• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "drmP.h"
26 #include "i915_drm.h"
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 
35 struct i915_mm_struct {
36 	struct mm_struct *mm;
37 	struct drm_device *dev;
38 	struct i915_mmu_notifier *mn;
39 	struct hlist_node node;
40 	struct kref kref;
41 	struct work_struct work;
42 };
43 
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
46 
47 struct i915_mmu_notifier {
48 	spinlock_t lock;
49 	struct hlist_node node;
50 	struct mmu_notifier mn;
51 	struct rb_root objects;
52 	struct list_head linear;
53 	unsigned long serial;
54 	bool has_linear;
55 };
56 
57 struct i915_mmu_object {
58 	struct i915_mmu_notifier *mn;
59 	struct interval_tree_node it;
60 	struct list_head link;
61 	struct drm_i915_gem_object *obj;
62 	bool is_linear;
63 };
64 
cancel_userptr(struct drm_i915_gem_object * obj)65 static unsigned long cancel_userptr(struct drm_i915_gem_object *obj)
66 {
67 	struct drm_device *dev = obj->base.dev;
68 	unsigned long end;
69 
70 	mutex_lock(&dev->struct_mutex);
71 	/* Cancel any active worker and force us to re-evaluate gup */
72 	obj->userptr.work = NULL;
73 
74 	if (obj->pages != NULL) {
75 		struct drm_i915_private *dev_priv = to_i915(dev);
76 		struct i915_vma *vma, *tmp;
77 		bool was_interruptible;
78 
79 		was_interruptible = dev_priv->mm.interruptible;
80 		dev_priv->mm.interruptible = false;
81 
82 		list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
83 			int ret = i915_vma_unbind(vma);
84 			WARN_ON(ret && ret != -EIO);
85 		}
86 		WARN_ON(i915_gem_object_put_pages(obj));
87 
88 		dev_priv->mm.interruptible = was_interruptible;
89 	}
90 
91 	end = obj->userptr.ptr + obj->base.size;
92 
93 	drm_gem_object_unreference(&obj->base);
94 	mutex_unlock(&dev->struct_mutex);
95 
96 	return end;
97 }
98 
invalidate_range__linear(struct i915_mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)99 static void *invalidate_range__linear(struct i915_mmu_notifier *mn,
100 				      struct mm_struct *mm,
101 				      unsigned long start,
102 				      unsigned long end)
103 {
104 	struct i915_mmu_object *mo;
105 	unsigned long serial;
106 
107 restart:
108 	serial = mn->serial;
109 	list_for_each_entry(mo, &mn->linear, link) {
110 		struct drm_i915_gem_object *obj;
111 
112 		if (mo->it.last < start || mo->it.start > end)
113 			continue;
114 
115 		obj = mo->obj;
116 
117 		if (!kref_get_unless_zero(&obj->base.refcount))
118 			continue;
119 
120 		spin_unlock(&mn->lock);
121 
122 		cancel_userptr(obj);
123 
124 		spin_lock(&mn->lock);
125 		if (serial != mn->serial)
126 			goto restart;
127 	}
128 
129 	return NULL;
130 }
131 
i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier * _mn,struct mm_struct * mm,unsigned long start,unsigned long end)132 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
133 						       struct mm_struct *mm,
134 						       unsigned long start,
135 						       unsigned long end)
136 {
137 	struct i915_mmu_notifier *mn = container_of(_mn, struct i915_mmu_notifier, mn);
138 	struct interval_tree_node *it = NULL;
139 	unsigned long next = start;
140 	unsigned long serial = 0;
141 
142 	end--; /* interval ranges are inclusive, but invalidate range is exclusive */
143 	while (next < end) {
144 		struct drm_i915_gem_object *obj = NULL;
145 
146 		spin_lock(&mn->lock);
147 		if (mn->has_linear)
148 			it = invalidate_range__linear(mn, mm, start, end);
149 		else if (serial == mn->serial)
150 			it = interval_tree_iter_next(it, next, end);
151 		else
152 			it = interval_tree_iter_first(&mn->objects, start, end);
153 		if (it != NULL) {
154 			obj = container_of(it, struct i915_mmu_object, it)->obj;
155 
156 			/* The mmu_object is released late when destroying the
157 			 * GEM object so it is entirely possible to gain a
158 			 * reference on an object in the process of being freed
159 			 * since our serialisation is via the spinlock and not
160 			 * the struct_mutex - and consequently use it after it
161 			 * is freed and then double free it.
