1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
cpu_cache_is_coherent(struct drm_device * dev,enum i915_cache_level level)65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
i915_gem_object_fence_lost(struct drm_i915_gem_object * obj)79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
i915_mutex_lock_interruptible(struct drm_device * dev)139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object * obj)157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
i915_gem_init_ioctl(struct drm_device * dev,void * data,struct drm_file * file)163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (i915_gem_obj_is_pinned(obj))
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
i915_gem_object_detach_phys(struct drm_i915_gem_object * obj)211 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
212 {
213 drm_dma_handle_t *phys = obj->phys_handle;
214
215 if (!phys)
216 return;
217
218 if (obj->madv == I915_MADV_WILLNEED) {
219 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
220 char *vaddr = phys->vaddr;
221 int i;
222
223 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
224 struct page *page = shmem_read_mapping_page(mapping, i);
225 if (!IS_ERR(page)) {
226 char *dst = kmap_atomic(page);
227 memcpy(dst, vaddr, PAGE_SIZE);
228 drm_clflush_virt_range(dst, PAGE_SIZE);
229 kunmap_atomic(dst);
230
231 set_page_dirty(page);
232 mark_page_accessed(page);
233 page_cache_release(page);
234 }
235 vaddr += PAGE_SIZE;
236 }
237 i915_gem_chipset_flush(obj->base.dev);
238 }
239
240 #ifdef CONFIG_X86
241 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
242 #endif
243 drm_pci_free(obj->base.dev, phys);
244 obj->phys_handle = NULL;
245 }
246
247 int
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)248 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
249 int align)
250 {
251 drm_dma_handle_t *phys;
252 struct address_space *mapping;
253 char *vaddr;
254 int i;
255
256 if (obj->phys_handle) {
257 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
258 return -EBUSY;
259
260 return 0;
261 }
262
263 if (obj->madv != I915_MADV_WILLNEED)
264 return -EFAULT;
265
266 if (obj->base.filp == NULL)
267 return -EINVAL;
268
269 /* create a new object */
270 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
271 if (!phys)
272 return -ENOMEM;
273
274 vaddr = phys->vaddr;
275 #ifdef CONFIG_X86
276 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
277 #endif
278 mapping = file_inode(obj->base.filp)->i_mapping;
279 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
280 struct page *page;
281 char *src;
282
283 page = shmem_read_mapping_page(mapping, i);
284 if (IS_ERR(page)) {
285 #ifdef CONFIG_X86
286 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
287 #endif
288 drm_pci_free(obj->base.dev, phys);
289 return PTR_ERR(page);
290 }
291
292 src = kmap_atomic(page);
293 memcpy(vaddr, src, PAGE_SIZE);
294 kunmap_atomic(src);
295
296 mark_page_accessed(page);
297 page_cache_release(page);
298
299 vaddr += PAGE_SIZE;
300 }
301
302 obj->phys_handle = phys;
303 return 0;
304 }
305
306 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)307 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
308 struct drm_i915_gem_pwrite *args,
309 struct drm_file *file_priv)
310 {
311 struct drm_device *dev = obj->base.dev;
312 void *vaddr = obj->phys_handle->vaddr + args->offset;
313 char __user *user_data = to_user_ptr(args->data_ptr);
314
315 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
316 unsigned long unwritten;
317
318 /* The physical object once assigned is fixed for the lifetime
319 * of the obj, so we can safely drop the lock and continue
320 * to access vaddr.
321 */
322 mutex_unlock(&dev->struct_mutex);
323 unwritten = copy_from_user(vaddr, user_data, args->size);
324 mutex_lock(&dev->struct_mutex);
325 if (unwritten)
326 return -EFAULT;
327 }
328
329 i915_gem_chipset_flush(dev);
330 return 0;
331 }
332
i915_gem_object_alloc(struct drm_device * dev)333 void *i915_gem_object_alloc(struct drm_device *dev)
334 {
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
337 }
338
i915_gem_object_free(struct drm_i915_gem_object * obj)339 void i915_gem_object_free(struct drm_i915_gem_object *obj)
340 {
341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
342 kmem_cache_free(dev_priv->slab, obj);
343 }
344
345 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)346 i915_gem_create(struct drm_file *file,
347 struct drm_device *dev,
348 uint64_t size,
349 uint32_t *handle_p)
350 {
351 struct drm_i915_gem_object *obj;
352 int ret;
353 u32 handle;
354
355 size = roundup(size, PAGE_SIZE);
356 if (size == 0)
357 return -EINVAL;
358
359 /* Allocate the new object */
360 obj = i915_gem_alloc_object(dev, size);
361 if (obj == NULL)
362 return -ENOMEM;
363
364 ret = drm_gem_handle_create(file, &obj->base, &handle);
365 /* drop reference from allocate - handle holds it now */
366 drm_gem_object_unreference_unlocked(&obj->base);
367 if (ret)
368 return ret;
369
370 *handle_p = handle;
371 return 0;
372 }
373
374 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)375 i915_gem_dumb_create(struct drm_file *file,
376 struct drm_device *dev,
377 struct drm_mode_create_dumb *args)
378 {
379 /* have to work out size/pitch and return them */
380 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
381 args->size = args->pitch * args->height;
382 return i915_gem_create(file, dev,
383 args->size, &args->handle);
384 }
385
386 /**
387 * Creates a new mm object and returns a handle to it.
388 */
389 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)390 i915_gem_create_ioctl(struct drm_device *dev, void *data,
391 struct drm_file *file)
392 {
393 struct drm_i915_gem_create *args = data;
394
395 return i915_gem_create(file, dev,
396 args->size, &args->handle);
397 }
398
399 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)400 __copy_to_user_swizzled(char __user *cpu_vaddr,
401 const char *gpu_vaddr, int gpu_offset,
402 int length)
403 {
404 int ret, cpu_offset = 0;
405
406 while (length > 0) {
407 int cacheline_end = ALIGN(gpu_offset + 1, 64);
408 int this_length = min(cacheline_end - gpu_offset, length);
409 int swizzled_gpu_offset = gpu_offset ^ 64;
410
411 ret = __copy_to_user(cpu_vaddr + cpu_offset,
412 gpu_vaddr + swizzled_gpu_offset,
413 this_length);
414 if (ret)
415 return ret + length;
416
417 cpu_offset += this_length;
418 gpu_offset += this_length;
419 length -= this_length;
420 }
421
422 return 0;
423 }
424
425 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)426 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
427 const char __user *cpu_vaddr,
428 int length)
429 {
430 int ret, cpu_offset = 0;
431
432 while (length > 0) {
433 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434 int this_length = min(cacheline_end - gpu_offset, length);
435 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
438 cpu_vaddr + cpu_offset,
439 this_length);
440 if (ret)
441 return ret + length;
442
443 cpu_offset += this_length;
444 gpu_offset += this_length;
445 length -= this_length;
446 }
447
448 return 0;
449 }
450
451 /*
452 * Pins the specified object's pages and synchronizes the object with
453 * GPU accesses. Sets needs_clflush to non-zero if the caller should
454 * flush the object from the CPU cache.
455 */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,int * needs_clflush)456 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
457 int *needs_clflush)
458 {
459 int ret;
460
461 *needs_clflush = 0;
462
463 if (!obj->base.filp)
464 return -EINVAL;
465
466 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
467 /* If we're not in the cpu read domain, set ourself into the gtt
468 * read domain and manually flush cachelines (if required). This
469 * optimizes for the case when the gpu will dirty the data
470 * anyway again before the next pread happens. */
471 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
472 obj->cache_level);
473 ret = i915_gem_object_wait_rendering(obj, true);
474 if (ret)
475 return ret;
476
477 i915_gem_object_retire(obj);
478 }
479
480 ret = i915_gem_object_get_pages(obj);
481 if (ret)
482 return ret;
483
484 i915_gem_object_pin_pages(obj);
485
486 return ret;
487 }
488
489 /* Per-page copy function for the shmem pread fastpath.
490 * Flushes invalid cachelines before reading the target if
491 * needs_clflush is set. */
492 static int
shmem_pread_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)493 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
494 char __user *user_data,
495 bool page_do_bit17_swizzling, bool needs_clflush)
496 {
497 char *vaddr;
498 int ret;
499
500 if (unlikely(page_do_bit17_swizzling))
501 return -EINVAL;
502
503 vaddr = kmap_atomic(page);
504 if (needs_clflush)
505 drm_clflush_virt_range(vaddr + shmem_page_offset,
506 page_length);
507 ret = __copy_to_user_inatomic(user_data,
508 vaddr + shmem_page_offset,
509 page_length);
510 kunmap_atomic(vaddr);
511
512 return ret ? -EFAULT : 0;
513 }
514
515 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)516 shmem_clflush_swizzled_range(char *addr, unsigned long length,
517 bool swizzled)
518 {
519 if (unlikely(swizzled)) {
520 unsigned long start = (unsigned long) addr;
521 unsigned long end = (unsigned long) addr + length;
522
523 /* For swizzling simply ensure that we always flush both
524 * channels. Lame, but simple and it works. Swizzled
525 * pwrite/pread is far from a hotpath - current userspace
526 * doesn't use it at all. */
527 start = round_down(start, 128);
528 end = round_up(end, 128);
529
530 drm_clflush_virt_range((void *)start, end - start);
531 } else {
532 drm_clflush_virt_range(addr, length);
533 }
534
535 }
536
537 /* Only difference to the fast-path function is that this can handle bit17
538 * and uses non-atomic copy and kmap functions. */
539 static int
shmem_pread_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)540 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544 char *vaddr;
545 int ret;
546
547 vaddr = kmap(page);
548 if (needs_clflush)
549 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
550 page_length,
551 page_do_bit17_swizzling);
552
553 if (page_do_bit17_swizzling)
554 ret = __copy_to_user_swizzled(user_data,
555 vaddr, shmem_page_offset,
556 page_length);
557 else
558 ret = __copy_to_user(user_data,
559 vaddr + shmem_page_offset,
560 page_length);
561 kunmap(page);
562
563 return ret ? - EFAULT : 0;
564 }
565
566 static int
i915_gem_shmem_pread(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)567 i915_gem_shmem_pread(struct drm_device *dev,
568 struct drm_i915_gem_object *obj,
569 struct drm_i915_gem_pread *args,
570 struct drm_file *file)
571 {
572 char __user *user_data;
573 ssize_t remain;
574 loff_t offset;
575 int shmem_page_offset, page_length, ret = 0;
576 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
577 int prefaulted = 0;
578 int needs_clflush = 0;
579 struct sg_page_iter sg_iter;
580
581 user_data = to_user_ptr(args->data_ptr);
582 remain = args->size;
583
584 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
585
586 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
587 if (ret)
588 return ret;
589
590 offset = args->offset;
591
592 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
593 offset >> PAGE_SHIFT) {
594 struct page *page = sg_page_iter_page(&sg_iter);
595
596 if (remain <= 0)
597 break;
598
599 /* Operation in this page
600 *
601 * shmem_page_offset = offset within page in shmem file
602 * page_length = bytes to copy for this page
603 */
604 shmem_page_offset = offset_in_page(offset);
605 page_length = remain;
606 if ((shmem_page_offset + page_length) > PAGE_SIZE)
607 page_length = PAGE_SIZE - shmem_page_offset;
608
609 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610 (page_to_phys(page) & (1 << 17)) != 0;
611
612 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613 user_data, page_do_bit17_swizzling,
614 needs_clflush);
615 if (ret == 0)
616 goto next_page;
617
618 mutex_unlock(&dev->struct_mutex);
619
620 if (likely(!i915.prefault_disable) && !prefaulted) {
621 ret = fault_in_multipages_writeable(user_data, remain);
622 /* Userspace is tricking us, but we've already clobbered
623 * its pages with the prefault and promised to write the
624 * data up to the first fault. Hence ignore any errors
625 * and just continue. */
626 (void)ret;
627 prefaulted = 1;
628 }
629
630 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631 user_data, page_do_bit17_swizzling,
632 needs_clflush);
633
634 mutex_lock(&dev->struct_mutex);
635
636 if (ret)
637 goto out;
638
639 next_page:
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out:
646 i915_gem_object_unpin_pages(obj);
647
648 return ret;
649 }
650
651 /**
652 * Reads data from the object referenced by handle.
653 *
654 * On error, the contents of *data are undefined.
655 */
656 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658 struct drm_file *file)
659 {
660 struct drm_i915_gem_pread *args = data;
661 struct drm_i915_gem_object *obj;
662 int ret = 0;
663
664 if (args->size == 0)
665 return 0;
666
667 if (!access_ok(VERIFY_WRITE,
668 to_user_ptr(args->data_ptr),
669 args->size))
670 return -EFAULT;
671
672 ret = i915_mutex_lock_interruptible(dev);
673 if (ret)
674 return ret;
675
676 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677 if (&obj->base == NULL) {
678 ret = -ENOENT;
679 goto unlock;
680 }
681
682 /* Bounds check source. */
683 if (args->offset > obj->base.size ||
684 args->size > obj->base.size - args->offset) {
685 ret = -EINVAL;
686 goto out;
687 }
688
689 /* prime objects have no backing filp to GEM pread/pwrite
690 * pages from.
691 */
692 if (!obj->base.filp) {
693 ret = -EINVAL;
694 goto out;
695 }
696
697 trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699 ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702 drm_gem_object_unreference(&obj->base);
703 unlock:
704 mutex_unlock(&dev->struct_mutex);
705 return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709 * page faults in the source data
710 */
711
712 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)713 fast_user_write(struct io_mapping *mapping,
714 loff_t page_base, int page_offset,
715 char __user *user_data,
716 int length)
717 {
718 void __iomem *vaddr_atomic;
719 void *vaddr;
720 unsigned long unwritten;
721
722 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723 /* We can use the cpu mem copy function because this is X86. */
724 vaddr = (void __force*)vaddr_atomic + page_offset;
725 unwritten = __copy_from_user_inatomic_nocache(vaddr,
726 user_data, length);
727 io_mapping_unmap_atomic(vaddr_atomic);
728 return unwritten;
729 }
730
731 /**
732 * This is the fast pwrite path, where we copy the data directly from the
733 * user into the GTT, uncached.
734 */
735 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737 struct drm_i915_gem_object *obj,
738 struct drm_i915_gem_pwrite *args,
739 struct drm_file *file)
740 {
741 struct drm_i915_private *dev_priv = dev->dev_private;
742 ssize_t remain;
743 loff_t offset, page_base;
744 char __user *user_data;
745 int page_offset, page_length, ret;
746
747 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748 if (ret)
749 goto out;
750
751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
752 if (ret)
753 goto out_unpin;
754
755 ret = i915_gem_object_put_fence(obj);
756 if (ret)
757 goto out_unpin;
758
759 user_data = to_user_ptr(args->data_ptr);
760 remain = args->size;
761
762 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764 while (remain > 0) {
765 /* Operation in this page
766 *
767 * page_base = page offset within aperture
768 * page_offset = offset within page
769 * page_length = bytes to copy for this page
770 */
771 page_base = offset & PAGE_MASK;
772 page_offset = offset_in_page(offset);
773 page_length = remain;
774 if ((page_offset + remain) > PAGE_SIZE)
775 page_length = PAGE_SIZE - page_offset;
776
777 /* If we get a fault while copying data, then (presumably) our
778 * source page isn't available. Return the error and we'll
779 * retry in the slow path.
780 */
781 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782 page_offset, user_data, page_length)) {
783 ret = -EFAULT;
784 goto out_unpin;
785 }
786
787 remain -= page_length;
788 user_data += page_length;
789 offset += page_length;
790 }
791
792 out_unpin:
793 i915_gem_object_ggtt_unpin(obj);
794 out:
795 return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799 * Flushes invalid cachelines before writing to the target if
800 * needs_clflush_before is set and flushes out any written cachelines after
801 * writing if needs_clflush is set. */
802 static int
shmem_pwrite_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804 char __user *user_data,
805 bool page_do_bit17_swizzling,
806 bool needs_clflush_before,
807 bool needs_clflush_after)
808 {
809 char *vaddr;
810 int ret;
811
812 if (unlikely(page_do_bit17_swizzling))
813 return -EINVAL;
814
815 vaddr = kmap_atomic(page);
816 if (needs_clflush_before)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820 user_data, page_length);
821 if (needs_clflush_after)
822 drm_clflush_virt_range(vaddr + shmem_page_offset,
823 page_length);
824 kunmap_atomic(vaddr);
825
826 return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830 * and uses non-atomic copy and kmap functions. */
831 static int
shmem_pwrite_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833 char __user *user_data,
834 bool page_do_bit17_swizzling,
835 bool needs_clflush_before,
836 bool needs_clflush_after)
837 {
838 char *vaddr;
839 int ret;
840
841 vaddr = kmap(page);
842 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844 page_length,
845 page_do_bit17_swizzling);
846 if (page_do_bit17_swizzling)
847 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848 user_data,
849 page_length);
850 else
851 ret = __copy_from_user(vaddr + shmem_page_offset,
852 user_data,
853 page_length);
854 if (needs_clflush_after)
855 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856 page_length,
857 page_do_bit17_swizzling);
858 kunmap(page);
859
860 return ret ? -EFAULT : 0;
861 }
862
863 static int
i915_gem_shmem_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)864 i915_gem_shmem_pwrite(struct drm_device *dev,
865 struct drm_i915_gem_object *obj,
866 struct drm_i915_gem_pwrite *args,
867 struct drm_file *file)
868 {
869 ssize_t remain;
870 loff_t offset;
871 char __user *user_data;
872 int shmem_page_offset, page_length, ret = 0;
873 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874 int hit_slowpath = 0;
875 int needs_clflush_after = 0;
876 int needs_clflush_before = 0;
877 struct sg_page_iter sg_iter;
878
879 user_data = to_user_ptr(args->data_ptr);
880 remain = args->size;
881
882 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885 /* If we're not in the cpu write domain, set ourself into the gtt
886 * write domain and manually flush cachelines (if required). This
887 * optimizes for the case when the gpu will use the data
888 * right away and we therefore have to clflush anyway. */
889 needs_clflush_after = cpu_write_needs_clflush(obj);
890 ret = i915_gem_object_wait_rendering(obj, false);
891 if (ret)
892 return ret;
893
894 i915_gem_object_retire(obj);
895 }
896 /* Same trick applies to invalidate partially written cachelines read
897 * before writing. */
898 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899 needs_clflush_before =
900 !cpu_cache_is_coherent(dev, obj->cache_level);
901
902 ret = i915_gem_object_get_pages(obj);
903 if (ret)
904 return ret;
905
906 i915_gem_object_pin_pages(obj);
907
908 offset = args->offset;
909 obj->dirty = 1;
910
911 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912 offset >> PAGE_SHIFT) {
913 struct page *page = sg_page_iter_page(&sg_iter);
914 int partial_cacheline_write;
915
916 if (remain <= 0)
917 break;
918
919 /* Operation in this page
920 *
921 * shmem_page_offset = offset within page in shmem file
922 * page_length = bytes to copy for this page
923 */
924 shmem_page_offset = offset_in_page(offset);
925
926 page_length = remain;
927 if ((shmem_page_offset + page_length) > PAGE_SIZE)
928 page_length = PAGE_SIZE - shmem_page_offset;
929
930 /* If we don't overwrite a cacheline completely we need to be
931 * careful to have up-to-date data by first clflushing. Don't
932 * overcomplicate things and flush the entire patch. */
933 partial_cacheline_write = needs_clflush_before &&
934 ((shmem_page_offset | page_length)
935 & (boot_cpu_data.x86_clflush_size - 1));
936
937 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
938 (page_to_phys(page) & (1 << 17)) != 0;
939
940 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
941 user_data, page_do_bit17_swizzling,
942 partial_cacheline_write,
943 needs_clflush_after);
944 if (ret == 0)
945 goto next_page;
946
947 hit_slowpath = 1;
948 mutex_unlock(&dev->struct_mutex);
949 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
950 user_data, page_do_bit17_swizzling,
951 partial_cacheline_write,
952 needs_clflush_after);
953
954 mutex_lock(&dev->struct_mutex);
955
956 if (ret)
957 goto out;
958
959 next_page:
960 remain -= page_length;
961 user_data += page_length;
962 offset += page_length;
963 }
964
965 out:
966 i915_gem_object_unpin_pages(obj);
967
968 if (hit_slowpath) {
969 /*
970 * Fixup: Flush cpu caches in case we didn't flush the dirty
971 * cachelines in-line while writing and the object moved
972 * out of the cpu write domain while we've dropped the lock.
