq_reset(struct drm_device * dev)3448 static void gen8_irq_reset(struct drm_device *dev)
3449 {
3450 struct drm_i915_private *dev_priv = dev->dev_private;
3451 int pipe;
3452
3453 I915_WRITE(GEN8_MASTER_IRQ, 0);
3454 POSTING_READ(GEN8_MASTER_IRQ);
3455
3456 gen8_gt_irq_reset(dev_priv);
3457
3458 for_each_pipe(dev_priv, pipe)
3459 if (intel_display_power_enabled(dev_priv,
3460 POWER_DOMAIN_PIPE(pipe)))
3461 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3462
3463 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3464 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3465 GEN5_IRQ_RESET(GEN8_PCU_);
3466
3467 ibx_irq_reset(dev);
3468 }
3469
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv)3470 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3471 {
3472 unsigned long irqflags;
3473 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3474
3475 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3476 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3477 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3478 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3479 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3480 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3481 }
3482
cherryview_irq_preinstall(struct drm_device * dev)3483 static void cherryview_irq_preinstall(struct drm_device *dev)
3484 {
3485 struct drm_i915_private *dev_priv = dev->dev_private;
3486 int pipe;
3487
3488 I915_WRITE(GEN8_MASTER_IRQ, 0);
3489 POSTING_READ(GEN8_MASTER_IRQ);
3490
3491 gen8_gt_irq_reset(dev_priv);
3492
3493 GEN5_IRQ_RESET(GEN8_PCU_);
3494
3495 POSTING_READ(GEN8_PCU_IIR);
3496
3497 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3498
3499 I915_WRITE(PORT_HOTPLUG_EN, 0);
3500 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3501
3502 for_each_pipe(dev_priv, pipe)
3503 I915_WRITE(PIPESTAT(pipe), 0xffff);
3504
3505 I915_WRITE(VLV_IMR, 0xffffffff);
3506 I915_WRITE(VLV_IER, 0x0);
3507 I915_WRITE(VLV_IIR, 0xffffffff);
3508 POSTING_READ(VLV_IIR);
3509 }
3510
ibx_hpd_irq_setup(struct drm_device * dev)3511 static void ibx_hpd_irq_setup(struct drm_device *dev)
3512 {
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 struct intel_encoder *intel_encoder;
3515 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3516
3517 if (HAS_PCH_IBX(dev)) {
3518 hotplug_irqs = SDE_HOTPLUG_MASK;
3519 for_each_intel_encoder(dev, intel_encoder)
3520 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3521 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3522 } else {
3523 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3524 for_each_intel_encoder(dev, intel_encoder)
3525 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3526 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3527 }
3528
3529 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3530
3531 /*
3532 * Enable digital hotplug on the PCH, and configure the DP short pulse
3533 * duration to 2ms (which is the minimum in the Display Port spec)
3534 *
3535 * This register is the same on all known PCH chips.
3536 */
3537 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3538 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3539 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3540 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3541 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3542 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3543 }
3544
ibx_irq_postinstall(struct drm_device * dev)3545 static void ibx_irq_postinstall(struct drm_device *dev)
3546 {
3547 struct drm_i915_private *dev_priv = dev->dev_private;
3548 u32 mask;
3549
3550 if (HAS_PCH_NOP(dev))
3551 return;
3552
3553 if (HAS_PCH_IBX(dev))
3554 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3555 else
3556 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3557
3558 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3559 I915_WRITE(SDEIMR, ~mask);
3560 }
3561
gen5_gt_irq_postinstall(struct drm_device * dev)3562 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3563 {
3564 struct drm_i915_private *dev_priv = dev->dev_private;
3565 u32 pm_irqs, gt_irqs;
3566
3567 pm_irqs = gt_irqs = 0;
3568
3569 dev_priv->gt_irq_mask = ~0;
3570 if (HAS_L3_DPF(dev)) {
3571 /* L3 parity interrupt is always unmasked. */
3572 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3573 gt_irqs |= GT_PARITY_ERROR(dev);
3574 }
3575
3576 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3577 if (IS_GEN5(dev)) {
3578 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3579 ILK_BSD_USER_INTERRUPT;
3580 } else {
3581 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3582 }
3583
3584 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3585
3586 if (INTEL_INFO(dev)->gen >= 6) {
3587 pm_irqs |= dev_priv->pm_rps_events;
3588
3589 if (HAS_VEBOX(dev))
3590 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3591
3592 dev_priv->pm_irq_mask = 0xffffffff;
3593 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3594 }
3595 }
3596
ironlake_irq_postinstall(struct drm_device * dev)3597 static int ironlake_irq_postinstall(struct drm_device *dev)
3598 {
3599 unsigned long irqflags;
3600 struct drm_i915_private *dev_priv = dev->dev_private;
3601 u32 display_mask, extra_mask;
3602
3603 if (INTEL_INFO(dev)->gen >= 7) {
3604 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3605 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3606 DE_PLANEB_FLIP_DONE_IVB |
3607 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3608 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3609 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3610 } else {
3611 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3612 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3613 DE_AUX_CHANNEL_A |
3614 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3615 DE_POISON);
3616 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3617 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3618 }
3619
3620 dev_priv->irq_mask = ~display_mask;
3621
3622 I915_WRITE(HWSTAM, 0xeffe);
3623
3624 ibx_irq_pre_postinstall(dev);
3625
3626 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3627
3628 gen5_gt_irq_postinstall(dev);
3629
3630 ibx_irq_postinstall(dev);
3631
3632 if (IS_IRONLAKE_M(dev)) {
3633 /* Enable PCU event interrupts
3634 *
3635 * spinlocking not required here for correctness since interrupt
3636 * setup is guaranteed to run in single-threaded context. But we
3637 * need it to make the assert_spin_locked happy. */
3638 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3639 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3640 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3641 }
3642
3643 return 0;
3644 }
3645
valleyview_display_irqs_install(struct drm_i915_private * dev_priv)3646 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3647 {
3648 u32 pipestat_mask;
3649 u32 iir_mask;
3650
3651 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3652 PIPE_FIFO_UNDERRUN_STATUS;
3653
3654 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3655 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3656 POSTING_READ(PIPESTAT(PIPE_A));