162 			 */
163 			if (!kref_get_unless_zero(&obj->base.refcount)) {
164 				spin_unlock(&mn->lock);
165 				serial = 0;
166 				continue;
167 			}
168 
169 			serial = mn->serial;
170 		}
171 		spin_unlock(&mn->lock);
172 		if (obj == NULL)
173 			return;
174 
175 		next = cancel_userptr(obj);
176 	}
177 }
178 
179 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
180 	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
181 };
182 
183 static struct i915_mmu_notifier *
i915_mmu_notifier_create(struct mm_struct * mm)184 i915_mmu_notifier_create(struct mm_struct *mm)
185 {
186 	struct i915_mmu_notifier *mn;
187 	int ret;
188 
189 	mn = kmalloc(sizeof(*mn), GFP_KERNEL);
190 	if (mn == NULL)
191 		return ERR_PTR(-ENOMEM);
192 
193 	spin_lock_init(&mn->lock);
194 	mn->mn.ops = &i915_gem_userptr_notifier;
195 	mn->objects = RB_ROOT;
196 	mn->serial = 1;
197 	INIT_LIST_HEAD(&mn->linear);
198 	mn->has_linear = false;
199 
200 	 /* Protected by mmap_sem (write-lock) */
201 	ret = __mmu_notifier_register(&mn->mn, mm);
202 	if (ret) {
203 		kfree(mn);
204 		return ERR_PTR(ret);
205 	}
206 
207 	return mn;
208 }
209 
__i915_mmu_notifier_update_serial(struct i915_mmu_notifier * mn)210 static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier *mn)
211 {
212 	if (++mn->serial == 0)
213 		mn->serial = 1;
214 }
215 
216 static int
i915_mmu_notifier_add(struct drm_device * dev,struct i915_mmu_notifier * mn,struct i915_mmu_object * mo)217 i915_mmu_notifier_add(struct drm_device *dev,
218 		      struct i915_mmu_notifier *mn,
219 		      struct i915_mmu_object *mo)
220 {
221 	struct interval_tree_node *it;
222 	int ret;
223 
224 	ret = i915_mutex_lock_interruptible(dev);
225 	if (ret)
226 		return ret;
227 
228 	/* Make sure we drop the final active reference (and thereby
229 	 * remove the objects from the interval tree) before we do
230 	 * the check for overlapping objects.
231 	 */
232 	i915_gem_retire_requests(dev);
233 
234 	spin_lock(&mn->lock);
235 	it = interval_tree_iter_first(&mn->objects,
236 				      mo->it.start, mo->it.last);
237 	if (it) {
238 		struct drm_i915_gem_object *obj;
239 
240 		/* We only need to check the first object in the range as it
241 		 * either has cancelled gup work queued and we need to
242 		 * return back to the user to give time for the gup-workers
243 		 * to flush their object references upon which the object will
244 		 * be removed from the interval-tree, or the the range is
245 		 * still in use by another client and the overlap is invalid.
246 		 *
247 		 * If we do have an overlap, we cannot use the interval tree
248 		 * for fast range invalidation.