973 */
974 if (!needs_clflush_after &&
975 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
976 if (i915_gem_clflush_object(obj, obj->pin_display))
977 i915_gem_chipset_flush(dev);
978 }
979 }
980
981 if (needs_clflush_after)
982 i915_gem_chipset_flush(dev);
983
984 return ret;
985 }
986
987 /**
988 * Writes data to the object referenced by handle.
989 *
990 * On error, the contents of the buffer that were to be modified are undefined.
991 */
992 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)993 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
994 struct drm_file *file)
995 {
996 struct drm_i915_gem_pwrite *args = data;
997 struct drm_i915_gem_object *obj;
998 int ret;
999
1000 if (args->size == 0)
1001 return 0;
1002
1003 if (!access_ok(VERIFY_READ,
1004 to_user_ptr(args->data_ptr),
1005 args->size))
1006 return -EFAULT;
1007
1008 if (likely(!i915.prefault_disable)) {
1009 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1010 args->size);
1011 if (ret)
1012 return -EFAULT;
1013 }
1014
1015 ret = i915_mutex_lock_interruptible(dev);
1016 if (ret)
1017 return ret;
1018
1019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1020 if (&obj->base == NULL) {
1021 ret = -ENOENT;
1022 goto unlock;
1023 }
1024
1025 /* Bounds check destination. */
1026 if (args->offset > obj->base.size ||
1027 args->size > obj->base.size - args->offset) {
1028 ret = -EINVAL;
1029 goto out;
1030 }
1031
1032 /* prime objects have no backing filp to GEM pread/pwrite
1033 * pages from.
1034 */
1035 if (!obj->base.filp) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
1040 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1041
1042 ret = -EFAULT;
1043 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1044 * it would end up going through the fenced access, and we'll get
1045 * different detiling behavior between reading and writing.
1046 * pread/pwrite currently are reading and writing from the CPU
1047 * perspective, requiring manual detiling by the client.
1048 */
1049 if (obj->phys_handle) {
1050 ret = i915_gem_phys_pwrite(obj, args, file);
1051 goto out;
1052 }
1053
1054 if (obj->tiling_mode == I915_TILING_NONE &&
1055 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1056 cpu_write_needs_clflush(obj)) {
1057 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1058 /* Note that the gtt paths might fail with non-page-backed user
1059 * pointers (e.g. gtt mappings when moving data between
1060 * textures). Fallback to the shmem path in that case. */
1061 }
1062
1063 if (ret == -EFAULT || ret == -ENOSPC)
1064 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1065
1066 out:
1067 drm_gem_object_unreference(&obj->base);
1068 unlock:
1069 mutex_unlock(&dev->struct_mutex);
1070 return ret;
1071 }
1072
1073 int
i915_gem_check_wedge(struct i915_gpu_error * error,bool interruptible)1074 i915_gem_check_wedge(struct i915_gpu_error *error,
1075 bool interruptible)
1076 {
1077 if (i915_reset_in_progress(error)) {
1078 /* Non-interruptible callers can't handle -EAGAIN, hence return
1079 * -EIO unconditionally for these. */
1080 if (!interruptible)
1081 return -EIO;
1082
1083 /* Recovery complete, but the reset failed ... */
1084 if (i915_terminally_wedged(error))
1085 return -EIO;
1086
1087 /*
1088 * Check if GPU Reset is in progress - we need intel_ring_begin
1089 * to work properly to reinit the hw state while the gpu is
1090 * still marked as reset-in-progress. Handle this with a flag.
1091 */
1092 if (!error->reload_in_reset)
1093 return -EAGAIN;
1094 }
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Compare seqno against outstanding lazy request. Emit a request if they are
1101 * equal.
1102 */
1103 int
i915_gem_check_olr(struct intel_engine_cs * ring,u32 seqno)1104 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1105 {
1106 int ret;
1107
1108 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1109
1110 ret = 0;
1111 if (seqno == ring->outstanding_lazy_seqno)
1112 ret = i915_add_request(ring, NULL);
1113
1114 return ret;
1115 }
1116
fake_irq(unsigned long data)1117 static void fake_irq(unsigned long data)
1118 {
1119 wake_up_process((struct task_struct *)data);
1120 }
1121
missed_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)1122 static bool missed_irq(struct drm_i915_private *dev_priv,
1123 struct intel_engine_cs *ring)
1124 {
1125 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1126 }
1127
can_wait_boost(struct drm_i915_file_private * file_priv)1128 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1129 {
1130 if (file_priv == NULL)
1131 return true;
1132
1133 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1134 }
1135
1136 /**
1137 * __wait_seqno - wait until execution of seqno has finished
1138 * @ring: the ring expected to report seqno
1139 * @seqno: duh!
1140 * @reset_counter: reset sequence associated with the given seqno
1141 * @interruptible: do an interruptible wait (normally yes)
1142 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1143 *
1144 * Note: It is of utmost importance that the passed in seqno and reset_counter
1145 * values have been read by the caller in an smp safe manner. Where read-side
1146 * locks are involved, it is sufficient to read the reset_counter before
1147 * unlocking the lock that protects the seqno. For lockless tricks, the
1148 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1149 * inserted.
1150 *
1151 * Returns 0 if the seqno was found within the alloted time. Else returns the
1152 * errno with remaining time filled in timeout argument.
1153 */
__wait_seqno(struct intel_engine_cs * ring,u32 seqno,unsigned reset_counter,bool interruptible,s64 * timeout,struct drm_i915_file_private * file_priv)1154 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1155 unsigned reset_counter,
1156 bool interruptible,
1157 s64 *timeout,
1158 struct drm_i915_file_private *file_priv)
1159 {
1160 struct drm_device *dev = ring->dev;
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162 const bool irq_test_in_progress =
1163 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1164 DEFINE_WAIT(wait);
1165 unsigned long timeout_expire;
1166 s64 before, now;
1167 int ret;
1168
1169 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1170
1171 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1172 return 0;
1173
1174 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
1175
1176 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1177 gen6_rps_boost(dev_priv);
1178 if (file_priv)
1179 mod_delayed_work(dev_priv->wq,
1180 &file_priv->mm.idle_work,
1181 msecs_to_jiffies(100));
1182 }
1183
1184 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1185 return -ENODEV;
1186
1187 /* Record current time in case interrupted by signal, or wedged */
1188 trace_i915_gem_request_wait_begin(ring, seqno);
1189 before = ktime_get_raw_ns();
1190 for (;;) {
1191 struct timer_list timer;
1192
1193 prepare_to_wait(&ring->irq_queue, &wait,
1194 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1195
1196 /* We need to check whether any gpu reset happened in between
1197 * the caller grabbing the seqno and now ... */
1198 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1199 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1200 * is truely gone. */
1201 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1202 if (ret == 0)
1203 ret = -EAGAIN;
1204 break;
1205 }
1206
1207 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1208 ret = 0;
1209 break;
1210 }
1211
1212 if (interruptible && signal_pending(current)) {
1213 ret = -ERESTARTSYS;
1214 break;
1215 }
1216
1217 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1218 ret = -ETIME;
1219 break;
1220 }
1221
1222 timer.function = NULL;
1223 if (timeout || missed_irq(dev_priv, ring)) {
1224 unsigned long expire;
1225
1226 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1227 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1228 mod_timer(&timer, expire);
1229 }
1230
1231 io_schedule();
1232
1233 if (timer.function) {
1234 del_singleshot_timer_sync(&timer);
1235 destroy_timer_on_stack(&timer);
1236 }
1237 }
1238 now = ktime_get_raw_ns();
1239 trace_i915_gem_request_wait_end(ring, seqno);
1240
1241 if (!irq_test_in_progress)
1242 ring->irq_put(ring);
1243
1244 finish_wait(&ring->irq_queue, &wait);
1245
1246 if (timeout) {
1247 s64 tres = *timeout - (now - before);
1248
1249 *timeout = tres < 0 ? 0 : tres;
1250 }
1251
1252 return ret;
1253 }
1254
1255 /**
1256 * Waits for a sequence number to be signaled, and cleans up the
1257 * request and object lists appropriately for that event.
1258 */
1259 int
i915_wait_seqno(struct intel_engine_cs * ring,uint32_t seqno)1260 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1261 {
1262 struct drm_device *dev = ring->dev;
1263 struct drm_i915_private *dev_priv = dev->dev_private;
1264 bool interruptible = dev_priv->mm.interruptible;
1265 int ret;
1266
1267 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1268 BUG_ON(seqno == 0);
1269
1270 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1271 if (ret)
1272 return ret;
1273
1274 ret = i915_gem_check_olr(ring, seqno);
1275 if (ret)
1276 return ret;
1277
1278 return __wait_seqno(ring, seqno,
1279 atomic_read(&dev_priv->gpu_error.reset_counter),
1280 interruptible, NULL, NULL);
1281 }
1282
1283 static int
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object * obj,struct intel_engine_cs * ring)1284 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1285 struct intel_engine_cs *ring)
1286 {
1287 if (!obj->active)
1288 return 0;
1289
1290 /* Manually manage the write flush as we may have not yet
1291 * retired the buffer.
1292 *
1293 * Note that the last_write_seqno is always the earlier of
1294 * the two (read/write) seqno, so if we haved successfully waited,
1295 * we know we have passed the last write.
1296 */
1297 obj->last_write_seqno = 0;
1298
1299 return 0;
1300 }
1301
1302 /**
1303 * Ensures that all rendering to the object has completed and the object is
1304 * safe to unbind from the GTT or access from the CPU.
1305 */
1306 static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj,bool readonly)1307 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1308 bool readonly)
1309 {
1310 struct intel_engine_cs *ring = obj->ring;
1311 u32 seqno;
1312 int ret;
1313
1314 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1315 if (seqno == 0)
1316 return 0;
1317
1318 ret = i915_wait_seqno(ring, seqno);
1319 if (ret)
1320 return ret;
1321
1322 return i915_gem_object_wait_rendering__tail(obj, ring);
1323 }
1324
1325 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1326 * as the object state may change during this call.
1327 */
1328 static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object * obj,struct drm_i915_file_private * file_priv,bool readonly)1329 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1330 struct drm_i915_file_private *file_priv,
1331 bool readonly)
1332 {
1333 struct drm_device *dev = obj->base.dev;
1334 struct drm_i915_private *dev_priv = dev->dev_private;
1335 struct intel_engine_cs *ring = obj->ring;
1336 unsigned reset_counter;
1337 u32 seqno;
1338 int ret;
1339
1340 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1341 BUG_ON(!dev_priv->mm.interruptible);
1342
1343 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1344 if (seqno == 0)
1345 return 0;
1346
1347 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1348 if (ret)
1349 return ret;
1350
1351 ret = i915_gem_check_olr(ring, seqno);
1352 if (ret)
1353 return ret;
1354
1355 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1356 mutex_unlock(&dev->struct_mutex);
1357 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1358 mutex_lock(&dev->struct_mutex);
1359 if (ret)
1360 return ret;
1361
1362 return i915_gem_object_wait_rendering__tail(obj, ring);
1363 }
1364
1365 /**
1366 * Called when user space prepares to use an object with the CPU, either
1367 * through the mmap ioctl's mapping or a GTT mapping.
1368 */
1369 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1370 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1371 struct drm_file *file)
1372 {
1373 struct drm_i915_gem_set_domain *args = data;
1374 struct drm_i915_gem_object *obj;
1375 uint32_t read_domains = args->read_domains;
1376 uint32_t write_domain = args->write_domain;
1377 int ret;
1378
1379 /* Only handle setting domains to types used by the CPU. */
1380 if (write_domain & I915_GEM_GPU_DOMAINS)
1381 return -EINVAL;
1382
1383 if (read_domains & I915_GEM_GPU_DOMAINS)
1384 return -EINVAL;
1385
1386 /* Having something in the write domain implies it's in the read
1387 * domain, and only that read domain. Enforce that in the request.
1388 */
1389 if (write_domain != 0 && read_domains != write_domain)
1390 return -EINVAL;
1391
1392 ret = i915_mutex_lock_interruptible(dev);
1393 if (ret)
1394 return ret;
1395
1396 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1397 if (&obj->base == NULL) {
1398 ret = -ENOENT;
1399 goto unlock;
1400 }
1401
1402 /* Try to flush the object off the GPU without holding the lock.
1403 * We will repeat the flush holding the lock in the normal manner
1404 * to catch cases where we are gazumped.
1405 */
1406 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1407 file->driver_priv,
1408 !write_domain);
1409 if (ret)
1410 goto unref;
1411
1412 if (read_domains & I915_GEM_DOMAIN_GTT) {
1413 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1414
1415 /* Silently promote "you're not bound, there was nothing to do"
1416 * to success, since the client was just asking us to
1417 * make sure everything was done.
1418 */
1419 if (ret == -EINVAL)
1420 ret = 0;
1421 } else {
1422 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1423 }
1424
1425 unref:
1426 drm_gem_object_unreference(&obj->base);
1427 unlock:
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
1431
1432 /**
1433 * Called when user space has done writes to this buffer
1434 */
1435 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1436 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1437 struct drm_file *file)
1438 {
1439 struct drm_i915_gem_sw_finish *args = data;
1440 struct drm_i915_gem_object *obj;
1441 int ret = 0;
1442
1443 ret = i915_mutex_lock_interruptible(dev);
1444 if (ret)
1445 return ret;
1446
1447 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1448 if (&obj->base == NULL) {
1449 ret = -ENOENT;
1450 goto unlock;
1451 }
1452
1453 /* Pinned buffers may be scanout, so flush the cache */
1454 if (obj->pin_display)
1455 i915_gem_object_flush_cpu_write_domain(obj, true);
1456
1457 drm_gem_object_unreference(&obj->base);
1458 unlock:
1459 mutex_unlock(&dev->struct_mutex);
1460 return ret;
1461 }
1462
1463 /**
1464 * Maps the contents of an object, returning the address it is mapped
1465 * into.
1466 *
1467 * While the mapping holds a reference on the contents of the object, it doesn't
1468 * imply a ref on the object itself.
1469 */
1470 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1471 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1472 struct drm_file *file)
1473 {
1474 struct drm_i915_gem_mmap *args = data;
1475 struct drm_gem_object *obj;
1476 unsigned long addr;
1477
1478 obj = drm_gem_object_lookup(dev, file, args->handle);
1479 if (obj == NULL)
1480 return -ENOENT;
1481
1482 /* prime objects have no backing filp to GEM mmap
1483 * pages from.
1484 */
1485 if (!obj->filp) {
1486 drm_gem_object_unreference_unlocked(obj);
1487 return -EINVAL;
1488 }
1489
1490 addr = vm_mmap(obj->filp, 0, args->size,
1491 PROT_READ | PROT_WRITE, MAP_SHARED,
1492 args->offset);
1493 drm_gem_object_unreference_unlocked(obj);
1494 if (IS_ERR((void *)addr))
1495 return addr;
1496
1497 args->addr_ptr = (uint64_t) addr;
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * i915_gem_fault - fault a page into the GTT
1504 * vma: VMA in question
1505 * vmf: fault info
1506 *
1507 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1508 * from userspace. The fault handler takes care of binding the object to
1509 * the GTT (if needed), allocating and programming a fence register (again,
1510 * only if needed based on whether the old reg is still valid or the object
1511 * is tiled) and inserting a new PTE into the faulting process.
1512 *
1513 * Note that the faulting process may involve evicting existing objects
1514 * from the GTT and/or fence registers to make room. So performance may
1515 * suffer if the GTT working set is large or there are few fence registers
1516 * left.
1517 */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1518 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519 {
1520 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1521 struct drm_device *dev = obj->base.dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 pgoff_t page_offset;
1524 unsigned long pfn;
1525 int ret = 0;
1526 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1527
1528 intel_runtime_pm_get(dev_priv);
1529
1530 /* We don't use vmf->pgoff since that has the fake offset */
1531 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1532 PAGE_SHIFT;
1533
1534 ret = i915_mutex_lock_interruptible(dev);
1535 if (ret)
1536 goto out;
1537
1538 trace_i915_gem_object_fault(obj, page_offset, true, write);
1539
1540 /* Try to flush the object off the GPU first without holding the lock.
1541 * Upon reacquiring the lock, we will perform our sanity checks and then
1542 * repeat the flush holding the lock in the normal manner to catch cases
1543 * where we are gazumped.
1544 */
1545 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1546 if (ret)
1547 goto unlock;
1548
1549 /* Access to snoopable pages through the GTT is incoherent. */
1550 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1551 ret = -EFAULT;
1552 goto unlock;
1553 }
1554
1555 /* Now bind it into the GTT if needed */
1556 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1557 if (ret)
1558 goto unlock;
1559
1560 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1561 if (ret)
1562 goto unpin;
1563
1564 ret = i915_gem_object_get_fence(obj);
1565 if (ret)
1566 goto unpin;
1567
1568 /* Finally, remap it using the new GTT offset */
1569 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1570 pfn >>= PAGE_SHIFT;
1571
1572 if (!obj->fault_mappable) {
1573 unsigned long size = min_t(unsigned long,
1574 vma->vm_end - vma->vm_start,
1575 obj->base.size);
1576 int i;
1577
1578 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1579 ret = vm_insert_pfn(vma,
1580 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1581 pfn + i);
1582 if (ret)
1583 break;
1584 }
1585
1586 obj->fault_mappable = true;
1587 } else
1588 ret = vm_insert_pfn(vma,
1589 (unsigned long)vmf->virtual_address,
1590 pfn + page_offset);
1591 unpin:
1592 i915_gem_object_ggtt_unpin(obj);
1593 unlock:
1594 mutex_unlock(&dev->struct_mutex);
1595 out:
1596 switch (ret) {
1597 case -EIO:
1598 /*
1599 * We eat errors when the gpu is terminally wedged to avoid
1600 * userspace unduly crashing (gl has no provisions for mmaps to
1601 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1602 * and so needs to be reported.