3657
3658 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3659 PIPE_CRC_DONE_INTERRUPT_STATUS;
3660
3661 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3662 PIPE_GMBUS_INTERRUPT_STATUS);
3663 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3664
3665 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3666 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3667 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3668 dev_priv->irq_mask &= ~iir_mask;
3669
3670 I915_WRITE(VLV_IIR, iir_mask);
3671 I915_WRITE(VLV_IIR, iir_mask);
3672 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3673 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3674 POSTING_READ(VLV_IER);
3675 }
3676
valleyview_display_irqs_uninstall(struct drm_i915_private * dev_priv)3677 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3678 {
3679 u32 pipestat_mask;
3680 u32 iir_mask;
3681
3682 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3683 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3684 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3685
3686 dev_priv->irq_mask |= iir_mask;
3687 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3688 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3689 I915_WRITE(VLV_IIR, iir_mask);
3690 I915_WRITE(VLV_IIR, iir_mask);
3691 POSTING_READ(VLV_IIR);
3692
3693 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3694 PIPE_CRC_DONE_INTERRUPT_STATUS;
3695
3696 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3697 PIPE_GMBUS_INTERRUPT_STATUS);
3698 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3699
3700 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3701 PIPE_FIFO_UNDERRUN_STATUS;
3702 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3703 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3704 POSTING_READ(PIPESTAT(PIPE_A));
3705 }
3706
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3707 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3708 {
3709 assert_spin_locked(&dev_priv->irq_lock);
3710
3711 if (dev_priv->display_irqs_enabled)
3712 return;
3713
3714 dev_priv->display_irqs_enabled = true;
3715
3716 if (dev_priv->dev->irq_enabled)
3717 valleyview_display_irqs_install(dev_priv);
3718 }
3719
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3720 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3721 {
3722 assert_spin_locked(&dev_priv->irq_lock);
3723
3724 if (!dev_priv->display_irqs_enabled)
3725 return;
3726
3727 dev_priv->display_irqs_enabled = false;
3728
3729 if (dev_priv->dev->irq_enabled)
3730 valleyview_display_irqs_uninstall(dev_priv);
3731 }
3732
valleyview_irq_postinstall(struct drm_device * dev)3733 static int valleyview_irq_postinstall(struct drm_device *dev)
3734 {
3735 struct drm_i915_private *dev_priv = dev->dev_private;
3736 unsigned long irqflags;
3737
3738 dev_priv->irq_mask = ~0;
3739
3740 I915_WRITE(PORT_HOTPLUG_EN, 0);
3741 POSTING_READ(PORT_HOTPLUG_EN);
3742
3743 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3744 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3745 I915_WRITE(VLV_IIR, 0xffffffff);
3746 POSTING_READ(VLV_IER);
3747
3748 /* Interrupt setup is already guaranteed to be single-threaded, this is
3749 * just to make the assert_spin_locked check happy. */
3750 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3751 if (dev_priv->display_irqs_enabled)
3752 valleyview_display_irqs_install(dev_priv);
3753 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3754
3755 I915_WRITE(VLV_IIR, 0xffffffff);
3756 I915_WRITE(VLV_IIR, 0xffffffff);
3757
3758 gen5_gt_irq_postinstall(dev);
3759
3760 /* ack & enable invalid PTE error interrupts */
3761 #if 0 /* FIXME: add support to irq handler for checking these bits */
3762 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3763 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3764 #endif
3765
3766 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3767
3768 return 0;
3769 }
3770
gen8_gt_irq_postinstall(struct drm_i915_private * dev_priv)3771 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3772 {
3773 /* These are interrupts we'll toggle with the ring mask register */
3774 uint32_t gt_interrupts[] = {
3775 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3776 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3777 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3778 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3779 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3780 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3781 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3782 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3783 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3784 0,
3785 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3786 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3787 };
3788
3789 dev_priv->pm_irq_mask = 0xffffffff;
3790 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3791 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3792 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3793 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3794 }
3795
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3796 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3797 {
3798 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3799 GEN8_PIPE_CDCLK_CRC_DONE |
3800 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3801 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3802 GEN8_PIPE_FIFO_UNDERRUN;
3803 int pipe;
3804 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3805 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3806 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3807
3808 for_each_pipe(dev_priv, pipe)
3809 if (intel_display_power_enabled(dev_priv,
3810 POWER_DOMAIN_PIPE(pipe)))
3811 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3812 dev_priv->de_irq_mask[pipe],
3813 de_pipe_enables);
3814
3815 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3816 }
3817
gen8_irq_postinstall(struct drm_device * dev)3818 static int gen8_irq_postinstall(struct drm_device *dev)
3819 {
3820 struct drm_i915_private *dev_priv = dev->dev_private;
3821
3822 ibx_irq_pre_postinstall(dev);
3823
3824 gen8_gt_irq_postinstall(dev_priv);
3825 gen8_de_irq_postinstall(dev_priv);
3826
3827 ibx_irq_postinstall(dev);
3828
3829 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3830 POSTING_READ(GEN8_MASTER_IRQ);
3831
3832 return 0;
3833 }
3834
cherryview_irq_postinstall(struct drm_device * dev)3835 static int cherryview_irq_postinstall(struct drm_device *dev)
3836 {
3837 struct drm_i915_private *dev_priv = dev->dev_private;
3838 u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3839 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3840 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3841 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3842 u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3843 PIPE_CRC_DONE_INTERRUPT_STATUS;
3844 unsigned long irqflags;
3845 int pipe;
3846
3847 /*
3848 * Leave vblank interrupts masked initially. enable/disable will
3849 * toggle them based on usage.