249 		 */
250 
251 		obj = container_of(it, struct i915_mmu_object, it)->obj;
252 		if (!obj->userptr.workers)
253 			mn->has_linear = mo->is_linear = true;
254 		else
255 			ret = -EAGAIN;
256 	} else
257 		interval_tree_insert(&mo->it, &mn->objects);
258 
259 	if (ret == 0) {
260 		list_add(&mo->link, &mn->linear);
261 		__i915_mmu_notifier_update_serial(mn);
262 	}
263 	spin_unlock(&mn->lock);
264 	mutex_unlock(&dev->struct_mutex);
265 
266 	return ret;
267 }
268 
i915_mmu_notifier_has_linear(struct i915_mmu_notifier * mn)269 static bool i915_mmu_notifier_has_linear(struct i915_mmu_notifier *mn)
270 {
271 	struct i915_mmu_object *mo;
272 
273 	list_for_each_entry(mo, &mn->linear, link)
274 		if (mo->is_linear)
275 			return true;
276 
277 	return false;
278 }
279 
280 static void
i915_mmu_notifier_del(struct i915_mmu_notifier * mn,struct i915_mmu_object * mo)281 i915_mmu_notifier_del(struct i915_mmu_notifier *mn,
282 		      struct i915_mmu_object *mo)
283 {
284 	spin_lock(&mn->lock);
285 	list_del(&mo->link);
286 	if (mo->is_linear)
287 		mn->has_linear = i915_mmu_notifier_has_linear(mn);
288 	else
289 		interval_tree_remove(&mo->it, &mn->objects);
290 	__i915_mmu_notifier_update_serial(mn);
291 	spin_unlock(&mn->lock);
292 }
293 
294 static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object * obj)295 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
296 {
297 	struct i915_mmu_object *mo;
298 
299 	mo = obj->userptr.mmu_object;
300 	if (mo == NULL)
301 		return;
302 
303 	i915_mmu_notifier_del(mo->mn, mo);
304 	kfree(mo);
305 
306 	obj->userptr.mmu_object = NULL;
307 }
308 
309 static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct * mm)310 i915_mmu_notifier_find(struct i915_mm_struct *mm)
311 {
312 	struct i915_mmu_notifier *mn = mm->mn;
313 
314 	mn = mm->mn;
315 	if (mn)
316 		return mn;
317 
318 	down_write(&mm->mm->mmap_sem);
319 	mutex_lock(&to_i915(mm->dev)->mm_lock);
320 	if ((mn = mm->mn) == NULL) {
321 		mn = i915_mmu_notifier_create(mm->mm);
322 		if (!IS_ERR(mn))
323 			mm->mn = mn;
324 	}
325 	mutex_unlock(&to_i915(mm->dev)->mm_lock);
326 	up_write(&mm->mm->mmap_sem);
327 
328 	return mn;
329 }
330 
331 static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object * obj,unsigned flags)332 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
333 				    unsigned flags)
334 {
335 	struct i915_mmu_notifier *mn;
336 	struct i915_mmu_object *mo;
337 	int ret;
338 
339 	if (flags & I915_USERPTR_UNSYNCHRONIZED)
340 		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
341 
342 	if (WARN_ON(obj->userptr.mm == NULL))
343 		return -EINVAL;
344 
345 	mn = i915_mmu_notifier_find(obj->userptr.mm);
346 	if (IS_ERR(mn))
347 		return PTR_ERR(mn);
348 
349 	mo = kzalloc(sizeof(*mo), GFP_KERNEL);
350 	if (mo == NULL)
351 		return -ENOMEM;
352 
353 	mo->mn = mn;
354 	mo->it.start = obj->userptr.ptr;
355 	mo->it.last = mo->it.start + obj->base.size - 1;
356 	mo->obj = obj;
357 
358 	ret = i915_mmu_notifier_add(obj->base.dev, mn, mo);
359 	if (ret) {
360 		kfree(mo);
361 		return ret;
362 	}
363 
364 	obj->userptr.mmu_object = mo;
365 	return 0;
366 }
367 
368 static void
i915_mmu_notifier_free(struct i915_mmu_notifier * mn,struct mm_struct * mm)369 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
370 		       struct mm_struct *mm)
371 {
372 	if (mn == NULL)
373 		return;
374 
375 	mmu_notifier_unregister(&mn->mn, mm);
376 	kfree(mn);
377 }
378 
379 #else
380 
381 static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object * obj)382 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
383 {
384 }
385 
386 static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object * obj,unsigned flags)387 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