1603 */
1604 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1605 ret = VM_FAULT_SIGBUS;
1606 break;
1607 }
1608 case -EAGAIN:
1609 /*
1610 * EAGAIN means the gpu is hung and we'll wait for the error
1611 * handler to reset everything when re-faulting in
1612 * i915_mutex_lock_interruptible.
1613 */
1614 case 0:
1615 case -ERESTARTSYS:
1616 case -EINTR:
1617 case -EBUSY:
1618 /*
1619 * EBUSY is ok: this just means that another thread
1620 * already did the job.
1621 */
1622 ret = VM_FAULT_NOPAGE;
1623 break;
1624 case -ENOMEM:
1625 ret = VM_FAULT_OOM;
1626 break;
1627 case -ENOSPC:
1628 case -EFAULT:
1629 ret = VM_FAULT_SIGBUS;
1630 break;
1631 default:
1632 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1633 ret = VM_FAULT_SIGBUS;
1634 break;
1635 }
1636
1637 intel_runtime_pm_put(dev_priv);
1638 return ret;
1639 }
1640
1641 /**
1642 * i915_gem_release_mmap - remove physical page mappings
1643 * @obj: obj in question
1644 *
1645 * Preserve the reservation of the mmapping with the DRM core code, but
1646 * relinquish ownership of the pages back to the system.
1647 *
1648 * It is vital that we remove the page mapping if we have mapped a tiled
1649 * object through the GTT and then lose the fence register due to
1650 * resource pressure. Similarly if the object has been moved out of the
1651 * aperture, than pages mapped into userspace must be revoked. Removing the
1652 * mapping will then trigger a page fault on the next user access, allowing
1653 * fixup by i915_gem_fault().
1654 */
1655 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1656 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1657 {
1658 if (!obj->fault_mappable)
1659 return;
1660
1661 drm_vma_node_unmap(&obj->base.vma_node,
1662 obj->base.dev->anon_inode->i_mapping);
1663 obj->fault_mappable = false;
1664 }
1665
1666 void
i915_gem_release_all_mmaps(struct drm_i915_private * dev_priv)1667 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1668 {
1669 struct drm_i915_gem_object *obj;
1670
1671 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1672 i915_gem_release_mmap(obj);
1673 }
1674
1675 uint32_t
i915_gem_get_gtt_size(struct drm_device * dev,uint32_t size,int tiling_mode)1676 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1677 {
1678 uint32_t gtt_size;
1679
1680 if (INTEL_INFO(dev)->gen >= 4 ||
1681 tiling_mode == I915_TILING_NONE)
1682 return size;
1683
1684 /* Previous chips need a power-of-two fence region when tiling */
1685 if (INTEL_INFO(dev)->gen == 3)
1686 gtt_size = 1024*1024;
1687 else
1688 gtt_size = 512*1024;
1689
1690 while (gtt_size < size)
1691 gtt_size <<= 1;
1692
1693 return gtt_size;
1694 }
1695
1696 /**
1697 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1698 * @obj: object to check
1699 *
1700 * Return the required GTT alignment for an object, taking into account
1701 * potential fence register mapping.
1702 */
1703 uint32_t
i915_gem_get_gtt_alignment(struct drm_device * dev,uint32_t size,int tiling_mode,bool fenced)1704 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1705 int tiling_mode, bool fenced)
1706 {
1707 /*
1708 * Minimum alignment is 4k (GTT page size), but might be greater
1709 * if a fence register is needed for the object.
1710 */
1711 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1712 tiling_mode == I915_TILING_NONE)
1713 return 4096;
1714
1715 /*
1716 * Previous chips need to be aligned to the size of the smallest
1717 * fence register that can contain the object.
1718 */
1719 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1720 }
1721
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)1722 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1723 {
1724 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1725 int ret;
1726
1727 if (drm_vma_node_has_offset(&obj->base.vma_node))
1728 return 0;
1729
1730 dev_priv->mm.shrinker_no_lock_stealing = true;
1731
1732 ret = drm_gem_create_mmap_offset(&obj->base);
1733 if (ret != -ENOSPC)
1734 goto out;
1735
1736 /* Badly fragmented mmap space? The only way we can recover
1737 * space is by destroying unwanted objects. We can't randomly release
1738 * mmap_offsets as userspace expects them to be persistent for the
1739 * lifetime of the objects. The closest we can is to release the
1740 * offsets on purgeable objects by truncating it and marking it purged,
1741 * which prevents userspace from ever using that object again.
1742 */
1743 i915_gem_shrink(dev_priv,
1744 obj->base.size >> PAGE_SHIFT,
1745 I915_SHRINK_BOUND |
1746 I915_SHRINK_UNBOUND |
1747 I915_SHRINK_PURGEABLE);
1748 ret = drm_gem_create_mmap_offset(&obj->base);
1749 if (ret != -ENOSPC)
1750 goto out;
1751
1752 i915_gem_shrink_all(dev_priv);
1753 ret = drm_gem_create_mmap_offset(&obj->base);
1754 out:
1755 dev_priv->mm.shrinker_no_lock_stealing = false;
1756
1757 return ret;
1758 }
1759
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)1760 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1761 {
1762 drm_gem_free_mmap_offset(&obj->base);
1763 }
1764
1765 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)1766 i915_gem_mmap_gtt(struct drm_file *file,
1767 struct drm_device *dev,
1768 uint32_t handle,
1769 uint64_t *offset)
1770 {
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 struct drm_i915_gem_object *obj;
1773 int ret;
1774
1775 ret = i915_mutex_lock_interruptible(dev);
1776 if (ret)
1777 return ret;
1778
1779 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1780 if (&obj->base == NULL) {
1781 ret = -ENOENT;
1782 goto unlock;
1783 }
1784
1785 if (obj->base.size > dev_priv->gtt.mappable_end) {
1786 ret = -E2BIG;
1787 goto out;
1788 }
1789
1790 if (obj->madv != I915_MADV_WILLNEED) {
1791 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1792 ret = -EFAULT;
1793 goto out;
1794 }
1795
1796 ret = i915_gem_object_create_mmap_offset(obj);
1797 if (ret)
1798 goto out;
1799
1800 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1801
1802 out:
1803 drm_gem_object_unreference(&obj->base);
1804 unlock:
1805 mutex_unlock(&dev->struct_mutex);
1806 return ret;
1807 }
1808
1809 /**
1810 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1811 * @dev: DRM device
1812 * @data: GTT mapping ioctl data
1813 * @file: GEM object info
1814 *
1815 * Simply returns the fake offset to userspace so it can mmap it.
1816 * The mmap call will end up in drm_gem_mmap(), which will set things
1817 * up so we can get faults in the handler above.
1818 *
1819 * The fault handler will take care of binding the object into the GTT
1820 * (since it may have been evicted to make room for something), allocating
1821 * a fence register, and mapping the appropriate aperture address into
1822 * userspace.
1823 */
1824 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1825 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1826 struct drm_file *file)
1827 {
1828 struct drm_i915_gem_mmap_gtt *args = data;
1829
1830 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1831 }
1832
1833 static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object * obj)1834 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1835 {
1836 return obj->madv == I915_MADV_DONTNEED;
1837 }
1838
1839 /* Immediately discard the backing storage */
1840 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)1841 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1842 {
1843 i915_gem_object_free_mmap_offset(obj);
1844
1845 if (obj->base.filp == NULL)
1846 return;
1847
1848 /* Our goal here is to return as much of the memory as
1849 * is possible back to the system as we are called from OOM.
1850 * To do this we must instruct the shmfs to drop all of its
1851 * backing pages, *now*.
1852 */
1853 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1854 obj->madv = __I915_MADV_PURGED;
1855 }
1856
1857 /* Try to discard unwanted pages */
1858 static void
i915_gem_object_invalidate(struct drm_i915_gem_object * obj)1859 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1860 {
1861 struct address_space *mapping;
1862
1863 switch (obj->madv) {
1864 case I915_MADV_DONTNEED:
1865 i915_gem_object_truncate(obj);
1866 case __I915_MADV_PURGED:
1867 return;
1868 }
1869
1870 if (obj->base.filp == NULL)
1871 return;
1872
1873 mapping = file_inode(obj->base.filp)->i_mapping,
1874 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1875 }
1876
1877 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)1878 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1879 {
1880 struct sg_page_iter sg_iter;
1881 int ret;
1882
1883 BUG_ON(obj->madv == __I915_MADV_PURGED);
1884
1885 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1886 if (ret) {
1887 /* In the event of a disaster, abandon all caches and
1888 * hope for the best.
1889 */
1890 WARN_ON(ret != -EIO);
1891 i915_gem_clflush_object(obj, true);
1892 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1893 }
1894
1895 if (i915_gem_object_needs_bit17_swizzle(obj))
1896 i915_gem_object_save_bit_17_swizzle(obj);
1897
1898 if (obj->madv == I915_MADV_DONTNEED)
1899 obj->dirty = 0;
1900
1901 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1902 struct page *page = sg_page_iter_page(&sg_iter);
1903
1904 if (obj->dirty)
1905 set_page_dirty(page);
1906
1907 if (obj->madv == I915_MADV_WILLNEED)
1908 mark_page_accessed(page);
1909
1910 page_cache_release(page);
1911 }
1912 obj->dirty = 0;
1913
1914 sg_free_table(obj->pages);
1915 kfree(obj->pages);
1916 }
1917
1918 int
i915_gem_object_put_pages(struct drm_i915_gem_object * obj)1919 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1920 {
1921 const struct drm_i915_gem_object_ops *ops = obj->ops;
1922
1923 if (obj->pages == NULL)
1924 return 0;
1925
1926 if (obj->pages_pin_count)
1927 return -EBUSY;
1928
1929 BUG_ON(i915_gem_obj_bound_any(obj));
1930
1931 /* ->put_pages might need to allocate memory for the bit17 swizzle
1932 * array, hence protect them from being reaped by removing them from gtt
1933 * lists early. */
1934 list_del(&obj->global_list);
1935
1936 ops->put_pages(obj);
1937 obj->pages = NULL;
1938
1939 i915_gem_object_invalidate(obj);
1940
1941 return 0;
1942 }
1943
1944 unsigned long
i915_gem_shrink(struct drm_i915_private * dev_priv,long target,unsigned flags)1945 i915_gem_shrink(struct drm_i915_private *dev_priv,
1946 long target, unsigned flags)
1947 {
1948 const bool purgeable_only = flags & I915_SHRINK_PURGEABLE;
1949 unsigned long count = 0;
1950
1951 /*
1952 * As we may completely rewrite the (un)bound list whilst unbinding
1953 * (due to retiring requests) we have to strictly process only
1954 * one element of the list at the time, and recheck the list
1955 * on every iteration.
1956 *
1957 * In particular, we must hold a reference whilst removing the
1958 * object as we may end up waiting for and/or retiring the objects.
1959 * This might release the final reference (held by the active list)
1960 * and result in the object being freed from under us. This is
1961 * similar to the precautions the eviction code must take whilst
1962 * removing objects.
1963 *
1964 * Also note that although these lists do not hold a reference to
1965 * the object we can safely grab one here: The final object
1966 * unreferencing and the bound_list are both protected by the
1967 * dev->struct_mutex and so we won't ever be able to observe an
1968 * object on the bound_list with a reference count equals 0.
1969 */
1970 if (flags & I915_SHRINK_UNBOUND) {
1971 struct list_head still_in_list;
1972
1973 INIT_LIST_HEAD(&still_in_list);
1974 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1975 struct drm_i915_gem_object *obj;
1976
1977 obj = list_first_entry(&dev_priv->mm.unbound_list,
1978 typeof(*obj), global_list);
1979 list_move_tail(&obj->global_list, &still_in_list);
1980
1981 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1982 continue;
1983
1984 drm_gem_object_reference(&obj->base);
1985
1986 if (i915_gem_object_put_pages(obj) == 0)
1987 count += obj->base.size >> PAGE_SHIFT;
1988
1989 drm_gem_object_unreference(&obj->base);
1990 }
1991 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1992 }
1993
1994 if (flags & I915_SHRINK_BOUND) {
1995 struct list_head still_in_list;
1996
1997 INIT_LIST_HEAD(&still_in_list);
1998 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1999 struct drm_i915_gem_object *obj;
2000 struct i915_vma *vma, *v;
2001
2002 obj = list_first_entry(&dev_priv->mm.bound_list,
2003 typeof(*obj), global_list);
2004 list_move_tail(&obj->global_list, &still_in_list);
2005
2006 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2007 continue;
2008
2009 drm_gem_object_reference(&obj->base);
2010
2011 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2012 if (i915_vma_unbind(vma))
2013 break;
2014
2015 if (i915_gem_object_put_pages(obj) == 0)
2016 count += obj->base.size >> PAGE_SHIFT;
2017
2018 drm_gem_object_unreference(&obj->base);
2019 }
2020 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2021 }
2022
2023 return count;
2024 }
2025
2026 static unsigned long
i915_gem_shrink_all(struct drm_i915_private * dev_priv)2027 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2028 {
2029 i915_gem_evict_everything(dev_priv->dev);
2030 return i915_gem_shrink(dev_priv, LONG_MAX,
2031 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2032 }
2033
2034 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2035 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2036 {
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 int page_count, i;
2039 struct address_space *mapping;
2040 struct sg_table *st;
2041 struct scatterlist *sg;
2042 struct sg_page_iter sg_iter;
2043 struct page *page;
2044 unsigned long last_pfn = 0; /* suppress gcc warning */
2045 gfp_t gfp;
2046
2047 /* Assert that the object is not currently in any GPU domain. As it
2048 * wasn't in the GTT, there shouldn't be any way it could have been in
2049 * a GPU cache
2050 */
2051 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2052 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2053
2054 st = kmalloc(sizeof(*st), GFP_KERNEL);
2055 if (st == NULL)
2056 return -ENOMEM;
2057
2058 page_count = obj->base.size / PAGE_SIZE;
2059 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2060 kfree(st);
2061 return -ENOMEM;
2062 }
2063
2064 /* Get the list of pages out of our struct file. They'll be pinned
2065 * at this point until we release them.
2066 *
2067 * Fail silently without starting the shrinker
2068 */
2069 mapping = file_inode(obj->base.filp)->i_mapping;
2070 gfp = mapping_gfp_mask(mapping);
2071 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2072 gfp &= ~(__GFP_IO | __GFP_WAIT);
2073 sg = st->sgl;
2074 st->nents = 0;
2075 for (i = 0; i < page_count; i++) {
2076 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2077 if (IS_ERR(page)) {
2078 i915_gem_shrink(dev_priv,
2079 page_count,
2080 I915_SHRINK_BOUND |
2081 I915_SHRINK_UNBOUND |
2082 I915_SHRINK_PURGEABLE);
2083 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2084 }
2085 if (IS_ERR(page)) {
2086 /* We've tried hard to allocate the memory by reaping
2087 * our own buffer, now let the real VM do its job and
2088 * go down in flames if truly OOM.
2089 */
2090 i915_gem_shrink_all(dev_priv);
2091 page = shmem_read_mapping_page(mapping, i);
2092 if (IS_ERR(page))
2093 goto err_pages;
2094 }
2095 #ifdef CONFIG_SWIOTLB
2096 if (swiotlb_nr_tbl()) {
2097 st->nents++;
2098 sg_set_page(sg, page, PAGE_SIZE, 0);
2099 sg = sg_next(sg);
2100 continue;
2101 }
2102 #endif
2103 if (!i || page_to_pfn(page) != last_pfn + 1) {
2104 if (i)
2105 sg = sg_next(sg);
2106 st->nents++;
2107 sg_set_page(sg, page, PAGE_SIZE, 0);
2108 } else {
2109 sg->length += PAGE_SIZE;
2110 }
2111 last_pfn = page_to_pfn(page);
2112
2113 /* Check that the i965g/gm workaround works. */
2114 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2115 }
2116 #ifdef CONFIG_SWIOTLB
2117 if (!swiotlb_nr_tbl())
2118 #endif
2119 sg_mark_end(sg);
2120 obj->pages = st;
2121
2122 if (i915_gem_object_needs_bit17_swizzle(obj))
2123 i915_gem_object_do_bit_17_swizzle(obj);
2124
2125 return 0;
2126
2127 err_pages:
2128 sg_mark_end(sg);
2129 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2130 page_cache_release(sg_page_iter_page(&sg_iter));
2131 sg_free_table(st);
2132 kfree(st);
2133
2134 /* shmemfs first checks if there is enough memory to allocate the page
2135 * and reports ENOSPC should there be insufficient, along with the usual
2136 * ENOMEM for a genuine allocation failure.
2137 *
2138 * We use ENOSPC in our driver to mean that we have run out of aperture
2139 * space and so want to translate the error from shmemfs back to our
2140 * usual understanding of ENOMEM.
2141 */
2142 if (PTR_ERR(page) == -ENOSPC)
2143 return -ENOMEM;
2144 else
2145 return PTR_ERR(page);
2146 }
2147
2148 /* Ensure that the associated pages are gathered from the backing storage
2149 * and pinned into our object. i915_gem_object_get_pages() may be called
2150 * multiple times before they are released by a single call to
2151 * i915_gem_object_put_pages() - once the pages are no longer referenced
2152 * either as a result of memory pressure (reaping pages under the shrinker)
2153 * or as the object is itself released.