3850 */
3851 dev_priv->irq_mask = ~enable_mask;
3852
3853 for_each_pipe(dev_priv, pipe)
3854 I915_WRITE(PIPESTAT(pipe), 0xffff);
3855
3856 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3857 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3858 for_each_pipe(dev_priv, pipe)
3859 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3860 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3861
3862 I915_WRITE(VLV_IIR, 0xffffffff);
3863 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3864 I915_WRITE(VLV_IER, enable_mask);
3865
3866 gen8_gt_irq_postinstall(dev_priv);
3867
3868 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3869 POSTING_READ(GEN8_MASTER_IRQ);
3870
3871 return 0;
3872 }
3873
gen8_irq_uninstall(struct drm_device * dev)3874 static void gen8_irq_uninstall(struct drm_device *dev)
3875 {
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877
3878 if (!dev_priv)
3879 return;
3880
3881 gen8_irq_reset(dev);
3882 }
3883
valleyview_irq_uninstall(struct drm_device * dev)3884 static void valleyview_irq_uninstall(struct drm_device *dev)
3885 {
3886 struct drm_i915_private *dev_priv = dev->dev_private;
3887 unsigned long irqflags;
3888 int pipe;
3889
3890 if (!dev_priv)
3891 return;
3892
3893 I915_WRITE(VLV_MASTER_IER, 0);
3894
3895 for_each_pipe(dev_priv, pipe)
3896 I915_WRITE(PIPESTAT(pipe), 0xffff);
3897
3898 I915_WRITE(HWSTAM, 0xffffffff);
3899 I915_WRITE(PORT_HOTPLUG_EN, 0);
3900 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3901
3902 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3903 if (dev_priv->display_irqs_enabled)
3904 valleyview_display_irqs_uninstall(dev_priv);
3905 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3906
3907 dev_priv->irq_mask = 0;
3908
3909 I915_WRITE(VLV_IIR, 0xffffffff);
3910 I915_WRITE(VLV_IMR, 0xffffffff);
3911 I915_WRITE(VLV_IER, 0x0);
3912 POSTING_READ(VLV_IER);
3913 }
3914
cherryview_irq_uninstall(struct drm_device * dev)3915 static void cherryview_irq_uninstall(struct drm_device *dev)
3916 {
3917 struct drm_i915_private *dev_priv = dev->dev_private;
3918 int pipe;
3919
3920 if (!dev_priv)
3921 return;
3922
3923 I915_WRITE(GEN8_MASTER_IRQ, 0);
3924 POSTING_READ(GEN8_MASTER_IRQ);
3925
3926 #define GEN8_IRQ_FINI_NDX(type, which) \
3927 do { \
3928 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
3929 I915_WRITE(GEN8_##type##_IER(which), 0); \
3930 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3931 POSTING_READ(GEN8_##type##_IIR(which)); \
3932 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
3933 } while (0)
3934
3935 #define GEN8_IRQ_FINI(type) \
3936 do { \
3937 I915_WRITE(GEN8_##type##_IMR, 0xffffffff); \
3938 I915_WRITE(GEN8_##type##_IER, 0); \
3939 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3940 POSTING_READ(GEN8_##type##_IIR); \
3941 I915_WRITE(GEN8_##type##_IIR, 0xffffffff); \
3942 } while (0)
3943
3944 GEN8_IRQ_FINI_NDX(GT, 0);
3945 GEN8_IRQ_FINI_NDX(GT, 1);
3946 GEN8_IRQ_FINI_NDX(GT, 2);
3947 GEN8_IRQ_FINI_NDX(GT, 3);
3948
3949 GEN8_IRQ_FINI(PCU);
3950
3951 #undef GEN8_IRQ_FINI
3952 #undef GEN8_IRQ_FINI_NDX
3953
3954 I915_WRITE(PORT_HOTPLUG_EN, 0);
3955 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3956
3957 for_each_pipe(dev_priv, pipe)
3958 I915_WRITE(PIPESTAT(pipe), 0xffff);
3959
3960 I915_WRITE(VLV_IMR, 0xffffffff);
3961 I915_WRITE(VLV_IER, 0x0);
3962 I915_WRITE(VLV_IIR, 0xffffffff);
3963 POSTING_READ(VLV_IIR);
3964 }
3965
ironlake_irq_uninstall(struct drm_device * dev)3966 static void ironlake_irq_uninstall(struct drm_device *dev)
3967 {
3968 struct drm_i915_private *dev_priv = dev->dev_private;
3969
3970 if (!dev_priv)
3971 return;
3972
3973 ironlake_irq_reset(dev);
3974 }
3975
i8xx_irq_preinstall(struct drm_device * dev)3976 static void i8xx_irq_preinstall(struct drm_device * dev)
3977 {
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 int pipe;
3980
3981 for_each_pipe(dev_priv, pipe)
3982 I915_WRITE(PIPESTAT(pipe), 0);
3983 I915_WRITE16(IMR, 0xffff);
3984 I915_WRITE16(IER, 0x0);
3985 POSTING_READ16(IER);
3986 }
3987
i8xx_irq_postinstall(struct drm_device * dev)3988 static int i8xx_irq_postinstall(struct drm_device *dev)
3989 {
3990 struct drm_i915_private *dev_priv = dev->dev_private;
3991 unsigned long irqflags;
3992
3993 I915_WRITE16(EMR,
3994 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3995
3996 /* Unmask the interrupts that we always want on. */
3997 dev_priv->irq_mask =
3998 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3999 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4000 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4001 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4002 I915_WRITE16(IMR, dev_priv->irq_mask);
4003
4004 I915_WRITE16(IER,
4005 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4006 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4007 I915_USER_INTERRUPT);
4008 POSTING_READ16(IER);
4009
4010 /* Interrupt setup is already guaranteed to be single-threaded, this is
4011 * just to make the assert_spin_locked check happy. */
4012 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4013 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4014 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4015 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4016
4017 return 0;
4018 }
4019
4020 /*
4021 * Returns true when a page flip has completed.