388 				    unsigned flags)
389 {
390 	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
391 		return -ENODEV;
392 
393 	if (!capable(CAP_SYS_ADMIN))
394 		return -EPERM;
395 
396 	return 0;
397 }
398 
399 static void
i915_mmu_notifier_free(struct i915_mmu_notifier * mn,struct mm_struct * mm)400 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
401 		       struct mm_struct *mm)
402 {
403 }
404 
405 #endif
406 
407 static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private * dev_priv,struct mm_struct * real)408 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
409 {
410 	struct i915_mm_struct *mm;
411 
412 	/* Protected by dev_priv->mm_lock */
413 	hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
414 		if (mm->mm == real)
415 			return mm;
416 
417 	return NULL;
418 }
419 
420 static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object * obj)421 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
422 {
423 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
424 	struct i915_mm_struct *mm;
425 	int ret = 0;
426 
427 	/* During release of the GEM object we hold the struct_mutex. This
428 	 * precludes us from calling mmput() at that time as that may be
429 	 * the last reference and so call exit_mmap(). exit_mmap() will
430 	 * attempt to reap the vma, and if we were holding a GTT mmap
431 	 * would then call drm_gem_vm_close() and attempt to reacquire
432 	 * the struct mutex. So in order to avoid that recursion, we have
433 	 * to defer releasing the mm reference until after we drop the
434 	 * struct_mutex, i.e. we need to schedule a worker to do the clean
435 	 * up.
436 	 */
437 	mutex_lock(&dev_priv->mm_lock);
438 	mm = __i915_mm_struct_find(dev_priv, current->mm);
439 	if (mm == NULL) {
440 		mm = kmalloc(sizeof(*mm), GFP_KERNEL);
441 		if (mm == NULL) {
442 			ret = -ENOMEM;
443 			goto out;
444 		}
445 
446 		kref_init(&mm->kref);
447 		mm->dev = obj->base.dev;
448 
449 		mm->mm = current->mm;
450 		atomic_inc(&current->mm->mm_count);
451 
452 		mm->mn = NULL;
453 
454 		/* Protected by dev_priv->mm_lock */
455 		hash_add(dev_priv->mm_structs,
456 			 &mm->node, (unsigned long)mm->mm);
457 	} else
458 		kref_get(&mm->kref);
459 
460 	obj->userptr.mm = mm;
461 out:
462 	mutex_unlock(&dev_priv->mm_lock);
463 	return ret;
464 }
465 
466 static void
__i915_mm_struct_free__worker(struct work_struct * work)467 __i915_mm_struct_free__worker(struct work_struct *work)
468 {
469 	struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
470 	i915_mmu_notifier_free(mm->mn, mm->mm);
471 	mmdrop(mm->mm);
472 	kfree(mm);
473 }
474 
475 static void
__i915_mm_struct_free(struct kref * kref)476 __i915_mm_struct_free(struct kref *kref)
477 {
478 	struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
479 
480 	/* Protected by dev_priv->mm_lock */
481 	hash_del(&mm->node);
482 	mutex_unlock(&to_i915(mm->dev)->mm_lock);
483 
484 	INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
485 	schedule_work(&mm->work);
486 }
487 
488 static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object * obj)489 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
490 {
491 	if (obj->userptr.mm == NULL)
492 		return;
493 
494 	kref_put_mutex(&obj->userptr.mm->kref,
495 		       __i915_mm_struct_free,
496 		       &to_i915(obj->base.dev)->mm_lock);
497 	obj->userptr.mm = NULL;
498 }
499 
500 struct get_pages_work {
501 	struct work_struct work;
502 	struct drm_i915_gem_object *obj;
503 	struct task_struct *task;
504 };
505 
506 #if IS_ENABLED(CONFIG_SWIOTLB)
507 #define swiotlb_active() swiotlb_nr_tbl()
508 #else
509 #define swiotlb_active() 0