2154 */
2155 int
i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2156 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2157 {
2158 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2159 const struct drm_i915_gem_object_ops *ops = obj->ops;
2160 int ret;
2161
2162 if (obj->pages)
2163 return 0;
2164
2165 if (obj->madv != I915_MADV_WILLNEED) {
2166 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2167 return -EFAULT;
2168 }
2169
2170 BUG_ON(obj->pages_pin_count);
2171
2172 ret = ops->get_pages(obj);
2173 if (ret)
2174 return ret;
2175
2176 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2177 return 0;
2178 }
2179
2180 static void
i915_gem_object_move_to_active(struct drm_i915_gem_object * obj,struct intel_engine_cs * ring)2181 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2182 struct intel_engine_cs *ring)
2183 {
2184 u32 seqno = intel_ring_get_seqno(ring);
2185
2186 BUG_ON(ring == NULL);
2187 if (obj->ring != ring && obj->last_write_seqno) {
2188 /* Keep the seqno relative to the current ring */
2189 obj->last_write_seqno = seqno;
2190 }
2191 obj->ring = ring;
2192
2193 /* Add a reference if we're newly entering the active list. */
2194 if (!obj->active) {
2195 drm_gem_object_reference(&obj->base);
2196 obj->active = 1;
2197 }
2198
2199 list_move_tail(&obj->ring_list, &ring->active_list);
2200
2201 obj->last_read_seqno = seqno;
2202 }
2203
i915_vma_move_to_active(struct i915_vma * vma,struct intel_engine_cs * ring)2204 void i915_vma_move_to_active(struct i915_vma *vma,
2205 struct intel_engine_cs *ring)
2206 {
2207 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2208 return i915_gem_object_move_to_active(vma->obj, ring);
2209 }
2210
2211 static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object * obj)2212 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2213 {
2214 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2215 struct i915_address_space *vm;
2216 struct i915_vma *vma;
2217
2218 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2219 BUG_ON(!obj->active);
2220
2221 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2222 vma = i915_gem_obj_to_vma(obj, vm);
2223 if (vma && !list_empty(&vma->mm_list))
2224 list_move_tail(&vma->mm_list, &vm->inactive_list);
2225 }
2226
2227 intel_fb_obj_flush(obj, true);
2228
2229 list_del_init(&obj->ring_list);
2230 obj->ring = NULL;
2231
2232 obj->last_read_seqno = 0;
2233 obj->last_write_seqno = 0;
2234 obj->base.write_domain = 0;
2235
2236 obj->last_fenced_seqno = 0;
2237
2238 obj->active = 0;
2239 drm_gem_object_unreference(&obj->base);
2240
2241 WARN_ON(i915_verify_lists(dev));
2242 }
2243
2244 static void
i915_gem_object_retire(struct drm_i915_gem_object * obj)2245 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2246 {
2247 struct intel_engine_cs *ring = obj->ring;
2248
2249 if (ring == NULL)
2250 return;
2251
2252 if (i915_seqno_passed(ring->get_seqno(ring, true),
2253 obj->last_read_seqno))
2254 i915_gem_object_move_to_inactive(obj);
2255 }
2256
2257 static int
i915_gem_init_seqno(struct drm_device * dev,u32 seqno)2258 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2259 {
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261 struct intel_engine_cs *ring;
2262 int ret, i, j;
2263
2264 /* Carefully retire all requests without writing to the rings */
2265 for_each_ring(ring, dev_priv, i) {
2266 ret = intel_ring_idle(ring);
2267 if (ret)
2268 return ret;
2269 }
2270 i915_gem_retire_requests(dev);
2271
2272 /* Finally reset hw state */
2273 for_each_ring(ring, dev_priv, i) {
2274 intel_ring_init_seqno(ring, seqno);
2275
2276 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2277 ring->semaphore.sync_seqno[j] = 0;
2278 }
2279
2280 return 0;
2281 }
2282
i915_gem_set_seqno(struct drm_device * dev,u32 seqno)2283 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2284 {
2285 struct drm_i915_private *dev_priv = dev->dev_private;
2286 int ret;
2287
2288 if (seqno == 0)
2289 return -EINVAL;
2290
2291 /* HWS page needs to be set less than what we
2292 * will inject to ring
2293 */
2294 ret = i915_gem_init_seqno(dev, seqno - 1);
2295 if (ret)
2296 return ret;
2297
2298 /* Carefully set the last_seqno value so that wrap
2299 * detection still works
2300 */
2301 dev_priv->next_seqno = seqno;
2302 dev_priv->last_seqno = seqno - 1;
2303 if (dev_priv->last_seqno == 0)
2304 dev_priv->last_seqno--;
2305
2306 return 0;
2307 }
2308
2309 int
i915_gem_get_seqno(struct drm_device * dev,u32 * seqno)2310 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2311 {
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313
2314 /* reserve 0 for non-seqno */
2315 if (dev_priv->next_seqno == 0) {
2316 int ret = i915_gem_init_seqno(dev, 0);
2317 if (ret)
2318 return ret;
2319
2320 dev_priv->next_seqno = 1;
2321 }
2322
2323 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2324 return 0;
2325 }
2326
__i915_add_request(struct intel_engine_cs * ring,struct drm_file * file,struct drm_i915_gem_object * obj,u32 * out_seqno)2327 int __i915_add_request(struct intel_engine_cs *ring,
2328 struct drm_file *file,
2329 struct drm_i915_gem_object *obj,
2330 u32 *out_seqno)
2331 {
2332 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2333 struct drm_i915_gem_request *request;
2334 struct intel_ringbuffer *ringbuf;
2335 u32 request_ring_position, request_start;
2336 int ret;
2337
2338 request = ring->preallocated_lazy_request;
2339 if (WARN_ON(request == NULL))
2340 return -ENOMEM;
2341
2342 if (i915.enable_execlists) {
2343 struct intel_context *ctx = request->ctx;
2344 ringbuf = ctx->engine[ring->id].ringbuf;
2345 } else
2346 ringbuf = ring->buffer;
2347
2348 request_start = intel_ring_get_tail(ringbuf);
2349 /*
2350 * Emit any outstanding flushes - execbuf can fail to emit the flush
2351 * after having emitted the batchbuffer command. Hence we need to fix
2352 * things up similar to emitting the lazy request. The difference here
2353 * is that the flush _must_ happen before the next request, no matter
2354 * what.
2355 */
2356 if (i915.enable_execlists) {
2357 ret = logical_ring_flush_all_caches(ringbuf);
2358 if (ret)
2359 return ret;
2360 } else {
2361 ret = intel_ring_flush_all_caches(ring);
2362 if (ret)
2363 return ret;
2364 }
2365
2366 /* Record the position of the start of the request so that
2367 * should we detect the updated seqno part-way through the
2368 * GPU processing the request, we never over-estimate the
2369 * position of the head.
2370 */
2371 request_ring_position = intel_ring_get_tail(ringbuf);
2372
2373 if (i915.enable_execlists) {
2374 ret = ring->emit_request(ringbuf);
2375 if (ret)
2376 return ret;
2377 } else {
2378 ret = ring->add_request(ring);
2379 if (ret)
2380 return ret;
2381 }
2382
2383 request->seqno = intel_ring_get_seqno(ring);
2384 request->ring = ring;
2385 request->head = request_start;
2386 request->tail = request_ring_position;
2387
2388 /* Whilst this request exists, batch_obj will be on the
2389 * active_list, and so will hold the active reference. Only when this
2390 * request is retired will the the batch_obj be moved onto the
2391 * inactive_list and lose its active reference. Hence we do not need
2392 * to explicitly hold another reference here.
2393 */
2394 request->batch_obj = obj;
2395
2396 if (!i915.enable_execlists) {
2397 /* Hold a reference to the current context so that we can inspect
2398 * it later in case a hangcheck error event fires.
2399 */
2400 request->ctx = ring->last_context;
2401 if (request->ctx)
2402 i915_gem_context_reference(request->ctx);
2403 }
2404
2405 request->emitted_jiffies = jiffies;
2406 list_add_tail(&request->list, &ring->request_list);
2407 request->file_priv = NULL;
2408
2409 if (file) {
2410 struct drm_i915_file_private *file_priv = file->driver_priv;
2411
2412 spin_lock(&file_priv->mm.lock);
2413 request->file_priv = file_priv;
2414 list_add_tail(&request->client_list,
2415 &file_priv->mm.request_list);
2416 spin_unlock(&file_priv->mm.lock);
2417 }
2418
2419 trace_i915_gem_request_add(ring, request->seqno);
2420 ring->outstanding_lazy_seqno = 0;
2421 ring->preallocated_lazy_request = NULL;
2422
2423 if (!dev_priv->ums.mm_suspended) {
2424 i915_queue_hangcheck(ring->dev);
2425
2426 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2427 queue_delayed_work(dev_priv->wq,
2428 &dev_priv->mm.retire_work,
2429 round_jiffies_up_relative(HZ));
2430 intel_mark_busy(dev_priv->dev);
2431 }
2432
2433 if (out_seqno)
2434 *out_seqno = request->seqno;
2435 return 0;
2436 }
2437
2438 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)2439 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2440 {
2441 struct drm_i915_file_private *file_priv = request->file_priv;
2442
2443 if (!file_priv)
2444 return;
2445
2446 spin_lock(&file_priv->mm.lock);
2447 list_del(&request->client_list);
2448 request->file_priv = NULL;
2449 spin_unlock(&file_priv->mm.lock);
2450 }
2451
i915_context_is_banned(struct drm_i915_private * dev_priv,const struct intel_context * ctx)2452 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2453 const struct intel_context *ctx)
2454 {
2455 unsigned long elapsed;
2456
2457 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2458
2459 if (ctx->hang_stats.banned)
2460 return true;
2461
2462 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2463 if (!i915_gem_context_is_default(ctx)) {
2464 DRM_DEBUG("context hanging too fast, banning!\n");
2465 return true;
2466 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2467 if (i915_stop_ring_allow_warn(dev_priv))
2468 DRM_ERROR("gpu hanging too fast, banning!\n");
2469 return true;
2470 }
2471 }
2472
2473 return false;
2474 }
2475
i915_set_reset_status(struct drm_i915_private * dev_priv,struct intel_context * ctx,const bool guilty)2476 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2477 struct intel_context *ctx,
2478 const bool guilty)
2479 {
2480 struct i915_ctx_hang_stats *hs;
2481
2482 if (WARN_ON(!ctx))
2483 return;
2484
2485 hs = &ctx->hang_stats;
2486
2487 if (guilty) {
2488 hs->banned = i915_context_is_banned(dev_priv, ctx);
2489 hs->batch_active++;
2490 hs->guilty_ts = get_seconds();
2491 } else {
2492 hs->batch_pending++;
2493 }
2494 }
2495
i915_gem_free_request(struct drm_i915_gem_request * request)2496 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2497 {
2498 list_del(&request->list);
2499 i915_gem_request_remove_from_client(request);
2500
2501 if (request->ctx)
2502 i915_gem_context_unreference(request->ctx);
2503
2504 kfree(request);
2505 }
2506
2507 struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs * ring)2508 i915_gem_find_active_request(struct intel_engine_cs *ring)
2509 {
2510 struct drm_i915_gem_request *request;
2511 u32 completed_seqno;
2512
2513 completed_seqno = ring->get_seqno(ring, false);
2514
2515 list_for_each_entry(request, &ring->request_list, list) {
2516 if (i915_seqno_passed(completed_seqno, request->seqno))
2517 continue;
2518
2519 return request;
2520 }
2521
2522 return NULL;
2523 }
2524
i915_gem_reset_ring_status(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2525 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2526 struct intel_engine_cs *ring)
2527 {
2528 struct drm_i915_gem_request *request;
2529 bool ring_hung;
2530
2531 request = i915_gem_find_active_request(ring);
2532
2533 if (request == NULL)
2534 return;
2535
2536 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2537
2538 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2539
2540 list_for_each_entry_continue(request, &ring->request_list, list)
2541 i915_set_reset_status(dev_priv, request->ctx, false);
2542 }
2543
i915_gem_reset_ring_cleanup(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2544 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2545 struct intel_engine_cs *ring)
2546 {
2547 while (!list_empty(&ring->active_list)) {
2548 struct drm_i915_gem_object *obj;
2549
2550 obj = list_first_entry(&ring->active_list,
2551 struct drm_i915_gem_object,
2552 ring_list);
2553
2554 i915_gem_object_move_to_inactive(obj);
2555 }
2556
2557 /*
2558 * We must free the requests after all the corresponding objects have
2559 * been moved off active lists. Which is the same order as the normal
2560 * retire_requests function does. This is important if object hold
2561 * implicit references on things like e.g. ppgtt address spaces through
2562 * the request.
2563 */
2564 while (!list_empty(&ring->request_list)) {
2565 struct drm_i915_gem_request *request;
2566
2567 request = list_first_entry(&ring->request_list,
2568 struct drm_i915_gem_request,
2569 list);
2570
2571 i915_gem_free_request(request);
2572 }
2573
2574 while (!list_empty(&ring->execlist_queue)) {
2575 struct intel_ctx_submit_request *submit_req;
2576
2577 submit_req = list_first_entry(&ring->execlist_queue,
2578 struct intel_ctx_submit_request,
2579 execlist_link);
2580 list_del(&submit_req->execlist_link);
2581 intel_runtime_pm_put(dev_priv);
2582 i915_gem_context_unreference(submit_req->ctx);
2583 kfree(submit_req);
2584 }
2585
2586 /* These may not have been flush before the reset, do so now */
2587 kfree(ring->preallocated_lazy_request);
2588 ring->preallocated_lazy_request = NULL;
2589 ring->outstanding_lazy_seqno = 0;
2590 }
2591
i915_gem_restore_fences(struct drm_device * dev)2592 void i915_gem_restore_fences(struct drm_device *dev)
2593 {
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 int i;
2596
2597 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2598 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2599
2600 /*
2601 * Commit delayed tiling changes if we have an object still
2602 * attached to the fence, otherwise just clear the fence.
2603 */
2604 if (reg->obj) {
2605 i915_gem_object_update_fence(reg->obj, reg,
2606 reg->obj->tiling_mode);
2607 } else {
2608 i915_gem_write_fence(dev, i, NULL);
2609 }
2610 }
2611 }
2612
i915_gem_reset(struct drm_device * dev)2613 void i915_gem_reset(struct drm_device *dev)
2614 {
2615 struct drm_i915_private *dev_priv = dev->dev_private;
2616 struct intel_engine_cs *ring;
2617 int i;
2618
2619 /*
2620 * Before we free the objects from the requests, we need to inspect
2621 * them for finding the guilty party. As the requests only borrow
2622 * their reference to the objects, the inspection must be done first.
2623 */
2624 for_each_ring(ring, dev_priv, i)
2625 i915_gem_reset_ring_status(dev_priv, ring);
2626
2627 for_each_ring(ring, dev_priv, i)
2628 i915_gem_reset_ring_cleanup(dev_priv, ring);
2629
2630 i915_gem_context_reset(dev);
2631
2632 i915_gem_restore_fences(dev);
2633 }
2634
2635 /**
2636 * This function clears the request list as sequence numbers are passed.
2637 */
2638 void
i915_gem_retire_requests_ring(struct intel_engine_cs * ring)2639 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2640 {
2641 uint32_t seqno;
2642
2643 if (list_empty(&ring->request_list))
2644 return;
2645
2646 WARN_ON(i915_verify_lists(ring->dev));
2647
2648 seqno = ring->get_seqno(ring, true);
2649
2650 /* Move any buffers on the active list that are no longer referenced
2651 * by the ringbuffer to the flushing/inactive lists as appropriate,
2652 * before we free the context associated with the requests.
2653 */
2654 while (!list_empty(&ring->active_list)) {
2655 struct drm_i915_gem_object *obj;
2656
2657 obj = list_first_entry(&ring->active_list,
2658 struct drm_i915_gem_object,
2659 ring_list);
2660
2661 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2662 break;
2663
2664 i915_gem_object_move_to_inactive(obj);
2665 }
2666
2667
2668 while (!list_empty(&ring->request_list)) {
2669 struct drm_i915_gem_request *request;
2670 struct intel_ringbuffer *ringbuf;
2671
2672 request = list_first_entry(&ring->request_list,
2673 struct drm_i915_gem_request,
2674 list);
2675
2676 if (!i915_seqno_passed(seqno, request->seqno))
2677 break;
2678
2679 trace_i915_gem_request_retire(ring, request->seqno);
2680
2681 /* This is one of the few common intersection points
2682 * between legacy ringbuffer submission and execlists:
2683 * we need to tell them apart in order to find the correct
2684 * ringbuffer to which the request belongs to.
2685 */
2686 if (i915.enable_execlists) {
2687 struct intel_context *ctx = request->ctx;
2688 ringbuf = ctx->engine[ring->id].ringbuf;
2689 } else
2690 ringbuf = ring->buffer;
2691
2692 /* We know the GPU must have read the request to have
2693 * sent us the seqno + interrupt, so use the position
2694 * of tail of the request to update the last known position
2695 * of the GPU head.
2696 */
2697 ringbuf->last_retired_head = request->tail;
2698
2699 i915_gem_free_request(request);
2700 }
2701
2702 if (unlikely(ring->trace_irq_seqno &&
2703 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2704 ring->irq_put(ring);
2705 ring->trace_irq_seqno = 0;
2706 }
2707
2708 WARN_ON(i915_verify_lists(ring->dev));
2709 }
2710
2711 bool
i915_gem_retire_requests(struct drm_device * dev)2712 i915_gem_retire_requests(struct drm_device *dev)
2713 {
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 struct intel_engine_cs *ring;
2716 bool idle = true;
2717 int i;
2718
2719 for_each_ring(ring, dev_priv, i) {
2720 i915_gem_retire_requests_ring(ring);
2721 idle &= list_empty(&ring->request_list);
2722 }
2723
2724 if (idle)
2725 mod_delayed_work(dev_priv->wq,
2726 &dev_priv->mm.idle_work,
2727 msecs_to_jiffies(100));
2728
2729 return idle;
2730 }
2731
2732 static void
i915_gem_retire_work_handler(struct work_struct * work)2733 i915_gem_retire_work_handler(struct work_struct *work)
2734 {
2735 struct drm_i915_private *dev_priv =
2736 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2737 struct drm_device *dev = dev_priv->dev;
2738 bool idle;
2739
2740 /* Come back later if the device is busy... */
2741 idle = false;
2742 if (mutex_trylock(&dev->struct_mutex)) {
2743 idle = i915_gem_retire_requests(dev);
2744 mutex_unlock(&dev->struct_mutex);
2745 }
2746 if (!idle)
2747 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2748 round_jiffies_up_relative(HZ));
2749 }
2750
2751 static void
i915_gem_idle_work_handler(struct work_struct * work)2752 i915_gem_idle_work_handler(struct work_struct *work)
2753 {
2754 struct drm_i915_private *dev_priv =
2755 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2756
2757 intel_mark_idle(dev_priv->dev);
2758 }
2759
2760 /**
2761 * Ensures that an object will eventually get non-busy by flushing any required
2762 * write domains, emitting any outstanding lazy request and retiring and
2763 * completed requests.
2764 */
2765 static int
i915_gem_object_flush_active(struct drm_i915_gem_object * obj)2766 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2767 {
2768 int ret;
2769
2770 if (obj->active) {
2771 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2772 if (ret)
2773 return ret;
2774
2775 i915_gem_retire_requests_ring(obj->ring);
2776 }
2777
2778 return 0;
2779 }
2780
2781 /**
2782 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2783 * @DRM_IOCTL_ARGS: standard ioctl arguments
2784 *
2785 * Returns 0 if successful, else an error is returned with the remaining time in
2786 * the timeout parameter.