4022 */
i8xx_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)4023 static bool i8xx_handle_vblank(struct drm_device *dev,
4024 int plane, int pipe, u32 iir)
4025 {
4026 struct drm_i915_private *dev_priv = dev->dev_private;
4027 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4028
4029 if (!intel_pipe_handle_vblank(dev, pipe))
4030 return false;
4031
4032 if ((iir & flip_pending) == 0)
4033 goto check_page_flip;
4034
4035 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4036 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4037 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4038 * the flip is completed (no longer pending). Since this doesn't raise
4039 * an interrupt per se, we watch for the change at vblank.
4040 */
4041 if (I915_READ16(ISR) & flip_pending)
4042 goto check_page_flip;
4043
4044 intel_prepare_page_flip(dev, plane);
4045 intel_finish_page_flip(dev, pipe);
4046 return true;
4047
4048 check_page_flip:
4049 intel_check_page_flip(dev, pipe);
4050 return false;
4051 }
4052
i8xx_irq_handler(int irq,void * arg)4053 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4054 {
4055 struct drm_device *dev = arg;
4056 struct drm_i915_private *dev_priv = dev->dev_private;
4057 u16 iir, new_iir;
4058 u32 pipe_stats[2];
4059 unsigned long irqflags;
4060 int pipe;
4061 u16 flip_mask =
4062 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4063 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4064
4065 if (!intel_irqs_enabled(dev_priv))
4066 return IRQ_NONE;
4067
4068 iir = I915_READ16(IIR);
4069 if (iir == 0)
4070 return IRQ_NONE;
4071
4072 while (iir & ~flip_mask) {
4073 /* Can't rely on pipestat interrupt bit in iir as it might
4074 * have been cleared after the pipestat interrupt was received.
4075 * It doesn't set the bit in iir again, but it still produces
4076 * interrupts (for non-MSI).
4077 */
4078 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4079 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4080 i915_handle_error(dev, false,
4081 "Command parser error, iir 0x%08x",
4082 iir);
4083
4084 for_each_pipe(dev_priv, pipe) {
4085 int reg = PIPESTAT(pipe);
4086 pipe_stats[pipe] = I915_READ(reg);
4087
4088 /*
4089 * Clear the PIPE*STAT regs before the IIR
4090 */
4091 if (pipe_stats[pipe] & 0x8000ffff)
4092 I915_WRITE(reg, pipe_stats[pipe]);
4093 }
4094 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4095
4096 I915_WRITE16(IIR, iir & ~flip_mask);
4097 new_iir = I915_READ16(IIR); /* Flush posted writes */
4098
4099 i915_update_dri1_breadcrumb(dev);
4100
4101 if (iir & I915_USER_INTERRUPT)
4102 notify_ring(dev, &dev_priv->ring[RCS]);
4103
4104 for_each_pipe(dev_priv, pipe) {
4105 int plane = pipe;
4106 if (HAS_FBC(dev))
4107 plane = !plane;
4108
4109 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4110 i8xx_handle_vblank(dev, plane, pipe, iir))
4111 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4112
4113 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4114 i9xx_pipe_crc_irq_handler(dev, pipe);
4115
4116 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4117 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4118 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4119 }
4120
4121 iir = new_iir;
4122 }
4123
4124 return IRQ_HANDLED;
4125 }
4126
i8xx_irq_uninstall(struct drm_device * dev)4127 static void i8xx_irq_uninstall(struct drm_device * dev)
4128 {
4129 struct drm_i915_private *dev_priv = dev->dev_private;
4130 int pipe;
4131
4132 for_each_pipe(dev_priv, pipe) {
4133 /* Clear enable bits; then clear status bits */
4134 I915_WRITE(PIPESTAT(pipe), 0);
4135 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4136 }
4137 I915_WRITE16(IMR, 0xffff);
4138 I915_WRITE16(IER, 0x0);
4139 I915_WRITE16(IIR, I915_READ16(IIR));
4140 }
4141
i915_irq_preinstall(struct drm_device * dev)4142 static void i915_irq_preinstall(struct drm_device * dev)
4143 {
4144 struct drm_i915_private *dev_priv = dev->dev_private;
4145 int pipe;
4146
4147 if (I915_HAS_HOTPLUG(dev)) {
4148 I915_WRITE(PORT_HOTPLUG_EN, 0);
4149 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4150 }
4151
4152 I915_WRITE16(HWSTAM, 0xeffe);
4153 for_each_pipe(dev_priv, pipe)
4154 I915_WRITE(PIPESTAT(pipe), 0);
4155 I915_WRITE(IMR, 0xffffffff);
4156 I915_WRITE(IER, 0x0);
4157 POSTING_READ(IER);
4158 }
4159
i915_irq_postinstall(struct drm_device * dev)4160 static int i915_irq_postinstall(struct drm_device *dev)
4161 {
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 u32 enable_mask;
4164 unsigned long irqflags;
4165
4166 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4167
4168 /* Unmask the interrupts that we always want on. */
4169 dev_priv->irq_mask =
4170 ~(I915_ASLE_INTERRUPT |
4171 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4172 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4173 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4174 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4175