510 #endif
511 
512 static int
st_set_pages(struct sg_table ** st,struct page ** pvec,int num_pages)513 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
514 {
515 	struct scatterlist *sg;
516 	int ret, n;
517 
518 	*st = kmalloc(sizeof(**st), GFP_KERNEL);
519 	if (*st == NULL)
520 		return -ENOMEM;
521 
522 	if (swiotlb_active()) {
523 		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
524 		if (ret)
525 			goto err;
526 
527 		for_each_sg((*st)->sgl, sg, num_pages, n)
528 			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
529 	} else {
530 		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
531 						0, num_pages << PAGE_SHIFT,
532 						GFP_KERNEL);
533 		if (ret)
534 			goto err;
535 	}
536 
537 	return 0;
538 
539 err:
540 	kfree(*st);
541 	*st = NULL;
542 	return ret;
543 }
544 
545 static void
__i915_gem_userptr_get_pages_worker(struct work_struct * _work)546 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
547 {
548 	struct get_pages_work *work = container_of(_work, typeof(*work), work);
549 	struct drm_i915_gem_object *obj = work->obj;
550 	struct drm_device *dev = obj->base.dev;
551 	const int num_pages = obj->base.size >> PAGE_SHIFT;
552 	struct page **pvec;
553 	int pinned, ret;
554 
555 	ret = -ENOMEM;
556 	pinned = 0;
557 
558 	pvec = kmalloc(num_pages*sizeof(struct page *),
559 		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
560 	if (pvec == NULL)
561 		pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
562 	if (pvec != NULL) {
563 		struct mm_struct *mm = obj->userptr.mm->mm;
564 
565 		down_read(&mm->mmap_sem);
566 		while (pinned < num_pages) {
567 			ret = get_user_pages(work->task, mm,
568 					     obj->userptr.ptr + pinned * PAGE_SIZE,
569 					     num_pages - pinned,
570 					     !obj->userptr.read_only, 0,
571 					     pvec + pinned, NULL);
572 			if (ret < 0)
573 				break;
574 
575 			pinned += ret;
576 		}
577 		up_read(&mm->mmap_sem);
578 	}
579 
580 	mutex_lock(&dev->struct_mutex);
581 	if (obj->userptr.work != &work->work) {
582 		ret = 0;
583 	} else if (pinned == num_pages) {
584 		ret = st_set_pages(&obj->pages, pvec, num_pages);
585 		if (ret == 0) {
586 			list_add_tail(&obj->global_list, &to_i915(dev)->mm.unbound_list);
587 			pinned = 0;
588 		}
589 	}
590 
591 	obj->userptr.work = ERR_PTR(ret);
592 	obj->userptr.workers--;
593 	drm_gem_object_unreference(&obj->base);
594 	mutex_unlock(&dev->struct_mutex);
595 
596 	release_pages(pvec, pinned, 0);
597 	drm_free_large(pvec);
598 
599 	put_task_struct(work->task);
600 	kfree(work);
601 }
602 
603 static int
i915_gem_userptr_get_pages(struct drm_i915_gem_object * obj)604 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
605 {
606 	const int num_pages = obj->base.size >> PAGE_SHIFT;
607 	struct page **pvec;
608 	int pinned, ret;
609 
610 	/* If userspace should engineer that these pages are replaced in
611 	 * the vma between us binding this page into the GTT and completion
612 	 * of rendering... Their loss. If they change the mapping of their
613 	 * pages they need to create a new bo to point to the new vma.
614 	 *
615 	 * However, that still leaves open the possibility of the vma
616 	 * being copied upon fork. Which falls under the same userspace
617 	 * synchronisation issue as a regular bo, except that this time
618 	 * the process may not be expecting that a particular piece of
619 	 * memory is tied to the GPU.
620 	 *
621 	 * Fortunately, we can hook into the mmu_notifier in order to
622 	 * discard the page references prior to anything nasty happening
623 	 * to the vma (discard or cloning) which should prevent the more
624 	 * egregious cases from causing harm.