2787 * -ETIME: object is still busy after timeout
2788 * -ERESTARTSYS: signal interrupted the wait
2789 * -ENONENT: object doesn't exist
2790 * Also possible, but rare:
2791 * -EAGAIN: GPU wedged
2792 * -ENOMEM: damn
2793 * -ENODEV: Internal IRQ fail
2794 * -E?: The add request failed
2795 *
2796 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2797 * non-zero timeout parameter the wait ioctl will wait for the given number of
2798 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2799 * without holding struct_mutex the object may become re-busied before this
2800 * function completes. A similar but shorter * race condition exists in the busy
2801 * ioctl
2802 */
2803 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2804 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2805 {
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 struct drm_i915_gem_wait *args = data;
2808 struct drm_i915_gem_object *obj;
2809 struct intel_engine_cs *ring = NULL;
2810 unsigned reset_counter;
2811 u32 seqno = 0;
2812 int ret = 0;
2813
2814 ret = i915_mutex_lock_interruptible(dev);
2815 if (ret)
2816 return ret;
2817
2818 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2819 if (&obj->base == NULL) {
2820 mutex_unlock(&dev->struct_mutex);
2821 return -ENOENT;
2822 }
2823
2824 /* Need to make sure the object gets inactive eventually. */
2825 ret = i915_gem_object_flush_active(obj);
2826 if (ret)
2827 goto out;
2828
2829 if (obj->active) {
2830 seqno = obj->last_read_seqno;
2831 ring = obj->ring;
2832 }
2833
2834 if (seqno == 0)
2835 goto out;
2836
2837 /* Do this after OLR check to make sure we make forward progress polling
2838 * on this IOCTL with a timeout <=0 (like busy ioctl)
2839 */
2840 if (args->timeout_ns <= 0) {
2841 ret = -ETIME;
2842 goto out;
2843 }
2844
2845 drm_gem_object_unreference(&obj->base);
2846 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2847 mutex_unlock(&dev->struct_mutex);
2848
2849 return __wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2850 file->driver_priv);
2851
2852 out:
2853 drm_gem_object_unreference(&obj->base);
2854 mutex_unlock(&dev->struct_mutex);
2855 return ret;
2856 }
2857
2858 /**
2859 * i915_gem_object_sync - sync an object to a ring.
2860 *
2861 * @obj: object which may be in use on another ring.
2862 * @to: ring we wish to use the object on. May be NULL.
2863 *
2864 * This code is meant to abstract object synchronization with the GPU.
2865 * Calling with NULL implies synchronizing the object with the CPU
2866 * rather than a particular GPU ring.
2867 *
2868 * Returns 0 if successful, else propagates up the lower layer error.
2869 */
2870 int
i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to)2871 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2872 struct intel_engine_cs *to)
2873 {
2874 struct intel_engine_cs *from = obj->ring;
2875 u32 seqno;
2876 int ret, idx;
2877
2878 if (from == NULL || to == from)
2879 return 0;
2880
2881 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2882 return i915_gem_object_wait_rendering(obj, false);
2883
2884 idx = intel_ring_sync_index(from, to);
2885
2886 seqno = obj->last_read_seqno;
2887 /* Optimization: Avoid semaphore sync when we are sure we already
2888 * waited for an object with higher seqno */
2889 if (seqno <= from->semaphore.sync_seqno[idx])
2890 return 0;
2891
2892 ret = i915_gem_check_olr(obj->ring, seqno);
2893 if (ret)
2894 return ret;
2895
2896 trace_i915_gem_ring_sync_to(from, to, seqno);
2897 ret = to->semaphore.sync_to(to, from, seqno);
2898 if (!ret)
2899 /* We use last_read_seqno because sync_to()
2900 * might have just caused seqno wrap under
2901 * the radar.
2902 */
2903 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2904
2905 return ret;
2906 }
2907
i915_gem_object_finish_gtt(struct drm_i915_gem_object * obj)2908 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2909 {
2910 u32 old_write_domain, old_read_domains;
2911
2912 /* Force a pagefault for domain tracking on next user access */
2913 i915_gem_release_mmap(obj);
2914
2915 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2916 return;
2917
2918 /* Wait for any direct GTT access to complete */
2919 mb();
2920
2921 old_read_domains = obj->base.read_domains;
2922 old_write_domain = obj->base.write_domain;
2923
2924 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2925 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2926
2927 trace_i915_gem_object_change_domain(obj,
2928 old_read_domains,
2929 old_write_domain);
2930 }
2931
i915_vma_unbind(struct i915_vma * vma)2932 int i915_vma_unbind(struct i915_vma *vma)
2933 {
2934 struct drm_i915_gem_object *obj = vma->obj;
2935 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2936 int ret;
2937
2938 if (list_empty(&vma->vma_link))
2939 return 0;
2940
2941 if (!drm_mm_node_allocated(&vma->node)) {
2942 i915_gem_vma_destroy(vma);
2943 return 0;
2944 }
2945
2946 if (vma->pin_count)
2947 return -EBUSY;
2948
2949 BUG_ON(obj->pages == NULL);
2950
2951 ret = i915_gem_object_finish_gpu(obj);
2952 if (ret)
2953 return ret;
2954 /* Continue on if we fail due to EIO, the GPU is hung so we
2955 * should be safe and we need to cleanup or else we might
2956 * cause memory corruption through use-after-free.
2957 */
2958
2959 /* Throw away the active reference before moving to the unbound list */
2960 i915_gem_object_retire(obj);
2961
2962 if (i915_is_ggtt(vma->vm)) {
2963 i915_gem_object_finish_gtt(obj);
2964
2965 /* release the fence reg _after_ flushing */
2966 ret = i915_gem_object_put_fence(obj);
2967 if (ret)
2968 return ret;
2969 }
2970
2971 trace_i915_vma_unbind(vma);
2972
2973 vma->unbind_vma(vma);
2974
2975 list_del_init(&vma->mm_list);
2976 if (i915_is_ggtt(vma->vm))
2977 obj->map_and_fenceable = false;
2978
2979 drm_mm_remove_node(&vma->node);
2980 i915_gem_vma_destroy(vma);
2981
2982 /* Since the unbound list is global, only move to that list if
2983 * no more VMAs exist. */
2984 if (list_empty(&obj->vma_list)) {
2985 i915_gem_gtt_finish_object(obj);
2986 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2987 }
2988
2989 /* And finally now the object is completely decoupled from this vma,
2990 * we can drop its hold on the backing storage and allow it to be
2991 * reaped by the shrinker.
2992 */
2993 i915_gem_object_unpin_pages(obj);
2994
2995 return 0;
2996 }
2997
i915_gpu_idle(struct drm_device * dev)2998 int i915_gpu_idle(struct drm_device *dev)
2999 {
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001 struct intel_engine_cs *ring;
3002 int ret, i;
3003
3004 /* Flush everything onto the inactive list. */
3005 for_each_ring(ring, dev_priv, i) {
3006 if (!i915.enable_execlists) {
3007 ret = i915_switch_context(ring, ring->default_context);
3008 if (ret)
3009 return ret;
3010 }
3011
3012 ret = intel_ring_idle(ring);
3013 if (ret)
3014 return ret;
3015 }
3016
3017 return 0;
3018 }
3019
i965_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3020 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3021 struct drm_i915_gem_object *obj)
3022 {
3023 struct drm_i915_private *dev_priv = dev->dev_private;
3024 int fence_reg;
3025 int fence_pitch_shift;
3026
3027 if (INTEL_INFO(dev)->gen >= 6) {
3028 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3029 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3030 } else {
3031 fence_reg = FENCE_REG_965_0;
3032 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3033 }
3034
3035 fence_reg += reg * 8;
3036
3037 /* To w/a incoherency with non-atomic 64-bit register updates,
3038 * we split the 64-bit update into two 32-bit writes. In order
3039 * for a partial fence not to be evaluated between writes, we
3040 * precede the update with write to turn off the fence register,
3041 * and only enable the fence as the last step.
3042 *
3043 * For extra levels of paranoia, we make sure each step lands
3044 * before applying the next step.
3045 */
3046 I915_WRITE(fence_reg, 0);
3047 POSTING_READ(fence_reg);
3048
3049 if (obj) {
3050 u32 size = i915_gem_obj_ggtt_size(obj);
3051 uint64_t val;
3052
3053 /* Adjust fence size to match tiled area */
3054 if (obj->tiling_mode != I915_TILING_NONE) {
3055 uint32_t row_size = obj->stride *
3056 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3057 size = (size / row_size) * row_size;
3058 }
3059
3060 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3061 0xfffff000) << 32;
3062 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3063 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3064 if (obj->tiling_mode == I915_TILING_Y)
3065 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3066 val |= I965_FENCE_REG_VALID;
3067
3068 I915_WRITE(fence_reg + 4, val >> 32);
3069 POSTING_READ(fence_reg + 4);
3070
3071 I915_WRITE(fence_reg + 0, val);
3072 POSTING_READ(fence_reg);
3073 } else {
3074 I915_WRITE(fence_reg + 4, 0);
3075 POSTING_READ(fence_reg + 4);
3076 }
3077 }
3078
i915_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3079 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3080 struct drm_i915_gem_object *obj)
3081 {
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 u32 val;
3084
3085 if (obj) {
3086 u32 size = i915_gem_obj_ggtt_size(obj);
3087 int pitch_val;
3088 int tile_width;
3089
3090 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3091 (size & -size) != size ||
3092 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3093 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3094 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3095
3096 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3097 tile_width = 128;
3098 else
3099 tile_width = 512;
3100
3101 /* Note: pitch better be a power of two tile widths */
3102 pitch_val = obj->stride / tile_width;
3103 pitch_val = ffs(pitch_val) - 1;
3104
3105 val = i915_gem_obj_ggtt_offset(obj);
3106 if (obj->tiling_mode == I915_TILING_Y)
3107 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3108 val |= I915_FENCE_SIZE_BITS(size);
3109 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3110 val |= I830_FENCE_REG_VALID;
3111 } else
3112 val = 0;
3113
3114 if (reg < 8)
3115 reg = FENCE_REG_830_0 + reg * 4;
3116 else
3117 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3118
3119 I915_WRITE(reg, val);
3120 POSTING_READ(reg);
3121 }
3122
i830_write_fence_reg(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3123 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3124 struct drm_i915_gem_object *obj)
3125 {
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127 uint32_t val;
3128
3129 if (obj) {
3130 u32 size = i915_gem_obj_ggtt_size(obj);
3131 uint32_t pitch_val;
3132
3133 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3134 (size & -size) != size ||
3135 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3136 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3137 i915_gem_obj_ggtt_offset(obj), size);
3138
3139 pitch_val = obj->stride / 128;
3140 pitch_val = ffs(pitch_val) - 1;
3141
3142 val = i915_gem_obj_ggtt_offset(obj);
3143 if (obj->tiling_mode == I915_TILING_Y)
3144 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3145 val |= I830_FENCE_SIZE_BITS(size);
3146 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3147 val |= I830_FENCE_REG_VALID;
3148 } else
3149 val = 0;
3150
3151 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3152 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3153 }
3154
i915_gem_object_needs_mb(struct drm_i915_gem_object * obj)3155 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3156 {
3157 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3158 }
3159
i915_gem_write_fence(struct drm_device * dev,int reg,struct drm_i915_gem_object * obj)3160 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3161 struct drm_i915_gem_object *obj)
3162 {
3163 struct drm_i915_private *dev_priv = dev->dev_private;
3164
3165 /* Ensure that all CPU reads are completed before installing a fence
3166 * and all writes before removing the fence.
3167 */
3168 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3169 mb();
3170
3171 WARN(obj && (!obj->stride || !obj->tiling_mode),
3172 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3173 obj->stride, obj->tiling_mode);
3174
3175 switch (INTEL_INFO(dev)->gen) {
3176 case 8:
3177 case 7:
3178 case 6:
3179 case 5:
3180 case 4: i965_write_fence_reg(dev, reg, obj); break;
3181 case 3: i915_write_fence_reg(dev, reg, obj); break;
3182 case 2: i830_write_fence_reg(dev, reg, obj); break;
3183 default: BUG();
3184 }
3185
3186 /* And similarly be paranoid that no direct access to this region
3187 * is reordered to before the fence is installed.
3188 */
3189 if (i915_gem_object_needs_mb(obj))
3190 mb();
3191 }
3192
fence_number(struct drm_i915_private * dev_priv,struct drm_i915_fence_reg * fence)3193 static inline int fence_number(struct drm_i915_private *dev_priv,
3194 struct drm_i915_fence_reg *fence)
3195 {
3196 return fence - dev_priv->fence_regs;
3197 }
3198
i915_gem_object_update_fence(struct drm_i915_gem_object * obj,struct drm_i915_fence_reg * fence,bool enable)3199 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3200 struct drm_i915_fence_reg *fence,
3201 bool enable)
3202 {
3203 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3204 int reg = fence_number(dev_priv, fence);
3205
3206 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3207
3208 if (enable) {
3209 obj->fence_reg = reg;
3210 fence->obj = obj;
3211 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3212 } else {
3213 obj->fence_reg = I915_FENCE_REG_NONE;
3214 fence->obj = NULL;
3215 list_del_init(&fence->lru_list);
3216 }
3217 obj->fence_dirty = false;
3218 }
3219
3220 static int
i915_gem_object_wait_fence(struct drm_i915_gem_object * obj)3221 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3222 {
3223 if (obj->last_fenced_seqno) {
3224 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3225 if (ret)
3226 return ret;
3227
3228 obj->last_fenced_seqno = 0;
3229 }
3230
3231 return 0;
3232 }
3233
3234 int
i915_gem_object_put_fence(struct drm_i915_gem_object * obj)3235 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3236 {
3237 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3238 struct drm_i915_fence_reg *fence;
3239 int ret;
3240
3241 ret = i915_gem_object_wait_fence(obj);
3242 if (ret)
3243 return ret;
3244
3245 if (obj->fence_reg == I915_FENCE_REG_NONE)
3246 return 0;
3247
3248 fence = &dev_priv->fence_regs[obj->fence_reg];
3249
3250 if (WARN_ON(fence->pin_count))
3251 return -EBUSY;
3252
3253 i915_gem_object_fence_lost(obj);
3254 i915_gem_object_update_fence(obj, fence, false);
3255
3256 return 0;
3257 }
3258
3259 static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device * dev)3260 i915_find_fence_reg(struct drm_device *dev)
3261 {
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 struct drm_i915_fence_reg *reg, *avail;
3264 int i;
3265
3266 /* First try to find a free reg */
3267 avail = NULL;
3268 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3269 reg = &dev_priv->fence_regs[i];
3270 if (!reg->obj)
3271 return reg;
3272
3273 if (!reg->pin_count)
3274 avail = reg;
3275 }
3276
3277 if (avail == NULL)
3278 goto deadlock;
3279
3280 /* None available, try to steal one or wait for a user to finish */
3281 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3282 if (reg->pin_count)
3283 continue;
3284
3285 return reg;
3286 }
3287
3288 deadlock:
3289 /* Wait for completion of pending flips which consume fences */
3290 if (intel_has_pending_fb_unpin(dev))
3291 return ERR_PTR(-EAGAIN);
3292
3293 return ERR_PTR(-EDEADLK);
3294 }
3295
3296 /**
3297 * i915_gem_object_get_fence - set up fencing for an object
3298 * @obj: object to map through a fence reg
3299 *
3300 * When mapping objects through the GTT, userspace wants to be able to write
3301 * to them without having to worry about swizzling if the object is tiled.
3302 * This function walks the fence regs looking for a free one for @obj,
3303 * stealing one if it can't find any.
3304 *
3305 * It then sets up the reg based on the object's properties: address, pitch
3306 * and tiling format.
3307 *
3308 * For an untiled surface, this removes any existing fence.
3309 */
3310 int
i915_gem_object_get_fence(struct drm_i915_gem_object * obj)3311 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3312 {
3313 struct drm_device *dev = obj->base.dev;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 bool enable = obj->tiling_mode != I915_TILING_NONE;
3316 struct drm_i915_fence_reg *reg;
3317 int ret;
3318
3319 /* Have we updated the tiling parameters upon the object and so
3320 * will need to serialise the write to the associated fence register?
3321 */
3322 if (obj->fence_dirty) {
3323 ret = i915_gem_object_wait_fence(obj);
3324 if (ret)
3325 return ret;
3326 }
3327
3328 /* Just update our place in the LRU if our fence is getting reused. */
3329 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3330 reg = &dev_priv->fence_regs[obj->fence_reg];
3331 if (!obj->fence_dirty) {
3332 list_move_tail(®->lru_list,
3333 &dev_priv->mm.fence_list);
3334 return 0;
3335 }
3336 } else if (enable) {
3337 if (WARN_ON(!obj->map_and_fenceable))
3338 return -EINVAL;
3339
3340 reg = i915_find_fence_reg(dev);
3341 if (IS_ERR(reg))
3342 return PTR_ERR(reg);
3343
3344 if (reg->obj) {
3345 struct drm_i915_gem_object *old = reg->obj;
3346
3347 ret = i915_gem_object_wait_fence(old);
3348 if (ret)
3349 return ret;
3350
3351 i915_gem_object_fence_lost(old);
3352 }
3353 } else
3354 return 0;
3355
3356 i915_gem_object_update_fence(obj, reg, enable);
3357
3358 return 0;
3359 }
3360
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long cache_level)3361 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3362 unsigned long cache_level)
3363 {
3364 struct drm_mm_node *gtt_space = &vma->node;
3365 struct drm_mm_node *other;
3366
3367 /*
3368 * On some machines we have to be careful when putting differing types
3369 * of snoopable memory together to avoid the prefetcher crossing memory
3370 * domains and dying. During vm initialisation, we decide whether or not
3371 * these constraints apply and set the drm_mm.color_adjust
3372 * appropriately.
3373 */
3374 if (vma->vm->mm.color_adjust == NULL)
3375 return true;
3376
3377 if (!drm_mm_node_allocated(gtt_space))
3378 return true;
3379
3380 if (list_empty(>t_space->node_list))
3381 return true;
3382
3383 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3384 if (other->allocated && !other->hole_follows && other->color != cache_level)
3385 return false;
3386
3387 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3388 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3389 return false;
3390
3391 return true;
3392 }
3393
i915_gem_verify_gtt(struct drm_device * dev)3394 static void i915_gem_verify_gtt(struct drm_device *dev)
3395 {
3396 #if WATCH_GTT
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct drm_i915_gem_object *obj;
3399 int err = 0;
3400
3401 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3402 if (obj->gtt_space == NULL) {
3403 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3404 err++;
3405 continue;
3406 }
3407
3408 if (obj->cache_level != obj->gtt_space->color) {
3409 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3410 i915_gem_obj_ggtt_offset(obj),
3411 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3412 obj->cache_level,
3413 obj->gtt_space->color);
3414 err++;
3415 continue;
3416 }
3417
3418 if (!i915_gem_valid_gtt_space(dev,
3419 obj->gtt_space,
3420 obj->cache_level)) {
3421 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3422 i915_gem_obj_ggtt_offset(obj),
3423 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3424 obj->cache_level);
3425 err++;
3426 continue;
3427 }
3428 }
3429
3430 WARN_ON(err);
3431 #endif
3432 }
3433
3434 /**
3435 * Finds free space in the GTT aperture and binds the object there.