4176 enable_mask =
4177 I915_ASLE_INTERRUPT |
4178 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4179 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4180 I915_USER_INTERRUPT;
4181
4182 if (I915_HAS_HOTPLUG(dev)) {
4183 I915_WRITE(PORT_HOTPLUG_EN, 0);
4184 POSTING_READ(PORT_HOTPLUG_EN);
4185
4186 /* Enable in IER... */
4187 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4188 /* and unmask in IMR */
4189 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4190 }
4191
4192 I915_WRITE(IMR, dev_priv->irq_mask);
4193 I915_WRITE(IER, enable_mask);
4194 POSTING_READ(IER);
4195
4196 i915_enable_asle_pipestat(dev);
4197
4198 /* Interrupt setup is already guaranteed to be single-threaded, this is
4199 * just to make the assert_spin_locked check happy. */
4200 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4201 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4202 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4203 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4204
4205 return 0;
4206 }
4207
4208 /*
4209 * Returns true when a page flip has completed.
4210 */
i915_handle_vblank(struct drm_device * dev,int plane,int pipe,u32 iir)4211 static bool i915_handle_vblank(struct drm_device *dev,
4212 int plane, int pipe, u32 iir)
4213 {
4214 struct drm_i915_private *dev_priv = dev->dev_private;
4215 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4216
4217 if (!intel_pipe_handle_vblank(dev, pipe))
4218 return false;
4219
4220 if ((iir & flip_pending) == 0)
4221 goto check_page_flip;
4222
4223 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4224 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4225 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4226 * the flip is completed (no longer pending). Since this doesn't raise
4227 * an interrupt per se, we watch for the change at vblank.
4228 */
4229 if (I915_READ(ISR) & flip_pending)
4230 goto check_page_flip;
4231
4232 intel_prepare_page_flip(dev, plane);
4233 intel_finish_page_flip(dev, pipe);
4234 return true;
4235
4236 check_page_flip:
4237 intel_check_page_flip(dev, pipe);
4238 return false;
4239 }
4240
i915_irq_handler(int irq,void * arg)4241 static irqreturn_t i915_irq_handler(int irq, void *arg)
4242 {
4243 struct drm_device *dev = arg;
4244 struct drm_i915_private *dev_priv = dev->dev_private;
4245 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4246 unsigned long irqflags;
4247 u32 flip_mask =
4248 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4249 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4250 int pipe, ret = IRQ_NONE;
4251
4252 if (!intel_irqs_enabled(dev_priv))
4253 return IRQ_NONE;
4254
4255 iir = I915_READ(IIR);
4256 do {
4257 bool irq_received = (iir & ~flip_mask) != 0;
4258 bool blc_event = false;
4259
4260 /* Can't rely on pipestat interrupt bit in iir as it might
4261 * have been cleared after the pipestat interrupt was received.
4262 * It doesn't set the bit in iir again, but it still produces
4263 * interrupts (for non-MSI).
4264 */
4265 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4266 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4267 i915_handle_error(dev, false,
4268 "Command parser error, iir 0x%08x",
4269 iir);
4270
4271 for_each_pipe(dev_priv, pipe) {
4272 int reg = PIPESTAT(pipe);
4273 pipe_stats[pipe] = I915_READ(reg);
4274
4275 /* Clear the PIPE*STAT regs before the IIR */
4276 if (pipe_stats[pipe] & 0x8000ffff) {
4277 I915_WRITE(reg, pipe_stats[pipe]);
4278 irq_received = true;
4279 }
4280 }
4281 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4282
4283 if (!irq_received)
4284 break;
4285
4286 /* Consume port. Then clear IIR or we'll miss events */
4287 if (I915_HAS_HOTPLUG(dev) &&
4288 iir & I915_DISPLAY_PORT_INTERRUPT)
4289 i9xx_hpd_irq_handler(dev);
4290
4291 I915_WRITE(IIR, iir & ~flip_mask);
4292 new_iir = I915_READ(IIR); /* Flush posted writes */
4293
4294 if (iir & I915_USER_INTERRUPT)
4295 notify_ring(dev, &dev_priv->ring[RCS]);
4296
4297 for_each_pipe(dev_priv, pipe) {
4298 int plane = pipe;
4299 if (HAS_FBC(dev))
4300 plane = !plane;
4301
4302 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4303 i915_handle_vblank(dev, plane, pipe, iir))
4304 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4305
4306 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4307 blc_event = true;
4308
4309 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4310 i9xx_pipe_crc_irq_handler(dev, pipe);
4311
4312 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4313 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4314 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4315 }
4316
4317 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4318 intel_opregion_asle_intr(dev);
4319
4320 /* With MSI, interrupts are only generated when iir
4321 * transitions from zero to nonzero. If another bit got
4322 * set while we were handling the existing iir bits, then
4323 * we would never get another interrupt.