625 	 */
626 
627 	pvec = NULL;
628 	pinned = 0;
629 	if (obj->userptr.mm->mm == current->mm) {
630 		pvec = kmalloc(num_pages*sizeof(struct page *),
631 			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
632 		if (pvec == NULL) {
633 			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
634 			if (pvec == NULL)
635 				return -ENOMEM;
636 		}
637 
638 		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
639 					       !obj->userptr.read_only, pvec);
640 	}
641 	if (pinned < num_pages) {
642 		if (pinned < 0) {
643 			ret = pinned;
644 			pinned = 0;
645 		} else {
646 			/* Spawn a worker so that we can acquire the
647 			 * user pages without holding our mutex. Access
648 			 * to the user pages requires mmap_sem, and we have
649 			 * a strict lock ordering of mmap_sem, struct_mutex -
650 			 * we already hold struct_mutex here and so cannot
651 			 * call gup without encountering a lock inversion.
652 			 *
653 			 * Userspace will keep on repeating the operation
654 			 * (thanks to EAGAIN) until either we hit the fast
655 			 * path or the worker completes. If the worker is
656 			 * cancelled or superseded, the task is still run
657 			 * but the results ignored. (This leads to
658 			 * complications that we may have a stray object
659 			 * refcount that we need to be wary of when
660 			 * checking for existing objects during creation.)
661 			 * If the worker encounters an error, it reports
662 			 * that error back to this function through
663 			 * obj->userptr.work = ERR_PTR.
664 			 */
665 			ret = -EAGAIN;
666 			if (obj->userptr.work == NULL &&
667 			    obj->userptr.workers < I915_GEM_USERPTR_MAX_WORKERS) {
668 				struct get_pages_work *work;
669 
670 				work = kmalloc(sizeof(*work), GFP_KERNEL);
671 				if (work != NULL) {
672 					obj->userptr.work = &work->work;
673 					obj->userptr.workers++;
674 
675 					work->obj = obj;
676 					drm_gem_object_reference(&obj->base);
677 
678 					work->task = current;
679 					get_task_struct(work->task);
680 
681 					INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
682 					schedule_work(&work->work);
683 				} else
684 					ret = -ENOMEM;
685 			} else {
686 				if (IS_ERR(obj->userptr.work)) {
687 					ret = PTR_ERR(obj->userptr.work);
688 					obj->userptr.work = NULL;
689 				}
690 			}
691 		}
692 	} else {
693 		ret = st_set_pages(&obj->pages, pvec, num_pages);
694 		if (ret == 0) {
695 			obj->userptr.work = NULL;
696 			pinned = 0;
697 		}
698 	}
699 
700 	release_pages(pvec, pinned, 0);
701 	drm_free_large(pvec);
702 	return ret;
703 }
704 
705 static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object * obj)706 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
707 {
708 	struct sg_page_iter sg_iter;
709 
710 	BUG_ON(obj->userptr.work != NULL);
711 
712 	if (obj->madv != I915_MADV_WILLNEED)
713 		obj->dirty = 0;
714 
715 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
716 		struct page *page = sg_page_iter_page(&sg_iter);
717 
718 		if (obj->dirty)
719 			set_page_dirty(page);
720 
721 		mark_page_accessed(page);
722 		page_cache_release(page);
723 	}
724 	obj->dirty = 0;
725 
726 	sg_free_table(obj->pages);
727 	kfree(obj->pages);
728 }
729 
730 static void
i915_gem_userptr_release(struct drm_i915_gem_object * obj)731 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
732 {
733 	i915_gem_userptr_release__mmu_notifier(obj);
734 	i915_gem_userptr_release__mm_struct(obj);
735 }
736 
737 static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object * obj)738 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
739 {
740 	if (obj->userptr.mmu_object)
741 		return 0;
742 
743 	return i915_gem_userptr_init__mmu_notifier(obj, 0);
744 }
745 
746 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
747 	.dmabuf_export = i915_gem_userptr_dmabuf_export,
748 	.get_pages = i915_gem_userptr_get_pages,
749 	.put_pages = i915_gem_userptr_put_pages,
750 	.release = i915_gem_userptr_release,
751 };
752 
753 /**
754  * Creates a new mm object that wraps some normal memory from the process
755  * context - user memory.