3436 */
3437 static struct i915_vma *
i915_gem_object_bind_to_vm(struct drm_i915_gem_object * obj,struct i915_address_space * vm,unsigned alignment,uint64_t flags)3438 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3439 struct i915_address_space *vm,
3440 unsigned alignment,
3441 uint64_t flags)
3442 {
3443 struct drm_device *dev = obj->base.dev;
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 u32 size, fence_size, fence_alignment, unfenced_alignment;
3446 unsigned long start =
3447 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3448 unsigned long end =
3449 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3450 struct i915_vma *vma;
3451 int ret;
3452
3453 fence_size = i915_gem_get_gtt_size(dev,
3454 obj->base.size,
3455 obj->tiling_mode);
3456 fence_alignment = i915_gem_get_gtt_alignment(dev,
3457 obj->base.size,
3458 obj->tiling_mode, true);
3459 unfenced_alignment =
3460 i915_gem_get_gtt_alignment(dev,
3461 obj->base.size,
3462 obj->tiling_mode, false);
3463
3464 if (alignment == 0)
3465 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3466 unfenced_alignment;
3467 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3468 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3469 return ERR_PTR(-EINVAL);
3470 }
3471
3472 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3473
3474 /* If the object is bigger than the entire aperture, reject it early
3475 * before evicting everything in a vain attempt to find space.
3476 */
3477 if (obj->base.size > end) {
3478 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3479 obj->base.size,
3480 flags & PIN_MAPPABLE ? "mappable" : "total",
3481 end);
3482 return ERR_PTR(-E2BIG);
3483 }
3484
3485 ret = i915_gem_object_get_pages(obj);
3486 if (ret)
3487 return ERR_PTR(ret);
3488
3489 i915_gem_object_pin_pages(obj);
3490
3491 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3492 if (IS_ERR(vma))
3493 goto err_unpin;
3494
3495 search_free:
3496 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3497 size, alignment,
3498 obj->cache_level,
3499 start, end,
3500 DRM_MM_SEARCH_DEFAULT,
3501 DRM_MM_CREATE_DEFAULT);
3502 if (ret) {
3503 ret = i915_gem_evict_something(dev, vm, size, alignment,
3504 obj->cache_level,
3505 start, end,
3506 flags);
3507 if (ret == 0)
3508 goto search_free;
3509
3510 goto err_free_vma;
3511 }
3512 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3513 ret = -EINVAL;
3514 goto err_remove_node;
3515 }
3516
3517 ret = i915_gem_gtt_prepare_object(obj);
3518 if (ret)
3519 goto err_remove_node;
3520
3521 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3522 list_add_tail(&vma->mm_list, &vm->inactive_list);
3523
3524 if (i915_is_ggtt(vm)) {
3525 bool mappable, fenceable;
3526
3527 fenceable = (vma->node.size == fence_size &&
3528 (vma->node.start & (fence_alignment - 1)) == 0);
3529
3530 mappable = (vma->node.start + obj->base.size <=
3531 dev_priv->gtt.mappable_end);
3532
3533 obj->map_and_fenceable = mappable && fenceable;
3534 }
3535
3536 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3537
3538 trace_i915_vma_bind(vma, flags);
3539 vma->bind_vma(vma, obj->cache_level,
3540 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3541
3542 i915_gem_verify_gtt(dev);
3543 return vma;
3544
3545 err_remove_node:
3546 drm_mm_remove_node(&vma->node);
3547 err_free_vma:
3548 i915_gem_vma_destroy(vma);
3549 vma = ERR_PTR(ret);
3550 err_unpin:
3551 i915_gem_object_unpin_pages(obj);
3552 return vma;
3553 }
3554
3555 bool
i915_gem_clflush_object(struct drm_i915_gem_object * obj,bool force)3556 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3557 bool force)
3558 {
3559 /* If we don't have a page list set up, then we're not pinned
3560 * to GPU, and we can ignore the cache flush because it'll happen
3561 * again at bind time.
3562 */
3563 if (obj->pages == NULL)
3564 return false;
3565
3566 /*
3567 * Stolen memory is always coherent with the GPU as it is explicitly
3568 * marked as wc by the system, or the system is cache-coherent.
3569 */
3570 if (obj->stolen)
3571 return false;
3572
3573 /* If the GPU is snooping the contents of the CPU cache,
3574 * we do not need to manually clear the CPU cache lines. However,
3575 * the caches are only snooped when the render cache is
3576 * flushed/invalidated. As we always have to emit invalidations
3577 * and flushes when moving into and out of the RENDER domain, correct
3578 * snooping behaviour occurs naturally as the result of our domain
3579 * tracking.
3580 */
3581 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3582 return false;
3583
3584 trace_i915_gem_object_clflush(obj);
3585 drm_clflush_sg(obj->pages);
3586
3587 return true;
3588 }
3589
3590 /** Flushes the GTT write domain for the object if it's dirty. */
3591 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)3592 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3593 {
3594 uint32_t old_write_domain;
3595
3596 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3597 return;
3598
3599 /* No actual flushing is required for the GTT write domain. Writes
3600 * to it immediately go to main memory as far as we know, so there's
3601 * no chipset flush. It also doesn't land in render cache.
3602 *
3603 * However, we do have to enforce the order so that all writes through
3604 * the GTT land before any writes to the device, such as updates to
3605 * the GATT itself.
3606 */
3607 wmb();
3608
3609 old_write_domain = obj->base.write_domain;
3610 obj->base.write_domain = 0;
3611
3612 intel_fb_obj_flush(obj, false);
3613
3614 trace_i915_gem_object_change_domain(obj,
3615 obj->base.read_domains,
3616 old_write_domain);
3617 }
3618
3619 /** Flushes the CPU write domain for the object if it's dirty. */
3620 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj,bool force)3621 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3622 bool force)
3623 {
3624 uint32_t old_write_domain;
3625
3626 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3627 return;
3628
3629 if (i915_gem_clflush_object(obj, force))
3630 i915_gem_chipset_flush(obj->base.dev);
3631
3632 old_write_domain = obj->base.write_domain;
3633 obj->base.write_domain = 0;
3634
3635 intel_fb_obj_flush(obj, false);
3636
3637 trace_i915_gem_object_change_domain(obj,
3638 obj->base.read_domains,
3639 old_write_domain);
3640 }
3641
3642 /**
3643 * Moves a single object to the GTT read, and possibly write domain.
3644 *
3645 * This function returns when the move is complete, including waiting on
3646 * flushes to occur.
3647 */
3648 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3649 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3650 {
3651 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3652 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3653 uint32_t old_write_domain, old_read_domains;
3654 int ret;
3655
3656 /* Not valid to be called on unbound objects. */
3657 if (vma == NULL)
3658 return -EINVAL;
3659
3660 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3661 return 0;
3662
3663 ret = i915_gem_object_wait_rendering(obj, !write);
3664 if (ret)
3665 return ret;
3666
3667 i915_gem_object_retire(obj);
3668 i915_gem_object_flush_cpu_write_domain(obj, false);
3669
3670 /* Serialise direct access to this object with the barriers for
3671 * coherent writes from the GPU, by effectively invalidating the
3672 * GTT domain upon first access.
3673 */
3674 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3675 mb();
3676
3677 old_write_domain = obj->base.write_domain;
3678 old_read_domains = obj->base.read_domains;
3679
3680 /* It should now be out of any other write domains, and we can update
3681 * the domain values for our changes.
3682 */
3683 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3684 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3685 if (write) {
3686 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3687 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3688 obj->dirty = 1;
3689 }
3690
3691 if (write)
3692 intel_fb_obj_invalidate(obj, NULL);
3693
3694 trace_i915_gem_object_change_domain(obj,
3695 old_read_domains,
3696 old_write_domain);
3697
3698 /* And bump the LRU for this access */
3699 if (i915_gem_object_is_inactive(obj))
3700 list_move_tail(&vma->mm_list,
3701 &dev_priv->gtt.base.inactive_list);
3702
3703 return 0;
3704 }
3705
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3706 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3707 enum i915_cache_level cache_level)
3708 {
3709 struct drm_device *dev = obj->base.dev;
3710 struct i915_vma *vma, *next;
3711 int ret;
3712
3713 if (obj->cache_level == cache_level)
3714 return 0;
3715
3716 if (i915_gem_obj_is_pinned(obj)) {
3717 DRM_DEBUG("can not change the cache level of pinned objects\n");
3718 return -EBUSY;
3719 }
3720
3721 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3722 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3723 ret = i915_vma_unbind(vma);
3724 if (ret)
3725 return ret;
3726 }
3727 }
3728
3729 if (i915_gem_obj_bound_any(obj)) {
3730 ret = i915_gem_object_finish_gpu(obj);
3731 if (ret)
3732 return ret;
3733
3734 i915_gem_object_finish_gtt(obj);
3735
3736 /* Before SandyBridge, you could not use tiling or fence
3737 * registers with snooped memory, so relinquish any fences
3738 * currently pointing to our region in the aperture.
3739 */
3740 if (INTEL_INFO(dev)->gen < 6) {
3741 ret = i915_gem_object_put_fence(obj);
3742 if (ret)
3743 return ret;
3744 }
3745
3746 list_for_each_entry(vma, &obj->vma_list, vma_link)
3747 if (drm_mm_node_allocated(&vma->node))
3748 vma->bind_vma(vma, cache_level,
3749 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3750 }
3751
3752 list_for_each_entry(vma, &obj->vma_list, vma_link)
3753 vma->node.color = cache_level;
3754 obj->cache_level = cache_level;
3755
3756 if (cpu_write_needs_clflush(obj)) {
3757 u32 old_read_domains, old_write_domain;
3758
3759 /* If we're coming from LLC cached, then we haven't
3760 * actually been tracking whether the data is in the
3761 * CPU cache or not, since we only allow one bit set
3762 * in obj->write_domain and have been skipping the clflushes.
3763 * Just set it to the CPU cache for now.
3764 */
3765 i915_gem_object_retire(obj);
3766 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3767
3768 old_read_domains = obj->base.read_domains;
3769 old_write_domain = obj->base.write_domain;
3770
3771 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3772 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3773
3774 trace_i915_gem_object_change_domain(obj,
3775 old_read_domains,
3776 old_write_domain);
3777 }
3778
3779 i915_gem_verify_gtt(dev);
3780 return 0;
3781 }
3782
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3783 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3784 struct drm_file *file)
3785 {
3786 struct drm_i915_gem_caching *args = data;
3787 struct drm_i915_gem_object *obj;
3788 int ret;
3789
3790 ret = i915_mutex_lock_interruptible(dev);
3791 if (ret)
3792 return ret;
3793
3794 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3795 if (&obj->base == NULL) {
3796 ret = -ENOENT;
3797 goto unlock;
3798 }
3799
3800 switch (obj->cache_level) {
3801 case I915_CACHE_LLC:
3802 case I915_CACHE_L3_LLC:
3803 args->caching = I915_CACHING_CACHED;
3804 break;
3805
3806 case I915_CACHE_WT:
3807 args->caching = I915_CACHING_DISPLAY;
3808 break;
3809
3810 default:
3811 args->caching = I915_CACHING_NONE;
3812 break;
3813 }
3814
3815 drm_gem_object_unreference(&obj->base);
3816 unlock:
3817 mutex_unlock(&dev->struct_mutex);
3818 return ret;
3819 }
3820
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3821 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3822 struct drm_file *file)
3823 {
3824 struct drm_i915_gem_caching *args = data;
3825 struct drm_i915_gem_object *obj;
3826 enum i915_cache_level level;
3827 int ret;
3828
3829 switch (args->caching) {
3830 case I915_CACHING_NONE:
3831 level = I915_CACHE_NONE;
3832 break;
3833 case I915_CACHING_CACHED:
3834 level = I915_CACHE_LLC;
3835 break;
3836 case I915_CACHING_DISPLAY:
3837 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3838 break;
3839 default:
3840 return -EINVAL;
3841 }
3842
3843 ret = i915_mutex_lock_interruptible(dev);
3844 if (ret)
3845 return ret;
3846
3847 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3848 if (&obj->base == NULL) {
3849 ret = -ENOENT;
3850 goto unlock;
3851 }
3852
3853 ret = i915_gem_object_set_cache_level(obj, level);
3854
3855 drm_gem_object_unreference(&obj->base);
3856 unlock:
3857 mutex_unlock(&dev->struct_mutex);
3858 return ret;
3859 }
3860
is_pin_display(struct drm_i915_gem_object * obj)3861 static bool is_pin_display(struct drm_i915_gem_object *obj)
3862 {
3863 struct i915_vma *vma;
3864
3865 vma = i915_gem_obj_to_ggtt(obj);
3866 if (!vma)
3867 return false;
3868
3869 /* There are 3 sources that pin objects:
3870 * 1. The display engine (scanouts, sprites, cursors);
3871 * 2. Reservations for execbuffer;
3872 * 3. The user.
3873 *
3874 * We can ignore reservations as we hold the struct_mutex and
3875 * are only called outside of the reservation path. The user
3876 * can only increment pin_count once, and so if after
3877 * subtracting the potential reference by the user, any pin_count
3878 * remains, it must be due to another use by the display engine.
3879 */
3880 return vma->pin_count - !!obj->user_pin_count;
3881 }
3882
3883 /*
3884 * Prepare buffer for display plane (scanout, cursors, etc).
3885 * Can be called from an uninterruptible phase (modesetting) and allows
3886 * any flushes to be pipelined (for pageflips).
3887 */
3888 int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,struct intel_engine_cs * pipelined)3889 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3890 u32 alignment,
3891 struct intel_engine_cs *pipelined)
3892 {
3893 u32 old_read_domains, old_write_domain;
3894 bool was_pin_display;
3895 int ret;
3896
3897 if (pipelined != obj->ring) {
3898 ret = i915_gem_object_sync(obj, pipelined);
3899 if (ret)
3900 return ret;
3901 }
3902
3903 /* Mark the pin_display early so that we account for the
3904 * display coherency whilst setting up the cache domains.
3905 */
3906 was_pin_display = obj->pin_display;
3907 obj->pin_display = true;
3908
3909 /* The display engine is not coherent with the LLC cache on gen6. As
3910 * a result, we make sure that the pinning that is about to occur is
3911 * done with uncached PTEs. This is lowest common denominator for all
3912 * chipsets.
3913 *
3914 * However for gen6+, we could do better by using the GFDT bit instead
3915 * of uncaching, which would allow us to flush all the LLC-cached data
3916 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3917 */
3918 ret = i915_gem_object_set_cache_level(obj,
3919 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3920 if (ret)
3921 goto err_unpin_display;
3922
3923 /* As the user may map the buffer once pinned in the display plane
3924 * (e.g. libkms for the bootup splash), we have to ensure that we
3925 * always use map_and_fenceable for all scanout buffers.
3926 */
3927 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3928 if (ret)
3929 goto err_unpin_display;
3930
3931 i915_gem_object_flush_cpu_write_domain(obj, true);
3932
3933 old_write_domain = obj->base.write_domain;
3934 old_read_domains = obj->base.read_domains;
3935
3936 /* It should now be out of any other write domains, and we can update
3937 * the domain values for our changes.
3938 */
3939 obj->base.write_domain = 0;
3940 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3941
3942 trace_i915_gem_object_change_domain(obj,
3943 old_read_domains,
3944 old_write_domain);
3945
3946 return 0;
3947
3948 err_unpin_display:
3949 WARN_ON(was_pin_display != is_pin_display(obj));
3950 obj->pin_display = was_pin_display;
3951 return ret;
3952 }
3953
3954 void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object * obj)3955 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3956 {
3957 i915_gem_object_ggtt_unpin(obj);
3958 obj->pin_display = is_pin_display(obj);
3959 }
3960
3961 int
i915_gem_object_finish_gpu(struct drm_i915_gem_object * obj)3962 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3963 {
3964 int ret;
3965
3966 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3967 return 0;
3968
3969 ret = i915_gem_object_wait_rendering(obj, false);
3970 if (ret)
3971 return ret;
3972
3973 /* Ensure that we invalidate the GPU's caches and TLBs. */
3974 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3975 return 0;
3976 }
3977
3978 /**
3979 * Moves a single object to the CPU read, and possibly write domain.
3980 *
3981 * This function returns when the move is complete, including waiting on
3982 * flushes to occur.
3983 */
3984 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)3985 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3986 {
3987 uint32_t old_write_domain, old_read_domains;
3988 int ret;
3989
3990 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3991 return 0;
3992
3993 ret = i915_gem_object_wait_rendering(obj, !write);
3994 if (ret)
3995 return ret;
3996
3997 i915_gem_object_retire(obj);
3998 i915_gem_object_flush_gtt_write_domain(obj);
3999
4000 old_write_domain = obj->base.write_domain;
4001 old_read_domains = obj->base.read_domains;
4002
4003 /* Flush the CPU cache if it's still invalid. */
4004 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4005 i915_gem_clflush_object(obj, false);
4006
4007 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4008 }
4009
4010 /* It should now be out of any other write domains, and we can update
4011 * the domain values for our changes.
4012 */
4013 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4014
4015 /* If we're writing through the CPU, then the GPU read domains will
4016 * need to be invalidated at next use.
4017 */
4018 if (write) {
4019 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4020 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4021 }
4022
4023 if (write)
4024 intel_fb_obj_invalidate(obj, NULL);
4025
4026 trace_i915_gem_object_change_domain(obj,
4027 old_read_domains,
4028 old_write_domain);
4029
4030 return 0;
4031 }
4032
4033 /* Throttle our rendering by waiting until the ring has completed our requests
4034 * emitted over 20 msec ago.
4035 *
4036 * Note that if we were to use the current jiffies each time around the loop,
4037 * we wouldn't escape the function with any frames outstanding if the time to
4038 * render a frame was over 20ms.
4039 *
4040 * This should get us reasonable parallelism between CPU and GPU but also
4041 * relatively low latency when blocking on a particular request to finish.