4324 *
4325 * This is fine on non-MSI as well, as if we hit this path
4326 * we avoid exiting the interrupt handler only to generate
4327 * another one.
4328 *
4329 * Note that for MSI this could cause a stray interrupt report
4330 * if an interrupt landed in the time between writing IIR and
4331 * the posting read. This should be rare enough to never
4332 * trigger the 99% of 100,000 interrupts test for disabling
4333 * stray interrupts.
4334 */
4335 ret = IRQ_HANDLED;
4336 iir = new_iir;
4337 } while (iir & ~flip_mask);
4338
4339 i915_update_dri1_breadcrumb(dev);
4340
4341 return ret;
4342 }
4343
i915_irq_uninstall(struct drm_device * dev)4344 static void i915_irq_uninstall(struct drm_device * dev)
4345 {
4346 struct drm_i915_private *dev_priv = dev->dev_private;
4347 int pipe;
4348
4349 if (I915_HAS_HOTPLUG(dev)) {
4350 I915_WRITE(PORT_HOTPLUG_EN, 0);
4351 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4352 }
4353
4354 I915_WRITE16(HWSTAM, 0xffff);
4355 for_each_pipe(dev_priv, pipe) {
4356 /* Clear enable bits; then clear status bits */
4357 I915_WRITE(PIPESTAT(pipe), 0);
4358 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4359 }
4360 I915_WRITE(IMR, 0xffffffff);
4361 I915_WRITE(IER, 0x0);
4362
4363 I915_WRITE(IIR, I915_READ(IIR));
4364 }
4365
i965_irq_preinstall(struct drm_device * dev)4366 static void i965_irq_preinstall(struct drm_device * dev)
4367 {
4368 struct drm_i915_private *dev_priv = dev->dev_private;
4369 int pipe;
4370
4371 I915_WRITE(PORT_HOTPLUG_EN, 0);
4372 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4373
4374 I915_WRITE(HWSTAM, 0xeffe);
4375 for_each_pipe(dev_priv, pipe)
4376 I915_WRITE(PIPESTAT(pipe), 0);
4377 I915_WRITE(IMR, 0xffffffff);
4378 I915_WRITE(IER, 0x0);
4379 POSTING_READ(IER);
4380 }
4381
i965_irq_postinstall(struct drm_device * dev)4382 static int i965_irq_postinstall(struct drm_device *dev)
4383 {
4384 struct drm_i915_private *dev_priv = dev->dev_private;
4385 u32 enable_mask;
4386 u32 error_mask;
4387 unsigned long irqflags;
4388
4389 /* Unmask the interrupts that we always want on. */
4390 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4391 I915_DISPLAY_PORT_INTERRUPT |
4392 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4393 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4394 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4395 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4396 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4397
4398 enable_mask = ~dev_priv->irq_mask;
4399 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4400 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4401 enable_mask |= I915_USER_INTERRUPT;
4402
4403 if (IS_G4X(dev))
4404 enable_mask |= I915_BSD_USER_INTERRUPT;
4405
4406 /* Interrupt setup is already guaranteed to be single-threaded, this is
4407 * just to make the assert_spin_locked check happy. */
4408 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4409 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4410 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4411 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4412 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4413
4414 /*
4415 * Enable some error detection, note the instruction error mask
4416 * bit is reserved, so we leave it masked.
4417 */
4418 if (IS_G4X(dev)) {
4419 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4420 GM45_ERROR_MEM_PRIV |
4421 GM45_ERROR_CP_PRIV |
4422 I915_ERROR_MEMORY_REFRESH);
4423 } else {
4424 error_mask = ~(I915_ERROR_PAGE_TABLE |
4425 I915_ERROR_MEMORY_REFRESH);
4426 }
4427 I915_WRITE(EMR, error_mask);
4428
4429 I915_WRITE(IMR, dev_priv->irq_mask);
4430 I915_WRITE(IER, enable_mask);
4431 POSTING_READ(IER);
4432
4433 I915_WRITE(PORT_HOTPLUG_EN, 0);
4434 POSTING_READ(PORT_HOTPLUG_EN);
4435
4436 i915_enable_asle_pipestat(dev);
4437
4438 return 0;
4439 }
4440
i915_hpd_irq_setup(struct drm_device * dev)4441 static void i915_hpd_irq_setup(struct drm_device *dev)
4442 {
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444 struct intel_encoder *intel_encoder;
4445 u32 hotplug_en;
4446
4447 assert_spin_locked(&dev_priv->irq_lock);
4448
4449 if (I915_HAS_HOTPLUG(dev)) {
4450 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4451 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4452 /* Note HDMI and DP share hotplug bits */
4453 /* enable bits are the same for all generations */
4454 for_each_intel_encoder(dev, intel_encoder)
4455 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4456 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4457 /* Programming the CRT detection parameters tends
4458 to generate a spurious hotplug event about three
4459 seconds later. So just do it once.
4460 */
4461 if (IS_G4X(dev))
4462 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4463 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4464 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4465
4466 /* Ignore TV since it's buggy */
4467 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4468 }
4469 }
4470
i965_irq_handler(int irq,void * arg)4471 static irqreturn_t i965_irq_handler(int irq, void *arg)
4472 {
4473 struct drm_device *dev = arg;
4474 struct drm_i915_private *dev_priv = dev->dev_private;
4475 u32 iir, new_iir;
4476 u32 pipe_stats[I915_MAX_PIPES];
4477 unsigned long irqflags;
4478 int ret = IRQ_NONE, pipe;
4479 u32 flip_mask =
4480 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4481 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4482
4483 if (!intel_irqs_enabled(dev_priv))
4484 return IRQ_NONE;
4485
4486 iir = I915_READ(IIR);
4487
4488 for (;;) {
4489 bool irq_received = (iir & ~flip_mask) != 0;
4490 bool blc_event = false;
4491
4492 /* Can't rely on pipestat interrupt bit in iir as it might
4493 * have been cleared after the pipestat interrupt was received.