756  *
757  * We impose several restrictions upon the memory being mapped
758  * into the GPU.
759  * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
760  * 2. It must be normal system memory, not a pointer into another map of IO
761  *    space (e.g. it must not be a GTT mmapping of another object).
762  * 3. We only allow a bo as large as we could in theory map into the GTT,
763  *    that is we limit the size to the total size of the GTT.
764  * 4. The bo is marked as being snoopable. The backing pages are left
765  *    accessible directly by the CPU, but reads and writes by the GPU may
766  *    incur the cost of a snoop (unless you have an LLC architecture).
767  *
768  * Synchronisation between multiple users and the GPU is left to userspace
769  * through the normal set-domain-ioctl. The kernel will enforce that the
770  * GPU relinquishes the VMA before it is returned back to the system
771  * i.e. upon free(), munmap() or process termination. However, the userspace
772  * malloc() library may not immediately relinquish the VMA after free() and
773  * instead reuse it whilst the GPU is still reading and writing to the VMA.
774  * Caveat emptor.
775  *
776  * Also note, that the object created here is not currently a "first class"
777  * object, in that several ioctls are banned. These are the CPU access
778  * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
779  * direct access via your pointer rather than use those ioctls.
780  *
781  * If you think this is a good interface to use to pass GPU memory between
782  * drivers, please use dma-buf instead. In fact, wherever possible use
783  * dma-buf instead.
784  */
785 int
i915_gem_userptr_ioctl(struct drm_device * dev,void * data,struct drm_file * file)786 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
787 {
788 	struct drm_i915_private *dev_priv = dev->dev_private;
789 	struct drm_i915_gem_userptr *args = data;
790 	struct drm_i915_gem_object *obj;
791 	int ret;
792 	u32 handle;
793 
794 	if (args->flags & ~(I915_USERPTR_READ_ONLY |
795 			    I915_USERPTR_UNSYNCHRONIZED))
796 		return -EINVAL;
797 
798 	if (offset_in_page(args->user_ptr | args->user_size))
799 		return -EINVAL;
800 
801 	if (args->user_size > dev_priv->gtt.base.total)
802 		return -E2BIG;
803 
804 	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
805 		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
806 		return -EFAULT;
807 
808 	if (args->flags & I915_USERPTR_READ_ONLY) {
809 		/* On almost all of the current hw, we cannot tell the GPU that a
810 		 * page is readonly, so this is just a placeholder in the uAPI.
811 		 */
812 		return -ENODEV;
813 	}
814 
815 	obj = i915_gem_object_alloc(dev);
816 	if (obj == NULL)
817 		return -ENOMEM;
818 
819 	drm_gem_private_object_init(dev, &obj->base, args->user_size);
820 	i915_gem_object_init(obj, &i915_gem_userptr_ops);
821 	obj->cache_level = I915_CACHE_LLC;
822 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
823 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
824 
825 	obj->userptr.ptr = args->user_ptr;
826 	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
827 
828 	/* And keep a pointer to the current->mm for resolving the user pages
829 	 * at binding. This means that we need to hook into the mmu_notifier
830 	 * in order to detect if the mmu is destroyed.
831 	 */
832 	ret = i915_gem_userptr_init__mm_struct(obj);
833 	if (ret == 0)
834 		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
835 	if (ret == 0)
836 		ret = drm_gem_handle_create(file, &obj->base, &handle);
837 
838 	/* drop reference from allocate - handle holds it now */
839 	drm_gem_object_unreference_unlocked(&obj->base);
840 	if (ret)
841 		return ret;
842 
843 	args->handle = handle;
844 	return 0;
845 }
846 
847 int
i915_gem_init_userptr(struct drm_device * dev)848 i915_gem_init_userptr(struct drm_device *dev)
849 {
850 	struct drm_i915_private *dev_priv = to_i915(dev);
851 	mutex_init(&dev_priv->mm_lock);
852 	hash_init(dev_priv->mm_structs);
853 	return 0;
854 }
855