4042 */
4043 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4044 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4045 {
4046 struct drm_i915_private *dev_priv = dev->dev_private;
4047 struct drm_i915_file_private *file_priv = file->driver_priv;
4048 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4049 struct drm_i915_gem_request *request;
4050 struct intel_engine_cs *ring = NULL;
4051 unsigned reset_counter;
4052 u32 seqno = 0;
4053 int ret;
4054
4055 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4056 if (ret)
4057 return ret;
4058
4059 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4060 if (ret)
4061 return ret;
4062
4063 spin_lock(&file_priv->mm.lock);
4064 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4065 if (time_after_eq(request->emitted_jiffies, recent_enough))
4066 break;
4067
4068 ring = request->ring;
4069 seqno = request->seqno;
4070 }
4071 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4072 spin_unlock(&file_priv->mm.lock);
4073
4074 if (seqno == 0)
4075 return 0;
4076
4077 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4078 if (ret == 0)
4079 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4080
4081 return ret;
4082 }
4083
4084 static bool
i915_vma_misplaced(struct i915_vma * vma,uint32_t alignment,uint64_t flags)4085 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4086 {
4087 struct drm_i915_gem_object *obj = vma->obj;
4088
4089 if (alignment &&
4090 vma->node.start & (alignment - 1))
4091 return true;
4092
4093 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4094 return true;
4095
4096 if (flags & PIN_OFFSET_BIAS &&
4097 vma->node.start < (flags & PIN_OFFSET_MASK))
4098 return true;
4099
4100 return false;
4101 }
4102
4103 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,uint32_t alignment,uint64_t flags)4104 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4105 struct i915_address_space *vm,
4106 uint32_t alignment,
4107 uint64_t flags)
4108 {
4109 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4110 struct i915_vma *vma;
4111 int ret;
4112
4113 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4114 return -ENODEV;
4115
4116 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4117 return -EINVAL;
4118
4119 vma = i915_gem_obj_to_vma(obj, vm);
4120 if (vma) {
4121 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4122 return -EBUSY;
4123
4124 if (i915_vma_misplaced(vma, alignment, flags)) {
4125 WARN(vma->pin_count,
4126 "bo is already pinned with incorrect alignment:"
4127 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4128 " obj->map_and_fenceable=%d\n",
4129 i915_gem_obj_offset(obj, vm), alignment,
4130 !!(flags & PIN_MAPPABLE),
4131 obj->map_and_fenceable);
4132 ret = i915_vma_unbind(vma);
4133 if (ret)
4134 return ret;
4135
4136 vma = NULL;
4137 }
4138 }
4139
4140 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4141 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4142 if (IS_ERR(vma))
4143 return PTR_ERR(vma);
4144 }
4145
4146 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4147 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4148
4149 vma->pin_count++;
4150 if (flags & PIN_MAPPABLE)
4151 obj->pin_mappable |= true;
4152
4153 return 0;
4154 }
4155
4156 void
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object * obj)4157 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4158 {
4159 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4160
4161 BUG_ON(!vma);
4162 BUG_ON(vma->pin_count == 0);
4163 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4164
4165 if (--vma->pin_count == 0)
4166 obj->pin_mappable = false;
4167 }
4168
4169 bool
i915_gem_object_pin_fence(struct drm_i915_gem_object * obj)4170 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4171 {
4172 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4173 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4174 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4175
4176 WARN_ON(!ggtt_vma ||
4177 dev_priv->fence_regs[obj->fence_reg].pin_count >
4178 ggtt_vma->pin_count);
4179 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4180 return true;
4181 } else
4182 return false;
4183 }
4184
4185 void
i915_gem_object_unpin_fence(struct drm_i915_gem_object * obj)4186 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4187 {
4188 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4189 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4190 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4191 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4192 }
4193 }
4194
4195 int
i915_gem_pin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4196 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4197 struct drm_file *file)
4198 {
4199 struct drm_i915_gem_pin *args = data;
4200 struct drm_i915_gem_object *obj;
4201 int ret;
4202
4203 if (drm_core_check_feature(dev, DRIVER_MODESET))
4204 return -ENODEV;
4205
4206 ret = i915_mutex_lock_interruptible(dev);
4207 if (ret)
4208 return ret;
4209
4210 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4211 if (&obj->base == NULL) {
4212 ret = -ENOENT;
4213 goto unlock;
4214 }
4215
4216 if (obj->madv != I915_MADV_WILLNEED) {
4217 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4218 ret = -EFAULT;
4219 goto out;
4220 }
4221
4222 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4223 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4224 args->handle);
4225 ret = -EINVAL;
4226 goto out;
4227 }
4228
4229 if (obj->user_pin_count == ULONG_MAX) {
4230 ret = -EBUSY;
4231 goto out;
4232 }
4233
4234 if (obj->user_pin_count == 0) {
4235 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4236 if (ret)
4237 goto out;
4238 }
4239
4240 obj->user_pin_count++;
4241 obj->pin_filp = file;
4242
4243 args->offset = i915_gem_obj_ggtt_offset(obj);
4244 out:
4245 drm_gem_object_unreference(&obj->base);
4246 unlock:
4247 mutex_unlock(&dev->struct_mutex);
4248 return ret;
4249 }
4250
4251 int
i915_gem_unpin_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4252 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4253 struct drm_file *file)
4254 {
4255 struct drm_i915_gem_pin *args = data;
4256 struct drm_i915_gem_object *obj;
4257 int ret;
4258
4259 if (drm_core_check_feature(dev, DRIVER_MODESET))
4260 return -ENODEV;
4261
4262 ret = i915_mutex_lock_interruptible(dev);
4263 if (ret)
4264 return ret;
4265
4266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4267 if (&obj->base == NULL) {
4268 ret = -ENOENT;
4269 goto unlock;
4270 }
4271
4272 if (obj->pin_filp != file) {
4273 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4274 args->handle);
4275 ret = -EINVAL;
4276 goto out;
4277 }
4278 obj->user_pin_count--;
4279 if (obj->user_pin_count == 0) {
4280 obj->pin_filp = NULL;
4281 i915_gem_object_ggtt_unpin(obj);
4282 }
4283
4284 out:
4285 drm_gem_object_unreference(&obj->base);
4286 unlock:
4287 mutex_unlock(&dev->struct_mutex);
4288 return ret;
4289 }
4290
4291 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4292 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4293 struct drm_file *file)
4294 {
4295 struct drm_i915_gem_busy *args = data;
4296 struct drm_i915_gem_object *obj;
4297 int ret;
4298
4299 ret = i915_mutex_lock_interruptible(dev);
4300 if (ret)
4301 return ret;
4302
4303 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4304 if (&obj->base == NULL) {
4305 ret = -ENOENT;
4306 goto unlock;
4307 }
4308
4309 /* Count all active objects as busy, even if they are currently not used
4310 * by the gpu. Users of this interface expect objects to eventually
4311 * become non-busy without any further actions, therefore emit any
4312 * necessary flushes here.
4313 */
4314 ret = i915_gem_object_flush_active(obj);
4315
4316 args->busy = obj->active;
4317 if (obj->ring) {
4318 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4319 args->busy |= intel_ring_flag(obj->ring) << 16;
4320 }
4321
4322 drm_gem_object_unreference(&obj->base);
4323 unlock:
4324 mutex_unlock(&dev->struct_mutex);
4325 return ret;
4326 }
4327
4328 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4329 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4330 struct drm_file *file_priv)
4331 {
4332 return i915_gem_ring_throttle(dev, file_priv);
4333 }
4334
4335 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4336 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4337 struct drm_file *file_priv)
4338 {
4339 struct drm_i915_gem_madvise *args = data;
4340 struct drm_i915_gem_object *obj;
4341 int ret;
4342
4343 switch (args->madv) {
4344 case I915_MADV_DONTNEED:
4345 case I915_MADV_WILLNEED:
4346 break;
4347 default:
4348 return -EINVAL;
4349 }
4350
4351 ret = i915_mutex_lock_interruptible(dev);
4352 if (ret)
4353 return ret;
4354
4355 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4356 if (&obj->base == NULL) {
4357 ret = -ENOENT;
4358 goto unlock;
4359 }
4360
4361 if (i915_gem_obj_is_pinned(obj)) {
4362 ret = -EINVAL;
4363 goto out;
4364 }
4365
4366 if (obj->madv != __I915_MADV_PURGED)
4367 obj->madv = args->madv;
4368
4369 /* if the object is no longer attached, discard its backing storage */
4370 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4371 i915_gem_object_truncate(obj);
4372
4373 args->retained = obj->madv != __I915_MADV_PURGED;
4374
4375 out:
4376 drm_gem_object_unreference(&obj->base);
4377 unlock:
4378 mutex_unlock(&dev->struct_mutex);
4379 return ret;
4380 }
4381
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4382 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4383 const struct drm_i915_gem_object_ops *ops)
4384 {
4385 INIT_LIST_HEAD(&obj->global_list);
4386 INIT_LIST_HEAD(&obj->ring_list);
4387 INIT_LIST_HEAD(&obj->obj_exec_link);
4388 INIT_LIST_HEAD(&obj->vma_list);
4389
4390 obj->ops = ops;
4391
4392 obj->fence_reg = I915_FENCE_REG_NONE;
4393 obj->madv = I915_MADV_WILLNEED;
4394
4395 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4396 }
4397
4398 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4399 .get_pages = i915_gem_object_get_pages_gtt,
4400 .put_pages = i915_gem_object_put_pages_gtt,
4401 };
4402
i915_gem_alloc_object(struct drm_device * dev,size_t size)4403 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4404 size_t size)
4405 {
4406 struct drm_i915_gem_object *obj;
4407 struct address_space *mapping;
4408 gfp_t mask;
4409
4410 obj = i915_gem_object_alloc(dev);
4411 if (obj == NULL)
4412 return NULL;
4413
4414 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4415 i915_gem_object_free(obj);
4416 return NULL;
4417 }
4418
4419 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4420 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4421 /* 965gm cannot relocate objects above 4GiB. */
4422 mask &= ~__GFP_HIGHMEM;
4423 mask |= __GFP_DMA32;
4424 }
4425
4426 mapping = file_inode(obj->base.filp)->i_mapping;
4427 mapping_set_gfp_mask(mapping, mask);
4428
4429 i915_gem_object_init(obj, &i915_gem_object_ops);
4430
4431 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4432 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4433
4434 if (HAS_LLC(dev)) {
4435 /* On some devices, we can have the GPU use the LLC (the CPU
4436 * cache) for about a 10% performance improvement
4437 * compared to uncached. Graphics requests other than
4438 * display scanout are coherent with the CPU in
4439 * accessing this cache. This means in this mode we
4440 * don't need to clflush on the CPU side, and on the
4441 * GPU side we only need to flush internal caches to
4442 * get data visible to the CPU.
4443 *
4444 * However, we maintain the display planes as UC, and so
4445 * need to rebind when first used as such.
4446 */
4447 obj->cache_level = I915_CACHE_LLC;
4448 } else
4449 obj->cache_level = I915_CACHE_NONE;
4450
4451 trace_i915_gem_object_create(obj);
4452
4453 return obj;
4454 }
4455
discard_backing_storage(struct drm_i915_gem_object * obj)4456 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4457 {
4458 /* If we are the last user of the backing storage (be it shmemfs
4459 * pages or stolen etc), we know that the pages are going to be
4460 * immediately released. In this case, we can then skip copying
4461 * back the contents from the GPU.
4462 */
4463
4464 if (obj->madv != I915_MADV_WILLNEED)
4465 return false;
4466
4467 if (obj->base.filp == NULL)
4468 return true;
4469
4470 /* At first glance, this looks racy, but then again so would be
4471 * userspace racing mmap against close. However, the first external
4472 * reference to the filp can only be obtained through the
4473 * i915_gem_mmap_ioctl() which safeguards us against the user
4474 * acquiring such a reference whilst we are in the middle of
4475 * freeing the object.
4476 */
4477 return atomic_long_read(&obj->base.filp->f_count) == 1;
4478 }
4479
i915_gem_free_object(struct drm_gem_object * gem_obj)4480 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4481 {
4482 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4483 struct drm_device *dev = obj->base.dev;
4484 struct drm_i915_private *dev_priv = dev->dev_private;
4485 struct i915_vma *vma, *next;
4486
4487 intel_runtime_pm_get(dev_priv);
4488
4489 trace_i915_gem_object_destroy(obj);
4490
4491 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4492 int ret;
4493
4494 vma->pin_count = 0;
4495 ret = i915_vma_unbind(vma);
4496 if (WARN_ON(ret == -ERESTARTSYS)) {
4497 bool was_interruptible;
4498
4499 was_interruptible = dev_priv->mm.interruptible;
4500 dev_priv->mm.interruptible = false;
4501
4502 WARN_ON(i915_vma_unbind(vma));
4503
4504 dev_priv->mm.interruptible = was_interruptible;
4505 }
4506 }
4507
4508 i915_gem_object_detach_phys(obj);
4509
4510 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4511 * before progressing. */
4512 if (obj->stolen)
4513 i915_gem_object_unpin_pages(obj);
4514
4515 WARN_ON(obj->frontbuffer_bits);
4516
4517 if (WARN_ON(obj->pages_pin_count))
4518 obj->pages_pin_count = 0;
4519 if (discard_backing_storage(obj))
4520 obj->madv = I915_MADV_DONTNEED;
4521 i915_gem_object_put_pages(obj);
4522 i915_gem_object_free_mmap_offset(obj);
4523
4524 BUG_ON(obj->pages);
4525
4526 if (obj->base.import_attach)
4527 drm_prime_gem_destroy(&obj->base, NULL);
4528
4529 if (obj->ops->release)
4530 obj->ops->release(obj);
4531
4532 drm_gem_object_release(&obj->base);
4533 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4534
4535 kfree(obj->bit_17);
4536 i915_gem_object_free(obj);
4537
4538 intel_runtime_pm_put(dev_priv);
4539 }
4540
i915_gem_obj_to_vma(struct drm_i915_gem_object * obj,struct i915_address_space * vm)4541 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4542 struct i915_address_space *vm)
4543 {
4544 struct i915_vma *vma;
4545 list_for_each_entry(vma, &obj->vma_list, vma_link)
4546 if (vma->vm == vm)
4547 return vma;
4548
4549 return NULL;
4550 }
4551
i915_gem_vma_destroy(struct i915_vma * vma)4552 void i915_gem_vma_destroy(struct i915_vma *vma)
4553 {
4554 struct i915_address_space *vm = NULL;
4555 WARN_ON(vma->node.allocated);
4556
4557 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4558 if (!list_empty(&vma->exec_list))
4559 return;
4560
4561 vm = vma->vm;
4562
4563 if (!i915_is_ggtt(vm))
4564 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4565
4566 list_del(&vma->vma_link);
4567
4568 kfree(vma);
4569 }
4570
4571 static void
i915_gem_stop_ringbuffers(struct drm_device * dev)4572 i915_gem_stop_ringbuffers(struct drm_device *dev)
4573 {
4574 struct drm_i915_private *dev_priv = dev->dev_private;
4575 struct intel_engine_cs *ring;
4576 int i;
4577
4578 for_each_ring(ring, dev_priv, i)
4579 dev_priv->gt.stop_ring(ring);
4580 }
4581
4582 int
i915_gem_suspend(struct drm_device * dev)4583 i915_gem_suspend(struct drm_device *dev)
4584 {
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586 int ret = 0;
4587
4588 mutex_lock(&dev->struct_mutex);
4589 if (dev_priv->ums.mm_suspended)
4590 goto err;
4591
4592 ret = i915_gpu_idle(dev);
4593 if (ret)
4594 goto err;
4595
4596 i915_gem_retire_requests(dev);
4597
4598 /* Under UMS, be paranoid and evict. */
4599 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4600 i915_gem_evict_everything(dev);
4601
4602 i915_kernel_lost_context(dev);
4603 i915_gem_stop_ringbuffers(dev);
4604
4605 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4606 * We need to replace this with a semaphore, or something.
4607 * And not confound ums.mm_suspended!
4608 */
4609 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4610 DRIVER_MODESET);
4611 mutex_unlock(&dev->struct_mutex);
4612
4613 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4614 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4615 flush_delayed_work(&dev_priv->mm.idle_work);
4616
4617 return 0;
4618
4619 err:
4620 mutex_unlock(&dev->struct_mutex);
4621 return ret;
4622 }
4623
i915_gem_l3_remap(struct intel_engine_cs * ring,int slice)4624 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4625 {
4626 struct drm_device *dev = ring->dev;
4627 struct drm_i915_private *dev_priv = dev->dev_private;
4628 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4629 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4630 int i, ret;
4631
4632 if (!HAS_L3_DPF(dev) || !remap_info)
4633 return 0;
4634
4635 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4636 if (ret)
4637 return ret;
4638
4639 /*
4640 * Note: We do not worry about the concurrent register cacheline hang
4641 * here because no other code should access these registers other than
4642 * at initialization time.
4643 */
4644 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4645 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4646 intel_ring_emit(ring, reg_base + i);
4647 intel_ring_emit(ring, remap_info[i/4]);
4648 }
4649
4650 intel_ring_advance(ring);
4651
4652 return ret;
4653 }
4654
i915_gem_init_swizzling(struct drm_device * dev)4655 void i915_gem_init_swizzling(struct drm_device *dev)
4656 {
4657 struct drm_i915_private *dev_priv = dev->dev_private;
4658
4659 if (INTEL_INFO(dev)->gen < 5 ||
4660 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4661 return;
4662
4663 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4664 DISP_TILE_SURFACE_SWIZZLING);
4665
4666 if (IS_GEN5(dev))
4667 return;
4668
4669 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4670 if (IS_GEN6(dev))
4671 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4672 else if (IS_GEN7(dev))
4673 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4674 else if (IS_GEN8(dev))
4675 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4676 else
4677 BUG();
4678 }
4679
4680 static bool
intel_enable_blt(struct drm_device * dev)4681 intel_enable_blt(struct drm_device *dev)
4682 {
4683 if (!HAS_BLT(dev))
4684 return false;
4685
4686 /* The blitter was dysfunctional on early prototypes */
4687 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4688 DRM_INFO("BLT not supported on this pre-production hardware;"
4689 " graphics performance will be degraded.\n");
4690 return false;
4691 }
4692
4693 return true;
4694 }
4695
init_unused_ring(struct drm_device * dev,u32 base)4696 static void init_unused_ring(struct drm_device *dev, u32 base)
4697 {
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699
4700 I915_WRITE(RING_CTL(base), 0);
4701 I915_WRITE(RING_HEAD(base), 0);
4702 I915_WRITE(RING_TAIL(base), 0);
4703 I915_WRITE(RING_START(base), 0);
4704 }
4705
init_unused_rings(struct drm_device * dev)4706 static void init_unused_rings(struct drm_device *dev)
4707 {
4708 if (IS_I830(dev)) {
4709 init_unused_ring(dev, PRB1_BASE);
4710 init_unused_ring(dev, SRB0_BASE);
4711 init_unused_ring(dev, SRB1_BASE);
4712 init_unused_ring(dev, SRB2_BASE);
4713 init_unused_ring(dev, SRB3_BASE);
4714 } else if (IS_GEN2(dev)) {
4715 init_unused_ring(dev, SRB0_BASE);
4716 init_unused_ring(dev, SRB1_BASE);
4717 } else if (IS_GEN3(dev)) {
4718 init_unused_ring(dev, PRB1_BASE);
4719 init_unused_ring(dev, PRB2_BASE);
4720 }
4721 }
4722
i915_gem_init_rings(struct drm_device * dev)4723 int i915_gem_init_rings(struct drm_device *dev)
4724 {
4725 struct drm_i915_private *dev_priv = dev->dev_private;
4726 int ret;
4727
4728 /*
4729 * At least 830 can leave some of the unused rings
4730 * "active" (ie. head != tail) after resume which
4731 * will prevent c3 entry. Makes sure all unused rings
4732 * are totally idle.