4494 * It doesn't set the bit in iir again, but it still produces
4495 * interrupts (for non-MSI).
4496 */
4497 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4498 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4499 i915_handle_error(dev, false,
4500 "Command parser error, iir 0x%08x",
4501 iir);
4502
4503 for_each_pipe(dev_priv, pipe) {
4504 int reg = PIPESTAT(pipe);
4505 pipe_stats[pipe] = I915_READ(reg);
4506
4507 /*
4508 * Clear the PIPE*STAT regs before the IIR
4509 */
4510 if (pipe_stats[pipe] & 0x8000ffff) {
4511 I915_WRITE(reg, pipe_stats[pipe]);
4512 irq_received = true;
4513 }
4514 }
4515 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4516
4517 if (!irq_received)
4518 break;
4519
4520 ret = IRQ_HANDLED;
4521
4522 /* Consume port. Then clear IIR or we'll miss events */
4523 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4524 i9xx_hpd_irq_handler(dev);
4525
4526 I915_WRITE(IIR, iir & ~flip_mask);
4527 new_iir = I915_READ(IIR); /* Flush posted writes */
4528
4529 if (iir & I915_USER_INTERRUPT)
4530 notify_ring(dev, &dev_priv->ring[RCS]);
4531 if (iir & I915_BSD_USER_INTERRUPT)
4532 notify_ring(dev, &dev_priv->ring[VCS]);
4533
4534 for_each_pipe(dev_priv, pipe) {
4535 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4536 i915_handle_vblank(dev, pipe, pipe, iir))
4537 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4538
4539 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4540 blc_event = true;
4541
4542 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4543 i9xx_pipe_crc_irq_handler(dev, pipe);
4544
4545 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4546 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4547 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4548 }
4549
4550 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4551 intel_opregion_asle_intr(dev);
4552
4553 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4554 gmbus_irq_handler(dev);
4555
4556 /* With MSI, interrupts are only generated when iir
4557 * transitions from zero to nonzero. If another bit got
4558 * set while we were handling the existing iir bits, then
4559 * we would never get another interrupt.
4560 *
4561 * This is fine on non-MSI as well, as if we hit this path
4562 * we avoid exiting the interrupt handler only to generate
4563 * another one.
4564 *
4565 * Note that for MSI this could cause a stray interrupt report
4566 * if an interrupt landed in the time between writing IIR and
4567 * the posting read. This should be rare enough to never
4568 * trigger the 99% of 100,000 interrupts test for disabling
4569 * stray interrupts.
4570 */
4571 iir = new_iir;
4572 }
4573
4574 i915_update_dri1_breadcrumb(dev);
4575
4576 return ret;
4577 }
4578
i965_irq_uninstall(struct drm_device * dev)4579 static void i965_irq_uninstall(struct drm_device * dev)
4580 {
4581 struct drm_i915_private *dev_priv = dev->dev_private;
4582 int pipe;
4583
4584 if (!dev_priv)
4585 return;
4586
4587 I915_WRITE(PORT_HOTPLUG_EN, 0);
4588 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4589
4590 I915_WRITE(HWSTAM, 0xffffffff);
4591 for_each_pipe(dev_priv, pipe)
4592 I915_WRITE(PIPESTAT(pipe), 0);
4593 I915_WRITE(IMR, 0xffffffff);
4594 I915_WRITE(IER, 0x0);
4595
4596 for_each_pipe(dev_priv, pipe)
4597 I915_WRITE(PIPESTAT(pipe),
4598 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4599 I915_WRITE(IIR, I915_READ(IIR));
4600 }
4601
intel_hpd_irq_reenable(struct work_struct * work)4602 static void intel_hpd_irq_reenable(struct work_struct *work)
4603 {
4604 struct drm_i915_private *dev_priv =
4605 container_of(work, typeof(*dev_priv),
4606 hotplug_reenable_work.work);
4607 struct drm_device *dev = dev_priv->dev;
4608 struct drm_mode_config *mode_config = &dev->mode_config;
4609 unsigned long irqflags;
4610 int i;
4611
4612 intel_runtime_pm_get(dev_priv);
4613
4614 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4615 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4616 struct drm_connector *connector;
4617
4618 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4619 continue;
4620
4621 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4622
4623 list_for_each_entry(connector, &mode_config->connector_list, head) {
4624 struct intel_connector *intel_connector = to_intel_connector(connector);
4625
4626 if (intel_connector->encoder->hpd_pin == i) {
4627 if (connector->polled != intel_connector->polled)
4628 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4629 connector->name);
4630 connector->polled = intel_connector->polled;
4631 if (!connector->polled)
4632 connector->polled = DRM_CONNECTOR_POLL_HPD;
4633 }
4634 }
4635 }
4636 if (dev_priv->display.hpd_irq_setup)
4637 dev_priv->display.hpd_irq_setup(dev);
4638 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4639
4640 intel_runtime_pm_put(dev_priv);
4641 }
4642
intel_irq_init(struct drm_device * dev)4643 void intel_irq_init(struct drm_device *dev)
4644 {
4645 struct drm_i915_private *dev_priv = dev->dev_private;
4646
4647 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4648 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4649 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4650 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4651 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4652
4653 /* Let's track the enabled rps events */
4654 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4655 /* WaGsvRC0ResidencyMethod:vlv */
4656 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4657 else
4658 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4659
4660 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4661 i915_hangcheck_elapsed,
4662 (unsigned long) dev);
4663 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4664 intel_hpd_irq_reenable);
4665
4666 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4667
4668 /* Haven't installed the IRQ handler yet */
4669 dev_priv->pm._irqs_disabled = true;
4670
4671 if (IS_GEN2(dev)) {
4672 dev->max_vblank_count = 0;
4673 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4674 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4675 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4676 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4677 } else {
4678 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4679 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4680 }
4681
4682 /*
4683 * Opt out of the vblank disable timer on everything except gen2.