4733 */
4734 init_unused_rings(dev);
4735
4736 ret = intel_init_render_ring_buffer(dev);
4737 if (ret)
4738 return ret;
4739
4740 if (HAS_BSD(dev)) {
4741 ret = intel_init_bsd_ring_buffer(dev);
4742 if (ret)
4743 goto cleanup_render_ring;
4744 }
4745
4746 if (intel_enable_blt(dev)) {
4747 ret = intel_init_blt_ring_buffer(dev);
4748 if (ret)
4749 goto cleanup_bsd_ring;
4750 }
4751
4752 if (HAS_VEBOX(dev)) {
4753 ret = intel_init_vebox_ring_buffer(dev);
4754 if (ret)
4755 goto cleanup_blt_ring;
4756 }
4757
4758 if (HAS_BSD2(dev)) {
4759 ret = intel_init_bsd2_ring_buffer(dev);
4760 if (ret)
4761 goto cleanup_vebox_ring;
4762 }
4763
4764 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4765 if (ret)
4766 goto cleanup_bsd2_ring;
4767
4768 return 0;
4769
4770 cleanup_bsd2_ring:
4771 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4772 cleanup_vebox_ring:
4773 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4774 cleanup_blt_ring:
4775 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4776 cleanup_bsd_ring:
4777 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4778 cleanup_render_ring:
4779 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4780
4781 return ret;
4782 }
4783
4784 int
i915_gem_init_hw(struct drm_device * dev)4785 i915_gem_init_hw(struct drm_device *dev)
4786 {
4787 struct drm_i915_private *dev_priv = dev->dev_private;
4788 int ret, i;
4789
4790 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4791 return -EIO;
4792
4793 if (dev_priv->ellc_size)
4794 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4795
4796 if (IS_HASWELL(dev))
4797 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4798 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4799
4800 if (HAS_PCH_NOP(dev)) {
4801 if (IS_IVYBRIDGE(dev)) {
4802 u32 temp = I915_READ(GEN7_MSG_CTL);
4803 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4804 I915_WRITE(GEN7_MSG_CTL, temp);
4805 } else if (INTEL_INFO(dev)->gen >= 7) {
4806 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4807 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4808 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4809 }
4810 }
4811
4812 i915_gem_init_swizzling(dev);
4813
4814 ret = dev_priv->gt.init_rings(dev);
4815 if (ret)
4816 return ret;
4817
4818 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4819 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4820
4821 ret = i915_ppgtt_init_hw(dev);
4822 if (ret && ret != -EIO) {
4823 DRM_ERROR("PPGTT enable failed %d\n", ret);
4824 i915_gem_cleanup_ringbuffer(dev);
4825 }
4826
4827 ret = i915_gem_context_enable(dev_priv);
4828 if (ret && ret != -EIO) {
4829 DRM_ERROR("Context enable failed %d\n", ret);
4830 i915_gem_cleanup_ringbuffer(dev);
4831
4832 return ret;
4833 }
4834
4835 return ret;
4836 }
4837
i915_gem_init(struct drm_device * dev)4838 int i915_gem_init(struct drm_device *dev)
4839 {
4840 struct drm_i915_private *dev_priv = dev->dev_private;
4841 int ret;
4842
4843 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4844 i915.enable_execlists);
4845
4846 mutex_lock(&dev->struct_mutex);
4847
4848 if (IS_VALLEYVIEW(dev)) {
4849 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4850 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4851 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4852 VLV_GTLC_ALLOWWAKEACK), 10))
4853 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4854 }
4855
4856 if (!i915.enable_execlists) {
4857 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4858 dev_priv->gt.init_rings = i915_gem_init_rings;
4859 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4860 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4861 } else {
4862 dev_priv->gt.do_execbuf = intel_execlists_submission;
4863 dev_priv->gt.init_rings = intel_logical_rings_init;
4864 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4865 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4866 }
4867
4868 ret = i915_gem_init_userptr(dev);
4869 if (ret) {
4870 mutex_unlock(&dev->struct_mutex);
4871 return ret;
4872 }
4873
4874 i915_gem_init_global_gtt(dev);
4875
4876 ret = i915_gem_context_init(dev);
4877 if (ret) {
4878 mutex_unlock(&dev->struct_mutex);
4879 return ret;
4880 }
4881
4882 ret = i915_gem_init_hw(dev);
4883 if (ret == -EIO) {
4884 /* Allow ring initialisation to fail by marking the GPU as
4885 * wedged. But we only want to do this where the GPU is angry,
4886 * for all other failure, such as an allocation failure, bail.
4887 */
4888 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4889 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4890 ret = 0;
4891 }
4892 mutex_unlock(&dev->struct_mutex);
4893
4894 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4895 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4896 dev_priv->dri1.allow_batchbuffer = 1;
4897 return ret;
4898 }
4899
4900 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)4901 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4902 {
4903 struct drm_i915_private *dev_priv = dev->dev_private;
4904 struct intel_engine_cs *ring;
4905 int i;
4906
4907 for_each_ring(ring, dev_priv, i)
4908 dev_priv->gt.cleanup_ring(ring);
4909 }
4910
4911 int
i915_gem_entervt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4912 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4913 struct drm_file *file_priv)
4914 {
4915 struct drm_i915_private *dev_priv = dev->dev_private;
4916 int ret;
4917
4918 if (drm_core_check_feature(dev, DRIVER_MODESET))
4919 return 0;
4920
4921 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4922 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4923 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4924 }
4925
4926 mutex_lock(&dev->struct_mutex);
4927 dev_priv->ums.mm_suspended = 0;
4928
4929 ret = i915_gem_init_hw(dev);
4930 if (ret != 0) {
4931 mutex_unlock(&dev->struct_mutex);
4932 return ret;
4933 }
4934
4935 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4936
4937 ret = drm_irq_install(dev, dev->pdev->irq);
4938 if (ret)
4939 goto cleanup_ringbuffer;
4940 mutex_unlock(&dev->struct_mutex);
4941
4942 return 0;
4943
4944 cleanup_ringbuffer:
4945 i915_gem_cleanup_ringbuffer(dev);
4946 dev_priv->ums.mm_suspended = 1;
4947 mutex_unlock(&dev->struct_mutex);
4948
4949 return ret;
4950 }
4951
4952 int
i915_gem_leavevt_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4953 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4954 struct drm_file *file_priv)
4955 {
4956 if (drm_core_check_feature(dev, DRIVER_MODESET))
4957 return 0;
4958
4959 mutex_lock(&dev->struct_mutex);
4960 drm_irq_uninstall(dev);
4961 mutex_unlock(&dev->struct_mutex);
4962
4963 return i915_gem_suspend(dev);
4964 }
4965
4966 void
i915_gem_lastclose(struct drm_device * dev)4967 i915_gem_lastclose(struct drm_device *dev)
4968 {
4969 int ret;
4970
4971 if (drm_core_check_feature(dev, DRIVER_MODESET))
4972 return;
4973
4974 ret = i915_gem_suspend(dev);
4975 if (ret)
4976 DRM_ERROR("failed to idle hardware: %d\n", ret);
4977 }
4978
4979 static void
init_ring_lists(struct intel_engine_cs * ring)4980 init_ring_lists(struct intel_engine_cs *ring)
4981 {
4982 INIT_LIST_HEAD(&ring->active_list);
4983 INIT_LIST_HEAD(&ring->request_list);
4984 }
4985
i915_init_vm(struct drm_i915_private * dev_priv,struct i915_address_space * vm)4986 void i915_init_vm(struct drm_i915_private *dev_priv,
4987 struct i915_address_space *vm)
4988 {
4989 if (!i915_is_ggtt(vm))
4990 drm_mm_init(&vm->mm, vm->start, vm->total);
4991 vm->dev = dev_priv->dev;
4992 INIT_LIST_HEAD(&vm->active_list);
4993 INIT_LIST_HEAD(&vm->inactive_list);
4994 INIT_LIST_HEAD(&vm->global_link);
4995 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4996 }
4997
4998 void
i915_gem_load(struct drm_device * dev)4999 i915_gem_load(struct drm_device *dev)
5000 {
5001 struct drm_i915_private *dev_priv = dev->dev_private;
5002 int i;
5003
5004 dev_priv->slab =
5005 kmem_cache_create("i915_gem_object",
5006 sizeof(struct drm_i915_gem_object), 0,
5007 SLAB_HWCACHE_ALIGN,
5008 NULL);
5009
5010 INIT_LIST_HEAD(&dev_priv->vm_list);
5011 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5012
5013 INIT_LIST_HEAD(&dev_priv->context_list);
5014 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5015 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5016 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5017 for (i = 0; i < I915_NUM_RINGS; i++)
5018 init_ring_lists(&dev_priv->ring[i]);
5019 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5020 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5021 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5022 i915_gem_retire_work_handler);
5023 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5024 i915_gem_idle_work_handler);
5025 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5026
5027 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5028 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5029 I915_WRITE(MI_ARB_STATE,
5030 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5031 }
5032
5033 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5034
5035 /* Old X drivers will take 0-2 for front, back, depth buffers */
5036 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5037 dev_priv->fence_reg_start = 3;
5038
5039 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5040 dev_priv->num_fence_regs = 32;
5041 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5042 dev_priv->num_fence_regs = 16;
5043 else
5044 dev_priv->num_fence_regs = 8;
5045
5046 /* Initialize fence registers to zero */
5047 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5048 i915_gem_restore_fences(dev);
5049
5050 i915_gem_detect_bit_6_swizzle(dev);
5051 init_waitqueue_head(&dev_priv->pending_flip_queue);
5052
5053 dev_priv->mm.interruptible = true;
5054
5055 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5056 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5057 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5058 register_shrinker(&dev_priv->mm.shrinker);
5059
5060 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5061 register_oom_notifier(&dev_priv->mm.oom_notifier);
5062
5063 mutex_init(&dev_priv->fb_tracking.lock);
5064 }
5065
i915_gem_release(struct drm_device * dev,struct drm_file * file)5066 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5067 {
5068 struct drm_i915_file_private *file_priv = file->driver_priv;
5069
5070 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5071
5072 /* Clean up our request list when the client is going away, so that
5073 * later retire_requests won't dereference our soon-to-be-gone
5074 * file_priv.
5075 */
5076 spin_lock(&file_priv->mm.lock);
5077 while (!list_empty(&file_priv->mm.request_list)) {
5078 struct drm_i915_gem_request *request;
5079
5080 request = list_first_entry(&file_priv->mm.request_list,
5081 struct drm_i915_gem_request,
5082 client_list);
5083 list_del(&request->client_list);
5084 request->file_priv = NULL;
5085 }
5086 spin_unlock(&file_priv->mm.lock);
5087 }
5088
5089 static void
i915_gem_file_idle_work_handler(struct work_struct * work)5090 i915_gem_file_idle_work_handler(struct work_struct *work)
5091 {
5092 struct drm_i915_file_private *file_priv =
5093 container_of(work, typeof(*file_priv), mm.idle_work.work);
5094
5095 atomic_set(&file_priv->rps_wait_boost, false);
5096 }
5097
i915_gem_open(struct drm_device * dev,struct drm_file * file)5098 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5099 {
5100 struct drm_i915_file_private *file_priv;
5101 int ret;
5102
5103 DRM_DEBUG_DRIVER("\n");
5104
5105 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5106 if (!file_priv)
5107 return -ENOMEM;
5108
5109 file->driver_priv = file_priv;
5110 file_priv->dev_priv = dev->dev_private;
5111 file_priv->file = file;
5112
5113 spin_lock_init(&file_priv->mm.lock);
5114 INIT_LIST_HEAD(&file_priv->mm.request_list);
5115 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5116 i915_gem_file_idle_work_handler);
5117
5118 ret = i915_gem_context_open(dev, file);
5119 if (ret)
5120 kfree(file_priv);
5121
5122 return ret;
5123 }
5124
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5125 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5126 struct drm_i915_gem_object *new,
5127 unsigned frontbuffer_bits)
5128 {
5129 if (old) {
5130 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5131 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5132 old->frontbuffer_bits &= ~frontbuffer_bits;
5133 }
5134
5135 if (new) {
5136 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5137 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5138 new->frontbuffer_bits |= frontbuffer_bits;
5139 }
5140 }
5141
mutex_is_locked_by(struct mutex * mutex,struct task_struct * task)5142 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5143 {
5144 if (!mutex_is_locked(mutex))
5145 return false;
5146
5147 #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5148 return mutex->owner == task;
5149 #else
5150 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5151 return false;
5152 #endif
5153 }
5154
i915_gem_shrinker_lock(struct drm_device * dev,bool * unlock)5155 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5156 {
5157 if (!mutex_trylock(&dev->struct_mutex)) {
5158 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5159 return false;
5160
5161 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5162 return false;
5163
5164 *unlock = false;
5165 } else
5166 *unlock = true;
5167
5168 return true;
5169 }
5170
num_vma_bound(struct drm_i915_gem_object * obj)5171 static int num_vma_bound(struct drm_i915_gem_object *obj)
5172 {
5173 struct i915_vma *vma;
5174 int count = 0;
5175
5176 list_for_each_entry(vma, &obj->vma_list, vma_link)
5177 if (drm_mm_node_allocated(&vma->node))
5178 count++;
5179
5180 return count;
5181 }
5182
5183 static unsigned long
i915_gem_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)5184 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5185 {
5186 struct drm_i915_private *dev_priv =
5187 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5188 struct drm_device *dev = dev_priv->dev;
5189 struct drm_i915_gem_object *obj;
5190 unsigned long count;
5191 bool unlock;
5192
5193 if (!i915_gem_shrinker_lock(dev, &unlock))
5194 return 0;
5195
5196 count = 0;
5197 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5198 if (obj->pages_pin_count == 0)
5199 count += obj->base.size >> PAGE_SHIFT;
5200
5201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5202 if (!i915_gem_obj_is_pinned(obj) &&
5203 obj->pages_pin_count == num_vma_bound(obj))
5204 count += obj->base.size >> PAGE_SHIFT;
5205 }
5206
5207 if (unlock)
5208 mutex_unlock(&dev->struct_mutex);
5209
5210 return count;
5211 }
5212
5213 /* All the new VM stuff */
i915_gem_obj_offset(struct drm_i915_gem_object * o,struct i915_address_space * vm)5214 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5215 struct i915_address_space *vm)
5216 {
5217 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5218 struct i915_vma *vma;
5219
5220 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5221
5222 list_for_each_entry(vma, &o->vma_list, vma_link) {
5223 if (vma->vm == vm)
5224 return vma->node.start;
5225
5226 }
5227 WARN(1, "%s vma for this object not found.\n",
5228 i915_is_ggtt(vm) ? "global" : "ppgtt");
5229 return -1;
5230 }
5231
i915_gem_obj_bound(struct drm_i915_gem_object * o,struct i915_address_space * vm)5232 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5233 struct i915_address_space *vm)
5234 {
5235 struct i915_vma *vma;
5236
5237 list_for_each_entry(vma, &o->vma_list, vma_link)
5238 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5239 return true;
5240
5241 return false;
5242 }
5243
i915_gem_obj_bound_any(struct drm_i915_gem_object * o)5244 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5245 {
5246 struct i915_vma *vma;
5247
5248 list_for_each_entry(vma, &o->vma_list, vma_link)
5249 if (drm_mm_node_allocated(&vma->node))
5250 return true;
5251
5252 return false;
5253 }
5254
i915_gem_obj_size(struct drm_i915_gem_object * o,struct i915_address_space * vm)5255 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5256 struct i915_address_space *vm)
5257 {
5258 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5259 struct i915_vma *vma;
5260
5261 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5262
5263 BUG_ON(list_empty(&o->vma_list));
5264
5265 list_for_each_entry(vma, &o->vma_list, vma_link)
5266 if (vma->vm == vm)
5267 return vma->node.size;
5268
5269 return 0;
5270 }
5271
5272 static unsigned long
i915_gem_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)5273 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5274 {
5275 struct drm_i915_private *dev_priv =
5276 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5277 struct drm_device *dev = dev_priv->dev;
5278 unsigned long freed;
5279 bool unlock;
5280
5281 if (!i915_gem_shrinker_lock(dev, &unlock))
5282 return SHRINK_STOP;
5283
5284 freed = i915_gem_shrink(dev_priv,
5285 sc->nr_to_scan,
5286 I915_SHRINK_BOUND |
5287 I915_SHRINK_UNBOUND |
5288 I915_SHRINK_PURGEABLE);
5289 if (freed < sc->nr_to_scan)
5290 freed += i915_gem_shrink(dev_priv,
5291 sc->nr_to_scan - freed,
5292 I915_SHRINK_BOUND |
5293 I915_SHRINK_UNBOUND);
5294 if (unlock)
5295 mutex_unlock(&dev->struct_mutex);
5296
5297 return freed;
5298 }
5299
5300 static int
i915_gem_shrinker_oom(struct notifier_block * nb,unsigned long event,void * ptr)5301 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5302 {
5303 struct drm_i915_private *dev_priv =
5304 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5305 struct drm_device *dev = dev_priv->dev;
5306 struct drm_i915_gem_object *obj;
5307 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5308 unsigned long pinned, bound, unbound, freed;
5309 bool was_interruptible;
5310 bool unlock;
5311
5312 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5313 schedule_timeout_killable(1);
5314 if (fatal_signal_pending(current))
5315 return NOTIFY_DONE;
5316 }
5317 if (timeout == 0) {
5318 pr_err("Unable to purge GPU memory due lock contention.\n");
5319 return NOTIFY_DONE;
5320 }
5321
5322 was_interruptible = dev_priv->mm.interruptible;
5323 dev_priv->mm.interruptible = false;
5324
5325 freed = i915_gem_shrink_all(dev_priv);
5326
5327 dev_priv->mm.interruptible = was_interruptible;
5328
5329 /* Because we may be allocating inside our own driver, we cannot
5330 * assert that there are no objects with pinned pages that are not
5331 * being pointed to by hardware.
5332 */
5333 unbound = bound = pinned = 0;
5334 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5335 if (!obj->base.filp) /* not backed by a freeable object */
5336 continue;
5337
5338 if (obj->pages_pin_count)
5339 pinned += obj->base.size;
5340 else
5341 unbound += obj->base.size;
5342 }
5343 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5344 if (!obj->base.filp)
5345 continue;
5346
5347 if (obj->pages_pin_count)
5348 pinned += obj->base.size;
5349 else
5350 bound += obj->base.size;
5351 }
5352
5353 if (unlock)
5354 mutex_unlock(&dev->struct_mutex);
5355
5356 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5357 freed, pinned);
5358 if (unbound || bound)
5359 pr_err("%lu and %lu bytes still available in the "
5360 "bound and unbound GPU page lists.\n",
5361 bound, unbound);
5362
5363 *(unsigned long *)ptr += freed;
5364 return NOTIFY_DONE;
5365 }
5366
i915_gem_obj_to_ggtt(struct drm_i915_gem_object * obj)5367 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5368 {
5369 struct i915_vma *vma;
5370
5371 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5372 if (vma->vm != i915_obj_to_ggtt(obj))
5373 return NULL;
5374
5375 return vma;
5376 }
5377