4684 * Gen2 doesn't have a hardware frame counter and so depends on
4685 * vblank interrupts to produce sane vblank seuquence numbers.
4686 */
4687 if (!IS_GEN2(dev))
4688 dev->vblank_disable_immediate = true;
4689
4690 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4691 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4692 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4693 }
4694
4695 if (IS_CHERRYVIEW(dev)) {
4696 dev->driver->irq_handler = cherryview_irq_handler;
4697 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4698 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4699 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4700 dev->driver->enable_vblank = valleyview_enable_vblank;
4701 dev->driver->disable_vblank = valleyview_disable_vblank;
4702 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4703 } else if (IS_VALLEYVIEW(dev)) {
4704 dev->driver->irq_handler = valleyview_irq_handler;
4705 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4706 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4707 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4708 dev->driver->enable_vblank = valleyview_enable_vblank;
4709 dev->driver->disable_vblank = valleyview_disable_vblank;
4710 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4711 } else if (IS_GEN8(dev)) {
4712 dev->driver->irq_handler = gen8_irq_handler;
4713 dev->driver->irq_preinstall = gen8_irq_reset;
4714 dev->driver->irq_postinstall = gen8_irq_postinstall;
4715 dev->driver->irq_uninstall = gen8_irq_uninstall;
4716 dev->driver->enable_vblank = gen8_enable_vblank;
4717 dev->driver->disable_vblank = gen8_disable_vblank;
4718 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4719 } else if (HAS_PCH_SPLIT(dev)) {
4720 dev->driver->irq_handler = ironlake_irq_handler;
4721 dev->driver->irq_preinstall = ironlake_irq_reset;
4722 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4723 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4724 dev->driver->enable_vblank = ironlake_enable_vblank;
4725 dev->driver->disable_vblank = ironlake_disable_vblank;
4726 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4727 } else {
4728 if (INTEL_INFO(dev)->gen == 2) {
4729 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4730 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4731 dev->driver->irq_handler = i8xx_irq_handler;
4732 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4733 } else if (INTEL_INFO(dev)->gen == 3) {
4734 dev->driver->irq_preinstall = i915_irq_preinstall;
4735 dev->driver->irq_postinstall = i915_irq_postinstall;
4736 dev->driver->irq_uninstall = i915_irq_uninstall;
4737 dev->driver->irq_handler = i915_irq_handler;
4738 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4739 } else {
4740 dev->driver->irq_preinstall = i965_irq_preinstall;
4741 dev->driver->irq_postinstall = i965_irq_postinstall;
4742 dev->driver->irq_uninstall = i965_irq_uninstall;
4743 dev->driver->irq_handler = i965_irq_handler;
4744 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4745 }
4746 dev->driver->enable_vblank = i915_enable_vblank;
4747 dev->driver->disable_vblank = i915_disable_vblank;
4748 }
4749 }
4750
intel_hpd_init(struct drm_device * dev)4751 void intel_hpd_init(struct drm_device *dev)
4752 {
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 struct drm_mode_config *mode_config = &dev->mode_config;
4755 struct drm_connector *connector;
4756 unsigned long irqflags;
4757 int i;
4758
4759 for (i = 1; i < HPD_NUM_PINS; i++) {
4760 dev_priv->hpd_stats[i].hpd_cnt = 0;
4761 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4762 }
4763 list_for_each_entry(connector, &mode_config->connector_list, head) {
4764 struct intel_connector *intel_connector = to_intel_connector(connector);
4765 connector->polled = intel_connector->polled;
4766 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4767 connector->polled = DRM_CONNECTOR_POLL_HPD;
4768 if (intel_connector->mst_port)
4769 connector->polled = DRM_CONNECTOR_POLL_HPD;
4770 }
4771
4772 /* Interrupt setup is already guaranteed to be single-threaded, this is
4773 * just to make the assert_spin_locked checks happy. */
4774 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4775 if (dev_priv->display.hpd_irq_setup)
4776 dev_priv->display.hpd_irq_setup(dev);
4777 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4778 }
4779
4780 /* Disable interrupts so we can allow runtime PM. */
intel_runtime_pm_disable_interrupts(struct drm_device * dev)4781 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4782 {
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784
4785 dev->driver->irq_uninstall(dev);
4786 dev_priv->pm._irqs_disabled = true;
4787 }
4788
4789 /* Restore interrupts so we can recover from runtime PM. */
intel_runtime_pm_restore_interrupts(struct drm_device * dev)4790 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4791 {
4792 struct drm_i915_private *dev_priv = dev->dev_private;
4793
4794 dev_priv->pm._irqs_disabled = false;
4795 dev->driver->irq_preinstall(dev);
4796 dev->driver->irq_postinstall(dev);
4797 synchronize_irq(dev_priv->dev->irq);
4798 }
4799